1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 33 /* 34 * Copy on Write of Shared Blocks 35 * 36 * XFS must preserve "the usual" file semantics even when two files share 37 * the same physical blocks. This means that a write to one file must not 38 * alter the blocks in a different file; the way that we'll do that is 39 * through the use of a copy-on-write mechanism. At a high level, that 40 * means that when we want to write to a shared block, we allocate a new 41 * block, write the data to the new block, and if that succeeds we map the 42 * new block into the file. 43 * 44 * XFS provides a "delayed allocation" mechanism that defers the allocation 45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 46 * possible. This reduces fragmentation by enabling the filesystem to ask 47 * for bigger chunks less often, which is exactly what we want for CoW. 48 * 49 * The delalloc mechanism begins when the kernel wants to make a block 50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 51 * create a delalloc mapping, which is a regular in-core extent, but without 52 * a real startblock. (For delalloc mappings, the startblock encodes both 53 * a flag that this is a delalloc mapping, and a worst-case estimate of how 54 * many blocks might be required to put the mapping into the BMBT.) delalloc 55 * mappings are a reservation against the free space in the filesystem; 56 * adjacent mappings can also be combined into fewer larger mappings. 57 * 58 * As an optimization, the CoW extent size hint (cowextsz) creates 59 * outsized aligned delalloc reservations in the hope of landing out of 60 * order nearby CoW writes in a single extent on disk, thereby reducing 61 * fragmentation and improving future performance. 62 * 63 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 64 * C: ------DDDDDDD--------- (CoW fork) 65 * 66 * When dirty pages are being written out (typically in writepage), the 67 * delalloc reservations are converted into unwritten mappings by 68 * allocating blocks and replacing the delalloc mapping with real ones. 69 * A delalloc mapping can be replaced by several unwritten ones if the 70 * free space is fragmented. 71 * 72 * D: --RRRRRRSSSRRRRRRRR--- 73 * C: ------UUUUUUU--------- 74 * 75 * We want to adapt the delalloc mechanism for copy-on-write, since the 76 * write paths are similar. The first two steps (creating the reservation 77 * and allocating the blocks) are exactly the same as delalloc except that 78 * the mappings must be stored in a separate CoW fork because we do not want 79 * to disturb the mapping in the data fork until we're sure that the write 80 * succeeded. IO completion in this case is the process of removing the old 81 * mapping from the data fork and moving the new mapping from the CoW fork to 82 * the data fork. This will be discussed shortly. 83 * 84 * For now, unaligned directio writes will be bounced back to the page cache. 85 * Block-aligned directio writes will use the same mechanism as buffered 86 * writes. 87 * 88 * Just prior to submitting the actual disk write requests, we convert 89 * the extents representing the range of the file actually being written 90 * (as opposed to extra pieces created for the cowextsize hint) to real 91 * extents. This will become important in the next step: 92 * 93 * D: --RRRRRRSSSRRRRRRRR--- 94 * C: ------UUrrUUU--------- 95 * 96 * CoW remapping must be done after the data block write completes, 97 * because we don't want to destroy the old data fork map until we're sure 98 * the new block has been written. Since the new mappings are kept in a 99 * separate fork, we can simply iterate these mappings to find the ones 100 * that cover the file blocks that we just CoW'd. For each extent, simply 101 * unmap the corresponding range in the data fork, map the new range into 102 * the data fork, and remove the extent from the CoW fork. Because of 103 * the presence of the cowextsize hint, however, we must be careful 104 * only to remap the blocks that we've actually written out -- we must 105 * never remap delalloc reservations nor CoW staging blocks that have 106 * yet to be written. This corresponds exactly to the real extents in 107 * the CoW fork: 108 * 109 * D: --RRRRRRrrSRRRRRRRR--- 110 * C: ------UU--UUU--------- 111 * 112 * Since the remapping operation can be applied to an arbitrary file 113 * range, we record the need for the remap step as a flag in the ioend 114 * instead of declaring a new IO type. This is required for direct io 115 * because we only have ioend for the whole dio, and we have to be able to 116 * remember the presence of unwritten blocks and CoW blocks with a single 117 * ioend structure. Better yet, the more ground we can cover with one 118 * ioend, the better. 119 */ 120 121 /* 122 * Given an AG extent, find the lowest-numbered run of shared blocks 123 * within that range and return the range in fbno/flen. If 124 * find_end_of_shared is true, return the longest contiguous extent of 125 * shared blocks. If there are no shared extents, fbno and flen will 126 * be set to NULLAGBLOCK and 0, respectively. 127 */ 128 static int 129 xfs_reflink_find_shared( 130 struct xfs_perag *pag, 131 struct xfs_trans *tp, 132 xfs_agblock_t agbno, 133 xfs_extlen_t aglen, 134 xfs_agblock_t *fbno, 135 xfs_extlen_t *flen, 136 bool find_end_of_shared) 137 { 138 struct xfs_buf *agbp; 139 struct xfs_btree_cur *cur; 140 int error; 141 142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 143 if (error) 144 return error; 145 146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag); 147 148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 149 find_end_of_shared); 150 151 xfs_btree_del_cursor(cur, error); 152 153 xfs_trans_brelse(tp, agbp); 154 return error; 155 } 156 157 /* 158 * Trim the mapping to the next block where there's a change in the 159 * shared/unshared status. More specifically, this means that we 160 * find the lowest-numbered extent of shared blocks that coincides with 161 * the given block mapping. If the shared extent overlaps the start of 162 * the mapping, trim the mapping to the end of the shared extent. If 163 * the shared region intersects the mapping, trim the mapping to the 164 * start of the shared extent. If there are no shared regions that 165 * overlap, just return the original extent. 166 */ 167 int 168 xfs_reflink_trim_around_shared( 169 struct xfs_inode *ip, 170 struct xfs_bmbt_irec *irec, 171 bool *shared) 172 { 173 struct xfs_mount *mp = ip->i_mount; 174 struct xfs_perag *pag; 175 xfs_agblock_t agbno; 176 xfs_extlen_t aglen; 177 xfs_agblock_t fbno; 178 xfs_extlen_t flen; 179 int error = 0; 180 181 /* Holes, unwritten, and delalloc extents cannot be shared */ 182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 183 *shared = false; 184 return 0; 185 } 186 187 trace_xfs_reflink_trim_around_shared(ip, irec); 188 189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 191 aglen = irec->br_blockcount; 192 193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 194 true); 195 xfs_perag_put(pag); 196 if (error) 197 return error; 198 199 *shared = false; 200 if (fbno == NULLAGBLOCK) { 201 /* No shared blocks at all. */ 202 return 0; 203 } 204 205 if (fbno == agbno) { 206 /* 207 * The start of this extent is shared. Truncate the 208 * mapping at the end of the shared region so that a 209 * subsequent iteration starts at the start of the 210 * unshared region. 211 */ 212 irec->br_blockcount = flen; 213 *shared = true; 214 return 0; 215 } 216 217 /* 218 * There's a shared extent midway through this extent. 219 * Truncate the mapping at the start of the shared 220 * extent so that a subsequent iteration starts at the 221 * start of the shared region. 222 */ 223 irec->br_blockcount = fbno - agbno; 224 return 0; 225 } 226 227 int 228 xfs_bmap_trim_cow( 229 struct xfs_inode *ip, 230 struct xfs_bmbt_irec *imap, 231 bool *shared) 232 { 233 /* We can't update any real extents in always COW mode. */ 234 if (xfs_is_always_cow_inode(ip) && 235 !isnullstartblock(imap->br_startblock)) { 236 *shared = true; 237 return 0; 238 } 239 240 /* Trim the mapping to the nearest shared extent boundary. */ 241 return xfs_reflink_trim_around_shared(ip, imap, shared); 242 } 243 244 static int 245 xfs_reflink_convert_cow_locked( 246 struct xfs_inode *ip, 247 xfs_fileoff_t offset_fsb, 248 xfs_filblks_t count_fsb) 249 { 250 struct xfs_iext_cursor icur; 251 struct xfs_bmbt_irec got; 252 struct xfs_btree_cur *dummy_cur = NULL; 253 int dummy_logflags; 254 int error = 0; 255 256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 257 return 0; 258 259 do { 260 if (got.br_startoff >= offset_fsb + count_fsb) 261 break; 262 if (got.br_state == XFS_EXT_NORM) 263 continue; 264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 265 return -EIO; 266 267 xfs_trim_extent(&got, offset_fsb, count_fsb); 268 if (!got.br_blockcount) 269 continue; 270 271 got.br_state = XFS_EXT_NORM; 272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 273 XFS_COW_FORK, &icur, &dummy_cur, &got, 274 &dummy_logflags); 275 if (error) 276 return error; 277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 278 279 return error; 280 } 281 282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 283 int 284 xfs_reflink_convert_cow( 285 struct xfs_inode *ip, 286 xfs_off_t offset, 287 xfs_off_t count) 288 { 289 struct xfs_mount *mp = ip->i_mount; 290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 292 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 293 int error; 294 295 ASSERT(count != 0); 296 297 xfs_ilock(ip, XFS_ILOCK_EXCL); 298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 299 xfs_iunlock(ip, XFS_ILOCK_EXCL); 300 return error; 301 } 302 303 /* 304 * Find the extent that maps the given range in the COW fork. Even if the extent 305 * is not shared we might have a preallocation for it in the COW fork. If so we 306 * use it that rather than trigger a new allocation. 307 */ 308 static int 309 xfs_find_trim_cow_extent( 310 struct xfs_inode *ip, 311 struct xfs_bmbt_irec *imap, 312 struct xfs_bmbt_irec *cmap, 313 bool *shared, 314 bool *found) 315 { 316 xfs_fileoff_t offset_fsb = imap->br_startoff; 317 xfs_filblks_t count_fsb = imap->br_blockcount; 318 struct xfs_iext_cursor icur; 319 320 *found = false; 321 322 /* 323 * If we don't find an overlapping extent, trim the range we need to 324 * allocate to fit the hole we found. 325 */ 326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 327 cmap->br_startoff = offset_fsb + count_fsb; 328 if (cmap->br_startoff > offset_fsb) { 329 xfs_trim_extent(imap, imap->br_startoff, 330 cmap->br_startoff - imap->br_startoff); 331 return xfs_bmap_trim_cow(ip, imap, shared); 332 } 333 334 *shared = true; 335 if (isnullstartblock(cmap->br_startblock)) { 336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 337 return 0; 338 } 339 340 /* real extent found - no need to allocate */ 341 xfs_trim_extent(cmap, offset_fsb, count_fsb); 342 *found = true; 343 return 0; 344 } 345 346 static int 347 xfs_reflink_convert_unwritten( 348 struct xfs_inode *ip, 349 struct xfs_bmbt_irec *imap, 350 struct xfs_bmbt_irec *cmap, 351 bool convert_now) 352 { 353 xfs_fileoff_t offset_fsb = imap->br_startoff; 354 xfs_filblks_t count_fsb = imap->br_blockcount; 355 int error; 356 357 /* 358 * cmap might larger than imap due to cowextsize hint. 359 */ 360 xfs_trim_extent(cmap, offset_fsb, count_fsb); 361 362 /* 363 * COW fork extents are supposed to remain unwritten until we're ready 364 * to initiate a disk write. For direct I/O we are going to write the 365 * data and need the conversion, but for buffered writes we're done. 366 */ 367 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 368 return 0; 369 370 trace_xfs_reflink_convert_cow(ip, cmap); 371 372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 373 if (!error) 374 cmap->br_state = XFS_EXT_NORM; 375 376 return error; 377 } 378 379 static int 380 xfs_reflink_fill_cow_hole( 381 struct xfs_inode *ip, 382 struct xfs_bmbt_irec *imap, 383 struct xfs_bmbt_irec *cmap, 384 bool *shared, 385 uint *lockmode, 386 bool convert_now) 387 { 388 struct xfs_mount *mp = ip->i_mount; 389 struct xfs_trans *tp; 390 xfs_filblks_t resaligned; 391 xfs_extlen_t resblks; 392 int nimaps; 393 int error; 394 bool found; 395 396 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 397 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 399 400 xfs_iunlock(ip, *lockmode); 401 *lockmode = 0; 402 403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 404 false, &tp); 405 if (error) 406 return error; 407 408 *lockmode = XFS_ILOCK_EXCL; 409 410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 411 if (error || !*shared) 412 goto out_trans_cancel; 413 414 if (found) { 415 xfs_trans_cancel(tp); 416 goto convert; 417 } 418 419 /* Allocate the entire reservation as unwritten blocks. */ 420 nimaps = 1; 421 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 422 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 423 &nimaps); 424 if (error) 425 goto out_trans_cancel; 426 427 xfs_inode_set_cowblocks_tag(ip); 428 error = xfs_trans_commit(tp); 429 if (error) 430 return error; 431 432 /* 433 * Allocation succeeded but the requested range was not even partially 434 * satisfied? Bail out! 435 */ 436 if (nimaps == 0) 437 return -ENOSPC; 438 439 convert: 440 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 441 442 out_trans_cancel: 443 xfs_trans_cancel(tp); 444 return error; 445 } 446 447 static int 448 xfs_reflink_fill_delalloc( 449 struct xfs_inode *ip, 450 struct xfs_bmbt_irec *imap, 451 struct xfs_bmbt_irec *cmap, 452 bool *shared, 453 uint *lockmode, 454 bool convert_now) 455 { 456 struct xfs_mount *mp = ip->i_mount; 457 struct xfs_trans *tp; 458 int nimaps; 459 int error; 460 bool found; 461 462 do { 463 xfs_iunlock(ip, *lockmode); 464 *lockmode = 0; 465 466 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 467 false, &tp); 468 if (error) 469 return error; 470 471 *lockmode = XFS_ILOCK_EXCL; 472 473 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 474 &found); 475 if (error || !*shared) 476 goto out_trans_cancel; 477 478 if (found) { 479 xfs_trans_cancel(tp); 480 break; 481 } 482 483 ASSERT(isnullstartblock(cmap->br_startblock) || 484 cmap->br_startblock == DELAYSTARTBLOCK); 485 486 /* 487 * Replace delalloc reservation with an unwritten extent. 488 */ 489 nimaps = 1; 490 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 491 cmap->br_blockcount, 492 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 493 cmap, &nimaps); 494 if (error) 495 goto out_trans_cancel; 496 497 xfs_inode_set_cowblocks_tag(ip); 498 error = xfs_trans_commit(tp); 499 if (error) 500 return error; 501 502 /* 503 * Allocation succeeded but the requested range was not even 504 * partially satisfied? Bail out! 505 */ 506 if (nimaps == 0) 507 return -ENOSPC; 508 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 509 510 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 511 512 out_trans_cancel: 513 xfs_trans_cancel(tp); 514 return error; 515 } 516 517 /* Allocate all CoW reservations covering a range of blocks in a file. */ 518 int 519 xfs_reflink_allocate_cow( 520 struct xfs_inode *ip, 521 struct xfs_bmbt_irec *imap, 522 struct xfs_bmbt_irec *cmap, 523 bool *shared, 524 uint *lockmode, 525 bool convert_now) 526 { 527 int error; 528 bool found; 529 530 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 531 if (!ip->i_cowfp) { 532 ASSERT(!xfs_is_reflink_inode(ip)); 533 xfs_ifork_init_cow(ip); 534 } 535 536 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 537 if (error || !*shared) 538 return error; 539 540 /* CoW fork has a real extent */ 541 if (found) 542 return xfs_reflink_convert_unwritten(ip, imap, cmap, 543 convert_now); 544 545 /* 546 * CoW fork does not have an extent and data extent is shared. 547 * Allocate a real extent in the CoW fork. 548 */ 549 if (cmap->br_startoff > imap->br_startoff) 550 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 551 lockmode, convert_now); 552 553 /* 554 * CoW fork has a delalloc reservation. Replace it with a real extent. 555 * There may or may not be a data fork mapping. 556 */ 557 if (isnullstartblock(cmap->br_startblock) || 558 cmap->br_startblock == DELAYSTARTBLOCK) 559 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 560 lockmode, convert_now); 561 562 /* Shouldn't get here. */ 563 ASSERT(0); 564 return -EFSCORRUPTED; 565 } 566 567 /* 568 * Cancel CoW reservations for some block range of an inode. 569 * 570 * If cancel_real is true this function cancels all COW fork extents for the 571 * inode; if cancel_real is false, real extents are not cleared. 572 * 573 * Caller must have already joined the inode to the current transaction. The 574 * inode will be joined to the transaction returned to the caller. 575 */ 576 int 577 xfs_reflink_cancel_cow_blocks( 578 struct xfs_inode *ip, 579 struct xfs_trans **tpp, 580 xfs_fileoff_t offset_fsb, 581 xfs_fileoff_t end_fsb, 582 bool cancel_real) 583 { 584 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 585 struct xfs_bmbt_irec got, del; 586 struct xfs_iext_cursor icur; 587 int error = 0; 588 589 if (!xfs_inode_has_cow_data(ip)) 590 return 0; 591 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 592 return 0; 593 594 /* Walk backwards until we're out of the I/O range... */ 595 while (got.br_startoff + got.br_blockcount > offset_fsb) { 596 del = got; 597 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 598 599 /* Extent delete may have bumped ext forward */ 600 if (!del.br_blockcount) { 601 xfs_iext_prev(ifp, &icur); 602 goto next_extent; 603 } 604 605 trace_xfs_reflink_cancel_cow(ip, &del); 606 607 if (isnullstartblock(del.br_startblock)) { 608 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 609 &icur, &got, &del); 610 if (error) 611 break; 612 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 613 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 614 615 /* Free the CoW orphan record. */ 616 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 617 del.br_blockcount); 618 619 xfs_free_extent_later(*tpp, del.br_startblock, 620 del.br_blockcount, NULL); 621 622 /* Roll the transaction */ 623 error = xfs_defer_finish(tpp); 624 if (error) 625 break; 626 627 /* Remove the mapping from the CoW fork. */ 628 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 629 630 /* Remove the quota reservation */ 631 error = xfs_quota_unreserve_blkres(ip, 632 del.br_blockcount); 633 if (error) 634 break; 635 } else { 636 /* Didn't do anything, push cursor back. */ 637 xfs_iext_prev(ifp, &icur); 638 } 639 next_extent: 640 if (!xfs_iext_get_extent(ifp, &icur, &got)) 641 break; 642 } 643 644 /* clear tag if cow fork is emptied */ 645 if (!ifp->if_bytes) 646 xfs_inode_clear_cowblocks_tag(ip); 647 return error; 648 } 649 650 /* 651 * Cancel CoW reservations for some byte range of an inode. 652 * 653 * If cancel_real is true this function cancels all COW fork extents for the 654 * inode; if cancel_real is false, real extents are not cleared. 655 */ 656 int 657 xfs_reflink_cancel_cow_range( 658 struct xfs_inode *ip, 659 xfs_off_t offset, 660 xfs_off_t count, 661 bool cancel_real) 662 { 663 struct xfs_trans *tp; 664 xfs_fileoff_t offset_fsb; 665 xfs_fileoff_t end_fsb; 666 int error; 667 668 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 669 ASSERT(ip->i_cowfp); 670 671 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 672 if (count == NULLFILEOFF) 673 end_fsb = NULLFILEOFF; 674 else 675 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 676 677 /* Start a rolling transaction to remove the mappings */ 678 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 679 0, 0, 0, &tp); 680 if (error) 681 goto out; 682 683 xfs_ilock(ip, XFS_ILOCK_EXCL); 684 xfs_trans_ijoin(tp, ip, 0); 685 686 /* Scrape out the old CoW reservations */ 687 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 688 cancel_real); 689 if (error) 690 goto out_cancel; 691 692 error = xfs_trans_commit(tp); 693 694 xfs_iunlock(ip, XFS_ILOCK_EXCL); 695 return error; 696 697 out_cancel: 698 xfs_trans_cancel(tp); 699 xfs_iunlock(ip, XFS_ILOCK_EXCL); 700 out: 701 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 702 return error; 703 } 704 705 /* 706 * Remap part of the CoW fork into the data fork. 707 * 708 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 709 * into the data fork; this function will remap what it can (at the end of the 710 * range) and update @end_fsb appropriately. Each remap gets its own 711 * transaction because we can end up merging and splitting bmbt blocks for 712 * every remap operation and we'd like to keep the block reservation 713 * requirements as low as possible. 714 */ 715 STATIC int 716 xfs_reflink_end_cow_extent( 717 struct xfs_inode *ip, 718 xfs_fileoff_t *offset_fsb, 719 xfs_fileoff_t end_fsb) 720 { 721 struct xfs_iext_cursor icur; 722 struct xfs_bmbt_irec got, del, data; 723 struct xfs_mount *mp = ip->i_mount; 724 struct xfs_trans *tp; 725 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 726 unsigned int resblks; 727 int nmaps; 728 int error; 729 730 /* No COW extents? That's easy! */ 731 if (ifp->if_bytes == 0) { 732 *offset_fsb = end_fsb; 733 return 0; 734 } 735 736 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 737 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 738 XFS_TRANS_RESERVE, &tp); 739 if (error) 740 return error; 741 742 /* 743 * Lock the inode. We have to ijoin without automatic unlock because 744 * the lead transaction is the refcountbt record deletion; the data 745 * fork update follows as a deferred log item. 746 */ 747 xfs_ilock(ip, XFS_ILOCK_EXCL); 748 xfs_trans_ijoin(tp, ip, 0); 749 750 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 751 XFS_IEXT_REFLINK_END_COW_CNT); 752 if (error == -EFBIG) 753 error = xfs_iext_count_upgrade(tp, ip, 754 XFS_IEXT_REFLINK_END_COW_CNT); 755 if (error) 756 goto out_cancel; 757 758 /* 759 * In case of racing, overlapping AIO writes no COW extents might be 760 * left by the time I/O completes for the loser of the race. In that 761 * case we are done. 762 */ 763 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 764 got.br_startoff >= end_fsb) { 765 *offset_fsb = end_fsb; 766 goto out_cancel; 767 } 768 769 /* 770 * Only remap real extents that contain data. With AIO, speculative 771 * preallocations can leak into the range we are called upon, and we 772 * need to skip them. Preserve @got for the eventual CoW fork 773 * deletion; from now on @del represents the mapping that we're 774 * actually remapping. 775 */ 776 while (!xfs_bmap_is_written_extent(&got)) { 777 if (!xfs_iext_next_extent(ifp, &icur, &got) || 778 got.br_startoff >= end_fsb) { 779 *offset_fsb = end_fsb; 780 goto out_cancel; 781 } 782 } 783 del = got; 784 785 /* Grab the corresponding mapping in the data fork. */ 786 nmaps = 1; 787 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 788 &nmaps, 0); 789 if (error) 790 goto out_cancel; 791 792 /* We can only remap the smaller of the two extent sizes. */ 793 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 794 del.br_blockcount = data.br_blockcount; 795 796 trace_xfs_reflink_cow_remap_from(ip, &del); 797 trace_xfs_reflink_cow_remap_to(ip, &data); 798 799 if (xfs_bmap_is_real_extent(&data)) { 800 /* 801 * If the extent we're remapping is backed by storage (written 802 * or not), unmap the extent and drop its refcount. 803 */ 804 xfs_bmap_unmap_extent(tp, ip, &data); 805 xfs_refcount_decrease_extent(tp, &data); 806 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 807 -data.br_blockcount); 808 } else if (data.br_startblock == DELAYSTARTBLOCK) { 809 int done; 810 811 /* 812 * If the extent we're remapping is a delalloc reservation, 813 * we can use the regular bunmapi function to release the 814 * incore state. Dropping the delalloc reservation takes care 815 * of the quota reservation for us. 816 */ 817 error = xfs_bunmapi(NULL, ip, data.br_startoff, 818 data.br_blockcount, 0, 1, &done); 819 if (error) 820 goto out_cancel; 821 ASSERT(done); 822 } 823 824 /* Free the CoW orphan record. */ 825 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 826 827 /* Map the new blocks into the data fork. */ 828 xfs_bmap_map_extent(tp, ip, &del); 829 830 /* Charge this new data fork mapping to the on-disk quota. */ 831 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 832 (long)del.br_blockcount); 833 834 /* Remove the mapping from the CoW fork. */ 835 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 836 837 error = xfs_trans_commit(tp); 838 xfs_iunlock(ip, XFS_ILOCK_EXCL); 839 if (error) 840 return error; 841 842 /* Update the caller about how much progress we made. */ 843 *offset_fsb = del.br_startoff + del.br_blockcount; 844 return 0; 845 846 out_cancel: 847 xfs_trans_cancel(tp); 848 xfs_iunlock(ip, XFS_ILOCK_EXCL); 849 return error; 850 } 851 852 /* 853 * Remap parts of a file's data fork after a successful CoW. 854 */ 855 int 856 xfs_reflink_end_cow( 857 struct xfs_inode *ip, 858 xfs_off_t offset, 859 xfs_off_t count) 860 { 861 xfs_fileoff_t offset_fsb; 862 xfs_fileoff_t end_fsb; 863 int error = 0; 864 865 trace_xfs_reflink_end_cow(ip, offset, count); 866 867 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 868 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 869 870 /* 871 * Walk forwards until we've remapped the I/O range. The loop function 872 * repeatedly cycles the ILOCK to allocate one transaction per remapped 873 * extent. 874 * 875 * If we're being called by writeback then the pages will still 876 * have PageWriteback set, which prevents races with reflink remapping 877 * and truncate. Reflink remapping prevents races with writeback by 878 * taking the iolock and mmaplock before flushing the pages and 879 * remapping, which means there won't be any further writeback or page 880 * cache dirtying until the reflink completes. 881 * 882 * We should never have two threads issuing writeback for the same file 883 * region. There are also have post-eof checks in the writeback 884 * preparation code so that we don't bother writing out pages that are 885 * about to be truncated. 886 * 887 * If we're being called as part of directio write completion, the dio 888 * count is still elevated, which reflink and truncate will wait for. 889 * Reflink remapping takes the iolock and mmaplock and waits for 890 * pending dio to finish, which should prevent any directio until the 891 * remap completes. Multiple concurrent directio writes to the same 892 * region are handled by end_cow processing only occurring for the 893 * threads which succeed; the outcome of multiple overlapping direct 894 * writes is not well defined anyway. 895 * 896 * It's possible that a buffered write and a direct write could collide 897 * here (the buffered write stumbles in after the dio flushes and 898 * invalidates the page cache and immediately queues writeback), but we 899 * have never supported this 100%. If either disk write succeeds the 900 * blocks will be remapped. 901 */ 902 while (end_fsb > offset_fsb && !error) 903 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 904 905 if (error) 906 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 907 return error; 908 } 909 910 /* 911 * Free all CoW staging blocks that are still referenced by the ondisk refcount 912 * metadata. The ondisk metadata does not track which inode created the 913 * staging extent, so callers must ensure that there are no cached inodes with 914 * live CoW staging extents. 915 */ 916 int 917 xfs_reflink_recover_cow( 918 struct xfs_mount *mp) 919 { 920 struct xfs_perag *pag; 921 xfs_agnumber_t agno; 922 int error = 0; 923 924 if (!xfs_has_reflink(mp)) 925 return 0; 926 927 for_each_perag(mp, agno, pag) { 928 error = xfs_refcount_recover_cow_leftovers(mp, pag); 929 if (error) { 930 xfs_perag_rele(pag); 931 break; 932 } 933 } 934 935 return error; 936 } 937 938 /* 939 * Reflinking (Block) Ranges of Two Files Together 940 * 941 * First, ensure that the reflink flag is set on both inodes. The flag is an 942 * optimization to avoid unnecessary refcount btree lookups in the write path. 943 * 944 * Now we can iteratively remap the range of extents (and holes) in src to the 945 * corresponding ranges in dest. Let drange and srange denote the ranges of 946 * logical blocks in dest and src touched by the reflink operation. 947 * 948 * While the length of drange is greater than zero, 949 * - Read src's bmbt at the start of srange ("imap") 950 * - If imap doesn't exist, make imap appear to start at the end of srange 951 * with zero length. 952 * - If imap starts before srange, advance imap to start at srange. 953 * - If imap goes beyond srange, truncate imap to end at the end of srange. 954 * - Punch (imap start - srange start + imap len) blocks from dest at 955 * offset (drange start). 956 * - If imap points to a real range of pblks, 957 * > Increase the refcount of the imap's pblks 958 * > Map imap's pblks into dest at the offset 959 * (drange start + imap start - srange start) 960 * - Advance drange and srange by (imap start - srange start + imap len) 961 * 962 * Finally, if the reflink made dest longer, update both the in-core and 963 * on-disk file sizes. 964 * 965 * ASCII Art Demonstration: 966 * 967 * Let's say we want to reflink this source file: 968 * 969 * ----SSSSSSS-SSSSS----SSSSSS (src file) 970 * <--------------------> 971 * 972 * into this destination file: 973 * 974 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 975 * <--------------------> 976 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 977 * Observe that the range has different logical offsets in either file. 978 * 979 * Consider that the first extent in the source file doesn't line up with our 980 * reflink range. Unmapping and remapping are separate operations, so we can 981 * unmap more blocks from the destination file than we remap. 982 * 983 * ----SSSSSSS-SSSSS----SSSSSS 984 * <-------> 985 * --DDDDD---------DDDDD--DDD 986 * <-------> 987 * 988 * Now remap the source extent into the destination file: 989 * 990 * ----SSSSSSS-SSSSS----SSSSSS 991 * <-------> 992 * --DDDDD--SSSSSSSDDDDD--DDD 993 * <-------> 994 * 995 * Do likewise with the second hole and extent in our range. Holes in the 996 * unmap range don't affect our operation. 997 * 998 * ----SSSSSSS-SSSSS----SSSSSS 999 * <----> 1000 * --DDDDD--SSSSSSS-SSSSS-DDD 1001 * <----> 1002 * 1003 * Finally, unmap and remap part of the third extent. This will increase the 1004 * size of the destination file. 1005 * 1006 * ----SSSSSSS-SSSSS----SSSSSS 1007 * <-----> 1008 * --DDDDD--SSSSSSS-SSSSS----SSS 1009 * <-----> 1010 * 1011 * Once we update the destination file's i_size, we're done. 1012 */ 1013 1014 /* 1015 * Ensure the reflink bit is set in both inodes. 1016 */ 1017 STATIC int 1018 xfs_reflink_set_inode_flag( 1019 struct xfs_inode *src, 1020 struct xfs_inode *dest) 1021 { 1022 struct xfs_mount *mp = src->i_mount; 1023 int error; 1024 struct xfs_trans *tp; 1025 1026 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1027 return 0; 1028 1029 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1030 if (error) 1031 goto out_error; 1032 1033 /* Lock both files against IO */ 1034 if (src->i_ino == dest->i_ino) 1035 xfs_ilock(src, XFS_ILOCK_EXCL); 1036 else 1037 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1038 1039 if (!xfs_is_reflink_inode(src)) { 1040 trace_xfs_reflink_set_inode_flag(src); 1041 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1042 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1043 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1044 xfs_ifork_init_cow(src); 1045 } else 1046 xfs_iunlock(src, XFS_ILOCK_EXCL); 1047 1048 if (src->i_ino == dest->i_ino) 1049 goto commit_flags; 1050 1051 if (!xfs_is_reflink_inode(dest)) { 1052 trace_xfs_reflink_set_inode_flag(dest); 1053 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1054 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1055 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1056 xfs_ifork_init_cow(dest); 1057 } else 1058 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1059 1060 commit_flags: 1061 error = xfs_trans_commit(tp); 1062 if (error) 1063 goto out_error; 1064 return error; 1065 1066 out_error: 1067 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1068 return error; 1069 } 1070 1071 /* 1072 * Update destination inode size & cowextsize hint, if necessary. 1073 */ 1074 int 1075 xfs_reflink_update_dest( 1076 struct xfs_inode *dest, 1077 xfs_off_t newlen, 1078 xfs_extlen_t cowextsize, 1079 unsigned int remap_flags) 1080 { 1081 struct xfs_mount *mp = dest->i_mount; 1082 struct xfs_trans *tp; 1083 int error; 1084 1085 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1086 return 0; 1087 1088 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1089 if (error) 1090 goto out_error; 1091 1092 xfs_ilock(dest, XFS_ILOCK_EXCL); 1093 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1094 1095 if (newlen > i_size_read(VFS_I(dest))) { 1096 trace_xfs_reflink_update_inode_size(dest, newlen); 1097 i_size_write(VFS_I(dest), newlen); 1098 dest->i_disk_size = newlen; 1099 } 1100 1101 if (cowextsize) { 1102 dest->i_cowextsize = cowextsize; 1103 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1104 } 1105 1106 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1107 1108 error = xfs_trans_commit(tp); 1109 if (error) 1110 goto out_error; 1111 return error; 1112 1113 out_error: 1114 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1115 return error; 1116 } 1117 1118 /* 1119 * Do we have enough reserve in this AG to handle a reflink? The refcount 1120 * btree already reserved all the space it needs, but the rmap btree can grow 1121 * infinitely, so we won't allow more reflinks when the AG is down to the 1122 * btree reserves. 1123 */ 1124 static int 1125 xfs_reflink_ag_has_free_space( 1126 struct xfs_mount *mp, 1127 xfs_agnumber_t agno) 1128 { 1129 struct xfs_perag *pag; 1130 int error = 0; 1131 1132 if (!xfs_has_rmapbt(mp)) 1133 return 0; 1134 1135 pag = xfs_perag_get(mp, agno); 1136 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1137 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1138 error = -ENOSPC; 1139 xfs_perag_put(pag); 1140 return error; 1141 } 1142 1143 /* 1144 * Remap the given extent into the file. The dmap blockcount will be set to 1145 * the number of blocks that were actually remapped. 1146 */ 1147 STATIC int 1148 xfs_reflink_remap_extent( 1149 struct xfs_inode *ip, 1150 struct xfs_bmbt_irec *dmap, 1151 xfs_off_t new_isize) 1152 { 1153 struct xfs_bmbt_irec smap; 1154 struct xfs_mount *mp = ip->i_mount; 1155 struct xfs_trans *tp; 1156 xfs_off_t newlen; 1157 int64_t qdelta = 0; 1158 unsigned int resblks; 1159 bool quota_reserved = true; 1160 bool smap_real; 1161 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1162 int iext_delta = 0; 1163 int nimaps; 1164 int error; 1165 1166 /* 1167 * Start a rolling transaction to switch the mappings. 1168 * 1169 * Adding a written extent to the extent map can cause a bmbt split, 1170 * and removing a mapped extent from the extent can cause a bmbt split. 1171 * The two operations cannot both cause a split since they operate on 1172 * the same index in the bmap btree, so we only need a reservation for 1173 * one bmbt split if either thing is happening. However, we haven't 1174 * locked the inode yet, so we reserve assuming this is the case. 1175 * 1176 * The first allocation call tries to reserve enough space to handle 1177 * mapping dmap into a sparse part of the file plus the bmbt split. We 1178 * haven't locked the inode or read the existing mapping yet, so we do 1179 * not know for sure that we need the space. This should succeed most 1180 * of the time. 1181 * 1182 * If the first attempt fails, try again but reserving only enough 1183 * space to handle a bmbt split. This is the hard minimum requirement, 1184 * and we revisit quota reservations later when we know more about what 1185 * we're remapping. 1186 */ 1187 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1188 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1189 resblks + dmap->br_blockcount, 0, false, &tp); 1190 if (error == -EDQUOT || error == -ENOSPC) { 1191 quota_reserved = false; 1192 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1193 resblks, 0, false, &tp); 1194 } 1195 if (error) 1196 goto out; 1197 1198 /* 1199 * Read what's currently mapped in the destination file into smap. 1200 * If smap isn't a hole, we will have to remove it before we can add 1201 * dmap to the destination file. 1202 */ 1203 nimaps = 1; 1204 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1205 &smap, &nimaps, 0); 1206 if (error) 1207 goto out_cancel; 1208 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1209 smap_real = xfs_bmap_is_real_extent(&smap); 1210 1211 /* 1212 * We can only remap as many blocks as the smaller of the two extent 1213 * maps, because we can only remap one extent at a time. 1214 */ 1215 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1216 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1217 1218 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1219 1220 /* 1221 * Two extents mapped to the same physical block must not have 1222 * different states; that's filesystem corruption. Move on to the next 1223 * extent if they're both holes or both the same physical extent. 1224 */ 1225 if (dmap->br_startblock == smap.br_startblock) { 1226 if (dmap->br_state != smap.br_state) 1227 error = -EFSCORRUPTED; 1228 goto out_cancel; 1229 } 1230 1231 /* If both extents are unwritten, leave them alone. */ 1232 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1233 smap.br_state == XFS_EXT_UNWRITTEN) 1234 goto out_cancel; 1235 1236 /* No reflinking if the AG of the dest mapping is low on space. */ 1237 if (dmap_written) { 1238 error = xfs_reflink_ag_has_free_space(mp, 1239 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1240 if (error) 1241 goto out_cancel; 1242 } 1243 1244 /* 1245 * Increase quota reservation if we think the quota block counter for 1246 * this file could increase. 1247 * 1248 * If we are mapping a written extent into the file, we need to have 1249 * enough quota block count reservation to handle the blocks in that 1250 * extent. We log only the delta to the quota block counts, so if the 1251 * extent we're unmapping also has blocks allocated to it, we don't 1252 * need a quota reservation for the extent itself. 1253 * 1254 * Note that if we're replacing a delalloc reservation with a written 1255 * extent, we have to take the full quota reservation because removing 1256 * the delalloc reservation gives the block count back to the quota 1257 * count. This is suboptimal, but the VFS flushed the dest range 1258 * before we started. That should have removed all the delalloc 1259 * reservations, but we code defensively. 1260 * 1261 * xfs_trans_alloc_inode above already tried to grab an even larger 1262 * quota reservation, and kicked off a blockgc scan if it couldn't. 1263 * If we can't get a potentially smaller quota reservation now, we're 1264 * done. 1265 */ 1266 if (!quota_reserved && !smap_real && dmap_written) { 1267 error = xfs_trans_reserve_quota_nblks(tp, ip, 1268 dmap->br_blockcount, 0, false); 1269 if (error) 1270 goto out_cancel; 1271 } 1272 1273 if (smap_real) 1274 ++iext_delta; 1275 1276 if (dmap_written) 1277 ++iext_delta; 1278 1279 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta); 1280 if (error == -EFBIG) 1281 error = xfs_iext_count_upgrade(tp, ip, iext_delta); 1282 if (error) 1283 goto out_cancel; 1284 1285 if (smap_real) { 1286 /* 1287 * If the extent we're unmapping is backed by storage (written 1288 * or not), unmap the extent and drop its refcount. 1289 */ 1290 xfs_bmap_unmap_extent(tp, ip, &smap); 1291 xfs_refcount_decrease_extent(tp, &smap); 1292 qdelta -= smap.br_blockcount; 1293 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1294 int done; 1295 1296 /* 1297 * If the extent we're unmapping is a delalloc reservation, 1298 * we can use the regular bunmapi function to release the 1299 * incore state. Dropping the delalloc reservation takes care 1300 * of the quota reservation for us. 1301 */ 1302 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1303 smap.br_blockcount, 0, 1, &done); 1304 if (error) 1305 goto out_cancel; 1306 ASSERT(done); 1307 } 1308 1309 /* 1310 * If the extent we're sharing is backed by written storage, increase 1311 * its refcount and map it into the file. 1312 */ 1313 if (dmap_written) { 1314 xfs_refcount_increase_extent(tp, dmap); 1315 xfs_bmap_map_extent(tp, ip, dmap); 1316 qdelta += dmap->br_blockcount; 1317 } 1318 1319 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1320 1321 /* Update dest isize if needed. */ 1322 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1323 newlen = min_t(xfs_off_t, newlen, new_isize); 1324 if (newlen > i_size_read(VFS_I(ip))) { 1325 trace_xfs_reflink_update_inode_size(ip, newlen); 1326 i_size_write(VFS_I(ip), newlen); 1327 ip->i_disk_size = newlen; 1328 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1329 } 1330 1331 /* Commit everything and unlock. */ 1332 error = xfs_trans_commit(tp); 1333 goto out_unlock; 1334 1335 out_cancel: 1336 xfs_trans_cancel(tp); 1337 out_unlock: 1338 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1339 out: 1340 if (error) 1341 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1342 return error; 1343 } 1344 1345 /* Remap a range of one file to the other. */ 1346 int 1347 xfs_reflink_remap_blocks( 1348 struct xfs_inode *src, 1349 loff_t pos_in, 1350 struct xfs_inode *dest, 1351 loff_t pos_out, 1352 loff_t remap_len, 1353 loff_t *remapped) 1354 { 1355 struct xfs_bmbt_irec imap; 1356 struct xfs_mount *mp = src->i_mount; 1357 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1358 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1359 xfs_filblks_t len; 1360 xfs_filblks_t remapped_len = 0; 1361 xfs_off_t new_isize = pos_out + remap_len; 1362 int nimaps; 1363 int error = 0; 1364 1365 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1366 XFS_MAX_FILEOFF); 1367 1368 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1369 1370 while (len > 0) { 1371 unsigned int lock_mode; 1372 1373 /* Read extent from the source file */ 1374 nimaps = 1; 1375 lock_mode = xfs_ilock_data_map_shared(src); 1376 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1377 xfs_iunlock(src, lock_mode); 1378 if (error) 1379 break; 1380 /* 1381 * The caller supposedly flushed all dirty pages in the source 1382 * file range, which means that writeback should have allocated 1383 * or deleted all delalloc reservations in that range. If we 1384 * find one, that's a good sign that something is seriously 1385 * wrong here. 1386 */ 1387 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1388 if (imap.br_startblock == DELAYSTARTBLOCK) { 1389 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1390 error = -EFSCORRUPTED; 1391 break; 1392 } 1393 1394 trace_xfs_reflink_remap_extent_src(src, &imap); 1395 1396 /* Remap into the destination file at the given offset. */ 1397 imap.br_startoff = destoff; 1398 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1399 if (error) 1400 break; 1401 1402 if (fatal_signal_pending(current)) { 1403 error = -EINTR; 1404 break; 1405 } 1406 1407 /* Advance drange/srange */ 1408 srcoff += imap.br_blockcount; 1409 destoff += imap.br_blockcount; 1410 len -= imap.br_blockcount; 1411 remapped_len += imap.br_blockcount; 1412 } 1413 1414 if (error) 1415 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1416 *remapped = min_t(loff_t, remap_len, 1417 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1418 return error; 1419 } 1420 1421 /* 1422 * If we're reflinking to a point past the destination file's EOF, we must 1423 * zero any speculative post-EOF preallocations that sit between the old EOF 1424 * and the destination file offset. 1425 */ 1426 static int 1427 xfs_reflink_zero_posteof( 1428 struct xfs_inode *ip, 1429 loff_t pos) 1430 { 1431 loff_t isize = i_size_read(VFS_I(ip)); 1432 1433 if (pos <= isize) 1434 return 0; 1435 1436 trace_xfs_zero_eof(ip, isize, pos - isize); 1437 return xfs_zero_range(ip, isize, pos - isize, NULL); 1438 } 1439 1440 /* 1441 * Prepare two files for range cloning. Upon a successful return both inodes 1442 * will have the iolock and mmaplock held, the page cache of the out file will 1443 * be truncated, and any leases on the out file will have been broken. This 1444 * function borrows heavily from xfs_file_aio_write_checks. 1445 * 1446 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1447 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1448 * EOF block in the source dedupe range because it's not a complete block match, 1449 * hence can introduce a corruption into the file that has it's block replaced. 1450 * 1451 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1452 * "block aligned" for the purposes of cloning entire files. However, if the 1453 * source file range includes the EOF block and it lands within the existing EOF 1454 * of the destination file, then we can expose stale data from beyond the source 1455 * file EOF in the destination file. 1456 * 1457 * XFS doesn't support partial block sharing, so in both cases we have check 1458 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1459 * down to the previous whole block and ignore the partial EOF block. While this 1460 * means we can't dedupe the last block of a file, this is an acceptible 1461 * tradeoff for simplicity on implementation. 1462 * 1463 * For cloning, we want to share the partial EOF block if it is also the new EOF 1464 * block of the destination file. If the partial EOF block lies inside the 1465 * existing destination EOF, then we have to abort the clone to avoid exposing 1466 * stale data in the destination file. Hence we reject these clone attempts with 1467 * -EINVAL in this case. 1468 */ 1469 int 1470 xfs_reflink_remap_prep( 1471 struct file *file_in, 1472 loff_t pos_in, 1473 struct file *file_out, 1474 loff_t pos_out, 1475 loff_t *len, 1476 unsigned int remap_flags) 1477 { 1478 struct inode *inode_in = file_inode(file_in); 1479 struct xfs_inode *src = XFS_I(inode_in); 1480 struct inode *inode_out = file_inode(file_out); 1481 struct xfs_inode *dest = XFS_I(inode_out); 1482 int ret; 1483 1484 /* Lock both files against IO */ 1485 ret = xfs_ilock2_io_mmap(src, dest); 1486 if (ret) 1487 return ret; 1488 1489 /* Check file eligibility and prepare for block sharing. */ 1490 ret = -EINVAL; 1491 /* Don't reflink realtime inodes */ 1492 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1493 goto out_unlock; 1494 1495 /* Don't share DAX file data with non-DAX file. */ 1496 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1497 goto out_unlock; 1498 1499 if (!IS_DAX(inode_in)) 1500 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1501 pos_out, len, remap_flags); 1502 else 1503 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1504 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1505 if (ret || *len == 0) 1506 goto out_unlock; 1507 1508 /* Attach dquots to dest inode before changing block map */ 1509 ret = xfs_qm_dqattach(dest); 1510 if (ret) 1511 goto out_unlock; 1512 1513 /* 1514 * Zero existing post-eof speculative preallocations in the destination 1515 * file. 1516 */ 1517 ret = xfs_reflink_zero_posteof(dest, pos_out); 1518 if (ret) 1519 goto out_unlock; 1520 1521 /* Set flags and remap blocks. */ 1522 ret = xfs_reflink_set_inode_flag(src, dest); 1523 if (ret) 1524 goto out_unlock; 1525 1526 /* 1527 * If pos_out > EOF, we may have dirtied blocks between EOF and 1528 * pos_out. In that case, we need to extend the flush and unmap to cover 1529 * from EOF to the end of the copy length. 1530 */ 1531 if (pos_out > XFS_ISIZE(dest)) { 1532 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1533 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1534 } else { 1535 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1536 } 1537 if (ret) 1538 goto out_unlock; 1539 1540 return 0; 1541 out_unlock: 1542 xfs_iunlock2_io_mmap(src, dest); 1543 return ret; 1544 } 1545 1546 /* Does this inode need the reflink flag? */ 1547 int 1548 xfs_reflink_inode_has_shared_extents( 1549 struct xfs_trans *tp, 1550 struct xfs_inode *ip, 1551 bool *has_shared) 1552 { 1553 struct xfs_bmbt_irec got; 1554 struct xfs_mount *mp = ip->i_mount; 1555 struct xfs_ifork *ifp; 1556 struct xfs_iext_cursor icur; 1557 bool found; 1558 int error; 1559 1560 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1561 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1562 if (error) 1563 return error; 1564 1565 *has_shared = false; 1566 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1567 while (found) { 1568 struct xfs_perag *pag; 1569 xfs_agblock_t agbno; 1570 xfs_extlen_t aglen; 1571 xfs_agblock_t rbno; 1572 xfs_extlen_t rlen; 1573 1574 if (isnullstartblock(got.br_startblock) || 1575 got.br_state != XFS_EXT_NORM) 1576 goto next; 1577 1578 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1579 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1580 aglen = got.br_blockcount; 1581 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1582 &rbno, &rlen, false); 1583 xfs_perag_put(pag); 1584 if (error) 1585 return error; 1586 1587 /* Is there still a shared block here? */ 1588 if (rbno != NULLAGBLOCK) { 1589 *has_shared = true; 1590 return 0; 1591 } 1592 next: 1593 found = xfs_iext_next_extent(ifp, &icur, &got); 1594 } 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Clear the inode reflink flag if there are no shared extents. 1601 * 1602 * The caller is responsible for joining the inode to the transaction passed in. 1603 * The inode will be joined to the transaction that is returned to the caller. 1604 */ 1605 int 1606 xfs_reflink_clear_inode_flag( 1607 struct xfs_inode *ip, 1608 struct xfs_trans **tpp) 1609 { 1610 bool needs_flag; 1611 int error = 0; 1612 1613 ASSERT(xfs_is_reflink_inode(ip)); 1614 1615 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1616 if (error || needs_flag) 1617 return error; 1618 1619 /* 1620 * We didn't find any shared blocks so turn off the reflink flag. 1621 * First, get rid of any leftover CoW mappings. 1622 */ 1623 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1624 true); 1625 if (error) 1626 return error; 1627 1628 /* Clear the inode flag. */ 1629 trace_xfs_reflink_unset_inode_flag(ip); 1630 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1631 xfs_inode_clear_cowblocks_tag(ip); 1632 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1633 1634 return error; 1635 } 1636 1637 /* 1638 * Clear the inode reflink flag if there are no shared extents and the size 1639 * hasn't changed. 1640 */ 1641 STATIC int 1642 xfs_reflink_try_clear_inode_flag( 1643 struct xfs_inode *ip) 1644 { 1645 struct xfs_mount *mp = ip->i_mount; 1646 struct xfs_trans *tp; 1647 int error = 0; 1648 1649 /* Start a rolling transaction to remove the mappings */ 1650 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1651 if (error) 1652 return error; 1653 1654 xfs_ilock(ip, XFS_ILOCK_EXCL); 1655 xfs_trans_ijoin(tp, ip, 0); 1656 1657 error = xfs_reflink_clear_inode_flag(ip, &tp); 1658 if (error) 1659 goto cancel; 1660 1661 error = xfs_trans_commit(tp); 1662 if (error) 1663 goto out; 1664 1665 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1666 return 0; 1667 cancel: 1668 xfs_trans_cancel(tp); 1669 out: 1670 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1671 return error; 1672 } 1673 1674 /* 1675 * Pre-COW all shared blocks within a given byte range of a file and turn off 1676 * the reflink flag if we unshare all of the file's blocks. 1677 */ 1678 int 1679 xfs_reflink_unshare( 1680 struct xfs_inode *ip, 1681 xfs_off_t offset, 1682 xfs_off_t len) 1683 { 1684 struct inode *inode = VFS_I(ip); 1685 int error; 1686 1687 if (!xfs_is_reflink_inode(ip)) 1688 return 0; 1689 1690 trace_xfs_reflink_unshare(ip, offset, len); 1691 1692 inode_dio_wait(inode); 1693 1694 if (IS_DAX(inode)) 1695 error = dax_file_unshare(inode, offset, len, 1696 &xfs_dax_write_iomap_ops); 1697 else 1698 error = iomap_file_unshare(inode, offset, len, 1699 &xfs_buffered_write_iomap_ops); 1700 if (error) 1701 goto out; 1702 1703 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1704 offset + len - 1); 1705 if (error) 1706 goto out; 1707 1708 /* Turn off the reflink flag if possible. */ 1709 error = xfs_reflink_try_clear_inode_flag(ip); 1710 if (error) 1711 goto out; 1712 return 0; 1713 1714 out: 1715 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1716 return error; 1717 } 1718