xref: /linux/fs/xfs/xfs_reflink.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 #include "xfs_health.h"
33 
34 /*
35  * Copy on Write of Shared Blocks
36  *
37  * XFS must preserve "the usual" file semantics even when two files share
38  * the same physical blocks.  This means that a write to one file must not
39  * alter the blocks in a different file; the way that we'll do that is
40  * through the use of a copy-on-write mechanism.  At a high level, that
41  * means that when we want to write to a shared block, we allocate a new
42  * block, write the data to the new block, and if that succeeds we map the
43  * new block into the file.
44  *
45  * XFS provides a "delayed allocation" mechanism that defers the allocation
46  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
47  * possible.  This reduces fragmentation by enabling the filesystem to ask
48  * for bigger chunks less often, which is exactly what we want for CoW.
49  *
50  * The delalloc mechanism begins when the kernel wants to make a block
51  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
52  * create a delalloc mapping, which is a regular in-core extent, but without
53  * a real startblock.  (For delalloc mappings, the startblock encodes both
54  * a flag that this is a delalloc mapping, and a worst-case estimate of how
55  * many blocks might be required to put the mapping into the BMBT.)  delalloc
56  * mappings are a reservation against the free space in the filesystem;
57  * adjacent mappings can also be combined into fewer larger mappings.
58  *
59  * As an optimization, the CoW extent size hint (cowextsz) creates
60  * outsized aligned delalloc reservations in the hope of landing out of
61  * order nearby CoW writes in a single extent on disk, thereby reducing
62  * fragmentation and improving future performance.
63  *
64  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
65  * C: ------DDDDDDD--------- (CoW fork)
66  *
67  * When dirty pages are being written out (typically in writepage), the
68  * delalloc reservations are converted into unwritten mappings by
69  * allocating blocks and replacing the delalloc mapping with real ones.
70  * A delalloc mapping can be replaced by several unwritten ones if the
71  * free space is fragmented.
72  *
73  * D: --RRRRRRSSSRRRRRRRR---
74  * C: ------UUUUUUU---------
75  *
76  * We want to adapt the delalloc mechanism for copy-on-write, since the
77  * write paths are similar.  The first two steps (creating the reservation
78  * and allocating the blocks) are exactly the same as delalloc except that
79  * the mappings must be stored in a separate CoW fork because we do not want
80  * to disturb the mapping in the data fork until we're sure that the write
81  * succeeded.  IO completion in this case is the process of removing the old
82  * mapping from the data fork and moving the new mapping from the CoW fork to
83  * the data fork.  This will be discussed shortly.
84  *
85  * For now, unaligned directio writes will be bounced back to the page cache.
86  * Block-aligned directio writes will use the same mechanism as buffered
87  * writes.
88  *
89  * Just prior to submitting the actual disk write requests, we convert
90  * the extents representing the range of the file actually being written
91  * (as opposed to extra pieces created for the cowextsize hint) to real
92  * extents.  This will become important in the next step:
93  *
94  * D: --RRRRRRSSSRRRRRRRR---
95  * C: ------UUrrUUU---------
96  *
97  * CoW remapping must be done after the data block write completes,
98  * because we don't want to destroy the old data fork map until we're sure
99  * the new block has been written.  Since the new mappings are kept in a
100  * separate fork, we can simply iterate these mappings to find the ones
101  * that cover the file blocks that we just CoW'd.  For each extent, simply
102  * unmap the corresponding range in the data fork, map the new range into
103  * the data fork, and remove the extent from the CoW fork.  Because of
104  * the presence of the cowextsize hint, however, we must be careful
105  * only to remap the blocks that we've actually written out --  we must
106  * never remap delalloc reservations nor CoW staging blocks that have
107  * yet to be written.  This corresponds exactly to the real extents in
108  * the CoW fork:
109  *
110  * D: --RRRRRRrrSRRRRRRRR---
111  * C: ------UU--UUU---------
112  *
113  * Since the remapping operation can be applied to an arbitrary file
114  * range, we record the need for the remap step as a flag in the ioend
115  * instead of declaring a new IO type.  This is required for direct io
116  * because we only have ioend for the whole dio, and we have to be able to
117  * remember the presence of unwritten blocks and CoW blocks with a single
118  * ioend structure.  Better yet, the more ground we can cover with one
119  * ioend, the better.
120  */
121 
122 /*
123  * Given an AG extent, find the lowest-numbered run of shared blocks
124  * within that range and return the range in fbno/flen.  If
125  * find_end_of_shared is true, return the longest contiguous extent of
126  * shared blocks.  If there are no shared extents, fbno and flen will
127  * be set to NULLAGBLOCK and 0, respectively.
128  */
129 static int
130 xfs_reflink_find_shared(
131 	struct xfs_perag	*pag,
132 	struct xfs_trans	*tp,
133 	xfs_agblock_t		agbno,
134 	xfs_extlen_t		aglen,
135 	xfs_agblock_t		*fbno,
136 	xfs_extlen_t		*flen,
137 	bool			find_end_of_shared)
138 {
139 	struct xfs_buf		*agbp;
140 	struct xfs_btree_cur	*cur;
141 	int			error;
142 
143 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
144 	if (error)
145 		return error;
146 
147 	cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
148 
149 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 			find_end_of_shared);
151 
152 	xfs_btree_del_cursor(cur, error);
153 
154 	xfs_trans_brelse(tp, agbp);
155 	return error;
156 }
157 
158 /*
159  * Trim the mapping to the next block where there's a change in the
160  * shared/unshared status.  More specifically, this means that we
161  * find the lowest-numbered extent of shared blocks that coincides with
162  * the given block mapping.  If the shared extent overlaps the start of
163  * the mapping, trim the mapping to the end of the shared extent.  If
164  * the shared region intersects the mapping, trim the mapping to the
165  * start of the shared extent.  If there are no shared regions that
166  * overlap, just return the original extent.
167  */
168 int
169 xfs_reflink_trim_around_shared(
170 	struct xfs_inode	*ip,
171 	struct xfs_bmbt_irec	*irec,
172 	bool			*shared)
173 {
174 	struct xfs_mount	*mp = ip->i_mount;
175 	struct xfs_perag	*pag;
176 	xfs_agblock_t		agbno;
177 	xfs_extlen_t		aglen;
178 	xfs_agblock_t		fbno;
179 	xfs_extlen_t		flen;
180 	int			error = 0;
181 
182 	/* Holes, unwritten, and delalloc extents cannot be shared */
183 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
184 		*shared = false;
185 		return 0;
186 	}
187 
188 	trace_xfs_reflink_trim_around_shared(ip, irec);
189 
190 	pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
191 	agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
192 	aglen = irec->br_blockcount;
193 
194 	error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
195 			true);
196 	xfs_perag_put(pag);
197 	if (error)
198 		return error;
199 
200 	*shared = false;
201 	if (fbno == NULLAGBLOCK) {
202 		/* No shared blocks at all. */
203 		return 0;
204 	}
205 
206 	if (fbno == agbno) {
207 		/*
208 		 * The start of this extent is shared.  Truncate the
209 		 * mapping at the end of the shared region so that a
210 		 * subsequent iteration starts at the start of the
211 		 * unshared region.
212 		 */
213 		irec->br_blockcount = flen;
214 		*shared = true;
215 		return 0;
216 	}
217 
218 	/*
219 	 * There's a shared extent midway through this extent.
220 	 * Truncate the mapping at the start of the shared
221 	 * extent so that a subsequent iteration starts at the
222 	 * start of the shared region.
223 	 */
224 	irec->br_blockcount = fbno - agbno;
225 	return 0;
226 }
227 
228 int
229 xfs_bmap_trim_cow(
230 	struct xfs_inode	*ip,
231 	struct xfs_bmbt_irec	*imap,
232 	bool			*shared)
233 {
234 	/* We can't update any real extents in always COW mode. */
235 	if (xfs_is_always_cow_inode(ip) &&
236 	    !isnullstartblock(imap->br_startblock)) {
237 		*shared = true;
238 		return 0;
239 	}
240 
241 	/* Trim the mapping to the nearest shared extent boundary. */
242 	return xfs_reflink_trim_around_shared(ip, imap, shared);
243 }
244 
245 static int
246 xfs_reflink_convert_cow_locked(
247 	struct xfs_inode	*ip,
248 	xfs_fileoff_t		offset_fsb,
249 	xfs_filblks_t		count_fsb)
250 {
251 	struct xfs_iext_cursor	icur;
252 	struct xfs_bmbt_irec	got;
253 	struct xfs_btree_cur	*dummy_cur = NULL;
254 	int			dummy_logflags;
255 	int			error = 0;
256 
257 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
258 		return 0;
259 
260 	do {
261 		if (got.br_startoff >= offset_fsb + count_fsb)
262 			break;
263 		if (got.br_state == XFS_EXT_NORM)
264 			continue;
265 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
266 			return -EIO;
267 
268 		xfs_trim_extent(&got, offset_fsb, count_fsb);
269 		if (!got.br_blockcount)
270 			continue;
271 
272 		got.br_state = XFS_EXT_NORM;
273 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
274 				XFS_COW_FORK, &icur, &dummy_cur, &got,
275 				&dummy_logflags);
276 		if (error)
277 			return error;
278 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
279 
280 	return error;
281 }
282 
283 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
284 int
285 xfs_reflink_convert_cow(
286 	struct xfs_inode	*ip,
287 	xfs_off_t		offset,
288 	xfs_off_t		count)
289 {
290 	struct xfs_mount	*mp = ip->i_mount;
291 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
292 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
293 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
294 	int			error;
295 
296 	ASSERT(count != 0);
297 
298 	xfs_ilock(ip, XFS_ILOCK_EXCL);
299 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
300 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
301 	return error;
302 }
303 
304 /*
305  * Find the extent that maps the given range in the COW fork. Even if the extent
306  * is not shared we might have a preallocation for it in the COW fork. If so we
307  * use it that rather than trigger a new allocation.
308  */
309 static int
310 xfs_find_trim_cow_extent(
311 	struct xfs_inode	*ip,
312 	struct xfs_bmbt_irec	*imap,
313 	struct xfs_bmbt_irec	*cmap,
314 	bool			*shared,
315 	bool			*found)
316 {
317 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
318 	xfs_filblks_t		count_fsb = imap->br_blockcount;
319 	struct xfs_iext_cursor	icur;
320 
321 	*found = false;
322 
323 	/*
324 	 * If we don't find an overlapping extent, trim the range we need to
325 	 * allocate to fit the hole we found.
326 	 */
327 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
328 		cmap->br_startoff = offset_fsb + count_fsb;
329 	if (cmap->br_startoff > offset_fsb) {
330 		xfs_trim_extent(imap, imap->br_startoff,
331 				cmap->br_startoff - imap->br_startoff);
332 		return xfs_bmap_trim_cow(ip, imap, shared);
333 	}
334 
335 	*shared = true;
336 	if (isnullstartblock(cmap->br_startblock)) {
337 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
338 		return 0;
339 	}
340 
341 	/* real extent found - no need to allocate */
342 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
343 	*found = true;
344 	return 0;
345 }
346 
347 static int
348 xfs_reflink_convert_unwritten(
349 	struct xfs_inode	*ip,
350 	struct xfs_bmbt_irec	*imap,
351 	struct xfs_bmbt_irec	*cmap,
352 	bool			convert_now)
353 {
354 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
355 	xfs_filblks_t		count_fsb = imap->br_blockcount;
356 	int			error;
357 
358 	/*
359 	 * cmap might larger than imap due to cowextsize hint.
360 	 */
361 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
362 
363 	/*
364 	 * COW fork extents are supposed to remain unwritten until we're ready
365 	 * to initiate a disk write.  For direct I/O we are going to write the
366 	 * data and need the conversion, but for buffered writes we're done.
367 	 */
368 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
369 		return 0;
370 
371 	trace_xfs_reflink_convert_cow(ip, cmap);
372 
373 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
374 	if (!error)
375 		cmap->br_state = XFS_EXT_NORM;
376 
377 	return error;
378 }
379 
380 static int
381 xfs_reflink_fill_cow_hole(
382 	struct xfs_inode	*ip,
383 	struct xfs_bmbt_irec	*imap,
384 	struct xfs_bmbt_irec	*cmap,
385 	bool			*shared,
386 	uint			*lockmode,
387 	bool			convert_now)
388 {
389 	struct xfs_mount	*mp = ip->i_mount;
390 	struct xfs_trans	*tp;
391 	xfs_filblks_t		resaligned;
392 	xfs_extlen_t		resblks;
393 	int			nimaps;
394 	int			error;
395 	bool			found;
396 
397 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
398 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
399 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
400 
401 	xfs_iunlock(ip, *lockmode);
402 	*lockmode = 0;
403 
404 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
405 			false, &tp);
406 	if (error)
407 		return error;
408 
409 	*lockmode = XFS_ILOCK_EXCL;
410 
411 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
412 	if (error || !*shared)
413 		goto out_trans_cancel;
414 
415 	if (found) {
416 		xfs_trans_cancel(tp);
417 		goto convert;
418 	}
419 
420 	/* Allocate the entire reservation as unwritten blocks. */
421 	nimaps = 1;
422 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
423 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
424 			&nimaps);
425 	if (error)
426 		goto out_trans_cancel;
427 
428 	xfs_inode_set_cowblocks_tag(ip);
429 	error = xfs_trans_commit(tp);
430 	if (error)
431 		return error;
432 
433 	/*
434 	 * Allocation succeeded but the requested range was not even partially
435 	 * satisfied?  Bail out!
436 	 */
437 	if (nimaps == 0)
438 		return -ENOSPC;
439 
440 convert:
441 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
442 
443 out_trans_cancel:
444 	xfs_trans_cancel(tp);
445 	return error;
446 }
447 
448 static int
449 xfs_reflink_fill_delalloc(
450 	struct xfs_inode	*ip,
451 	struct xfs_bmbt_irec	*imap,
452 	struct xfs_bmbt_irec	*cmap,
453 	bool			*shared,
454 	uint			*lockmode,
455 	bool			convert_now)
456 {
457 	struct xfs_mount	*mp = ip->i_mount;
458 	struct xfs_trans	*tp;
459 	int			nimaps;
460 	int			error;
461 	bool			found;
462 
463 	do {
464 		xfs_iunlock(ip, *lockmode);
465 		*lockmode = 0;
466 
467 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
468 				false, &tp);
469 		if (error)
470 			return error;
471 
472 		*lockmode = XFS_ILOCK_EXCL;
473 
474 		error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
475 				&found);
476 		if (error || !*shared)
477 			goto out_trans_cancel;
478 
479 		if (found) {
480 			xfs_trans_cancel(tp);
481 			break;
482 		}
483 
484 		ASSERT(isnullstartblock(cmap->br_startblock) ||
485 		       cmap->br_startblock == DELAYSTARTBLOCK);
486 
487 		/*
488 		 * Replace delalloc reservation with an unwritten extent.
489 		 */
490 		nimaps = 1;
491 		error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
492 				cmap->br_blockcount,
493 				XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
494 				cmap, &nimaps);
495 		if (error)
496 			goto out_trans_cancel;
497 
498 		xfs_inode_set_cowblocks_tag(ip);
499 		error = xfs_trans_commit(tp);
500 		if (error)
501 			return error;
502 
503 		/*
504 		 * Allocation succeeded but the requested range was not even
505 		 * partially satisfied?  Bail out!
506 		 */
507 		if (nimaps == 0)
508 			return -ENOSPC;
509 	} while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
510 
511 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
512 
513 out_trans_cancel:
514 	xfs_trans_cancel(tp);
515 	return error;
516 }
517 
518 /* Allocate all CoW reservations covering a range of blocks in a file. */
519 int
520 xfs_reflink_allocate_cow(
521 	struct xfs_inode	*ip,
522 	struct xfs_bmbt_irec	*imap,
523 	struct xfs_bmbt_irec	*cmap,
524 	bool			*shared,
525 	uint			*lockmode,
526 	bool			convert_now)
527 {
528 	int			error;
529 	bool			found;
530 
531 	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
532 	if (!ip->i_cowfp) {
533 		ASSERT(!xfs_is_reflink_inode(ip));
534 		xfs_ifork_init_cow(ip);
535 	}
536 
537 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
538 	if (error || !*shared)
539 		return error;
540 
541 	/* CoW fork has a real extent */
542 	if (found)
543 		return xfs_reflink_convert_unwritten(ip, imap, cmap,
544 				convert_now);
545 
546 	/*
547 	 * CoW fork does not have an extent and data extent is shared.
548 	 * Allocate a real extent in the CoW fork.
549 	 */
550 	if (cmap->br_startoff > imap->br_startoff)
551 		return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
552 				lockmode, convert_now);
553 
554 	/*
555 	 * CoW fork has a delalloc reservation. Replace it with a real extent.
556 	 * There may or may not be a data fork mapping.
557 	 */
558 	if (isnullstartblock(cmap->br_startblock) ||
559 	    cmap->br_startblock == DELAYSTARTBLOCK)
560 		return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
561 				lockmode, convert_now);
562 
563 	/* Shouldn't get here. */
564 	ASSERT(0);
565 	return -EFSCORRUPTED;
566 }
567 
568 /*
569  * Cancel CoW reservations for some block range of an inode.
570  *
571  * If cancel_real is true this function cancels all COW fork extents for the
572  * inode; if cancel_real is false, real extents are not cleared.
573  *
574  * Caller must have already joined the inode to the current transaction. The
575  * inode will be joined to the transaction returned to the caller.
576  */
577 int
578 xfs_reflink_cancel_cow_blocks(
579 	struct xfs_inode		*ip,
580 	struct xfs_trans		**tpp,
581 	xfs_fileoff_t			offset_fsb,
582 	xfs_fileoff_t			end_fsb,
583 	bool				cancel_real)
584 {
585 	struct xfs_ifork		*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
586 	struct xfs_bmbt_irec		got, del;
587 	struct xfs_iext_cursor		icur;
588 	int				error = 0;
589 
590 	if (!xfs_inode_has_cow_data(ip))
591 		return 0;
592 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
593 		return 0;
594 
595 	/* Walk backwards until we're out of the I/O range... */
596 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
597 		del = got;
598 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
599 
600 		/* Extent delete may have bumped ext forward */
601 		if (!del.br_blockcount) {
602 			xfs_iext_prev(ifp, &icur);
603 			goto next_extent;
604 		}
605 
606 		trace_xfs_reflink_cancel_cow(ip, &del);
607 
608 		if (isnullstartblock(del.br_startblock)) {
609 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
610 					&icur, &got, &del);
611 			if (error)
612 				break;
613 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
614 			ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER);
615 
616 			/* Free the CoW orphan record. */
617 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
618 					del.br_blockcount);
619 
620 			error = xfs_free_extent_later(*tpp, del.br_startblock,
621 					del.br_blockcount, NULL,
622 					XFS_AG_RESV_NONE, false);
623 			if (error)
624 				break;
625 
626 			/* Roll the transaction */
627 			error = xfs_defer_finish(tpp);
628 			if (error)
629 				break;
630 
631 			/* Remove the mapping from the CoW fork. */
632 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
633 
634 			/* Remove the quota reservation */
635 			error = xfs_quota_unreserve_blkres(ip,
636 					del.br_blockcount);
637 			if (error)
638 				break;
639 		} else {
640 			/* Didn't do anything, push cursor back. */
641 			xfs_iext_prev(ifp, &icur);
642 		}
643 next_extent:
644 		if (!xfs_iext_get_extent(ifp, &icur, &got))
645 			break;
646 	}
647 
648 	/* clear tag if cow fork is emptied */
649 	if (!ifp->if_bytes)
650 		xfs_inode_clear_cowblocks_tag(ip);
651 	return error;
652 }
653 
654 /*
655  * Cancel CoW reservations for some byte range of an inode.
656  *
657  * If cancel_real is true this function cancels all COW fork extents for the
658  * inode; if cancel_real is false, real extents are not cleared.
659  */
660 int
661 xfs_reflink_cancel_cow_range(
662 	struct xfs_inode	*ip,
663 	xfs_off_t		offset,
664 	xfs_off_t		count,
665 	bool			cancel_real)
666 {
667 	struct xfs_trans	*tp;
668 	xfs_fileoff_t		offset_fsb;
669 	xfs_fileoff_t		end_fsb;
670 	int			error;
671 
672 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
673 	ASSERT(ip->i_cowfp);
674 
675 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
676 	if (count == NULLFILEOFF)
677 		end_fsb = NULLFILEOFF;
678 	else
679 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
680 
681 	/* Start a rolling transaction to remove the mappings */
682 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
683 			0, 0, 0, &tp);
684 	if (error)
685 		goto out;
686 
687 	xfs_ilock(ip, XFS_ILOCK_EXCL);
688 	xfs_trans_ijoin(tp, ip, 0);
689 
690 	/* Scrape out the old CoW reservations */
691 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
692 			cancel_real);
693 	if (error)
694 		goto out_cancel;
695 
696 	error = xfs_trans_commit(tp);
697 
698 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
699 	return error;
700 
701 out_cancel:
702 	xfs_trans_cancel(tp);
703 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
704 out:
705 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
706 	return error;
707 }
708 
709 /*
710  * Remap part of the CoW fork into the data fork.
711  *
712  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
713  * into the data fork; this function will remap what it can (at the end of the
714  * range) and update @end_fsb appropriately.  Each remap gets its own
715  * transaction because we can end up merging and splitting bmbt blocks for
716  * every remap operation and we'd like to keep the block reservation
717  * requirements as low as possible.
718  */
719 STATIC int
720 xfs_reflink_end_cow_extent(
721 	struct xfs_inode	*ip,
722 	xfs_fileoff_t		*offset_fsb,
723 	xfs_fileoff_t		end_fsb)
724 {
725 	struct xfs_iext_cursor	icur;
726 	struct xfs_bmbt_irec	got, del, data;
727 	struct xfs_mount	*mp = ip->i_mount;
728 	struct xfs_trans	*tp;
729 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
730 	unsigned int		resblks;
731 	int			nmaps;
732 	int			error;
733 
734 	/* No COW extents?  That's easy! */
735 	if (ifp->if_bytes == 0) {
736 		*offset_fsb = end_fsb;
737 		return 0;
738 	}
739 
740 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
741 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
742 			XFS_TRANS_RESERVE, &tp);
743 	if (error)
744 		return error;
745 
746 	/*
747 	 * Lock the inode.  We have to ijoin without automatic unlock because
748 	 * the lead transaction is the refcountbt record deletion; the data
749 	 * fork update follows as a deferred log item.
750 	 */
751 	xfs_ilock(ip, XFS_ILOCK_EXCL);
752 	xfs_trans_ijoin(tp, ip, 0);
753 
754 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
755 			XFS_IEXT_REFLINK_END_COW_CNT);
756 	if (error == -EFBIG)
757 		error = xfs_iext_count_upgrade(tp, ip,
758 				XFS_IEXT_REFLINK_END_COW_CNT);
759 	if (error)
760 		goto out_cancel;
761 
762 	/*
763 	 * In case of racing, overlapping AIO writes no COW extents might be
764 	 * left by the time I/O completes for the loser of the race.  In that
765 	 * case we are done.
766 	 */
767 	if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
768 	    got.br_startoff >= end_fsb) {
769 		*offset_fsb = end_fsb;
770 		goto out_cancel;
771 	}
772 
773 	/*
774 	 * Only remap real extents that contain data.  With AIO, speculative
775 	 * preallocations can leak into the range we are called upon, and we
776 	 * need to skip them.  Preserve @got for the eventual CoW fork
777 	 * deletion; from now on @del represents the mapping that we're
778 	 * actually remapping.
779 	 */
780 	while (!xfs_bmap_is_written_extent(&got)) {
781 		if (!xfs_iext_next_extent(ifp, &icur, &got) ||
782 		    got.br_startoff >= end_fsb) {
783 			*offset_fsb = end_fsb;
784 			goto out_cancel;
785 		}
786 	}
787 	del = got;
788 	xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb);
789 
790 	/* Grab the corresponding mapping in the data fork. */
791 	nmaps = 1;
792 	error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
793 			&nmaps, 0);
794 	if (error)
795 		goto out_cancel;
796 
797 	/* We can only remap the smaller of the two extent sizes. */
798 	data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
799 	del.br_blockcount = data.br_blockcount;
800 
801 	trace_xfs_reflink_cow_remap_from(ip, &del);
802 	trace_xfs_reflink_cow_remap_to(ip, &data);
803 
804 	if (xfs_bmap_is_real_extent(&data)) {
805 		/*
806 		 * If the extent we're remapping is backed by storage (written
807 		 * or not), unmap the extent and drop its refcount.
808 		 */
809 		xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data);
810 		xfs_refcount_decrease_extent(tp, &data);
811 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
812 				-data.br_blockcount);
813 	} else if (data.br_startblock == DELAYSTARTBLOCK) {
814 		int		done;
815 
816 		/*
817 		 * If the extent we're remapping is a delalloc reservation,
818 		 * we can use the regular bunmapi function to release the
819 		 * incore state.  Dropping the delalloc reservation takes care
820 		 * of the quota reservation for us.
821 		 */
822 		error = xfs_bunmapi(NULL, ip, data.br_startoff,
823 				data.br_blockcount, 0, 1, &done);
824 		if (error)
825 			goto out_cancel;
826 		ASSERT(done);
827 	}
828 
829 	/* Free the CoW orphan record. */
830 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
831 
832 	/* Map the new blocks into the data fork. */
833 	xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del);
834 
835 	/* Charge this new data fork mapping to the on-disk quota. */
836 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
837 			(long)del.br_blockcount);
838 
839 	/* Remove the mapping from the CoW fork. */
840 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
841 
842 	error = xfs_trans_commit(tp);
843 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
844 	if (error)
845 		return error;
846 
847 	/* Update the caller about how much progress we made. */
848 	*offset_fsb = del.br_startoff + del.br_blockcount;
849 	return 0;
850 
851 out_cancel:
852 	xfs_trans_cancel(tp);
853 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
854 	return error;
855 }
856 
857 /*
858  * Remap parts of a file's data fork after a successful CoW.
859  */
860 int
861 xfs_reflink_end_cow(
862 	struct xfs_inode		*ip,
863 	xfs_off_t			offset,
864 	xfs_off_t			count)
865 {
866 	xfs_fileoff_t			offset_fsb;
867 	xfs_fileoff_t			end_fsb;
868 	int				error = 0;
869 
870 	trace_xfs_reflink_end_cow(ip, offset, count);
871 
872 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
873 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
874 
875 	/*
876 	 * Walk forwards until we've remapped the I/O range.  The loop function
877 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
878 	 * extent.
879 	 *
880 	 * If we're being called by writeback then the pages will still
881 	 * have PageWriteback set, which prevents races with reflink remapping
882 	 * and truncate.  Reflink remapping prevents races with writeback by
883 	 * taking the iolock and mmaplock before flushing the pages and
884 	 * remapping, which means there won't be any further writeback or page
885 	 * cache dirtying until the reflink completes.
886 	 *
887 	 * We should never have two threads issuing writeback for the same file
888 	 * region.  There are also have post-eof checks in the writeback
889 	 * preparation code so that we don't bother writing out pages that are
890 	 * about to be truncated.
891 	 *
892 	 * If we're being called as part of directio write completion, the dio
893 	 * count is still elevated, which reflink and truncate will wait for.
894 	 * Reflink remapping takes the iolock and mmaplock and waits for
895 	 * pending dio to finish, which should prevent any directio until the
896 	 * remap completes.  Multiple concurrent directio writes to the same
897 	 * region are handled by end_cow processing only occurring for the
898 	 * threads which succeed; the outcome of multiple overlapping direct
899 	 * writes is not well defined anyway.
900 	 *
901 	 * It's possible that a buffered write and a direct write could collide
902 	 * here (the buffered write stumbles in after the dio flushes and
903 	 * invalidates the page cache and immediately queues writeback), but we
904 	 * have never supported this 100%.  If either disk write succeeds the
905 	 * blocks will be remapped.
906 	 */
907 	while (end_fsb > offset_fsb && !error)
908 		error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
909 
910 	if (error)
911 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
912 	return error;
913 }
914 
915 /*
916  * Free all CoW staging blocks that are still referenced by the ondisk refcount
917  * metadata.  The ondisk metadata does not track which inode created the
918  * staging extent, so callers must ensure that there are no cached inodes with
919  * live CoW staging extents.
920  */
921 int
922 xfs_reflink_recover_cow(
923 	struct xfs_mount	*mp)
924 {
925 	struct xfs_perag	*pag;
926 	xfs_agnumber_t		agno;
927 	int			error = 0;
928 
929 	if (!xfs_has_reflink(mp))
930 		return 0;
931 
932 	for_each_perag(mp, agno, pag) {
933 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
934 		if (error) {
935 			xfs_perag_rele(pag);
936 			break;
937 		}
938 	}
939 
940 	return error;
941 }
942 
943 /*
944  * Reflinking (Block) Ranges of Two Files Together
945  *
946  * First, ensure that the reflink flag is set on both inodes.  The flag is an
947  * optimization to avoid unnecessary refcount btree lookups in the write path.
948  *
949  * Now we can iteratively remap the range of extents (and holes) in src to the
950  * corresponding ranges in dest.  Let drange and srange denote the ranges of
951  * logical blocks in dest and src touched by the reflink operation.
952  *
953  * While the length of drange is greater than zero,
954  *    - Read src's bmbt at the start of srange ("imap")
955  *    - If imap doesn't exist, make imap appear to start at the end of srange
956  *      with zero length.
957  *    - If imap starts before srange, advance imap to start at srange.
958  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
959  *    - Punch (imap start - srange start + imap len) blocks from dest at
960  *      offset (drange start).
961  *    - If imap points to a real range of pblks,
962  *         > Increase the refcount of the imap's pblks
963  *         > Map imap's pblks into dest at the offset
964  *           (drange start + imap start - srange start)
965  *    - Advance drange and srange by (imap start - srange start + imap len)
966  *
967  * Finally, if the reflink made dest longer, update both the in-core and
968  * on-disk file sizes.
969  *
970  * ASCII Art Demonstration:
971  *
972  * Let's say we want to reflink this source file:
973  *
974  * ----SSSSSSS-SSSSS----SSSSSS (src file)
975  *   <-------------------->
976  *
977  * into this destination file:
978  *
979  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
980  *        <-------------------->
981  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
982  * Observe that the range has different logical offsets in either file.
983  *
984  * Consider that the first extent in the source file doesn't line up with our
985  * reflink range.  Unmapping  and remapping are separate operations, so we can
986  * unmap more blocks from the destination file than we remap.
987  *
988  * ----SSSSSSS-SSSSS----SSSSSS
989  *   <------->
990  * --DDDDD---------DDDDD--DDD
991  *        <------->
992  *
993  * Now remap the source extent into the destination file:
994  *
995  * ----SSSSSSS-SSSSS----SSSSSS
996  *   <------->
997  * --DDDDD--SSSSSSSDDDDD--DDD
998  *        <------->
999  *
1000  * Do likewise with the second hole and extent in our range.  Holes in the
1001  * unmap range don't affect our operation.
1002  *
1003  * ----SSSSSSS-SSSSS----SSSSSS
1004  *            <---->
1005  * --DDDDD--SSSSSSS-SSSSS-DDD
1006  *                 <---->
1007  *
1008  * Finally, unmap and remap part of the third extent.  This will increase the
1009  * size of the destination file.
1010  *
1011  * ----SSSSSSS-SSSSS----SSSSSS
1012  *                  <----->
1013  * --DDDDD--SSSSSSS-SSSSS----SSS
1014  *                       <----->
1015  *
1016  * Once we update the destination file's i_size, we're done.
1017  */
1018 
1019 /*
1020  * Ensure the reflink bit is set in both inodes.
1021  */
1022 STATIC int
1023 xfs_reflink_set_inode_flag(
1024 	struct xfs_inode	*src,
1025 	struct xfs_inode	*dest)
1026 {
1027 	struct xfs_mount	*mp = src->i_mount;
1028 	int			error;
1029 	struct xfs_trans	*tp;
1030 
1031 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1032 		return 0;
1033 
1034 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1035 	if (error)
1036 		goto out_error;
1037 
1038 	/* Lock both files against IO */
1039 	if (src->i_ino == dest->i_ino)
1040 		xfs_ilock(src, XFS_ILOCK_EXCL);
1041 	else
1042 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1043 
1044 	if (!xfs_is_reflink_inode(src)) {
1045 		trace_xfs_reflink_set_inode_flag(src);
1046 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1047 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1048 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1049 		xfs_ifork_init_cow(src);
1050 	} else
1051 		xfs_iunlock(src, XFS_ILOCK_EXCL);
1052 
1053 	if (src->i_ino == dest->i_ino)
1054 		goto commit_flags;
1055 
1056 	if (!xfs_is_reflink_inode(dest)) {
1057 		trace_xfs_reflink_set_inode_flag(dest);
1058 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1059 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1060 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1061 		xfs_ifork_init_cow(dest);
1062 	} else
1063 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
1064 
1065 commit_flags:
1066 	error = xfs_trans_commit(tp);
1067 	if (error)
1068 		goto out_error;
1069 	return error;
1070 
1071 out_error:
1072 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1073 	return error;
1074 }
1075 
1076 /*
1077  * Update destination inode size & cowextsize hint, if necessary.
1078  */
1079 int
1080 xfs_reflink_update_dest(
1081 	struct xfs_inode	*dest,
1082 	xfs_off_t		newlen,
1083 	xfs_extlen_t		cowextsize,
1084 	unsigned int		remap_flags)
1085 {
1086 	struct xfs_mount	*mp = dest->i_mount;
1087 	struct xfs_trans	*tp;
1088 	int			error;
1089 
1090 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1091 		return 0;
1092 
1093 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1094 	if (error)
1095 		goto out_error;
1096 
1097 	xfs_ilock(dest, XFS_ILOCK_EXCL);
1098 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1099 
1100 	if (newlen > i_size_read(VFS_I(dest))) {
1101 		trace_xfs_reflink_update_inode_size(dest, newlen);
1102 		i_size_write(VFS_I(dest), newlen);
1103 		dest->i_disk_size = newlen;
1104 	}
1105 
1106 	if (cowextsize) {
1107 		dest->i_cowextsize = cowextsize;
1108 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1109 	}
1110 
1111 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1112 
1113 	error = xfs_trans_commit(tp);
1114 	if (error)
1115 		goto out_error;
1116 	return error;
1117 
1118 out_error:
1119 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1120 	return error;
1121 }
1122 
1123 /*
1124  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1125  * btree already reserved all the space it needs, but the rmap btree can grow
1126  * infinitely, so we won't allow more reflinks when the AG is down to the
1127  * btree reserves.
1128  */
1129 static int
1130 xfs_reflink_ag_has_free_space(
1131 	struct xfs_mount	*mp,
1132 	xfs_agnumber_t		agno)
1133 {
1134 	struct xfs_perag	*pag;
1135 	int			error = 0;
1136 
1137 	if (!xfs_has_rmapbt(mp))
1138 		return 0;
1139 
1140 	pag = xfs_perag_get(mp, agno);
1141 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1142 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1143 		error = -ENOSPC;
1144 	xfs_perag_put(pag);
1145 	return error;
1146 }
1147 
1148 /*
1149  * Remap the given extent into the file.  The dmap blockcount will be set to
1150  * the number of blocks that were actually remapped.
1151  */
1152 STATIC int
1153 xfs_reflink_remap_extent(
1154 	struct xfs_inode	*ip,
1155 	struct xfs_bmbt_irec	*dmap,
1156 	xfs_off_t		new_isize)
1157 {
1158 	struct xfs_bmbt_irec	smap;
1159 	struct xfs_mount	*mp = ip->i_mount;
1160 	struct xfs_trans	*tp;
1161 	xfs_off_t		newlen;
1162 	int64_t			qdelta = 0;
1163 	unsigned int		resblks;
1164 	bool			quota_reserved = true;
1165 	bool			smap_real;
1166 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1167 	int			iext_delta = 0;
1168 	int			nimaps;
1169 	int			error;
1170 
1171 	/*
1172 	 * Start a rolling transaction to switch the mappings.
1173 	 *
1174 	 * Adding a written extent to the extent map can cause a bmbt split,
1175 	 * and removing a mapped extent from the extent can cause a bmbt split.
1176 	 * The two operations cannot both cause a split since they operate on
1177 	 * the same index in the bmap btree, so we only need a reservation for
1178 	 * one bmbt split if either thing is happening.  However, we haven't
1179 	 * locked the inode yet, so we reserve assuming this is the case.
1180 	 *
1181 	 * The first allocation call tries to reserve enough space to handle
1182 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1183 	 * haven't locked the inode or read the existing mapping yet, so we do
1184 	 * not know for sure that we need the space.  This should succeed most
1185 	 * of the time.
1186 	 *
1187 	 * If the first attempt fails, try again but reserving only enough
1188 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1189 	 * and we revisit quota reservations later when we know more about what
1190 	 * we're remapping.
1191 	 */
1192 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1193 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1194 			resblks + dmap->br_blockcount, 0, false, &tp);
1195 	if (error == -EDQUOT || error == -ENOSPC) {
1196 		quota_reserved = false;
1197 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1198 				resblks, 0, false, &tp);
1199 	}
1200 	if (error)
1201 		goto out;
1202 
1203 	/*
1204 	 * Read what's currently mapped in the destination file into smap.
1205 	 * If smap isn't a hole, we will have to remove it before we can add
1206 	 * dmap to the destination file.
1207 	 */
1208 	nimaps = 1;
1209 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1210 			&smap, &nimaps, 0);
1211 	if (error)
1212 		goto out_cancel;
1213 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1214 	smap_real = xfs_bmap_is_real_extent(&smap);
1215 
1216 	/*
1217 	 * We can only remap as many blocks as the smaller of the two extent
1218 	 * maps, because we can only remap one extent at a time.
1219 	 */
1220 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1221 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1222 
1223 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1224 
1225 	/*
1226 	 * Two extents mapped to the same physical block must not have
1227 	 * different states; that's filesystem corruption.  Move on to the next
1228 	 * extent if they're both holes or both the same physical extent.
1229 	 */
1230 	if (dmap->br_startblock == smap.br_startblock) {
1231 		if (dmap->br_state != smap.br_state) {
1232 			xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1233 			error = -EFSCORRUPTED;
1234 		}
1235 		goto out_cancel;
1236 	}
1237 
1238 	/* If both extents are unwritten, leave them alone. */
1239 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1240 	    smap.br_state == XFS_EXT_UNWRITTEN)
1241 		goto out_cancel;
1242 
1243 	/* No reflinking if the AG of the dest mapping is low on space. */
1244 	if (dmap_written) {
1245 		error = xfs_reflink_ag_has_free_space(mp,
1246 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1247 		if (error)
1248 			goto out_cancel;
1249 	}
1250 
1251 	/*
1252 	 * Increase quota reservation if we think the quota block counter for
1253 	 * this file could increase.
1254 	 *
1255 	 * If we are mapping a written extent into the file, we need to have
1256 	 * enough quota block count reservation to handle the blocks in that
1257 	 * extent.  We log only the delta to the quota block counts, so if the
1258 	 * extent we're unmapping also has blocks allocated to it, we don't
1259 	 * need a quota reservation for the extent itself.
1260 	 *
1261 	 * Note that if we're replacing a delalloc reservation with a written
1262 	 * extent, we have to take the full quota reservation because removing
1263 	 * the delalloc reservation gives the block count back to the quota
1264 	 * count.  This is suboptimal, but the VFS flushed the dest range
1265 	 * before we started.  That should have removed all the delalloc
1266 	 * reservations, but we code defensively.
1267 	 *
1268 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1269 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1270 	 * If we can't get a potentially smaller quota reservation now, we're
1271 	 * done.
1272 	 */
1273 	if (!quota_reserved && !smap_real && dmap_written) {
1274 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1275 				dmap->br_blockcount, 0, false);
1276 		if (error)
1277 			goto out_cancel;
1278 	}
1279 
1280 	if (smap_real)
1281 		++iext_delta;
1282 
1283 	if (dmap_written)
1284 		++iext_delta;
1285 
1286 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1287 	if (error == -EFBIG)
1288 		error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1289 	if (error)
1290 		goto out_cancel;
1291 
1292 	if (smap_real) {
1293 		/*
1294 		 * If the extent we're unmapping is backed by storage (written
1295 		 * or not), unmap the extent and drop its refcount.
1296 		 */
1297 		xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap);
1298 		xfs_refcount_decrease_extent(tp, &smap);
1299 		qdelta -= smap.br_blockcount;
1300 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1301 		int		done;
1302 
1303 		/*
1304 		 * If the extent we're unmapping is a delalloc reservation,
1305 		 * we can use the regular bunmapi function to release the
1306 		 * incore state.  Dropping the delalloc reservation takes care
1307 		 * of the quota reservation for us.
1308 		 */
1309 		error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1310 				smap.br_blockcount, 0, 1, &done);
1311 		if (error)
1312 			goto out_cancel;
1313 		ASSERT(done);
1314 	}
1315 
1316 	/*
1317 	 * If the extent we're sharing is backed by written storage, increase
1318 	 * its refcount and map it into the file.
1319 	 */
1320 	if (dmap_written) {
1321 		xfs_refcount_increase_extent(tp, dmap);
1322 		xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap);
1323 		qdelta += dmap->br_blockcount;
1324 	}
1325 
1326 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1327 
1328 	/* Update dest isize if needed. */
1329 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1330 	newlen = min_t(xfs_off_t, newlen, new_isize);
1331 	if (newlen > i_size_read(VFS_I(ip))) {
1332 		trace_xfs_reflink_update_inode_size(ip, newlen);
1333 		i_size_write(VFS_I(ip), newlen);
1334 		ip->i_disk_size = newlen;
1335 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1336 	}
1337 
1338 	/* Commit everything and unlock. */
1339 	error = xfs_trans_commit(tp);
1340 	goto out_unlock;
1341 
1342 out_cancel:
1343 	xfs_trans_cancel(tp);
1344 out_unlock:
1345 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1346 out:
1347 	if (error)
1348 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1349 	return error;
1350 }
1351 
1352 /* Remap a range of one file to the other. */
1353 int
1354 xfs_reflink_remap_blocks(
1355 	struct xfs_inode	*src,
1356 	loff_t			pos_in,
1357 	struct xfs_inode	*dest,
1358 	loff_t			pos_out,
1359 	loff_t			remap_len,
1360 	loff_t			*remapped)
1361 {
1362 	struct xfs_bmbt_irec	imap;
1363 	struct xfs_mount	*mp = src->i_mount;
1364 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1365 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1366 	xfs_filblks_t		len;
1367 	xfs_filblks_t		remapped_len = 0;
1368 	xfs_off_t		new_isize = pos_out + remap_len;
1369 	int			nimaps;
1370 	int			error = 0;
1371 
1372 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1373 			XFS_MAX_FILEOFF);
1374 
1375 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1376 
1377 	while (len > 0) {
1378 		unsigned int	lock_mode;
1379 
1380 		/* Read extent from the source file */
1381 		nimaps = 1;
1382 		lock_mode = xfs_ilock_data_map_shared(src);
1383 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1384 		xfs_iunlock(src, lock_mode);
1385 		if (error)
1386 			break;
1387 		/*
1388 		 * The caller supposedly flushed all dirty pages in the source
1389 		 * file range, which means that writeback should have allocated
1390 		 * or deleted all delalloc reservations in that range.  If we
1391 		 * find one, that's a good sign that something is seriously
1392 		 * wrong here.
1393 		 */
1394 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1395 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1396 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1397 			xfs_bmap_mark_sick(src, XFS_DATA_FORK);
1398 			error = -EFSCORRUPTED;
1399 			break;
1400 		}
1401 
1402 		trace_xfs_reflink_remap_extent_src(src, &imap);
1403 
1404 		/* Remap into the destination file at the given offset. */
1405 		imap.br_startoff = destoff;
1406 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1407 		if (error)
1408 			break;
1409 
1410 		if (fatal_signal_pending(current)) {
1411 			error = -EINTR;
1412 			break;
1413 		}
1414 
1415 		/* Advance drange/srange */
1416 		srcoff += imap.br_blockcount;
1417 		destoff += imap.br_blockcount;
1418 		len -= imap.br_blockcount;
1419 		remapped_len += imap.br_blockcount;
1420 	}
1421 
1422 	if (error)
1423 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1424 	*remapped = min_t(loff_t, remap_len,
1425 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1426 	return error;
1427 }
1428 
1429 /*
1430  * If we're reflinking to a point past the destination file's EOF, we must
1431  * zero any speculative post-EOF preallocations that sit between the old EOF
1432  * and the destination file offset.
1433  */
1434 static int
1435 xfs_reflink_zero_posteof(
1436 	struct xfs_inode	*ip,
1437 	loff_t			pos)
1438 {
1439 	loff_t			isize = i_size_read(VFS_I(ip));
1440 
1441 	if (pos <= isize)
1442 		return 0;
1443 
1444 	trace_xfs_zero_eof(ip, isize, pos - isize);
1445 	return xfs_zero_range(ip, isize, pos - isize, NULL);
1446 }
1447 
1448 /*
1449  * Prepare two files for range cloning.  Upon a successful return both inodes
1450  * will have the iolock and mmaplock held, the page cache of the out file will
1451  * be truncated, and any leases on the out file will have been broken.  This
1452  * function borrows heavily from xfs_file_aio_write_checks.
1453  *
1454  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1455  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1456  * EOF block in the source dedupe range because it's not a complete block match,
1457  * hence can introduce a corruption into the file that has it's block replaced.
1458  *
1459  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1460  * "block aligned" for the purposes of cloning entire files.  However, if the
1461  * source file range includes the EOF block and it lands within the existing EOF
1462  * of the destination file, then we can expose stale data from beyond the source
1463  * file EOF in the destination file.
1464  *
1465  * XFS doesn't support partial block sharing, so in both cases we have check
1466  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1467  * down to the previous whole block and ignore the partial EOF block. While this
1468  * means we can't dedupe the last block of a file, this is an acceptible
1469  * tradeoff for simplicity on implementation.
1470  *
1471  * For cloning, we want to share the partial EOF block if it is also the new EOF
1472  * block of the destination file. If the partial EOF block lies inside the
1473  * existing destination EOF, then we have to abort the clone to avoid exposing
1474  * stale data in the destination file. Hence we reject these clone attempts with
1475  * -EINVAL in this case.
1476  */
1477 int
1478 xfs_reflink_remap_prep(
1479 	struct file		*file_in,
1480 	loff_t			pos_in,
1481 	struct file		*file_out,
1482 	loff_t			pos_out,
1483 	loff_t			*len,
1484 	unsigned int		remap_flags)
1485 {
1486 	struct inode		*inode_in = file_inode(file_in);
1487 	struct xfs_inode	*src = XFS_I(inode_in);
1488 	struct inode		*inode_out = file_inode(file_out);
1489 	struct xfs_inode	*dest = XFS_I(inode_out);
1490 	int			ret;
1491 
1492 	/* Lock both files against IO */
1493 	ret = xfs_ilock2_io_mmap(src, dest);
1494 	if (ret)
1495 		return ret;
1496 
1497 	/* Check file eligibility and prepare for block sharing. */
1498 	ret = -EINVAL;
1499 	/* Don't reflink realtime inodes */
1500 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1501 		goto out_unlock;
1502 
1503 	/* Don't share DAX file data with non-DAX file. */
1504 	if (IS_DAX(inode_in) != IS_DAX(inode_out))
1505 		goto out_unlock;
1506 
1507 	if (!IS_DAX(inode_in))
1508 		ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1509 				pos_out, len, remap_flags);
1510 	else
1511 		ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1512 				pos_out, len, remap_flags, &xfs_read_iomap_ops);
1513 	if (ret || *len == 0)
1514 		goto out_unlock;
1515 
1516 	/* Attach dquots to dest inode before changing block map */
1517 	ret = xfs_qm_dqattach(dest);
1518 	if (ret)
1519 		goto out_unlock;
1520 
1521 	/*
1522 	 * Zero existing post-eof speculative preallocations in the destination
1523 	 * file.
1524 	 */
1525 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1526 	if (ret)
1527 		goto out_unlock;
1528 
1529 	/* Set flags and remap blocks. */
1530 	ret = xfs_reflink_set_inode_flag(src, dest);
1531 	if (ret)
1532 		goto out_unlock;
1533 
1534 	/*
1535 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1536 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1537 	 * from EOF to the end of the copy length.
1538 	 */
1539 	if (pos_out > XFS_ISIZE(dest)) {
1540 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1541 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1542 	} else {
1543 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1544 	}
1545 	if (ret)
1546 		goto out_unlock;
1547 
1548 	xfs_iflags_set(src, XFS_IREMAPPING);
1549 	if (inode_in != inode_out)
1550 		xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1551 
1552 	return 0;
1553 out_unlock:
1554 	xfs_iunlock2_io_mmap(src, dest);
1555 	return ret;
1556 }
1557 
1558 /* Does this inode need the reflink flag? */
1559 int
1560 xfs_reflink_inode_has_shared_extents(
1561 	struct xfs_trans		*tp,
1562 	struct xfs_inode		*ip,
1563 	bool				*has_shared)
1564 {
1565 	struct xfs_bmbt_irec		got;
1566 	struct xfs_mount		*mp = ip->i_mount;
1567 	struct xfs_ifork		*ifp;
1568 	struct xfs_iext_cursor		icur;
1569 	bool				found;
1570 	int				error;
1571 
1572 	ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1573 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1574 	if (error)
1575 		return error;
1576 
1577 	*has_shared = false;
1578 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1579 	while (found) {
1580 		struct xfs_perag	*pag;
1581 		xfs_agblock_t		agbno;
1582 		xfs_extlen_t		aglen;
1583 		xfs_agblock_t		rbno;
1584 		xfs_extlen_t		rlen;
1585 
1586 		if (isnullstartblock(got.br_startblock) ||
1587 		    got.br_state != XFS_EXT_NORM)
1588 			goto next;
1589 
1590 		pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1591 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1592 		aglen = got.br_blockcount;
1593 		error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1594 				&rbno, &rlen, false);
1595 		xfs_perag_put(pag);
1596 		if (error)
1597 			return error;
1598 
1599 		/* Is there still a shared block here? */
1600 		if (rbno != NULLAGBLOCK) {
1601 			*has_shared = true;
1602 			return 0;
1603 		}
1604 next:
1605 		found = xfs_iext_next_extent(ifp, &icur, &got);
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 /*
1612  * Clear the inode reflink flag if there are no shared extents.
1613  *
1614  * The caller is responsible for joining the inode to the transaction passed in.
1615  * The inode will be joined to the transaction that is returned to the caller.
1616  */
1617 int
1618 xfs_reflink_clear_inode_flag(
1619 	struct xfs_inode	*ip,
1620 	struct xfs_trans	**tpp)
1621 {
1622 	bool			needs_flag;
1623 	int			error = 0;
1624 
1625 	ASSERT(xfs_is_reflink_inode(ip));
1626 
1627 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1628 	if (error || needs_flag)
1629 		return error;
1630 
1631 	/*
1632 	 * We didn't find any shared blocks so turn off the reflink flag.
1633 	 * First, get rid of any leftover CoW mappings.
1634 	 */
1635 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1636 			true);
1637 	if (error)
1638 		return error;
1639 
1640 	/* Clear the inode flag. */
1641 	trace_xfs_reflink_unset_inode_flag(ip);
1642 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1643 	xfs_inode_clear_cowblocks_tag(ip);
1644 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1645 
1646 	return error;
1647 }
1648 
1649 /*
1650  * Clear the inode reflink flag if there are no shared extents and the size
1651  * hasn't changed.
1652  */
1653 STATIC int
1654 xfs_reflink_try_clear_inode_flag(
1655 	struct xfs_inode	*ip)
1656 {
1657 	struct xfs_mount	*mp = ip->i_mount;
1658 	struct xfs_trans	*tp;
1659 	int			error = 0;
1660 
1661 	/* Start a rolling transaction to remove the mappings */
1662 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1663 	if (error)
1664 		return error;
1665 
1666 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1667 	xfs_trans_ijoin(tp, ip, 0);
1668 
1669 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1670 	if (error)
1671 		goto cancel;
1672 
1673 	error = xfs_trans_commit(tp);
1674 	if (error)
1675 		goto out;
1676 
1677 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1678 	return 0;
1679 cancel:
1680 	xfs_trans_cancel(tp);
1681 out:
1682 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1683 	return error;
1684 }
1685 
1686 /*
1687  * Pre-COW all shared blocks within a given byte range of a file and turn off
1688  * the reflink flag if we unshare all of the file's blocks.
1689  */
1690 int
1691 xfs_reflink_unshare(
1692 	struct xfs_inode	*ip,
1693 	xfs_off_t		offset,
1694 	xfs_off_t		len)
1695 {
1696 	struct inode		*inode = VFS_I(ip);
1697 	int			error;
1698 
1699 	if (!xfs_is_reflink_inode(ip))
1700 		return 0;
1701 
1702 	trace_xfs_reflink_unshare(ip, offset, len);
1703 
1704 	inode_dio_wait(inode);
1705 
1706 	if (IS_DAX(inode))
1707 		error = dax_file_unshare(inode, offset, len,
1708 				&xfs_dax_write_iomap_ops);
1709 	else
1710 		error = iomap_file_unshare(inode, offset, len,
1711 				&xfs_buffered_write_iomap_ops);
1712 	if (error)
1713 		goto out;
1714 
1715 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1716 			offset + len - 1);
1717 	if (error)
1718 		goto out;
1719 
1720 	/* Turn off the reflink flag if possible. */
1721 	error = xfs_reflink_try_clear_inode_flag(ip);
1722 	if (error)
1723 		goto out;
1724 	return 0;
1725 
1726 out:
1727 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1728 	return error;
1729 }
1730