1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 #include "xfs_health.h" 33 34 /* 35 * Copy on Write of Shared Blocks 36 * 37 * XFS must preserve "the usual" file semantics even when two files share 38 * the same physical blocks. This means that a write to one file must not 39 * alter the blocks in a different file; the way that we'll do that is 40 * through the use of a copy-on-write mechanism. At a high level, that 41 * means that when we want to write to a shared block, we allocate a new 42 * block, write the data to the new block, and if that succeeds we map the 43 * new block into the file. 44 * 45 * XFS provides a "delayed allocation" mechanism that defers the allocation 46 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 47 * possible. This reduces fragmentation by enabling the filesystem to ask 48 * for bigger chunks less often, which is exactly what we want for CoW. 49 * 50 * The delalloc mechanism begins when the kernel wants to make a block 51 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 52 * create a delalloc mapping, which is a regular in-core extent, but without 53 * a real startblock. (For delalloc mappings, the startblock encodes both 54 * a flag that this is a delalloc mapping, and a worst-case estimate of how 55 * many blocks might be required to put the mapping into the BMBT.) delalloc 56 * mappings are a reservation against the free space in the filesystem; 57 * adjacent mappings can also be combined into fewer larger mappings. 58 * 59 * As an optimization, the CoW extent size hint (cowextsz) creates 60 * outsized aligned delalloc reservations in the hope of landing out of 61 * order nearby CoW writes in a single extent on disk, thereby reducing 62 * fragmentation and improving future performance. 63 * 64 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 65 * C: ------DDDDDDD--------- (CoW fork) 66 * 67 * When dirty pages are being written out (typically in writepage), the 68 * delalloc reservations are converted into unwritten mappings by 69 * allocating blocks and replacing the delalloc mapping with real ones. 70 * A delalloc mapping can be replaced by several unwritten ones if the 71 * free space is fragmented. 72 * 73 * D: --RRRRRRSSSRRRRRRRR--- 74 * C: ------UUUUUUU--------- 75 * 76 * We want to adapt the delalloc mechanism for copy-on-write, since the 77 * write paths are similar. The first two steps (creating the reservation 78 * and allocating the blocks) are exactly the same as delalloc except that 79 * the mappings must be stored in a separate CoW fork because we do not want 80 * to disturb the mapping in the data fork until we're sure that the write 81 * succeeded. IO completion in this case is the process of removing the old 82 * mapping from the data fork and moving the new mapping from the CoW fork to 83 * the data fork. This will be discussed shortly. 84 * 85 * For now, unaligned directio writes will be bounced back to the page cache. 86 * Block-aligned directio writes will use the same mechanism as buffered 87 * writes. 88 * 89 * Just prior to submitting the actual disk write requests, we convert 90 * the extents representing the range of the file actually being written 91 * (as opposed to extra pieces created for the cowextsize hint) to real 92 * extents. This will become important in the next step: 93 * 94 * D: --RRRRRRSSSRRRRRRRR--- 95 * C: ------UUrrUUU--------- 96 * 97 * CoW remapping must be done after the data block write completes, 98 * because we don't want to destroy the old data fork map until we're sure 99 * the new block has been written. Since the new mappings are kept in a 100 * separate fork, we can simply iterate these mappings to find the ones 101 * that cover the file blocks that we just CoW'd. For each extent, simply 102 * unmap the corresponding range in the data fork, map the new range into 103 * the data fork, and remove the extent from the CoW fork. Because of 104 * the presence of the cowextsize hint, however, we must be careful 105 * only to remap the blocks that we've actually written out -- we must 106 * never remap delalloc reservations nor CoW staging blocks that have 107 * yet to be written. This corresponds exactly to the real extents in 108 * the CoW fork: 109 * 110 * D: --RRRRRRrrSRRRRRRRR--- 111 * C: ------UU--UUU--------- 112 * 113 * Since the remapping operation can be applied to an arbitrary file 114 * range, we record the need for the remap step as a flag in the ioend 115 * instead of declaring a new IO type. This is required for direct io 116 * because we only have ioend for the whole dio, and we have to be able to 117 * remember the presence of unwritten blocks and CoW blocks with a single 118 * ioend structure. Better yet, the more ground we can cover with one 119 * ioend, the better. 120 */ 121 122 /* 123 * Given an AG extent, find the lowest-numbered run of shared blocks 124 * within that range and return the range in fbno/flen. If 125 * find_end_of_shared is true, return the longest contiguous extent of 126 * shared blocks. If there are no shared extents, fbno and flen will 127 * be set to NULLAGBLOCK and 0, respectively. 128 */ 129 static int 130 xfs_reflink_find_shared( 131 struct xfs_perag *pag, 132 struct xfs_trans *tp, 133 xfs_agblock_t agbno, 134 xfs_extlen_t aglen, 135 xfs_agblock_t *fbno, 136 xfs_extlen_t *flen, 137 bool find_end_of_shared) 138 { 139 struct xfs_buf *agbp; 140 struct xfs_btree_cur *cur; 141 int error; 142 143 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 144 if (error) 145 return error; 146 147 cur = xfs_refcountbt_init_cursor(pag_mount(pag), tp, agbp, pag); 148 149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 150 find_end_of_shared); 151 152 xfs_btree_del_cursor(cur, error); 153 154 xfs_trans_brelse(tp, agbp); 155 return error; 156 } 157 158 /* 159 * Trim the mapping to the next block where there's a change in the 160 * shared/unshared status. More specifically, this means that we 161 * find the lowest-numbered extent of shared blocks that coincides with 162 * the given block mapping. If the shared extent overlaps the start of 163 * the mapping, trim the mapping to the end of the shared extent. If 164 * the shared region intersects the mapping, trim the mapping to the 165 * start of the shared extent. If there are no shared regions that 166 * overlap, just return the original extent. 167 */ 168 int 169 xfs_reflink_trim_around_shared( 170 struct xfs_inode *ip, 171 struct xfs_bmbt_irec *irec, 172 bool *shared) 173 { 174 struct xfs_mount *mp = ip->i_mount; 175 struct xfs_perag *pag; 176 xfs_agblock_t agbno; 177 xfs_extlen_t aglen; 178 xfs_agblock_t fbno; 179 xfs_extlen_t flen; 180 int error = 0; 181 182 /* Holes, unwritten, and delalloc extents cannot be shared */ 183 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 184 *shared = false; 185 return 0; 186 } 187 188 trace_xfs_reflink_trim_around_shared(ip, irec); 189 190 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 191 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 192 aglen = irec->br_blockcount; 193 194 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 195 true); 196 xfs_perag_put(pag); 197 if (error) 198 return error; 199 200 *shared = false; 201 if (fbno == NULLAGBLOCK) { 202 /* No shared blocks at all. */ 203 return 0; 204 } 205 206 if (fbno == agbno) { 207 /* 208 * The start of this extent is shared. Truncate the 209 * mapping at the end of the shared region so that a 210 * subsequent iteration starts at the start of the 211 * unshared region. 212 */ 213 irec->br_blockcount = flen; 214 *shared = true; 215 return 0; 216 } 217 218 /* 219 * There's a shared extent midway through this extent. 220 * Truncate the mapping at the start of the shared 221 * extent so that a subsequent iteration starts at the 222 * start of the shared region. 223 */ 224 irec->br_blockcount = fbno - agbno; 225 return 0; 226 } 227 228 int 229 xfs_bmap_trim_cow( 230 struct xfs_inode *ip, 231 struct xfs_bmbt_irec *imap, 232 bool *shared) 233 { 234 /* We can't update any real extents in always COW mode. */ 235 if (xfs_is_always_cow_inode(ip) && 236 !isnullstartblock(imap->br_startblock)) { 237 *shared = true; 238 return 0; 239 } 240 241 /* Trim the mapping to the nearest shared extent boundary. */ 242 return xfs_reflink_trim_around_shared(ip, imap, shared); 243 } 244 245 static int 246 xfs_reflink_convert_cow_locked( 247 struct xfs_inode *ip, 248 xfs_fileoff_t offset_fsb, 249 xfs_filblks_t count_fsb) 250 { 251 struct xfs_iext_cursor icur; 252 struct xfs_bmbt_irec got; 253 struct xfs_btree_cur *dummy_cur = NULL; 254 int dummy_logflags; 255 int error = 0; 256 257 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 258 return 0; 259 260 do { 261 if (got.br_startoff >= offset_fsb + count_fsb) 262 break; 263 if (got.br_state == XFS_EXT_NORM) 264 continue; 265 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 266 return -EIO; 267 268 xfs_trim_extent(&got, offset_fsb, count_fsb); 269 if (!got.br_blockcount) 270 continue; 271 272 got.br_state = XFS_EXT_NORM; 273 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 274 XFS_COW_FORK, &icur, &dummy_cur, &got, 275 &dummy_logflags); 276 if (error) 277 return error; 278 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 279 280 return error; 281 } 282 283 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 284 int 285 xfs_reflink_convert_cow( 286 struct xfs_inode *ip, 287 xfs_off_t offset, 288 xfs_off_t count) 289 { 290 struct xfs_mount *mp = ip->i_mount; 291 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 292 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 293 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 294 int error; 295 296 ASSERT(count != 0); 297 298 xfs_ilock(ip, XFS_ILOCK_EXCL); 299 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 300 xfs_iunlock(ip, XFS_ILOCK_EXCL); 301 return error; 302 } 303 304 /* 305 * Find the extent that maps the given range in the COW fork. Even if the extent 306 * is not shared we might have a preallocation for it in the COW fork. If so we 307 * use it that rather than trigger a new allocation. 308 */ 309 static int 310 xfs_find_trim_cow_extent( 311 struct xfs_inode *ip, 312 struct xfs_bmbt_irec *imap, 313 struct xfs_bmbt_irec *cmap, 314 bool *shared, 315 bool *found) 316 { 317 xfs_fileoff_t offset_fsb = imap->br_startoff; 318 xfs_filblks_t count_fsb = imap->br_blockcount; 319 struct xfs_iext_cursor icur; 320 321 *found = false; 322 323 /* 324 * If we don't find an overlapping extent, trim the range we need to 325 * allocate to fit the hole we found. 326 */ 327 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 328 cmap->br_startoff = offset_fsb + count_fsb; 329 if (cmap->br_startoff > offset_fsb) { 330 xfs_trim_extent(imap, imap->br_startoff, 331 cmap->br_startoff - imap->br_startoff); 332 return xfs_bmap_trim_cow(ip, imap, shared); 333 } 334 335 *shared = true; 336 if (isnullstartblock(cmap->br_startblock)) { 337 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 338 return 0; 339 } 340 341 /* real extent found - no need to allocate */ 342 xfs_trim_extent(cmap, offset_fsb, count_fsb); 343 *found = true; 344 return 0; 345 } 346 347 static int 348 xfs_reflink_convert_unwritten( 349 struct xfs_inode *ip, 350 struct xfs_bmbt_irec *imap, 351 struct xfs_bmbt_irec *cmap, 352 bool convert_now) 353 { 354 xfs_fileoff_t offset_fsb = imap->br_startoff; 355 xfs_filblks_t count_fsb = imap->br_blockcount; 356 int error; 357 358 /* 359 * cmap might larger than imap due to cowextsize hint. 360 */ 361 xfs_trim_extent(cmap, offset_fsb, count_fsb); 362 363 /* 364 * COW fork extents are supposed to remain unwritten until we're ready 365 * to initiate a disk write. For direct I/O we are going to write the 366 * data and need the conversion, but for buffered writes we're done. 367 */ 368 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 369 return 0; 370 371 trace_xfs_reflink_convert_cow(ip, cmap); 372 373 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 374 if (!error) 375 cmap->br_state = XFS_EXT_NORM; 376 377 return error; 378 } 379 380 static int 381 xfs_reflink_fill_cow_hole( 382 struct xfs_inode *ip, 383 struct xfs_bmbt_irec *imap, 384 struct xfs_bmbt_irec *cmap, 385 bool *shared, 386 uint *lockmode, 387 bool convert_now) 388 { 389 struct xfs_mount *mp = ip->i_mount; 390 struct xfs_trans *tp; 391 xfs_filblks_t resaligned; 392 xfs_extlen_t resblks; 393 int nimaps; 394 int error; 395 bool found; 396 397 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 398 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 399 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 400 401 xfs_iunlock(ip, *lockmode); 402 *lockmode = 0; 403 404 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 405 false, &tp); 406 if (error) 407 return error; 408 409 *lockmode = XFS_ILOCK_EXCL; 410 411 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 412 if (error || !*shared) 413 goto out_trans_cancel; 414 415 if (found) { 416 xfs_trans_cancel(tp); 417 goto convert; 418 } 419 420 /* Allocate the entire reservation as unwritten blocks. */ 421 nimaps = 1; 422 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 423 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 424 &nimaps); 425 if (error) 426 goto out_trans_cancel; 427 428 xfs_inode_set_cowblocks_tag(ip); 429 error = xfs_trans_commit(tp); 430 if (error) 431 return error; 432 433 convert: 434 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 435 436 out_trans_cancel: 437 xfs_trans_cancel(tp); 438 return error; 439 } 440 441 static int 442 xfs_reflink_fill_delalloc( 443 struct xfs_inode *ip, 444 struct xfs_bmbt_irec *imap, 445 struct xfs_bmbt_irec *cmap, 446 bool *shared, 447 uint *lockmode, 448 bool convert_now) 449 { 450 struct xfs_mount *mp = ip->i_mount; 451 struct xfs_trans *tp; 452 int nimaps; 453 int error; 454 bool found; 455 456 do { 457 xfs_iunlock(ip, *lockmode); 458 *lockmode = 0; 459 460 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 461 false, &tp); 462 if (error) 463 return error; 464 465 *lockmode = XFS_ILOCK_EXCL; 466 467 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 468 &found); 469 if (error || !*shared) 470 goto out_trans_cancel; 471 472 if (found) { 473 xfs_trans_cancel(tp); 474 break; 475 } 476 477 ASSERT(isnullstartblock(cmap->br_startblock) || 478 cmap->br_startblock == DELAYSTARTBLOCK); 479 480 /* 481 * Replace delalloc reservation with an unwritten extent. 482 */ 483 nimaps = 1; 484 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 485 cmap->br_blockcount, 486 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 487 cmap, &nimaps); 488 if (error) 489 goto out_trans_cancel; 490 491 xfs_inode_set_cowblocks_tag(ip); 492 error = xfs_trans_commit(tp); 493 if (error) 494 return error; 495 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 496 497 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 498 499 out_trans_cancel: 500 xfs_trans_cancel(tp); 501 return error; 502 } 503 504 /* Allocate all CoW reservations covering a range of blocks in a file. */ 505 int 506 xfs_reflink_allocate_cow( 507 struct xfs_inode *ip, 508 struct xfs_bmbt_irec *imap, 509 struct xfs_bmbt_irec *cmap, 510 bool *shared, 511 uint *lockmode, 512 bool convert_now) 513 { 514 int error; 515 bool found; 516 517 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 518 if (!ip->i_cowfp) { 519 ASSERT(!xfs_is_reflink_inode(ip)); 520 xfs_ifork_init_cow(ip); 521 } 522 523 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 524 if (error || !*shared) 525 return error; 526 527 /* CoW fork has a real extent */ 528 if (found) 529 return xfs_reflink_convert_unwritten(ip, imap, cmap, 530 convert_now); 531 532 /* 533 * CoW fork does not have an extent and data extent is shared. 534 * Allocate a real extent in the CoW fork. 535 */ 536 if (cmap->br_startoff > imap->br_startoff) 537 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 538 lockmode, convert_now); 539 540 /* 541 * CoW fork has a delalloc reservation. Replace it with a real extent. 542 * There may or may not be a data fork mapping. 543 */ 544 if (isnullstartblock(cmap->br_startblock) || 545 cmap->br_startblock == DELAYSTARTBLOCK) 546 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 547 lockmode, convert_now); 548 549 /* Shouldn't get here. */ 550 ASSERT(0); 551 return -EFSCORRUPTED; 552 } 553 554 /* 555 * Cancel CoW reservations for some block range of an inode. 556 * 557 * If cancel_real is true this function cancels all COW fork extents for the 558 * inode; if cancel_real is false, real extents are not cleared. 559 * 560 * Caller must have already joined the inode to the current transaction. The 561 * inode will be joined to the transaction returned to the caller. 562 */ 563 int 564 xfs_reflink_cancel_cow_blocks( 565 struct xfs_inode *ip, 566 struct xfs_trans **tpp, 567 xfs_fileoff_t offset_fsb, 568 xfs_fileoff_t end_fsb, 569 bool cancel_real) 570 { 571 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 572 struct xfs_bmbt_irec got, del; 573 struct xfs_iext_cursor icur; 574 int error = 0; 575 576 if (!xfs_inode_has_cow_data(ip)) 577 return 0; 578 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 579 return 0; 580 581 /* Walk backwards until we're out of the I/O range... */ 582 while (got.br_startoff + got.br_blockcount > offset_fsb) { 583 del = got; 584 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 585 586 /* Extent delete may have bumped ext forward */ 587 if (!del.br_blockcount) { 588 xfs_iext_prev(ifp, &icur); 589 goto next_extent; 590 } 591 592 trace_xfs_reflink_cancel_cow(ip, &del); 593 594 if (isnullstartblock(del.br_startblock)) { 595 xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, &icur, &got, 596 &del); 597 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 598 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 599 600 /* Free the CoW orphan record. */ 601 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 602 del.br_blockcount); 603 604 error = xfs_free_extent_later(*tpp, del.br_startblock, 605 del.br_blockcount, NULL, 606 XFS_AG_RESV_NONE, 0); 607 if (error) 608 break; 609 610 /* Roll the transaction */ 611 error = xfs_defer_finish(tpp); 612 if (error) 613 break; 614 615 /* Remove the mapping from the CoW fork. */ 616 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 617 618 /* Remove the quota reservation */ 619 xfs_quota_unreserve_blkres(ip, del.br_blockcount); 620 } else { 621 /* Didn't do anything, push cursor back. */ 622 xfs_iext_prev(ifp, &icur); 623 } 624 next_extent: 625 if (!xfs_iext_get_extent(ifp, &icur, &got)) 626 break; 627 } 628 629 /* clear tag if cow fork is emptied */ 630 if (!ifp->if_bytes) 631 xfs_inode_clear_cowblocks_tag(ip); 632 return error; 633 } 634 635 /* 636 * Cancel CoW reservations for some byte range of an inode. 637 * 638 * If cancel_real is true this function cancels all COW fork extents for the 639 * inode; if cancel_real is false, real extents are not cleared. 640 */ 641 int 642 xfs_reflink_cancel_cow_range( 643 struct xfs_inode *ip, 644 xfs_off_t offset, 645 xfs_off_t count, 646 bool cancel_real) 647 { 648 struct xfs_trans *tp; 649 xfs_fileoff_t offset_fsb; 650 xfs_fileoff_t end_fsb; 651 int error; 652 653 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 654 ASSERT(ip->i_cowfp); 655 656 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 657 if (count == NULLFILEOFF) 658 end_fsb = NULLFILEOFF; 659 else 660 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 661 662 /* Start a rolling transaction to remove the mappings */ 663 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 664 0, 0, 0, &tp); 665 if (error) 666 goto out; 667 668 xfs_ilock(ip, XFS_ILOCK_EXCL); 669 xfs_trans_ijoin(tp, ip, 0); 670 671 /* Scrape out the old CoW reservations */ 672 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 673 cancel_real); 674 if (error) 675 goto out_cancel; 676 677 error = xfs_trans_commit(tp); 678 679 xfs_iunlock(ip, XFS_ILOCK_EXCL); 680 return error; 681 682 out_cancel: 683 xfs_trans_cancel(tp); 684 xfs_iunlock(ip, XFS_ILOCK_EXCL); 685 out: 686 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 687 return error; 688 } 689 690 /* 691 * Remap part of the CoW fork into the data fork. 692 * 693 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 694 * into the data fork; this function will remap what it can (at the end of the 695 * range) and update @end_fsb appropriately. Each remap gets its own 696 * transaction because we can end up merging and splitting bmbt blocks for 697 * every remap operation and we'd like to keep the block reservation 698 * requirements as low as possible. 699 */ 700 STATIC int 701 xfs_reflink_end_cow_extent( 702 struct xfs_inode *ip, 703 xfs_fileoff_t *offset_fsb, 704 xfs_fileoff_t end_fsb) 705 { 706 struct xfs_iext_cursor icur; 707 struct xfs_bmbt_irec got, del, data; 708 struct xfs_mount *mp = ip->i_mount; 709 struct xfs_trans *tp; 710 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 711 unsigned int resblks; 712 int nmaps; 713 int error; 714 715 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 716 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 717 XFS_TRANS_RESERVE, &tp); 718 if (error) 719 return error; 720 721 /* 722 * Lock the inode. We have to ijoin without automatic unlock because 723 * the lead transaction is the refcountbt record deletion; the data 724 * fork update follows as a deferred log item. 725 */ 726 xfs_ilock(ip, XFS_ILOCK_EXCL); 727 xfs_trans_ijoin(tp, ip, 0); 728 729 /* 730 * In case of racing, overlapping AIO writes no COW extents might be 731 * left by the time I/O completes for the loser of the race. In that 732 * case we are done. 733 */ 734 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 735 got.br_startoff >= end_fsb) { 736 *offset_fsb = end_fsb; 737 goto out_cancel; 738 } 739 740 /* 741 * Only remap real extents that contain data. With AIO, speculative 742 * preallocations can leak into the range we are called upon, and we 743 * need to skip them. Preserve @got for the eventual CoW fork 744 * deletion; from now on @del represents the mapping that we're 745 * actually remapping. 746 */ 747 while (!xfs_bmap_is_written_extent(&got)) { 748 if (!xfs_iext_next_extent(ifp, &icur, &got) || 749 got.br_startoff >= end_fsb) { 750 *offset_fsb = end_fsb; 751 goto out_cancel; 752 } 753 } 754 del = got; 755 xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb); 756 757 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, 758 XFS_IEXT_REFLINK_END_COW_CNT); 759 if (error) 760 goto out_cancel; 761 762 /* Grab the corresponding mapping in the data fork. */ 763 nmaps = 1; 764 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 765 &nmaps, 0); 766 if (error) 767 goto out_cancel; 768 769 /* We can only remap the smaller of the two extent sizes. */ 770 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 771 del.br_blockcount = data.br_blockcount; 772 773 trace_xfs_reflink_cow_remap_from(ip, &del); 774 trace_xfs_reflink_cow_remap_to(ip, &data); 775 776 if (xfs_bmap_is_real_extent(&data)) { 777 /* 778 * If the extent we're remapping is backed by storage (written 779 * or not), unmap the extent and drop its refcount. 780 */ 781 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data); 782 xfs_refcount_decrease_extent(tp, &data); 783 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 784 -data.br_blockcount); 785 } else if (data.br_startblock == DELAYSTARTBLOCK) { 786 int done; 787 788 /* 789 * If the extent we're remapping is a delalloc reservation, 790 * we can use the regular bunmapi function to release the 791 * incore state. Dropping the delalloc reservation takes care 792 * of the quota reservation for us. 793 */ 794 error = xfs_bunmapi(NULL, ip, data.br_startoff, 795 data.br_blockcount, 0, 1, &done); 796 if (error) 797 goto out_cancel; 798 ASSERT(done); 799 } 800 801 /* Free the CoW orphan record. */ 802 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 803 804 /* Map the new blocks into the data fork. */ 805 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del); 806 807 /* Charge this new data fork mapping to the on-disk quota. */ 808 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 809 (long)del.br_blockcount); 810 811 /* Remove the mapping from the CoW fork. */ 812 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 813 814 error = xfs_trans_commit(tp); 815 xfs_iunlock(ip, XFS_ILOCK_EXCL); 816 if (error) 817 return error; 818 819 /* Update the caller about how much progress we made. */ 820 *offset_fsb = del.br_startoff + del.br_blockcount; 821 return 0; 822 823 out_cancel: 824 xfs_trans_cancel(tp); 825 xfs_iunlock(ip, XFS_ILOCK_EXCL); 826 return error; 827 } 828 829 /* 830 * Remap parts of a file's data fork after a successful CoW. 831 */ 832 int 833 xfs_reflink_end_cow( 834 struct xfs_inode *ip, 835 xfs_off_t offset, 836 xfs_off_t count) 837 { 838 xfs_fileoff_t offset_fsb; 839 xfs_fileoff_t end_fsb; 840 int error = 0; 841 842 trace_xfs_reflink_end_cow(ip, offset, count); 843 844 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 845 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 846 847 /* 848 * Walk forwards until we've remapped the I/O range. The loop function 849 * repeatedly cycles the ILOCK to allocate one transaction per remapped 850 * extent. 851 * 852 * If we're being called by writeback then the pages will still 853 * have PageWriteback set, which prevents races with reflink remapping 854 * and truncate. Reflink remapping prevents races with writeback by 855 * taking the iolock and mmaplock before flushing the pages and 856 * remapping, which means there won't be any further writeback or page 857 * cache dirtying until the reflink completes. 858 * 859 * We should never have two threads issuing writeback for the same file 860 * region. There are also have post-eof checks in the writeback 861 * preparation code so that we don't bother writing out pages that are 862 * about to be truncated. 863 * 864 * If we're being called as part of directio write completion, the dio 865 * count is still elevated, which reflink and truncate will wait for. 866 * Reflink remapping takes the iolock and mmaplock and waits for 867 * pending dio to finish, which should prevent any directio until the 868 * remap completes. Multiple concurrent directio writes to the same 869 * region are handled by end_cow processing only occurring for the 870 * threads which succeed; the outcome of multiple overlapping direct 871 * writes is not well defined anyway. 872 * 873 * It's possible that a buffered write and a direct write could collide 874 * here (the buffered write stumbles in after the dio flushes and 875 * invalidates the page cache and immediately queues writeback), but we 876 * have never supported this 100%. If either disk write succeeds the 877 * blocks will be remapped. 878 */ 879 while (end_fsb > offset_fsb && !error) 880 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 881 882 if (error) 883 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 884 return error; 885 } 886 887 /* 888 * Free all CoW staging blocks that are still referenced by the ondisk refcount 889 * metadata. The ondisk metadata does not track which inode created the 890 * staging extent, so callers must ensure that there are no cached inodes with 891 * live CoW staging extents. 892 */ 893 int 894 xfs_reflink_recover_cow( 895 struct xfs_mount *mp) 896 { 897 struct xfs_perag *pag = NULL; 898 int error = 0; 899 900 if (!xfs_has_reflink(mp)) 901 return 0; 902 903 while ((pag = xfs_perag_next(mp, pag))) { 904 error = xfs_refcount_recover_cow_leftovers(mp, pag); 905 if (error) { 906 xfs_perag_rele(pag); 907 break; 908 } 909 } 910 911 return error; 912 } 913 914 /* 915 * Reflinking (Block) Ranges of Two Files Together 916 * 917 * First, ensure that the reflink flag is set on both inodes. The flag is an 918 * optimization to avoid unnecessary refcount btree lookups in the write path. 919 * 920 * Now we can iteratively remap the range of extents (and holes) in src to the 921 * corresponding ranges in dest. Let drange and srange denote the ranges of 922 * logical blocks in dest and src touched by the reflink operation. 923 * 924 * While the length of drange is greater than zero, 925 * - Read src's bmbt at the start of srange ("imap") 926 * - If imap doesn't exist, make imap appear to start at the end of srange 927 * with zero length. 928 * - If imap starts before srange, advance imap to start at srange. 929 * - If imap goes beyond srange, truncate imap to end at the end of srange. 930 * - Punch (imap start - srange start + imap len) blocks from dest at 931 * offset (drange start). 932 * - If imap points to a real range of pblks, 933 * > Increase the refcount of the imap's pblks 934 * > Map imap's pblks into dest at the offset 935 * (drange start + imap start - srange start) 936 * - Advance drange and srange by (imap start - srange start + imap len) 937 * 938 * Finally, if the reflink made dest longer, update both the in-core and 939 * on-disk file sizes. 940 * 941 * ASCII Art Demonstration: 942 * 943 * Let's say we want to reflink this source file: 944 * 945 * ----SSSSSSS-SSSSS----SSSSSS (src file) 946 * <--------------------> 947 * 948 * into this destination file: 949 * 950 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 951 * <--------------------> 952 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 953 * Observe that the range has different logical offsets in either file. 954 * 955 * Consider that the first extent in the source file doesn't line up with our 956 * reflink range. Unmapping and remapping are separate operations, so we can 957 * unmap more blocks from the destination file than we remap. 958 * 959 * ----SSSSSSS-SSSSS----SSSSSS 960 * <-------> 961 * --DDDDD---------DDDDD--DDD 962 * <-------> 963 * 964 * Now remap the source extent into the destination file: 965 * 966 * ----SSSSSSS-SSSSS----SSSSSS 967 * <-------> 968 * --DDDDD--SSSSSSSDDDDD--DDD 969 * <-------> 970 * 971 * Do likewise with the second hole and extent in our range. Holes in the 972 * unmap range don't affect our operation. 973 * 974 * ----SSSSSSS-SSSSS----SSSSSS 975 * <----> 976 * --DDDDD--SSSSSSS-SSSSS-DDD 977 * <----> 978 * 979 * Finally, unmap and remap part of the third extent. This will increase the 980 * size of the destination file. 981 * 982 * ----SSSSSSS-SSSSS----SSSSSS 983 * <-----> 984 * --DDDDD--SSSSSSS-SSSSS----SSS 985 * <-----> 986 * 987 * Once we update the destination file's i_size, we're done. 988 */ 989 990 /* 991 * Ensure the reflink bit is set in both inodes. 992 */ 993 STATIC int 994 xfs_reflink_set_inode_flag( 995 struct xfs_inode *src, 996 struct xfs_inode *dest) 997 { 998 struct xfs_mount *mp = src->i_mount; 999 int error; 1000 struct xfs_trans *tp; 1001 1002 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1003 return 0; 1004 1005 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1006 if (error) 1007 goto out_error; 1008 1009 /* Lock both files against IO */ 1010 if (src->i_ino == dest->i_ino) 1011 xfs_ilock(src, XFS_ILOCK_EXCL); 1012 else 1013 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1014 1015 if (!xfs_is_reflink_inode(src)) { 1016 trace_xfs_reflink_set_inode_flag(src); 1017 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1018 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1019 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1020 xfs_ifork_init_cow(src); 1021 } else 1022 xfs_iunlock(src, XFS_ILOCK_EXCL); 1023 1024 if (src->i_ino == dest->i_ino) 1025 goto commit_flags; 1026 1027 if (!xfs_is_reflink_inode(dest)) { 1028 trace_xfs_reflink_set_inode_flag(dest); 1029 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1030 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1031 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1032 xfs_ifork_init_cow(dest); 1033 } else 1034 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1035 1036 commit_flags: 1037 error = xfs_trans_commit(tp); 1038 if (error) 1039 goto out_error; 1040 return error; 1041 1042 out_error: 1043 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1044 return error; 1045 } 1046 1047 /* 1048 * Update destination inode size & cowextsize hint, if necessary. 1049 */ 1050 int 1051 xfs_reflink_update_dest( 1052 struct xfs_inode *dest, 1053 xfs_off_t newlen, 1054 xfs_extlen_t cowextsize, 1055 unsigned int remap_flags) 1056 { 1057 struct xfs_mount *mp = dest->i_mount; 1058 struct xfs_trans *tp; 1059 int error; 1060 1061 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1062 return 0; 1063 1064 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1065 if (error) 1066 goto out_error; 1067 1068 xfs_ilock(dest, XFS_ILOCK_EXCL); 1069 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1070 1071 if (newlen > i_size_read(VFS_I(dest))) { 1072 trace_xfs_reflink_update_inode_size(dest, newlen); 1073 i_size_write(VFS_I(dest), newlen); 1074 dest->i_disk_size = newlen; 1075 } 1076 1077 if (cowextsize) { 1078 dest->i_cowextsize = cowextsize; 1079 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1080 } 1081 1082 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1083 1084 error = xfs_trans_commit(tp); 1085 if (error) 1086 goto out_error; 1087 return error; 1088 1089 out_error: 1090 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1091 return error; 1092 } 1093 1094 /* 1095 * Do we have enough reserve in this AG to handle a reflink? The refcount 1096 * btree already reserved all the space it needs, but the rmap btree can grow 1097 * infinitely, so we won't allow more reflinks when the AG is down to the 1098 * btree reserves. 1099 */ 1100 static int 1101 xfs_reflink_ag_has_free_space( 1102 struct xfs_mount *mp, 1103 xfs_agnumber_t agno) 1104 { 1105 struct xfs_perag *pag; 1106 int error = 0; 1107 1108 if (!xfs_has_rmapbt(mp)) 1109 return 0; 1110 1111 pag = xfs_perag_get(mp, agno); 1112 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1113 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1114 error = -ENOSPC; 1115 xfs_perag_put(pag); 1116 return error; 1117 } 1118 1119 /* 1120 * Remap the given extent into the file. The dmap blockcount will be set to 1121 * the number of blocks that were actually remapped. 1122 */ 1123 STATIC int 1124 xfs_reflink_remap_extent( 1125 struct xfs_inode *ip, 1126 struct xfs_bmbt_irec *dmap, 1127 xfs_off_t new_isize) 1128 { 1129 struct xfs_bmbt_irec smap; 1130 struct xfs_mount *mp = ip->i_mount; 1131 struct xfs_trans *tp; 1132 xfs_off_t newlen; 1133 int64_t qdelta = 0; 1134 unsigned int resblks; 1135 bool quota_reserved = true; 1136 bool smap_real; 1137 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1138 int iext_delta = 0; 1139 int nimaps; 1140 int error; 1141 1142 /* 1143 * Start a rolling transaction to switch the mappings. 1144 * 1145 * Adding a written extent to the extent map can cause a bmbt split, 1146 * and removing a mapped extent from the extent can cause a bmbt split. 1147 * The two operations cannot both cause a split since they operate on 1148 * the same index in the bmap btree, so we only need a reservation for 1149 * one bmbt split if either thing is happening. However, we haven't 1150 * locked the inode yet, so we reserve assuming this is the case. 1151 * 1152 * The first allocation call tries to reserve enough space to handle 1153 * mapping dmap into a sparse part of the file plus the bmbt split. We 1154 * haven't locked the inode or read the existing mapping yet, so we do 1155 * not know for sure that we need the space. This should succeed most 1156 * of the time. 1157 * 1158 * If the first attempt fails, try again but reserving only enough 1159 * space to handle a bmbt split. This is the hard minimum requirement, 1160 * and we revisit quota reservations later when we know more about what 1161 * we're remapping. 1162 */ 1163 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1164 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1165 resblks + dmap->br_blockcount, 0, false, &tp); 1166 if (error == -EDQUOT || error == -ENOSPC) { 1167 quota_reserved = false; 1168 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1169 resblks, 0, false, &tp); 1170 } 1171 if (error) 1172 goto out; 1173 1174 /* 1175 * Read what's currently mapped in the destination file into smap. 1176 * If smap isn't a hole, we will have to remove it before we can add 1177 * dmap to the destination file. 1178 */ 1179 nimaps = 1; 1180 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1181 &smap, &nimaps, 0); 1182 if (error) 1183 goto out_cancel; 1184 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1185 smap_real = xfs_bmap_is_real_extent(&smap); 1186 1187 /* 1188 * We can only remap as many blocks as the smaller of the two extent 1189 * maps, because we can only remap one extent at a time. 1190 */ 1191 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1192 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1193 1194 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1195 1196 /* 1197 * Two extents mapped to the same physical block must not have 1198 * different states; that's filesystem corruption. Move on to the next 1199 * extent if they're both holes or both the same physical extent. 1200 */ 1201 if (dmap->br_startblock == smap.br_startblock) { 1202 if (dmap->br_state != smap.br_state) { 1203 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1204 error = -EFSCORRUPTED; 1205 } 1206 goto out_cancel; 1207 } 1208 1209 /* If both extents are unwritten, leave them alone. */ 1210 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1211 smap.br_state == XFS_EXT_UNWRITTEN) 1212 goto out_cancel; 1213 1214 /* No reflinking if the AG of the dest mapping is low on space. */ 1215 if (dmap_written) { 1216 error = xfs_reflink_ag_has_free_space(mp, 1217 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1218 if (error) 1219 goto out_cancel; 1220 } 1221 1222 /* 1223 * Increase quota reservation if we think the quota block counter for 1224 * this file could increase. 1225 * 1226 * If we are mapping a written extent into the file, we need to have 1227 * enough quota block count reservation to handle the blocks in that 1228 * extent. We log only the delta to the quota block counts, so if the 1229 * extent we're unmapping also has blocks allocated to it, we don't 1230 * need a quota reservation for the extent itself. 1231 * 1232 * Note that if we're replacing a delalloc reservation with a written 1233 * extent, we have to take the full quota reservation because removing 1234 * the delalloc reservation gives the block count back to the quota 1235 * count. This is suboptimal, but the VFS flushed the dest range 1236 * before we started. That should have removed all the delalloc 1237 * reservations, but we code defensively. 1238 * 1239 * xfs_trans_alloc_inode above already tried to grab an even larger 1240 * quota reservation, and kicked off a blockgc scan if it couldn't. 1241 * If we can't get a potentially smaller quota reservation now, we're 1242 * done. 1243 */ 1244 if (!quota_reserved && !smap_real && dmap_written) { 1245 error = xfs_trans_reserve_quota_nblks(tp, ip, 1246 dmap->br_blockcount, 0, false); 1247 if (error) 1248 goto out_cancel; 1249 } 1250 1251 if (smap_real) 1252 ++iext_delta; 1253 1254 if (dmap_written) 1255 ++iext_delta; 1256 1257 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, iext_delta); 1258 if (error) 1259 goto out_cancel; 1260 1261 if (smap_real) { 1262 /* 1263 * If the extent we're unmapping is backed by storage (written 1264 * or not), unmap the extent and drop its refcount. 1265 */ 1266 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap); 1267 xfs_refcount_decrease_extent(tp, &smap); 1268 qdelta -= smap.br_blockcount; 1269 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1270 int done; 1271 1272 /* 1273 * If the extent we're unmapping is a delalloc reservation, 1274 * we can use the regular bunmapi function to release the 1275 * incore state. Dropping the delalloc reservation takes care 1276 * of the quota reservation for us. 1277 */ 1278 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1279 smap.br_blockcount, 0, 1, &done); 1280 if (error) 1281 goto out_cancel; 1282 ASSERT(done); 1283 } 1284 1285 /* 1286 * If the extent we're sharing is backed by written storage, increase 1287 * its refcount and map it into the file. 1288 */ 1289 if (dmap_written) { 1290 xfs_refcount_increase_extent(tp, dmap); 1291 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap); 1292 qdelta += dmap->br_blockcount; 1293 } 1294 1295 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1296 1297 /* Update dest isize if needed. */ 1298 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1299 newlen = min_t(xfs_off_t, newlen, new_isize); 1300 if (newlen > i_size_read(VFS_I(ip))) { 1301 trace_xfs_reflink_update_inode_size(ip, newlen); 1302 i_size_write(VFS_I(ip), newlen); 1303 ip->i_disk_size = newlen; 1304 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1305 } 1306 1307 /* Commit everything and unlock. */ 1308 error = xfs_trans_commit(tp); 1309 goto out_unlock; 1310 1311 out_cancel: 1312 xfs_trans_cancel(tp); 1313 out_unlock: 1314 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1315 out: 1316 if (error) 1317 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1318 return error; 1319 } 1320 1321 /* Remap a range of one file to the other. */ 1322 int 1323 xfs_reflink_remap_blocks( 1324 struct xfs_inode *src, 1325 loff_t pos_in, 1326 struct xfs_inode *dest, 1327 loff_t pos_out, 1328 loff_t remap_len, 1329 loff_t *remapped) 1330 { 1331 struct xfs_bmbt_irec imap; 1332 struct xfs_mount *mp = src->i_mount; 1333 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1334 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1335 xfs_filblks_t len; 1336 xfs_filblks_t remapped_len = 0; 1337 xfs_off_t new_isize = pos_out + remap_len; 1338 int nimaps; 1339 int error = 0; 1340 1341 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1342 XFS_MAX_FILEOFF); 1343 1344 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1345 1346 while (len > 0) { 1347 unsigned int lock_mode; 1348 1349 /* Read extent from the source file */ 1350 nimaps = 1; 1351 lock_mode = xfs_ilock_data_map_shared(src); 1352 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1353 xfs_iunlock(src, lock_mode); 1354 if (error) 1355 break; 1356 /* 1357 * The caller supposedly flushed all dirty pages in the source 1358 * file range, which means that writeback should have allocated 1359 * or deleted all delalloc reservations in that range. If we 1360 * find one, that's a good sign that something is seriously 1361 * wrong here. 1362 */ 1363 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1364 if (imap.br_startblock == DELAYSTARTBLOCK) { 1365 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1366 xfs_bmap_mark_sick(src, XFS_DATA_FORK); 1367 error = -EFSCORRUPTED; 1368 break; 1369 } 1370 1371 trace_xfs_reflink_remap_extent_src(src, &imap); 1372 1373 /* Remap into the destination file at the given offset. */ 1374 imap.br_startoff = destoff; 1375 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1376 if (error) 1377 break; 1378 1379 if (fatal_signal_pending(current)) { 1380 error = -EINTR; 1381 break; 1382 } 1383 1384 /* Advance drange/srange */ 1385 srcoff += imap.br_blockcount; 1386 destoff += imap.br_blockcount; 1387 len -= imap.br_blockcount; 1388 remapped_len += imap.br_blockcount; 1389 cond_resched(); 1390 } 1391 1392 if (error) 1393 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1394 *remapped = min_t(loff_t, remap_len, 1395 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1396 return error; 1397 } 1398 1399 /* 1400 * If we're reflinking to a point past the destination file's EOF, we must 1401 * zero any speculative post-EOF preallocations that sit between the old EOF 1402 * and the destination file offset. 1403 */ 1404 static int 1405 xfs_reflink_zero_posteof( 1406 struct xfs_inode *ip, 1407 loff_t pos) 1408 { 1409 loff_t isize = i_size_read(VFS_I(ip)); 1410 1411 if (pos <= isize) 1412 return 0; 1413 1414 trace_xfs_zero_eof(ip, isize, pos - isize); 1415 return xfs_zero_range(ip, isize, pos - isize, NULL); 1416 } 1417 1418 /* 1419 * Prepare two files for range cloning. Upon a successful return both inodes 1420 * will have the iolock and mmaplock held, the page cache of the out file will 1421 * be truncated, and any leases on the out file will have been broken. This 1422 * function borrows heavily from xfs_file_aio_write_checks. 1423 * 1424 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1425 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1426 * EOF block in the source dedupe range because it's not a complete block match, 1427 * hence can introduce a corruption into the file that has it's block replaced. 1428 * 1429 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1430 * "block aligned" for the purposes of cloning entire files. However, if the 1431 * source file range includes the EOF block and it lands within the existing EOF 1432 * of the destination file, then we can expose stale data from beyond the source 1433 * file EOF in the destination file. 1434 * 1435 * XFS doesn't support partial block sharing, so in both cases we have check 1436 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1437 * down to the previous whole block and ignore the partial EOF block. While this 1438 * means we can't dedupe the last block of a file, this is an acceptible 1439 * tradeoff for simplicity on implementation. 1440 * 1441 * For cloning, we want to share the partial EOF block if it is also the new EOF 1442 * block of the destination file. If the partial EOF block lies inside the 1443 * existing destination EOF, then we have to abort the clone to avoid exposing 1444 * stale data in the destination file. Hence we reject these clone attempts with 1445 * -EINVAL in this case. 1446 */ 1447 int 1448 xfs_reflink_remap_prep( 1449 struct file *file_in, 1450 loff_t pos_in, 1451 struct file *file_out, 1452 loff_t pos_out, 1453 loff_t *len, 1454 unsigned int remap_flags) 1455 { 1456 struct inode *inode_in = file_inode(file_in); 1457 struct xfs_inode *src = XFS_I(inode_in); 1458 struct inode *inode_out = file_inode(file_out); 1459 struct xfs_inode *dest = XFS_I(inode_out); 1460 int ret; 1461 1462 /* Lock both files against IO */ 1463 ret = xfs_ilock2_io_mmap(src, dest); 1464 if (ret) 1465 return ret; 1466 1467 /* Check file eligibility and prepare for block sharing. */ 1468 ret = -EINVAL; 1469 /* Don't reflink realtime inodes */ 1470 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1471 goto out_unlock; 1472 1473 /* Don't share DAX file data with non-DAX file. */ 1474 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1475 goto out_unlock; 1476 1477 if (!IS_DAX(inode_in)) 1478 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1479 pos_out, len, remap_flags); 1480 else 1481 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1482 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1483 if (ret || *len == 0) 1484 goto out_unlock; 1485 1486 /* Attach dquots to dest inode before changing block map */ 1487 ret = xfs_qm_dqattach(dest); 1488 if (ret) 1489 goto out_unlock; 1490 1491 /* 1492 * Zero existing post-eof speculative preallocations in the destination 1493 * file. 1494 */ 1495 ret = xfs_reflink_zero_posteof(dest, pos_out); 1496 if (ret) 1497 goto out_unlock; 1498 1499 /* Set flags and remap blocks. */ 1500 ret = xfs_reflink_set_inode_flag(src, dest); 1501 if (ret) 1502 goto out_unlock; 1503 1504 /* 1505 * If pos_out > EOF, we may have dirtied blocks between EOF and 1506 * pos_out. In that case, we need to extend the flush and unmap to cover 1507 * from EOF to the end of the copy length. 1508 */ 1509 if (pos_out > XFS_ISIZE(dest)) { 1510 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1511 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1512 } else { 1513 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1514 } 1515 if (ret) 1516 goto out_unlock; 1517 1518 xfs_iflags_set(src, XFS_IREMAPPING); 1519 if (inode_in != inode_out) 1520 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1521 1522 return 0; 1523 out_unlock: 1524 xfs_iunlock2_io_mmap(src, dest); 1525 return ret; 1526 } 1527 1528 /* Does this inode need the reflink flag? */ 1529 int 1530 xfs_reflink_inode_has_shared_extents( 1531 struct xfs_trans *tp, 1532 struct xfs_inode *ip, 1533 bool *has_shared) 1534 { 1535 struct xfs_bmbt_irec got; 1536 struct xfs_mount *mp = ip->i_mount; 1537 struct xfs_ifork *ifp; 1538 struct xfs_iext_cursor icur; 1539 bool found; 1540 int error; 1541 1542 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1543 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1544 if (error) 1545 return error; 1546 1547 *has_shared = false; 1548 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1549 while (found) { 1550 struct xfs_perag *pag; 1551 xfs_agblock_t agbno; 1552 xfs_extlen_t aglen; 1553 xfs_agblock_t rbno; 1554 xfs_extlen_t rlen; 1555 1556 if (isnullstartblock(got.br_startblock) || 1557 got.br_state != XFS_EXT_NORM) 1558 goto next; 1559 1560 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1561 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1562 aglen = got.br_blockcount; 1563 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1564 &rbno, &rlen, false); 1565 xfs_perag_put(pag); 1566 if (error) 1567 return error; 1568 1569 /* Is there still a shared block here? */ 1570 if (rbno != NULLAGBLOCK) { 1571 *has_shared = true; 1572 return 0; 1573 } 1574 next: 1575 found = xfs_iext_next_extent(ifp, &icur, &got); 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* 1582 * Clear the inode reflink flag if there are no shared extents. 1583 * 1584 * The caller is responsible for joining the inode to the transaction passed in. 1585 * The inode will be joined to the transaction that is returned to the caller. 1586 */ 1587 int 1588 xfs_reflink_clear_inode_flag( 1589 struct xfs_inode *ip, 1590 struct xfs_trans **tpp) 1591 { 1592 bool needs_flag; 1593 int error = 0; 1594 1595 ASSERT(xfs_is_reflink_inode(ip)); 1596 1597 if (!xfs_can_free_cowblocks(ip)) 1598 return 0; 1599 1600 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1601 if (error || needs_flag) 1602 return error; 1603 1604 /* 1605 * We didn't find any shared blocks so turn off the reflink flag. 1606 * First, get rid of any leftover CoW mappings. 1607 */ 1608 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1609 true); 1610 if (error) 1611 return error; 1612 1613 /* Clear the inode flag. */ 1614 trace_xfs_reflink_unset_inode_flag(ip); 1615 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1616 xfs_inode_clear_cowblocks_tag(ip); 1617 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1618 1619 return error; 1620 } 1621 1622 /* 1623 * Clear the inode reflink flag if there are no shared extents and the size 1624 * hasn't changed. 1625 */ 1626 STATIC int 1627 xfs_reflink_try_clear_inode_flag( 1628 struct xfs_inode *ip) 1629 { 1630 struct xfs_mount *mp = ip->i_mount; 1631 struct xfs_trans *tp; 1632 int error = 0; 1633 1634 /* Start a rolling transaction to remove the mappings */ 1635 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1636 if (error) 1637 return error; 1638 1639 xfs_ilock(ip, XFS_ILOCK_EXCL); 1640 xfs_trans_ijoin(tp, ip, 0); 1641 1642 error = xfs_reflink_clear_inode_flag(ip, &tp); 1643 if (error) 1644 goto cancel; 1645 1646 error = xfs_trans_commit(tp); 1647 if (error) 1648 goto out; 1649 1650 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1651 return 0; 1652 cancel: 1653 xfs_trans_cancel(tp); 1654 out: 1655 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1656 return error; 1657 } 1658 1659 /* 1660 * Pre-COW all shared blocks within a given byte range of a file and turn off 1661 * the reflink flag if we unshare all of the file's blocks. 1662 */ 1663 int 1664 xfs_reflink_unshare( 1665 struct xfs_inode *ip, 1666 xfs_off_t offset, 1667 xfs_off_t len) 1668 { 1669 struct inode *inode = VFS_I(ip); 1670 int error; 1671 1672 if (!xfs_is_reflink_inode(ip)) 1673 return 0; 1674 1675 trace_xfs_reflink_unshare(ip, offset, len); 1676 1677 inode_dio_wait(inode); 1678 1679 if (IS_DAX(inode)) 1680 error = dax_file_unshare(inode, offset, len, 1681 &xfs_dax_write_iomap_ops); 1682 else 1683 error = iomap_file_unshare(inode, offset, len, 1684 &xfs_buffered_write_iomap_ops); 1685 if (error) 1686 goto out; 1687 1688 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1689 offset + len - 1); 1690 if (error) 1691 goto out; 1692 1693 /* Turn off the reflink flag if possible. */ 1694 error = xfs_reflink_try_clear_inode_flag(ip); 1695 if (error) 1696 goto out; 1697 return 0; 1698 1699 out: 1700 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1701 return error; 1702 } 1703