1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 #include "xfs_health.h" 33 34 /* 35 * Copy on Write of Shared Blocks 36 * 37 * XFS must preserve "the usual" file semantics even when two files share 38 * the same physical blocks. This means that a write to one file must not 39 * alter the blocks in a different file; the way that we'll do that is 40 * through the use of a copy-on-write mechanism. At a high level, that 41 * means that when we want to write to a shared block, we allocate a new 42 * block, write the data to the new block, and if that succeeds we map the 43 * new block into the file. 44 * 45 * XFS provides a "delayed allocation" mechanism that defers the allocation 46 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 47 * possible. This reduces fragmentation by enabling the filesystem to ask 48 * for bigger chunks less often, which is exactly what we want for CoW. 49 * 50 * The delalloc mechanism begins when the kernel wants to make a block 51 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 52 * create a delalloc mapping, which is a regular in-core extent, but without 53 * a real startblock. (For delalloc mappings, the startblock encodes both 54 * a flag that this is a delalloc mapping, and a worst-case estimate of how 55 * many blocks might be required to put the mapping into the BMBT.) delalloc 56 * mappings are a reservation against the free space in the filesystem; 57 * adjacent mappings can also be combined into fewer larger mappings. 58 * 59 * As an optimization, the CoW extent size hint (cowextsz) creates 60 * outsized aligned delalloc reservations in the hope of landing out of 61 * order nearby CoW writes in a single extent on disk, thereby reducing 62 * fragmentation and improving future performance. 63 * 64 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 65 * C: ------DDDDDDD--------- (CoW fork) 66 * 67 * When dirty pages are being written out (typically in writepage), the 68 * delalloc reservations are converted into unwritten mappings by 69 * allocating blocks and replacing the delalloc mapping with real ones. 70 * A delalloc mapping can be replaced by several unwritten ones if the 71 * free space is fragmented. 72 * 73 * D: --RRRRRRSSSRRRRRRRR--- 74 * C: ------UUUUUUU--------- 75 * 76 * We want to adapt the delalloc mechanism for copy-on-write, since the 77 * write paths are similar. The first two steps (creating the reservation 78 * and allocating the blocks) are exactly the same as delalloc except that 79 * the mappings must be stored in a separate CoW fork because we do not want 80 * to disturb the mapping in the data fork until we're sure that the write 81 * succeeded. IO completion in this case is the process of removing the old 82 * mapping from the data fork and moving the new mapping from the CoW fork to 83 * the data fork. This will be discussed shortly. 84 * 85 * For now, unaligned directio writes will be bounced back to the page cache. 86 * Block-aligned directio writes will use the same mechanism as buffered 87 * writes. 88 * 89 * Just prior to submitting the actual disk write requests, we convert 90 * the extents representing the range of the file actually being written 91 * (as opposed to extra pieces created for the cowextsize hint) to real 92 * extents. This will become important in the next step: 93 * 94 * D: --RRRRRRSSSRRRRRRRR--- 95 * C: ------UUrrUUU--------- 96 * 97 * CoW remapping must be done after the data block write completes, 98 * because we don't want to destroy the old data fork map until we're sure 99 * the new block has been written. Since the new mappings are kept in a 100 * separate fork, we can simply iterate these mappings to find the ones 101 * that cover the file blocks that we just CoW'd. For each extent, simply 102 * unmap the corresponding range in the data fork, map the new range into 103 * the data fork, and remove the extent from the CoW fork. Because of 104 * the presence of the cowextsize hint, however, we must be careful 105 * only to remap the blocks that we've actually written out -- we must 106 * never remap delalloc reservations nor CoW staging blocks that have 107 * yet to be written. This corresponds exactly to the real extents in 108 * the CoW fork: 109 * 110 * D: --RRRRRRrrSRRRRRRRR--- 111 * C: ------UU--UUU--------- 112 * 113 * Since the remapping operation can be applied to an arbitrary file 114 * range, we record the need for the remap step as a flag in the ioend 115 * instead of declaring a new IO type. This is required for direct io 116 * because we only have ioend for the whole dio, and we have to be able to 117 * remember the presence of unwritten blocks and CoW blocks with a single 118 * ioend structure. Better yet, the more ground we can cover with one 119 * ioend, the better. 120 */ 121 122 /* 123 * Given an AG extent, find the lowest-numbered run of shared blocks 124 * within that range and return the range in fbno/flen. If 125 * find_end_of_shared is true, return the longest contiguous extent of 126 * shared blocks. If there are no shared extents, fbno and flen will 127 * be set to NULLAGBLOCK and 0, respectively. 128 */ 129 static int 130 xfs_reflink_find_shared( 131 struct xfs_perag *pag, 132 struct xfs_trans *tp, 133 xfs_agblock_t agbno, 134 xfs_extlen_t aglen, 135 xfs_agblock_t *fbno, 136 xfs_extlen_t *flen, 137 bool find_end_of_shared) 138 { 139 struct xfs_buf *agbp; 140 struct xfs_btree_cur *cur; 141 int error; 142 143 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 144 if (error) 145 return error; 146 147 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag); 148 149 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 150 find_end_of_shared); 151 152 xfs_btree_del_cursor(cur, error); 153 154 xfs_trans_brelse(tp, agbp); 155 return error; 156 } 157 158 /* 159 * Trim the mapping to the next block where there's a change in the 160 * shared/unshared status. More specifically, this means that we 161 * find the lowest-numbered extent of shared blocks that coincides with 162 * the given block mapping. If the shared extent overlaps the start of 163 * the mapping, trim the mapping to the end of the shared extent. If 164 * the shared region intersects the mapping, trim the mapping to the 165 * start of the shared extent. If there are no shared regions that 166 * overlap, just return the original extent. 167 */ 168 int 169 xfs_reflink_trim_around_shared( 170 struct xfs_inode *ip, 171 struct xfs_bmbt_irec *irec, 172 bool *shared) 173 { 174 struct xfs_mount *mp = ip->i_mount; 175 struct xfs_perag *pag; 176 xfs_agblock_t agbno; 177 xfs_extlen_t aglen; 178 xfs_agblock_t fbno; 179 xfs_extlen_t flen; 180 int error = 0; 181 182 /* Holes, unwritten, and delalloc extents cannot be shared */ 183 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 184 *shared = false; 185 return 0; 186 } 187 188 trace_xfs_reflink_trim_around_shared(ip, irec); 189 190 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 191 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 192 aglen = irec->br_blockcount; 193 194 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 195 true); 196 xfs_perag_put(pag); 197 if (error) 198 return error; 199 200 *shared = false; 201 if (fbno == NULLAGBLOCK) { 202 /* No shared blocks at all. */ 203 return 0; 204 } 205 206 if (fbno == agbno) { 207 /* 208 * The start of this extent is shared. Truncate the 209 * mapping at the end of the shared region so that a 210 * subsequent iteration starts at the start of the 211 * unshared region. 212 */ 213 irec->br_blockcount = flen; 214 *shared = true; 215 return 0; 216 } 217 218 /* 219 * There's a shared extent midway through this extent. 220 * Truncate the mapping at the start of the shared 221 * extent so that a subsequent iteration starts at the 222 * start of the shared region. 223 */ 224 irec->br_blockcount = fbno - agbno; 225 return 0; 226 } 227 228 int 229 xfs_bmap_trim_cow( 230 struct xfs_inode *ip, 231 struct xfs_bmbt_irec *imap, 232 bool *shared) 233 { 234 /* We can't update any real extents in always COW mode. */ 235 if (xfs_is_always_cow_inode(ip) && 236 !isnullstartblock(imap->br_startblock)) { 237 *shared = true; 238 return 0; 239 } 240 241 /* Trim the mapping to the nearest shared extent boundary. */ 242 return xfs_reflink_trim_around_shared(ip, imap, shared); 243 } 244 245 static int 246 xfs_reflink_convert_cow_locked( 247 struct xfs_inode *ip, 248 xfs_fileoff_t offset_fsb, 249 xfs_filblks_t count_fsb) 250 { 251 struct xfs_iext_cursor icur; 252 struct xfs_bmbt_irec got; 253 struct xfs_btree_cur *dummy_cur = NULL; 254 int dummy_logflags; 255 int error = 0; 256 257 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 258 return 0; 259 260 do { 261 if (got.br_startoff >= offset_fsb + count_fsb) 262 break; 263 if (got.br_state == XFS_EXT_NORM) 264 continue; 265 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 266 return -EIO; 267 268 xfs_trim_extent(&got, offset_fsb, count_fsb); 269 if (!got.br_blockcount) 270 continue; 271 272 got.br_state = XFS_EXT_NORM; 273 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 274 XFS_COW_FORK, &icur, &dummy_cur, &got, 275 &dummy_logflags); 276 if (error) 277 return error; 278 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 279 280 return error; 281 } 282 283 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 284 int 285 xfs_reflink_convert_cow( 286 struct xfs_inode *ip, 287 xfs_off_t offset, 288 xfs_off_t count) 289 { 290 struct xfs_mount *mp = ip->i_mount; 291 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 292 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 293 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 294 int error; 295 296 ASSERT(count != 0); 297 298 xfs_ilock(ip, XFS_ILOCK_EXCL); 299 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 300 xfs_iunlock(ip, XFS_ILOCK_EXCL); 301 return error; 302 } 303 304 /* 305 * Find the extent that maps the given range in the COW fork. Even if the extent 306 * is not shared we might have a preallocation for it in the COW fork. If so we 307 * use it that rather than trigger a new allocation. 308 */ 309 static int 310 xfs_find_trim_cow_extent( 311 struct xfs_inode *ip, 312 struct xfs_bmbt_irec *imap, 313 struct xfs_bmbt_irec *cmap, 314 bool *shared, 315 bool *found) 316 { 317 xfs_fileoff_t offset_fsb = imap->br_startoff; 318 xfs_filblks_t count_fsb = imap->br_blockcount; 319 struct xfs_iext_cursor icur; 320 321 *found = false; 322 323 /* 324 * If we don't find an overlapping extent, trim the range we need to 325 * allocate to fit the hole we found. 326 */ 327 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 328 cmap->br_startoff = offset_fsb + count_fsb; 329 if (cmap->br_startoff > offset_fsb) { 330 xfs_trim_extent(imap, imap->br_startoff, 331 cmap->br_startoff - imap->br_startoff); 332 return xfs_bmap_trim_cow(ip, imap, shared); 333 } 334 335 *shared = true; 336 if (isnullstartblock(cmap->br_startblock)) { 337 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 338 return 0; 339 } 340 341 /* real extent found - no need to allocate */ 342 xfs_trim_extent(cmap, offset_fsb, count_fsb); 343 *found = true; 344 return 0; 345 } 346 347 static int 348 xfs_reflink_convert_unwritten( 349 struct xfs_inode *ip, 350 struct xfs_bmbt_irec *imap, 351 struct xfs_bmbt_irec *cmap, 352 bool convert_now) 353 { 354 xfs_fileoff_t offset_fsb = imap->br_startoff; 355 xfs_filblks_t count_fsb = imap->br_blockcount; 356 int error; 357 358 /* 359 * cmap might larger than imap due to cowextsize hint. 360 */ 361 xfs_trim_extent(cmap, offset_fsb, count_fsb); 362 363 /* 364 * COW fork extents are supposed to remain unwritten until we're ready 365 * to initiate a disk write. For direct I/O we are going to write the 366 * data and need the conversion, but for buffered writes we're done. 367 */ 368 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 369 return 0; 370 371 trace_xfs_reflink_convert_cow(ip, cmap); 372 373 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 374 if (!error) 375 cmap->br_state = XFS_EXT_NORM; 376 377 return error; 378 } 379 380 static int 381 xfs_reflink_fill_cow_hole( 382 struct xfs_inode *ip, 383 struct xfs_bmbt_irec *imap, 384 struct xfs_bmbt_irec *cmap, 385 bool *shared, 386 uint *lockmode, 387 bool convert_now) 388 { 389 struct xfs_mount *mp = ip->i_mount; 390 struct xfs_trans *tp; 391 xfs_filblks_t resaligned; 392 xfs_extlen_t resblks; 393 int nimaps; 394 int error; 395 bool found; 396 397 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 398 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 399 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 400 401 xfs_iunlock(ip, *lockmode); 402 *lockmode = 0; 403 404 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 405 false, &tp); 406 if (error) 407 return error; 408 409 *lockmode = XFS_ILOCK_EXCL; 410 411 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 412 if (error || !*shared) 413 goto out_trans_cancel; 414 415 if (found) { 416 xfs_trans_cancel(tp); 417 goto convert; 418 } 419 420 /* Allocate the entire reservation as unwritten blocks. */ 421 nimaps = 1; 422 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 423 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 424 &nimaps); 425 if (error) 426 goto out_trans_cancel; 427 428 xfs_inode_set_cowblocks_tag(ip); 429 error = xfs_trans_commit(tp); 430 if (error) 431 return error; 432 433 /* 434 * Allocation succeeded but the requested range was not even partially 435 * satisfied? Bail out! 436 */ 437 if (nimaps == 0) 438 return -ENOSPC; 439 440 convert: 441 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 442 443 out_trans_cancel: 444 xfs_trans_cancel(tp); 445 return error; 446 } 447 448 static int 449 xfs_reflink_fill_delalloc( 450 struct xfs_inode *ip, 451 struct xfs_bmbt_irec *imap, 452 struct xfs_bmbt_irec *cmap, 453 bool *shared, 454 uint *lockmode, 455 bool convert_now) 456 { 457 struct xfs_mount *mp = ip->i_mount; 458 struct xfs_trans *tp; 459 int nimaps; 460 int error; 461 bool found; 462 463 do { 464 xfs_iunlock(ip, *lockmode); 465 *lockmode = 0; 466 467 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 468 false, &tp); 469 if (error) 470 return error; 471 472 *lockmode = XFS_ILOCK_EXCL; 473 474 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 475 &found); 476 if (error || !*shared) 477 goto out_trans_cancel; 478 479 if (found) { 480 xfs_trans_cancel(tp); 481 break; 482 } 483 484 ASSERT(isnullstartblock(cmap->br_startblock) || 485 cmap->br_startblock == DELAYSTARTBLOCK); 486 487 /* 488 * Replace delalloc reservation with an unwritten extent. 489 */ 490 nimaps = 1; 491 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 492 cmap->br_blockcount, 493 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 494 cmap, &nimaps); 495 if (error) 496 goto out_trans_cancel; 497 498 xfs_inode_set_cowblocks_tag(ip); 499 error = xfs_trans_commit(tp); 500 if (error) 501 return error; 502 503 /* 504 * Allocation succeeded but the requested range was not even 505 * partially satisfied? Bail out! 506 */ 507 if (nimaps == 0) 508 return -ENOSPC; 509 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 510 511 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 512 513 out_trans_cancel: 514 xfs_trans_cancel(tp); 515 return error; 516 } 517 518 /* Allocate all CoW reservations covering a range of blocks in a file. */ 519 int 520 xfs_reflink_allocate_cow( 521 struct xfs_inode *ip, 522 struct xfs_bmbt_irec *imap, 523 struct xfs_bmbt_irec *cmap, 524 bool *shared, 525 uint *lockmode, 526 bool convert_now) 527 { 528 int error; 529 bool found; 530 531 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL); 532 if (!ip->i_cowfp) { 533 ASSERT(!xfs_is_reflink_inode(ip)); 534 xfs_ifork_init_cow(ip); 535 } 536 537 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 538 if (error || !*shared) 539 return error; 540 541 /* CoW fork has a real extent */ 542 if (found) 543 return xfs_reflink_convert_unwritten(ip, imap, cmap, 544 convert_now); 545 546 /* 547 * CoW fork does not have an extent and data extent is shared. 548 * Allocate a real extent in the CoW fork. 549 */ 550 if (cmap->br_startoff > imap->br_startoff) 551 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 552 lockmode, convert_now); 553 554 /* 555 * CoW fork has a delalloc reservation. Replace it with a real extent. 556 * There may or may not be a data fork mapping. 557 */ 558 if (isnullstartblock(cmap->br_startblock) || 559 cmap->br_startblock == DELAYSTARTBLOCK) 560 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 561 lockmode, convert_now); 562 563 /* Shouldn't get here. */ 564 ASSERT(0); 565 return -EFSCORRUPTED; 566 } 567 568 /* 569 * Cancel CoW reservations for some block range of an inode. 570 * 571 * If cancel_real is true this function cancels all COW fork extents for the 572 * inode; if cancel_real is false, real extents are not cleared. 573 * 574 * Caller must have already joined the inode to the current transaction. The 575 * inode will be joined to the transaction returned to the caller. 576 */ 577 int 578 xfs_reflink_cancel_cow_blocks( 579 struct xfs_inode *ip, 580 struct xfs_trans **tpp, 581 xfs_fileoff_t offset_fsb, 582 xfs_fileoff_t end_fsb, 583 bool cancel_real) 584 { 585 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 586 struct xfs_bmbt_irec got, del; 587 struct xfs_iext_cursor icur; 588 int error = 0; 589 590 if (!xfs_inode_has_cow_data(ip)) 591 return 0; 592 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 593 return 0; 594 595 /* Walk backwards until we're out of the I/O range... */ 596 while (got.br_startoff + got.br_blockcount > offset_fsb) { 597 del = got; 598 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 599 600 /* Extent delete may have bumped ext forward */ 601 if (!del.br_blockcount) { 602 xfs_iext_prev(ifp, &icur); 603 goto next_extent; 604 } 605 606 trace_xfs_reflink_cancel_cow(ip, &del); 607 608 if (isnullstartblock(del.br_startblock)) { 609 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 610 &icur, &got, &del); 611 if (error) 612 break; 613 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 614 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 615 616 /* Free the CoW orphan record. */ 617 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 618 del.br_blockcount); 619 620 error = xfs_free_extent_later(*tpp, del.br_startblock, 621 del.br_blockcount, NULL, 622 XFS_AG_RESV_NONE, false); 623 if (error) 624 break; 625 626 /* Roll the transaction */ 627 error = xfs_defer_finish(tpp); 628 if (error) 629 break; 630 631 /* Remove the mapping from the CoW fork. */ 632 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 633 634 /* Remove the quota reservation */ 635 error = xfs_quota_unreserve_blkres(ip, 636 del.br_blockcount); 637 if (error) 638 break; 639 } else { 640 /* Didn't do anything, push cursor back. */ 641 xfs_iext_prev(ifp, &icur); 642 } 643 next_extent: 644 if (!xfs_iext_get_extent(ifp, &icur, &got)) 645 break; 646 } 647 648 /* clear tag if cow fork is emptied */ 649 if (!ifp->if_bytes) 650 xfs_inode_clear_cowblocks_tag(ip); 651 return error; 652 } 653 654 /* 655 * Cancel CoW reservations for some byte range of an inode. 656 * 657 * If cancel_real is true this function cancels all COW fork extents for the 658 * inode; if cancel_real is false, real extents are not cleared. 659 */ 660 int 661 xfs_reflink_cancel_cow_range( 662 struct xfs_inode *ip, 663 xfs_off_t offset, 664 xfs_off_t count, 665 bool cancel_real) 666 { 667 struct xfs_trans *tp; 668 xfs_fileoff_t offset_fsb; 669 xfs_fileoff_t end_fsb; 670 int error; 671 672 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 673 ASSERT(ip->i_cowfp); 674 675 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 676 if (count == NULLFILEOFF) 677 end_fsb = NULLFILEOFF; 678 else 679 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 680 681 /* Start a rolling transaction to remove the mappings */ 682 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 683 0, 0, 0, &tp); 684 if (error) 685 goto out; 686 687 xfs_ilock(ip, XFS_ILOCK_EXCL); 688 xfs_trans_ijoin(tp, ip, 0); 689 690 /* Scrape out the old CoW reservations */ 691 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 692 cancel_real); 693 if (error) 694 goto out_cancel; 695 696 error = xfs_trans_commit(tp); 697 698 xfs_iunlock(ip, XFS_ILOCK_EXCL); 699 return error; 700 701 out_cancel: 702 xfs_trans_cancel(tp); 703 xfs_iunlock(ip, XFS_ILOCK_EXCL); 704 out: 705 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 706 return error; 707 } 708 709 /* 710 * Remap part of the CoW fork into the data fork. 711 * 712 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 713 * into the data fork; this function will remap what it can (at the end of the 714 * range) and update @end_fsb appropriately. Each remap gets its own 715 * transaction because we can end up merging and splitting bmbt blocks for 716 * every remap operation and we'd like to keep the block reservation 717 * requirements as low as possible. 718 */ 719 STATIC int 720 xfs_reflink_end_cow_extent( 721 struct xfs_inode *ip, 722 xfs_fileoff_t *offset_fsb, 723 xfs_fileoff_t end_fsb) 724 { 725 struct xfs_iext_cursor icur; 726 struct xfs_bmbt_irec got, del, data; 727 struct xfs_mount *mp = ip->i_mount; 728 struct xfs_trans *tp; 729 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 730 unsigned int resblks; 731 int nmaps; 732 int error; 733 734 /* No COW extents? That's easy! */ 735 if (ifp->if_bytes == 0) { 736 *offset_fsb = end_fsb; 737 return 0; 738 } 739 740 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 741 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 742 XFS_TRANS_RESERVE, &tp); 743 if (error) 744 return error; 745 746 /* 747 * Lock the inode. We have to ijoin without automatic unlock because 748 * the lead transaction is the refcountbt record deletion; the data 749 * fork update follows as a deferred log item. 750 */ 751 xfs_ilock(ip, XFS_ILOCK_EXCL); 752 xfs_trans_ijoin(tp, ip, 0); 753 754 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 755 XFS_IEXT_REFLINK_END_COW_CNT); 756 if (error == -EFBIG) 757 error = xfs_iext_count_upgrade(tp, ip, 758 XFS_IEXT_REFLINK_END_COW_CNT); 759 if (error) 760 goto out_cancel; 761 762 /* 763 * In case of racing, overlapping AIO writes no COW extents might be 764 * left by the time I/O completes for the loser of the race. In that 765 * case we are done. 766 */ 767 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 768 got.br_startoff >= end_fsb) { 769 *offset_fsb = end_fsb; 770 goto out_cancel; 771 } 772 773 /* 774 * Only remap real extents that contain data. With AIO, speculative 775 * preallocations can leak into the range we are called upon, and we 776 * need to skip them. Preserve @got for the eventual CoW fork 777 * deletion; from now on @del represents the mapping that we're 778 * actually remapping. 779 */ 780 while (!xfs_bmap_is_written_extent(&got)) { 781 if (!xfs_iext_next_extent(ifp, &icur, &got) || 782 got.br_startoff >= end_fsb) { 783 *offset_fsb = end_fsb; 784 goto out_cancel; 785 } 786 } 787 del = got; 788 xfs_trim_extent(&del, *offset_fsb, end_fsb - *offset_fsb); 789 790 /* Grab the corresponding mapping in the data fork. */ 791 nmaps = 1; 792 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 793 &nmaps, 0); 794 if (error) 795 goto out_cancel; 796 797 /* We can only remap the smaller of the two extent sizes. */ 798 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 799 del.br_blockcount = data.br_blockcount; 800 801 trace_xfs_reflink_cow_remap_from(ip, &del); 802 trace_xfs_reflink_cow_remap_to(ip, &data); 803 804 if (xfs_bmap_is_real_extent(&data)) { 805 /* 806 * If the extent we're remapping is backed by storage (written 807 * or not), unmap the extent and drop its refcount. 808 */ 809 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &data); 810 xfs_refcount_decrease_extent(tp, &data); 811 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 812 -data.br_blockcount); 813 } else if (data.br_startblock == DELAYSTARTBLOCK) { 814 int done; 815 816 /* 817 * If the extent we're remapping is a delalloc reservation, 818 * we can use the regular bunmapi function to release the 819 * incore state. Dropping the delalloc reservation takes care 820 * of the quota reservation for us. 821 */ 822 error = xfs_bunmapi(NULL, ip, data.br_startoff, 823 data.br_blockcount, 0, 1, &done); 824 if (error) 825 goto out_cancel; 826 ASSERT(done); 827 } 828 829 /* Free the CoW orphan record. */ 830 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 831 832 /* Map the new blocks into the data fork. */ 833 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, &del); 834 835 /* Charge this new data fork mapping to the on-disk quota. */ 836 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 837 (long)del.br_blockcount); 838 839 /* Remove the mapping from the CoW fork. */ 840 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 841 842 error = xfs_trans_commit(tp); 843 xfs_iunlock(ip, XFS_ILOCK_EXCL); 844 if (error) 845 return error; 846 847 /* Update the caller about how much progress we made. */ 848 *offset_fsb = del.br_startoff + del.br_blockcount; 849 return 0; 850 851 out_cancel: 852 xfs_trans_cancel(tp); 853 xfs_iunlock(ip, XFS_ILOCK_EXCL); 854 return error; 855 } 856 857 /* 858 * Remap parts of a file's data fork after a successful CoW. 859 */ 860 int 861 xfs_reflink_end_cow( 862 struct xfs_inode *ip, 863 xfs_off_t offset, 864 xfs_off_t count) 865 { 866 xfs_fileoff_t offset_fsb; 867 xfs_fileoff_t end_fsb; 868 int error = 0; 869 870 trace_xfs_reflink_end_cow(ip, offset, count); 871 872 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 873 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 874 875 /* 876 * Walk forwards until we've remapped the I/O range. The loop function 877 * repeatedly cycles the ILOCK to allocate one transaction per remapped 878 * extent. 879 * 880 * If we're being called by writeback then the pages will still 881 * have PageWriteback set, which prevents races with reflink remapping 882 * and truncate. Reflink remapping prevents races with writeback by 883 * taking the iolock and mmaplock before flushing the pages and 884 * remapping, which means there won't be any further writeback or page 885 * cache dirtying until the reflink completes. 886 * 887 * We should never have two threads issuing writeback for the same file 888 * region. There are also have post-eof checks in the writeback 889 * preparation code so that we don't bother writing out pages that are 890 * about to be truncated. 891 * 892 * If we're being called as part of directio write completion, the dio 893 * count is still elevated, which reflink and truncate will wait for. 894 * Reflink remapping takes the iolock and mmaplock and waits for 895 * pending dio to finish, which should prevent any directio until the 896 * remap completes. Multiple concurrent directio writes to the same 897 * region are handled by end_cow processing only occurring for the 898 * threads which succeed; the outcome of multiple overlapping direct 899 * writes is not well defined anyway. 900 * 901 * It's possible that a buffered write and a direct write could collide 902 * here (the buffered write stumbles in after the dio flushes and 903 * invalidates the page cache and immediately queues writeback), but we 904 * have never supported this 100%. If either disk write succeeds the 905 * blocks will be remapped. 906 */ 907 while (end_fsb > offset_fsb && !error) 908 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 909 910 if (error) 911 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 912 return error; 913 } 914 915 /* 916 * Free all CoW staging blocks that are still referenced by the ondisk refcount 917 * metadata. The ondisk metadata does not track which inode created the 918 * staging extent, so callers must ensure that there are no cached inodes with 919 * live CoW staging extents. 920 */ 921 int 922 xfs_reflink_recover_cow( 923 struct xfs_mount *mp) 924 { 925 struct xfs_perag *pag; 926 xfs_agnumber_t agno; 927 int error = 0; 928 929 if (!xfs_has_reflink(mp)) 930 return 0; 931 932 for_each_perag(mp, agno, pag) { 933 error = xfs_refcount_recover_cow_leftovers(mp, pag); 934 if (error) { 935 xfs_perag_rele(pag); 936 break; 937 } 938 } 939 940 return error; 941 } 942 943 /* 944 * Reflinking (Block) Ranges of Two Files Together 945 * 946 * First, ensure that the reflink flag is set on both inodes. The flag is an 947 * optimization to avoid unnecessary refcount btree lookups in the write path. 948 * 949 * Now we can iteratively remap the range of extents (and holes) in src to the 950 * corresponding ranges in dest. Let drange and srange denote the ranges of 951 * logical blocks in dest and src touched by the reflink operation. 952 * 953 * While the length of drange is greater than zero, 954 * - Read src's bmbt at the start of srange ("imap") 955 * - If imap doesn't exist, make imap appear to start at the end of srange 956 * with zero length. 957 * - If imap starts before srange, advance imap to start at srange. 958 * - If imap goes beyond srange, truncate imap to end at the end of srange. 959 * - Punch (imap start - srange start + imap len) blocks from dest at 960 * offset (drange start). 961 * - If imap points to a real range of pblks, 962 * > Increase the refcount of the imap's pblks 963 * > Map imap's pblks into dest at the offset 964 * (drange start + imap start - srange start) 965 * - Advance drange and srange by (imap start - srange start + imap len) 966 * 967 * Finally, if the reflink made dest longer, update both the in-core and 968 * on-disk file sizes. 969 * 970 * ASCII Art Demonstration: 971 * 972 * Let's say we want to reflink this source file: 973 * 974 * ----SSSSSSS-SSSSS----SSSSSS (src file) 975 * <--------------------> 976 * 977 * into this destination file: 978 * 979 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 980 * <--------------------> 981 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 982 * Observe that the range has different logical offsets in either file. 983 * 984 * Consider that the first extent in the source file doesn't line up with our 985 * reflink range. Unmapping and remapping are separate operations, so we can 986 * unmap more blocks from the destination file than we remap. 987 * 988 * ----SSSSSSS-SSSSS----SSSSSS 989 * <-------> 990 * --DDDDD---------DDDDD--DDD 991 * <-------> 992 * 993 * Now remap the source extent into the destination file: 994 * 995 * ----SSSSSSS-SSSSS----SSSSSS 996 * <-------> 997 * --DDDDD--SSSSSSSDDDDD--DDD 998 * <-------> 999 * 1000 * Do likewise with the second hole and extent in our range. Holes in the 1001 * unmap range don't affect our operation. 1002 * 1003 * ----SSSSSSS-SSSSS----SSSSSS 1004 * <----> 1005 * --DDDDD--SSSSSSS-SSSSS-DDD 1006 * <----> 1007 * 1008 * Finally, unmap and remap part of the third extent. This will increase the 1009 * size of the destination file. 1010 * 1011 * ----SSSSSSS-SSSSS----SSSSSS 1012 * <-----> 1013 * --DDDDD--SSSSSSS-SSSSS----SSS 1014 * <-----> 1015 * 1016 * Once we update the destination file's i_size, we're done. 1017 */ 1018 1019 /* 1020 * Ensure the reflink bit is set in both inodes. 1021 */ 1022 STATIC int 1023 xfs_reflink_set_inode_flag( 1024 struct xfs_inode *src, 1025 struct xfs_inode *dest) 1026 { 1027 struct xfs_mount *mp = src->i_mount; 1028 int error; 1029 struct xfs_trans *tp; 1030 1031 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1032 return 0; 1033 1034 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1035 if (error) 1036 goto out_error; 1037 1038 /* Lock both files against IO */ 1039 if (src->i_ino == dest->i_ino) 1040 xfs_ilock(src, XFS_ILOCK_EXCL); 1041 else 1042 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1043 1044 if (!xfs_is_reflink_inode(src)) { 1045 trace_xfs_reflink_set_inode_flag(src); 1046 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1047 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1048 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1049 xfs_ifork_init_cow(src); 1050 } else 1051 xfs_iunlock(src, XFS_ILOCK_EXCL); 1052 1053 if (src->i_ino == dest->i_ino) 1054 goto commit_flags; 1055 1056 if (!xfs_is_reflink_inode(dest)) { 1057 trace_xfs_reflink_set_inode_flag(dest); 1058 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1059 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1060 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1061 xfs_ifork_init_cow(dest); 1062 } else 1063 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1064 1065 commit_flags: 1066 error = xfs_trans_commit(tp); 1067 if (error) 1068 goto out_error; 1069 return error; 1070 1071 out_error: 1072 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1073 return error; 1074 } 1075 1076 /* 1077 * Update destination inode size & cowextsize hint, if necessary. 1078 */ 1079 int 1080 xfs_reflink_update_dest( 1081 struct xfs_inode *dest, 1082 xfs_off_t newlen, 1083 xfs_extlen_t cowextsize, 1084 unsigned int remap_flags) 1085 { 1086 struct xfs_mount *mp = dest->i_mount; 1087 struct xfs_trans *tp; 1088 int error; 1089 1090 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1091 return 0; 1092 1093 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1094 if (error) 1095 goto out_error; 1096 1097 xfs_ilock(dest, XFS_ILOCK_EXCL); 1098 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1099 1100 if (newlen > i_size_read(VFS_I(dest))) { 1101 trace_xfs_reflink_update_inode_size(dest, newlen); 1102 i_size_write(VFS_I(dest), newlen); 1103 dest->i_disk_size = newlen; 1104 } 1105 1106 if (cowextsize) { 1107 dest->i_cowextsize = cowextsize; 1108 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1109 } 1110 1111 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1112 1113 error = xfs_trans_commit(tp); 1114 if (error) 1115 goto out_error; 1116 return error; 1117 1118 out_error: 1119 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1120 return error; 1121 } 1122 1123 /* 1124 * Do we have enough reserve in this AG to handle a reflink? The refcount 1125 * btree already reserved all the space it needs, but the rmap btree can grow 1126 * infinitely, so we won't allow more reflinks when the AG is down to the 1127 * btree reserves. 1128 */ 1129 static int 1130 xfs_reflink_ag_has_free_space( 1131 struct xfs_mount *mp, 1132 xfs_agnumber_t agno) 1133 { 1134 struct xfs_perag *pag; 1135 int error = 0; 1136 1137 if (!xfs_has_rmapbt(mp)) 1138 return 0; 1139 1140 pag = xfs_perag_get(mp, agno); 1141 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1142 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1143 error = -ENOSPC; 1144 xfs_perag_put(pag); 1145 return error; 1146 } 1147 1148 /* 1149 * Remap the given extent into the file. The dmap blockcount will be set to 1150 * the number of blocks that were actually remapped. 1151 */ 1152 STATIC int 1153 xfs_reflink_remap_extent( 1154 struct xfs_inode *ip, 1155 struct xfs_bmbt_irec *dmap, 1156 xfs_off_t new_isize) 1157 { 1158 struct xfs_bmbt_irec smap; 1159 struct xfs_mount *mp = ip->i_mount; 1160 struct xfs_trans *tp; 1161 xfs_off_t newlen; 1162 int64_t qdelta = 0; 1163 unsigned int resblks; 1164 bool quota_reserved = true; 1165 bool smap_real; 1166 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1167 int iext_delta = 0; 1168 int nimaps; 1169 int error; 1170 1171 /* 1172 * Start a rolling transaction to switch the mappings. 1173 * 1174 * Adding a written extent to the extent map can cause a bmbt split, 1175 * and removing a mapped extent from the extent can cause a bmbt split. 1176 * The two operations cannot both cause a split since they operate on 1177 * the same index in the bmap btree, so we only need a reservation for 1178 * one bmbt split if either thing is happening. However, we haven't 1179 * locked the inode yet, so we reserve assuming this is the case. 1180 * 1181 * The first allocation call tries to reserve enough space to handle 1182 * mapping dmap into a sparse part of the file plus the bmbt split. We 1183 * haven't locked the inode or read the existing mapping yet, so we do 1184 * not know for sure that we need the space. This should succeed most 1185 * of the time. 1186 * 1187 * If the first attempt fails, try again but reserving only enough 1188 * space to handle a bmbt split. This is the hard minimum requirement, 1189 * and we revisit quota reservations later when we know more about what 1190 * we're remapping. 1191 */ 1192 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1193 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1194 resblks + dmap->br_blockcount, 0, false, &tp); 1195 if (error == -EDQUOT || error == -ENOSPC) { 1196 quota_reserved = false; 1197 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1198 resblks, 0, false, &tp); 1199 } 1200 if (error) 1201 goto out; 1202 1203 /* 1204 * Read what's currently mapped in the destination file into smap. 1205 * If smap isn't a hole, we will have to remove it before we can add 1206 * dmap to the destination file. 1207 */ 1208 nimaps = 1; 1209 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1210 &smap, &nimaps, 0); 1211 if (error) 1212 goto out_cancel; 1213 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1214 smap_real = xfs_bmap_is_real_extent(&smap); 1215 1216 /* 1217 * We can only remap as many blocks as the smaller of the two extent 1218 * maps, because we can only remap one extent at a time. 1219 */ 1220 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1221 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1222 1223 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1224 1225 /* 1226 * Two extents mapped to the same physical block must not have 1227 * different states; that's filesystem corruption. Move on to the next 1228 * extent if they're both holes or both the same physical extent. 1229 */ 1230 if (dmap->br_startblock == smap.br_startblock) { 1231 if (dmap->br_state != smap.br_state) { 1232 xfs_bmap_mark_sick(ip, XFS_DATA_FORK); 1233 error = -EFSCORRUPTED; 1234 } 1235 goto out_cancel; 1236 } 1237 1238 /* If both extents are unwritten, leave them alone. */ 1239 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1240 smap.br_state == XFS_EXT_UNWRITTEN) 1241 goto out_cancel; 1242 1243 /* No reflinking if the AG of the dest mapping is low on space. */ 1244 if (dmap_written) { 1245 error = xfs_reflink_ag_has_free_space(mp, 1246 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1247 if (error) 1248 goto out_cancel; 1249 } 1250 1251 /* 1252 * Increase quota reservation if we think the quota block counter for 1253 * this file could increase. 1254 * 1255 * If we are mapping a written extent into the file, we need to have 1256 * enough quota block count reservation to handle the blocks in that 1257 * extent. We log only the delta to the quota block counts, so if the 1258 * extent we're unmapping also has blocks allocated to it, we don't 1259 * need a quota reservation for the extent itself. 1260 * 1261 * Note that if we're replacing a delalloc reservation with a written 1262 * extent, we have to take the full quota reservation because removing 1263 * the delalloc reservation gives the block count back to the quota 1264 * count. This is suboptimal, but the VFS flushed the dest range 1265 * before we started. That should have removed all the delalloc 1266 * reservations, but we code defensively. 1267 * 1268 * xfs_trans_alloc_inode above already tried to grab an even larger 1269 * quota reservation, and kicked off a blockgc scan if it couldn't. 1270 * If we can't get a potentially smaller quota reservation now, we're 1271 * done. 1272 */ 1273 if (!quota_reserved && !smap_real && dmap_written) { 1274 error = xfs_trans_reserve_quota_nblks(tp, ip, 1275 dmap->br_blockcount, 0, false); 1276 if (error) 1277 goto out_cancel; 1278 } 1279 1280 if (smap_real) 1281 ++iext_delta; 1282 1283 if (dmap_written) 1284 ++iext_delta; 1285 1286 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta); 1287 if (error == -EFBIG) 1288 error = xfs_iext_count_upgrade(tp, ip, iext_delta); 1289 if (error) 1290 goto out_cancel; 1291 1292 if (smap_real) { 1293 /* 1294 * If the extent we're unmapping is backed by storage (written 1295 * or not), unmap the extent and drop its refcount. 1296 */ 1297 xfs_bmap_unmap_extent(tp, ip, XFS_DATA_FORK, &smap); 1298 xfs_refcount_decrease_extent(tp, &smap); 1299 qdelta -= smap.br_blockcount; 1300 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1301 int done; 1302 1303 /* 1304 * If the extent we're unmapping is a delalloc reservation, 1305 * we can use the regular bunmapi function to release the 1306 * incore state. Dropping the delalloc reservation takes care 1307 * of the quota reservation for us. 1308 */ 1309 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1310 smap.br_blockcount, 0, 1, &done); 1311 if (error) 1312 goto out_cancel; 1313 ASSERT(done); 1314 } 1315 1316 /* 1317 * If the extent we're sharing is backed by written storage, increase 1318 * its refcount and map it into the file. 1319 */ 1320 if (dmap_written) { 1321 xfs_refcount_increase_extent(tp, dmap); 1322 xfs_bmap_map_extent(tp, ip, XFS_DATA_FORK, dmap); 1323 qdelta += dmap->br_blockcount; 1324 } 1325 1326 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1327 1328 /* Update dest isize if needed. */ 1329 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1330 newlen = min_t(xfs_off_t, newlen, new_isize); 1331 if (newlen > i_size_read(VFS_I(ip))) { 1332 trace_xfs_reflink_update_inode_size(ip, newlen); 1333 i_size_write(VFS_I(ip), newlen); 1334 ip->i_disk_size = newlen; 1335 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1336 } 1337 1338 /* Commit everything and unlock. */ 1339 error = xfs_trans_commit(tp); 1340 goto out_unlock; 1341 1342 out_cancel: 1343 xfs_trans_cancel(tp); 1344 out_unlock: 1345 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1346 out: 1347 if (error) 1348 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1349 return error; 1350 } 1351 1352 /* Remap a range of one file to the other. */ 1353 int 1354 xfs_reflink_remap_blocks( 1355 struct xfs_inode *src, 1356 loff_t pos_in, 1357 struct xfs_inode *dest, 1358 loff_t pos_out, 1359 loff_t remap_len, 1360 loff_t *remapped) 1361 { 1362 struct xfs_bmbt_irec imap; 1363 struct xfs_mount *mp = src->i_mount; 1364 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1365 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1366 xfs_filblks_t len; 1367 xfs_filblks_t remapped_len = 0; 1368 xfs_off_t new_isize = pos_out + remap_len; 1369 int nimaps; 1370 int error = 0; 1371 1372 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1373 XFS_MAX_FILEOFF); 1374 1375 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1376 1377 while (len > 0) { 1378 unsigned int lock_mode; 1379 1380 /* Read extent from the source file */ 1381 nimaps = 1; 1382 lock_mode = xfs_ilock_data_map_shared(src); 1383 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1384 xfs_iunlock(src, lock_mode); 1385 if (error) 1386 break; 1387 /* 1388 * The caller supposedly flushed all dirty pages in the source 1389 * file range, which means that writeback should have allocated 1390 * or deleted all delalloc reservations in that range. If we 1391 * find one, that's a good sign that something is seriously 1392 * wrong here. 1393 */ 1394 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1395 if (imap.br_startblock == DELAYSTARTBLOCK) { 1396 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1397 xfs_bmap_mark_sick(src, XFS_DATA_FORK); 1398 error = -EFSCORRUPTED; 1399 break; 1400 } 1401 1402 trace_xfs_reflink_remap_extent_src(src, &imap); 1403 1404 /* Remap into the destination file at the given offset. */ 1405 imap.br_startoff = destoff; 1406 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1407 if (error) 1408 break; 1409 1410 if (fatal_signal_pending(current)) { 1411 error = -EINTR; 1412 break; 1413 } 1414 1415 /* Advance drange/srange */ 1416 srcoff += imap.br_blockcount; 1417 destoff += imap.br_blockcount; 1418 len -= imap.br_blockcount; 1419 remapped_len += imap.br_blockcount; 1420 } 1421 1422 if (error) 1423 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1424 *remapped = min_t(loff_t, remap_len, 1425 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1426 return error; 1427 } 1428 1429 /* 1430 * If we're reflinking to a point past the destination file's EOF, we must 1431 * zero any speculative post-EOF preallocations that sit between the old EOF 1432 * and the destination file offset. 1433 */ 1434 static int 1435 xfs_reflink_zero_posteof( 1436 struct xfs_inode *ip, 1437 loff_t pos) 1438 { 1439 loff_t isize = i_size_read(VFS_I(ip)); 1440 1441 if (pos <= isize) 1442 return 0; 1443 1444 trace_xfs_zero_eof(ip, isize, pos - isize); 1445 return xfs_zero_range(ip, isize, pos - isize, NULL); 1446 } 1447 1448 /* 1449 * Prepare two files for range cloning. Upon a successful return both inodes 1450 * will have the iolock and mmaplock held, the page cache of the out file will 1451 * be truncated, and any leases on the out file will have been broken. This 1452 * function borrows heavily from xfs_file_aio_write_checks. 1453 * 1454 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1455 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1456 * EOF block in the source dedupe range because it's not a complete block match, 1457 * hence can introduce a corruption into the file that has it's block replaced. 1458 * 1459 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1460 * "block aligned" for the purposes of cloning entire files. However, if the 1461 * source file range includes the EOF block and it lands within the existing EOF 1462 * of the destination file, then we can expose stale data from beyond the source 1463 * file EOF in the destination file. 1464 * 1465 * XFS doesn't support partial block sharing, so in both cases we have check 1466 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1467 * down to the previous whole block and ignore the partial EOF block. While this 1468 * means we can't dedupe the last block of a file, this is an acceptible 1469 * tradeoff for simplicity on implementation. 1470 * 1471 * For cloning, we want to share the partial EOF block if it is also the new EOF 1472 * block of the destination file. If the partial EOF block lies inside the 1473 * existing destination EOF, then we have to abort the clone to avoid exposing 1474 * stale data in the destination file. Hence we reject these clone attempts with 1475 * -EINVAL in this case. 1476 */ 1477 int 1478 xfs_reflink_remap_prep( 1479 struct file *file_in, 1480 loff_t pos_in, 1481 struct file *file_out, 1482 loff_t pos_out, 1483 loff_t *len, 1484 unsigned int remap_flags) 1485 { 1486 struct inode *inode_in = file_inode(file_in); 1487 struct xfs_inode *src = XFS_I(inode_in); 1488 struct inode *inode_out = file_inode(file_out); 1489 struct xfs_inode *dest = XFS_I(inode_out); 1490 int ret; 1491 1492 /* Lock both files against IO */ 1493 ret = xfs_ilock2_io_mmap(src, dest); 1494 if (ret) 1495 return ret; 1496 1497 /* Check file eligibility and prepare for block sharing. */ 1498 ret = -EINVAL; 1499 /* Don't reflink realtime inodes */ 1500 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1501 goto out_unlock; 1502 1503 /* Don't share DAX file data with non-DAX file. */ 1504 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1505 goto out_unlock; 1506 1507 if (!IS_DAX(inode_in)) 1508 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1509 pos_out, len, remap_flags); 1510 else 1511 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1512 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1513 if (ret || *len == 0) 1514 goto out_unlock; 1515 1516 /* Attach dquots to dest inode before changing block map */ 1517 ret = xfs_qm_dqattach(dest); 1518 if (ret) 1519 goto out_unlock; 1520 1521 /* 1522 * Zero existing post-eof speculative preallocations in the destination 1523 * file. 1524 */ 1525 ret = xfs_reflink_zero_posteof(dest, pos_out); 1526 if (ret) 1527 goto out_unlock; 1528 1529 /* Set flags and remap blocks. */ 1530 ret = xfs_reflink_set_inode_flag(src, dest); 1531 if (ret) 1532 goto out_unlock; 1533 1534 /* 1535 * If pos_out > EOF, we may have dirtied blocks between EOF and 1536 * pos_out. In that case, we need to extend the flush and unmap to cover 1537 * from EOF to the end of the copy length. 1538 */ 1539 if (pos_out > XFS_ISIZE(dest)) { 1540 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1541 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1542 } else { 1543 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1544 } 1545 if (ret) 1546 goto out_unlock; 1547 1548 xfs_iflags_set(src, XFS_IREMAPPING); 1549 if (inode_in != inode_out) 1550 xfs_ilock_demote(src, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL); 1551 1552 return 0; 1553 out_unlock: 1554 xfs_iunlock2_io_mmap(src, dest); 1555 return ret; 1556 } 1557 1558 /* Does this inode need the reflink flag? */ 1559 int 1560 xfs_reflink_inode_has_shared_extents( 1561 struct xfs_trans *tp, 1562 struct xfs_inode *ip, 1563 bool *has_shared) 1564 { 1565 struct xfs_bmbt_irec got; 1566 struct xfs_mount *mp = ip->i_mount; 1567 struct xfs_ifork *ifp; 1568 struct xfs_iext_cursor icur; 1569 bool found; 1570 int error; 1571 1572 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1573 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1574 if (error) 1575 return error; 1576 1577 *has_shared = false; 1578 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1579 while (found) { 1580 struct xfs_perag *pag; 1581 xfs_agblock_t agbno; 1582 xfs_extlen_t aglen; 1583 xfs_agblock_t rbno; 1584 xfs_extlen_t rlen; 1585 1586 if (isnullstartblock(got.br_startblock) || 1587 got.br_state != XFS_EXT_NORM) 1588 goto next; 1589 1590 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1591 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1592 aglen = got.br_blockcount; 1593 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1594 &rbno, &rlen, false); 1595 xfs_perag_put(pag); 1596 if (error) 1597 return error; 1598 1599 /* Is there still a shared block here? */ 1600 if (rbno != NULLAGBLOCK) { 1601 *has_shared = true; 1602 return 0; 1603 } 1604 next: 1605 found = xfs_iext_next_extent(ifp, &icur, &got); 1606 } 1607 1608 return 0; 1609 } 1610 1611 /* 1612 * Clear the inode reflink flag if there are no shared extents. 1613 * 1614 * The caller is responsible for joining the inode to the transaction passed in. 1615 * The inode will be joined to the transaction that is returned to the caller. 1616 */ 1617 int 1618 xfs_reflink_clear_inode_flag( 1619 struct xfs_inode *ip, 1620 struct xfs_trans **tpp) 1621 { 1622 bool needs_flag; 1623 int error = 0; 1624 1625 ASSERT(xfs_is_reflink_inode(ip)); 1626 1627 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1628 if (error || needs_flag) 1629 return error; 1630 1631 /* 1632 * We didn't find any shared blocks so turn off the reflink flag. 1633 * First, get rid of any leftover CoW mappings. 1634 */ 1635 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1636 true); 1637 if (error) 1638 return error; 1639 1640 /* Clear the inode flag. */ 1641 trace_xfs_reflink_unset_inode_flag(ip); 1642 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1643 xfs_inode_clear_cowblocks_tag(ip); 1644 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1645 1646 return error; 1647 } 1648 1649 /* 1650 * Clear the inode reflink flag if there are no shared extents and the size 1651 * hasn't changed. 1652 */ 1653 STATIC int 1654 xfs_reflink_try_clear_inode_flag( 1655 struct xfs_inode *ip) 1656 { 1657 struct xfs_mount *mp = ip->i_mount; 1658 struct xfs_trans *tp; 1659 int error = 0; 1660 1661 /* Start a rolling transaction to remove the mappings */ 1662 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1663 if (error) 1664 return error; 1665 1666 xfs_ilock(ip, XFS_ILOCK_EXCL); 1667 xfs_trans_ijoin(tp, ip, 0); 1668 1669 error = xfs_reflink_clear_inode_flag(ip, &tp); 1670 if (error) 1671 goto cancel; 1672 1673 error = xfs_trans_commit(tp); 1674 if (error) 1675 goto out; 1676 1677 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1678 return 0; 1679 cancel: 1680 xfs_trans_cancel(tp); 1681 out: 1682 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1683 return error; 1684 } 1685 1686 /* 1687 * Pre-COW all shared blocks within a given byte range of a file and turn off 1688 * the reflink flag if we unshare all of the file's blocks. 1689 */ 1690 int 1691 xfs_reflink_unshare( 1692 struct xfs_inode *ip, 1693 xfs_off_t offset, 1694 xfs_off_t len) 1695 { 1696 struct inode *inode = VFS_I(ip); 1697 int error; 1698 1699 if (!xfs_is_reflink_inode(ip)) 1700 return 0; 1701 1702 trace_xfs_reflink_unshare(ip, offset, len); 1703 1704 inode_dio_wait(inode); 1705 1706 if (IS_DAX(inode)) 1707 error = dax_file_unshare(inode, offset, len, 1708 &xfs_dax_write_iomap_ops); 1709 else 1710 error = iomap_file_unshare(inode, offset, len, 1711 &xfs_buffered_write_iomap_ops); 1712 if (error) 1713 goto out; 1714 1715 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1716 offset + len - 1); 1717 if (error) 1718 goto out; 1719 1720 /* Turn off the reflink flag if possible. */ 1721 error = xfs_reflink_try_clear_inode_flag(ip); 1722 if (error) 1723 goto out; 1724 return 0; 1725 1726 out: 1727 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1728 return error; 1729 } 1730