1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_defer.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_bmap.h" 17 #include "xfs_bmap_util.h" 18 #include "xfs_trace.h" 19 #include "xfs_icache.h" 20 #include "xfs_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_refcount.h" 23 #include "xfs_bmap_btree.h" 24 #include "xfs_trans_space.h" 25 #include "xfs_bit.h" 26 #include "xfs_alloc.h" 27 #include "xfs_quota.h" 28 #include "xfs_reflink.h" 29 #include "xfs_iomap.h" 30 #include "xfs_ag.h" 31 #include "xfs_ag_resv.h" 32 33 /* 34 * Copy on Write of Shared Blocks 35 * 36 * XFS must preserve "the usual" file semantics even when two files share 37 * the same physical blocks. This means that a write to one file must not 38 * alter the blocks in a different file; the way that we'll do that is 39 * through the use of a copy-on-write mechanism. At a high level, that 40 * means that when we want to write to a shared block, we allocate a new 41 * block, write the data to the new block, and if that succeeds we map the 42 * new block into the file. 43 * 44 * XFS provides a "delayed allocation" mechanism that defers the allocation 45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as 46 * possible. This reduces fragmentation by enabling the filesystem to ask 47 * for bigger chunks less often, which is exactly what we want for CoW. 48 * 49 * The delalloc mechanism begins when the kernel wants to make a block 50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we 51 * create a delalloc mapping, which is a regular in-core extent, but without 52 * a real startblock. (For delalloc mappings, the startblock encodes both 53 * a flag that this is a delalloc mapping, and a worst-case estimate of how 54 * many blocks might be required to put the mapping into the BMBT.) delalloc 55 * mappings are a reservation against the free space in the filesystem; 56 * adjacent mappings can also be combined into fewer larger mappings. 57 * 58 * As an optimization, the CoW extent size hint (cowextsz) creates 59 * outsized aligned delalloc reservations in the hope of landing out of 60 * order nearby CoW writes in a single extent on disk, thereby reducing 61 * fragmentation and improving future performance. 62 * 63 * D: --RRRRRRSSSRRRRRRRR--- (data fork) 64 * C: ------DDDDDDD--------- (CoW fork) 65 * 66 * When dirty pages are being written out (typically in writepage), the 67 * delalloc reservations are converted into unwritten mappings by 68 * allocating blocks and replacing the delalloc mapping with real ones. 69 * A delalloc mapping can be replaced by several unwritten ones if the 70 * free space is fragmented. 71 * 72 * D: --RRRRRRSSSRRRRRRRR--- 73 * C: ------UUUUUUU--------- 74 * 75 * We want to adapt the delalloc mechanism for copy-on-write, since the 76 * write paths are similar. The first two steps (creating the reservation 77 * and allocating the blocks) are exactly the same as delalloc except that 78 * the mappings must be stored in a separate CoW fork because we do not want 79 * to disturb the mapping in the data fork until we're sure that the write 80 * succeeded. IO completion in this case is the process of removing the old 81 * mapping from the data fork and moving the new mapping from the CoW fork to 82 * the data fork. This will be discussed shortly. 83 * 84 * For now, unaligned directio writes will be bounced back to the page cache. 85 * Block-aligned directio writes will use the same mechanism as buffered 86 * writes. 87 * 88 * Just prior to submitting the actual disk write requests, we convert 89 * the extents representing the range of the file actually being written 90 * (as opposed to extra pieces created for the cowextsize hint) to real 91 * extents. This will become important in the next step: 92 * 93 * D: --RRRRRRSSSRRRRRRRR--- 94 * C: ------UUrrUUU--------- 95 * 96 * CoW remapping must be done after the data block write completes, 97 * because we don't want to destroy the old data fork map until we're sure 98 * the new block has been written. Since the new mappings are kept in a 99 * separate fork, we can simply iterate these mappings to find the ones 100 * that cover the file blocks that we just CoW'd. For each extent, simply 101 * unmap the corresponding range in the data fork, map the new range into 102 * the data fork, and remove the extent from the CoW fork. Because of 103 * the presence of the cowextsize hint, however, we must be careful 104 * only to remap the blocks that we've actually written out -- we must 105 * never remap delalloc reservations nor CoW staging blocks that have 106 * yet to be written. This corresponds exactly to the real extents in 107 * the CoW fork: 108 * 109 * D: --RRRRRRrrSRRRRRRRR--- 110 * C: ------UU--UUU--------- 111 * 112 * Since the remapping operation can be applied to an arbitrary file 113 * range, we record the need for the remap step as a flag in the ioend 114 * instead of declaring a new IO type. This is required for direct io 115 * because we only have ioend for the whole dio, and we have to be able to 116 * remember the presence of unwritten blocks and CoW blocks with a single 117 * ioend structure. Better yet, the more ground we can cover with one 118 * ioend, the better. 119 */ 120 121 /* 122 * Given an AG extent, find the lowest-numbered run of shared blocks 123 * within that range and return the range in fbno/flen. If 124 * find_end_of_shared is true, return the longest contiguous extent of 125 * shared blocks. If there are no shared extents, fbno and flen will 126 * be set to NULLAGBLOCK and 0, respectively. 127 */ 128 static int 129 xfs_reflink_find_shared( 130 struct xfs_perag *pag, 131 struct xfs_trans *tp, 132 xfs_agblock_t agbno, 133 xfs_extlen_t aglen, 134 xfs_agblock_t *fbno, 135 xfs_extlen_t *flen, 136 bool find_end_of_shared) 137 { 138 struct xfs_buf *agbp; 139 struct xfs_btree_cur *cur; 140 int error; 141 142 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 143 if (error) 144 return error; 145 146 cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag); 147 148 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen, 149 find_end_of_shared); 150 151 xfs_btree_del_cursor(cur, error); 152 153 xfs_trans_brelse(tp, agbp); 154 return error; 155 } 156 157 /* 158 * Trim the mapping to the next block where there's a change in the 159 * shared/unshared status. More specifically, this means that we 160 * find the lowest-numbered extent of shared blocks that coincides with 161 * the given block mapping. If the shared extent overlaps the start of 162 * the mapping, trim the mapping to the end of the shared extent. If 163 * the shared region intersects the mapping, trim the mapping to the 164 * start of the shared extent. If there are no shared regions that 165 * overlap, just return the original extent. 166 */ 167 int 168 xfs_reflink_trim_around_shared( 169 struct xfs_inode *ip, 170 struct xfs_bmbt_irec *irec, 171 bool *shared) 172 { 173 struct xfs_mount *mp = ip->i_mount; 174 struct xfs_perag *pag; 175 xfs_agblock_t agbno; 176 xfs_extlen_t aglen; 177 xfs_agblock_t fbno; 178 xfs_extlen_t flen; 179 int error = 0; 180 181 /* Holes, unwritten, and delalloc extents cannot be shared */ 182 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) { 183 *shared = false; 184 return 0; 185 } 186 187 trace_xfs_reflink_trim_around_shared(ip, irec); 188 189 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock)); 190 agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock); 191 aglen = irec->br_blockcount; 192 193 error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen, 194 true); 195 xfs_perag_put(pag); 196 if (error) 197 return error; 198 199 *shared = false; 200 if (fbno == NULLAGBLOCK) { 201 /* No shared blocks at all. */ 202 return 0; 203 } 204 205 if (fbno == agbno) { 206 /* 207 * The start of this extent is shared. Truncate the 208 * mapping at the end of the shared region so that a 209 * subsequent iteration starts at the start of the 210 * unshared region. 211 */ 212 irec->br_blockcount = flen; 213 *shared = true; 214 return 0; 215 } 216 217 /* 218 * There's a shared extent midway through this extent. 219 * Truncate the mapping at the start of the shared 220 * extent so that a subsequent iteration starts at the 221 * start of the shared region. 222 */ 223 irec->br_blockcount = fbno - agbno; 224 return 0; 225 } 226 227 int 228 xfs_bmap_trim_cow( 229 struct xfs_inode *ip, 230 struct xfs_bmbt_irec *imap, 231 bool *shared) 232 { 233 /* We can't update any real extents in always COW mode. */ 234 if (xfs_is_always_cow_inode(ip) && 235 !isnullstartblock(imap->br_startblock)) { 236 *shared = true; 237 return 0; 238 } 239 240 /* Trim the mapping to the nearest shared extent boundary. */ 241 return xfs_reflink_trim_around_shared(ip, imap, shared); 242 } 243 244 static int 245 xfs_reflink_convert_cow_locked( 246 struct xfs_inode *ip, 247 xfs_fileoff_t offset_fsb, 248 xfs_filblks_t count_fsb) 249 { 250 struct xfs_iext_cursor icur; 251 struct xfs_bmbt_irec got; 252 struct xfs_btree_cur *dummy_cur = NULL; 253 int dummy_logflags; 254 int error = 0; 255 256 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got)) 257 return 0; 258 259 do { 260 if (got.br_startoff >= offset_fsb + count_fsb) 261 break; 262 if (got.br_state == XFS_EXT_NORM) 263 continue; 264 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock))) 265 return -EIO; 266 267 xfs_trim_extent(&got, offset_fsb, count_fsb); 268 if (!got.br_blockcount) 269 continue; 270 271 got.br_state = XFS_EXT_NORM; 272 error = xfs_bmap_add_extent_unwritten_real(NULL, ip, 273 XFS_COW_FORK, &icur, &dummy_cur, &got, 274 &dummy_logflags); 275 if (error) 276 return error; 277 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got)); 278 279 return error; 280 } 281 282 /* Convert all of the unwritten CoW extents in a file's range to real ones. */ 283 int 284 xfs_reflink_convert_cow( 285 struct xfs_inode *ip, 286 xfs_off_t offset, 287 xfs_off_t count) 288 { 289 struct xfs_mount *mp = ip->i_mount; 290 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 291 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 292 xfs_filblks_t count_fsb = end_fsb - offset_fsb; 293 int error; 294 295 ASSERT(count != 0); 296 297 xfs_ilock(ip, XFS_ILOCK_EXCL); 298 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 299 xfs_iunlock(ip, XFS_ILOCK_EXCL); 300 return error; 301 } 302 303 /* 304 * Find the extent that maps the given range in the COW fork. Even if the extent 305 * is not shared we might have a preallocation for it in the COW fork. If so we 306 * use it that rather than trigger a new allocation. 307 */ 308 static int 309 xfs_find_trim_cow_extent( 310 struct xfs_inode *ip, 311 struct xfs_bmbt_irec *imap, 312 struct xfs_bmbt_irec *cmap, 313 bool *shared, 314 bool *found) 315 { 316 xfs_fileoff_t offset_fsb = imap->br_startoff; 317 xfs_filblks_t count_fsb = imap->br_blockcount; 318 struct xfs_iext_cursor icur; 319 320 *found = false; 321 322 /* 323 * If we don't find an overlapping extent, trim the range we need to 324 * allocate to fit the hole we found. 325 */ 326 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap)) 327 cmap->br_startoff = offset_fsb + count_fsb; 328 if (cmap->br_startoff > offset_fsb) { 329 xfs_trim_extent(imap, imap->br_startoff, 330 cmap->br_startoff - imap->br_startoff); 331 return xfs_bmap_trim_cow(ip, imap, shared); 332 } 333 334 *shared = true; 335 if (isnullstartblock(cmap->br_startblock)) { 336 xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount); 337 return 0; 338 } 339 340 /* real extent found - no need to allocate */ 341 xfs_trim_extent(cmap, offset_fsb, count_fsb); 342 *found = true; 343 return 0; 344 } 345 346 static int 347 xfs_reflink_convert_unwritten( 348 struct xfs_inode *ip, 349 struct xfs_bmbt_irec *imap, 350 struct xfs_bmbt_irec *cmap, 351 bool convert_now) 352 { 353 xfs_fileoff_t offset_fsb = imap->br_startoff; 354 xfs_filblks_t count_fsb = imap->br_blockcount; 355 int error; 356 357 /* 358 * cmap might larger than imap due to cowextsize hint. 359 */ 360 xfs_trim_extent(cmap, offset_fsb, count_fsb); 361 362 /* 363 * COW fork extents are supposed to remain unwritten until we're ready 364 * to initiate a disk write. For direct I/O we are going to write the 365 * data and need the conversion, but for buffered writes we're done. 366 */ 367 if (!convert_now || cmap->br_state == XFS_EXT_NORM) 368 return 0; 369 370 trace_xfs_reflink_convert_cow(ip, cmap); 371 372 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb); 373 if (!error) 374 cmap->br_state = XFS_EXT_NORM; 375 376 return error; 377 } 378 379 static int 380 xfs_reflink_fill_cow_hole( 381 struct xfs_inode *ip, 382 struct xfs_bmbt_irec *imap, 383 struct xfs_bmbt_irec *cmap, 384 bool *shared, 385 uint *lockmode, 386 bool convert_now) 387 { 388 struct xfs_mount *mp = ip->i_mount; 389 struct xfs_trans *tp; 390 xfs_filblks_t resaligned; 391 xfs_extlen_t resblks; 392 int nimaps; 393 int error; 394 bool found; 395 396 resaligned = xfs_aligned_fsb_count(imap->br_startoff, 397 imap->br_blockcount, xfs_get_cowextsz_hint(ip)); 398 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned); 399 400 xfs_iunlock(ip, *lockmode); 401 *lockmode = 0; 402 403 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0, 404 false, &tp); 405 if (error) 406 return error; 407 408 *lockmode = XFS_ILOCK_EXCL; 409 410 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 411 if (error || !*shared) 412 goto out_trans_cancel; 413 414 if (found) { 415 xfs_trans_cancel(tp); 416 goto convert; 417 } 418 419 /* Allocate the entire reservation as unwritten blocks. */ 420 nimaps = 1; 421 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount, 422 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap, 423 &nimaps); 424 if (error) 425 goto out_trans_cancel; 426 427 xfs_inode_set_cowblocks_tag(ip); 428 error = xfs_trans_commit(tp); 429 if (error) 430 return error; 431 432 /* 433 * Allocation succeeded but the requested range was not even partially 434 * satisfied? Bail out! 435 */ 436 if (nimaps == 0) 437 return -ENOSPC; 438 439 convert: 440 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 441 442 out_trans_cancel: 443 xfs_trans_cancel(tp); 444 return error; 445 } 446 447 static int 448 xfs_reflink_fill_delalloc( 449 struct xfs_inode *ip, 450 struct xfs_bmbt_irec *imap, 451 struct xfs_bmbt_irec *cmap, 452 bool *shared, 453 uint *lockmode, 454 bool convert_now) 455 { 456 struct xfs_mount *mp = ip->i_mount; 457 struct xfs_trans *tp; 458 int nimaps; 459 int error; 460 bool found; 461 462 do { 463 xfs_iunlock(ip, *lockmode); 464 *lockmode = 0; 465 466 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0, 467 false, &tp); 468 if (error) 469 return error; 470 471 *lockmode = XFS_ILOCK_EXCL; 472 473 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, 474 &found); 475 if (error || !*shared) 476 goto out_trans_cancel; 477 478 if (found) { 479 xfs_trans_cancel(tp); 480 break; 481 } 482 483 ASSERT(isnullstartblock(cmap->br_startblock) || 484 cmap->br_startblock == DELAYSTARTBLOCK); 485 486 /* 487 * Replace delalloc reservation with an unwritten extent. 488 */ 489 nimaps = 1; 490 error = xfs_bmapi_write(tp, ip, cmap->br_startoff, 491 cmap->br_blockcount, 492 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, 493 cmap, &nimaps); 494 if (error) 495 goto out_trans_cancel; 496 497 xfs_inode_set_cowblocks_tag(ip); 498 error = xfs_trans_commit(tp); 499 if (error) 500 return error; 501 502 /* 503 * Allocation succeeded but the requested range was not even 504 * partially satisfied? Bail out! 505 */ 506 if (nimaps == 0) 507 return -ENOSPC; 508 } while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff); 509 510 return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now); 511 512 out_trans_cancel: 513 xfs_trans_cancel(tp); 514 return error; 515 } 516 517 /* Allocate all CoW reservations covering a range of blocks in a file. */ 518 int 519 xfs_reflink_allocate_cow( 520 struct xfs_inode *ip, 521 struct xfs_bmbt_irec *imap, 522 struct xfs_bmbt_irec *cmap, 523 bool *shared, 524 uint *lockmode, 525 bool convert_now) 526 { 527 int error; 528 bool found; 529 530 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 531 if (!ip->i_cowfp) { 532 ASSERT(!xfs_is_reflink_inode(ip)); 533 xfs_ifork_init_cow(ip); 534 } 535 536 error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found); 537 if (error || !*shared) 538 return error; 539 540 /* CoW fork has a real extent */ 541 if (found) 542 return xfs_reflink_convert_unwritten(ip, imap, cmap, 543 convert_now); 544 545 /* 546 * CoW fork does not have an extent and data extent is shared. 547 * Allocate a real extent in the CoW fork. 548 */ 549 if (cmap->br_startoff > imap->br_startoff) 550 return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared, 551 lockmode, convert_now); 552 553 /* 554 * CoW fork has a delalloc reservation. Replace it with a real extent. 555 * There may or may not be a data fork mapping. 556 */ 557 if (isnullstartblock(cmap->br_startblock) || 558 cmap->br_startblock == DELAYSTARTBLOCK) 559 return xfs_reflink_fill_delalloc(ip, imap, cmap, shared, 560 lockmode, convert_now); 561 562 /* Shouldn't get here. */ 563 ASSERT(0); 564 return -EFSCORRUPTED; 565 } 566 567 /* 568 * Cancel CoW reservations for some block range of an inode. 569 * 570 * If cancel_real is true this function cancels all COW fork extents for the 571 * inode; if cancel_real is false, real extents are not cleared. 572 * 573 * Caller must have already joined the inode to the current transaction. The 574 * inode will be joined to the transaction returned to the caller. 575 */ 576 int 577 xfs_reflink_cancel_cow_blocks( 578 struct xfs_inode *ip, 579 struct xfs_trans **tpp, 580 xfs_fileoff_t offset_fsb, 581 xfs_fileoff_t end_fsb, 582 bool cancel_real) 583 { 584 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 585 struct xfs_bmbt_irec got, del; 586 struct xfs_iext_cursor icur; 587 int error = 0; 588 589 if (!xfs_inode_has_cow_data(ip)) 590 return 0; 591 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 592 return 0; 593 594 /* Walk backwards until we're out of the I/O range... */ 595 while (got.br_startoff + got.br_blockcount > offset_fsb) { 596 del = got; 597 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb); 598 599 /* Extent delete may have bumped ext forward */ 600 if (!del.br_blockcount) { 601 xfs_iext_prev(ifp, &icur); 602 goto next_extent; 603 } 604 605 trace_xfs_reflink_cancel_cow(ip, &del); 606 607 if (isnullstartblock(del.br_startblock)) { 608 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK, 609 &icur, &got, &del); 610 if (error) 611 break; 612 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) { 613 ASSERT((*tpp)->t_highest_agno == NULLAGNUMBER); 614 615 /* Free the CoW orphan record. */ 616 xfs_refcount_free_cow_extent(*tpp, del.br_startblock, 617 del.br_blockcount); 618 619 error = xfs_free_extent_later(*tpp, del.br_startblock, 620 del.br_blockcount, NULL); 621 if (error) 622 break; 623 624 /* Roll the transaction */ 625 error = xfs_defer_finish(tpp); 626 if (error) 627 break; 628 629 /* Remove the mapping from the CoW fork. */ 630 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 631 632 /* Remove the quota reservation */ 633 error = xfs_quota_unreserve_blkres(ip, 634 del.br_blockcount); 635 if (error) 636 break; 637 } else { 638 /* Didn't do anything, push cursor back. */ 639 xfs_iext_prev(ifp, &icur); 640 } 641 next_extent: 642 if (!xfs_iext_get_extent(ifp, &icur, &got)) 643 break; 644 } 645 646 /* clear tag if cow fork is emptied */ 647 if (!ifp->if_bytes) 648 xfs_inode_clear_cowblocks_tag(ip); 649 return error; 650 } 651 652 /* 653 * Cancel CoW reservations for some byte range of an inode. 654 * 655 * If cancel_real is true this function cancels all COW fork extents for the 656 * inode; if cancel_real is false, real extents are not cleared. 657 */ 658 int 659 xfs_reflink_cancel_cow_range( 660 struct xfs_inode *ip, 661 xfs_off_t offset, 662 xfs_off_t count, 663 bool cancel_real) 664 { 665 struct xfs_trans *tp; 666 xfs_fileoff_t offset_fsb; 667 xfs_fileoff_t end_fsb; 668 int error; 669 670 trace_xfs_reflink_cancel_cow_range(ip, offset, count); 671 ASSERT(ip->i_cowfp); 672 673 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 674 if (count == NULLFILEOFF) 675 end_fsb = NULLFILEOFF; 676 else 677 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 678 679 /* Start a rolling transaction to remove the mappings */ 680 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write, 681 0, 0, 0, &tp); 682 if (error) 683 goto out; 684 685 xfs_ilock(ip, XFS_ILOCK_EXCL); 686 xfs_trans_ijoin(tp, ip, 0); 687 688 /* Scrape out the old CoW reservations */ 689 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb, 690 cancel_real); 691 if (error) 692 goto out_cancel; 693 694 error = xfs_trans_commit(tp); 695 696 xfs_iunlock(ip, XFS_ILOCK_EXCL); 697 return error; 698 699 out_cancel: 700 xfs_trans_cancel(tp); 701 xfs_iunlock(ip, XFS_ILOCK_EXCL); 702 out: 703 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_); 704 return error; 705 } 706 707 /* 708 * Remap part of the CoW fork into the data fork. 709 * 710 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb 711 * into the data fork; this function will remap what it can (at the end of the 712 * range) and update @end_fsb appropriately. Each remap gets its own 713 * transaction because we can end up merging and splitting bmbt blocks for 714 * every remap operation and we'd like to keep the block reservation 715 * requirements as low as possible. 716 */ 717 STATIC int 718 xfs_reflink_end_cow_extent( 719 struct xfs_inode *ip, 720 xfs_fileoff_t *offset_fsb, 721 xfs_fileoff_t end_fsb) 722 { 723 struct xfs_iext_cursor icur; 724 struct xfs_bmbt_irec got, del, data; 725 struct xfs_mount *mp = ip->i_mount; 726 struct xfs_trans *tp; 727 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_COW_FORK); 728 unsigned int resblks; 729 int nmaps; 730 int error; 731 732 /* No COW extents? That's easy! */ 733 if (ifp->if_bytes == 0) { 734 *offset_fsb = end_fsb; 735 return 0; 736 } 737 738 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 739 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 740 XFS_TRANS_RESERVE, &tp); 741 if (error) 742 return error; 743 744 /* 745 * Lock the inode. We have to ijoin without automatic unlock because 746 * the lead transaction is the refcountbt record deletion; the data 747 * fork update follows as a deferred log item. 748 */ 749 xfs_ilock(ip, XFS_ILOCK_EXCL); 750 xfs_trans_ijoin(tp, ip, 0); 751 752 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, 753 XFS_IEXT_REFLINK_END_COW_CNT); 754 if (error == -EFBIG) 755 error = xfs_iext_count_upgrade(tp, ip, 756 XFS_IEXT_REFLINK_END_COW_CNT); 757 if (error) 758 goto out_cancel; 759 760 /* 761 * In case of racing, overlapping AIO writes no COW extents might be 762 * left by the time I/O completes for the loser of the race. In that 763 * case we are done. 764 */ 765 if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) || 766 got.br_startoff >= end_fsb) { 767 *offset_fsb = end_fsb; 768 goto out_cancel; 769 } 770 771 /* 772 * Only remap real extents that contain data. With AIO, speculative 773 * preallocations can leak into the range we are called upon, and we 774 * need to skip them. Preserve @got for the eventual CoW fork 775 * deletion; from now on @del represents the mapping that we're 776 * actually remapping. 777 */ 778 while (!xfs_bmap_is_written_extent(&got)) { 779 if (!xfs_iext_next_extent(ifp, &icur, &got) || 780 got.br_startoff >= end_fsb) { 781 *offset_fsb = end_fsb; 782 goto out_cancel; 783 } 784 } 785 del = got; 786 787 /* Grab the corresponding mapping in the data fork. */ 788 nmaps = 1; 789 error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data, 790 &nmaps, 0); 791 if (error) 792 goto out_cancel; 793 794 /* We can only remap the smaller of the two extent sizes. */ 795 data.br_blockcount = min(data.br_blockcount, del.br_blockcount); 796 del.br_blockcount = data.br_blockcount; 797 798 trace_xfs_reflink_cow_remap_from(ip, &del); 799 trace_xfs_reflink_cow_remap_to(ip, &data); 800 801 if (xfs_bmap_is_real_extent(&data)) { 802 /* 803 * If the extent we're remapping is backed by storage (written 804 * or not), unmap the extent and drop its refcount. 805 */ 806 xfs_bmap_unmap_extent(tp, ip, &data); 807 xfs_refcount_decrease_extent(tp, &data); 808 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, 809 -data.br_blockcount); 810 } else if (data.br_startblock == DELAYSTARTBLOCK) { 811 int done; 812 813 /* 814 * If the extent we're remapping is a delalloc reservation, 815 * we can use the regular bunmapi function to release the 816 * incore state. Dropping the delalloc reservation takes care 817 * of the quota reservation for us. 818 */ 819 error = xfs_bunmapi(NULL, ip, data.br_startoff, 820 data.br_blockcount, 0, 1, &done); 821 if (error) 822 goto out_cancel; 823 ASSERT(done); 824 } 825 826 /* Free the CoW orphan record. */ 827 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount); 828 829 /* Map the new blocks into the data fork. */ 830 xfs_bmap_map_extent(tp, ip, &del); 831 832 /* Charge this new data fork mapping to the on-disk quota. */ 833 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT, 834 (long)del.br_blockcount); 835 836 /* Remove the mapping from the CoW fork. */ 837 xfs_bmap_del_extent_cow(ip, &icur, &got, &del); 838 839 error = xfs_trans_commit(tp); 840 xfs_iunlock(ip, XFS_ILOCK_EXCL); 841 if (error) 842 return error; 843 844 /* Update the caller about how much progress we made. */ 845 *offset_fsb = del.br_startoff + del.br_blockcount; 846 return 0; 847 848 out_cancel: 849 xfs_trans_cancel(tp); 850 xfs_iunlock(ip, XFS_ILOCK_EXCL); 851 return error; 852 } 853 854 /* 855 * Remap parts of a file's data fork after a successful CoW. 856 */ 857 int 858 xfs_reflink_end_cow( 859 struct xfs_inode *ip, 860 xfs_off_t offset, 861 xfs_off_t count) 862 { 863 xfs_fileoff_t offset_fsb; 864 xfs_fileoff_t end_fsb; 865 int error = 0; 866 867 trace_xfs_reflink_end_cow(ip, offset, count); 868 869 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 870 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count); 871 872 /* 873 * Walk forwards until we've remapped the I/O range. The loop function 874 * repeatedly cycles the ILOCK to allocate one transaction per remapped 875 * extent. 876 * 877 * If we're being called by writeback then the pages will still 878 * have PageWriteback set, which prevents races with reflink remapping 879 * and truncate. Reflink remapping prevents races with writeback by 880 * taking the iolock and mmaplock before flushing the pages and 881 * remapping, which means there won't be any further writeback or page 882 * cache dirtying until the reflink completes. 883 * 884 * We should never have two threads issuing writeback for the same file 885 * region. There are also have post-eof checks in the writeback 886 * preparation code so that we don't bother writing out pages that are 887 * about to be truncated. 888 * 889 * If we're being called as part of directio write completion, the dio 890 * count is still elevated, which reflink and truncate will wait for. 891 * Reflink remapping takes the iolock and mmaplock and waits for 892 * pending dio to finish, which should prevent any directio until the 893 * remap completes. Multiple concurrent directio writes to the same 894 * region are handled by end_cow processing only occurring for the 895 * threads which succeed; the outcome of multiple overlapping direct 896 * writes is not well defined anyway. 897 * 898 * It's possible that a buffered write and a direct write could collide 899 * here (the buffered write stumbles in after the dio flushes and 900 * invalidates the page cache and immediately queues writeback), but we 901 * have never supported this 100%. If either disk write succeeds the 902 * blocks will be remapped. 903 */ 904 while (end_fsb > offset_fsb && !error) 905 error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb); 906 907 if (error) 908 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_); 909 return error; 910 } 911 912 /* 913 * Free all CoW staging blocks that are still referenced by the ondisk refcount 914 * metadata. The ondisk metadata does not track which inode created the 915 * staging extent, so callers must ensure that there are no cached inodes with 916 * live CoW staging extents. 917 */ 918 int 919 xfs_reflink_recover_cow( 920 struct xfs_mount *mp) 921 { 922 struct xfs_perag *pag; 923 xfs_agnumber_t agno; 924 int error = 0; 925 926 if (!xfs_has_reflink(mp)) 927 return 0; 928 929 for_each_perag(mp, agno, pag) { 930 error = xfs_refcount_recover_cow_leftovers(mp, pag); 931 if (error) { 932 xfs_perag_rele(pag); 933 break; 934 } 935 } 936 937 return error; 938 } 939 940 /* 941 * Reflinking (Block) Ranges of Two Files Together 942 * 943 * First, ensure that the reflink flag is set on both inodes. The flag is an 944 * optimization to avoid unnecessary refcount btree lookups in the write path. 945 * 946 * Now we can iteratively remap the range of extents (and holes) in src to the 947 * corresponding ranges in dest. Let drange and srange denote the ranges of 948 * logical blocks in dest and src touched by the reflink operation. 949 * 950 * While the length of drange is greater than zero, 951 * - Read src's bmbt at the start of srange ("imap") 952 * - If imap doesn't exist, make imap appear to start at the end of srange 953 * with zero length. 954 * - If imap starts before srange, advance imap to start at srange. 955 * - If imap goes beyond srange, truncate imap to end at the end of srange. 956 * - Punch (imap start - srange start + imap len) blocks from dest at 957 * offset (drange start). 958 * - If imap points to a real range of pblks, 959 * > Increase the refcount of the imap's pblks 960 * > Map imap's pblks into dest at the offset 961 * (drange start + imap start - srange start) 962 * - Advance drange and srange by (imap start - srange start + imap len) 963 * 964 * Finally, if the reflink made dest longer, update both the in-core and 965 * on-disk file sizes. 966 * 967 * ASCII Art Demonstration: 968 * 969 * Let's say we want to reflink this source file: 970 * 971 * ----SSSSSSS-SSSSS----SSSSSS (src file) 972 * <--------------------> 973 * 974 * into this destination file: 975 * 976 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file) 977 * <--------------------> 978 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest. 979 * Observe that the range has different logical offsets in either file. 980 * 981 * Consider that the first extent in the source file doesn't line up with our 982 * reflink range. Unmapping and remapping are separate operations, so we can 983 * unmap more blocks from the destination file than we remap. 984 * 985 * ----SSSSSSS-SSSSS----SSSSSS 986 * <-------> 987 * --DDDDD---------DDDDD--DDD 988 * <-------> 989 * 990 * Now remap the source extent into the destination file: 991 * 992 * ----SSSSSSS-SSSSS----SSSSSS 993 * <-------> 994 * --DDDDD--SSSSSSSDDDDD--DDD 995 * <-------> 996 * 997 * Do likewise with the second hole and extent in our range. Holes in the 998 * unmap range don't affect our operation. 999 * 1000 * ----SSSSSSS-SSSSS----SSSSSS 1001 * <----> 1002 * --DDDDD--SSSSSSS-SSSSS-DDD 1003 * <----> 1004 * 1005 * Finally, unmap and remap part of the third extent. This will increase the 1006 * size of the destination file. 1007 * 1008 * ----SSSSSSS-SSSSS----SSSSSS 1009 * <-----> 1010 * --DDDDD--SSSSSSS-SSSSS----SSS 1011 * <-----> 1012 * 1013 * Once we update the destination file's i_size, we're done. 1014 */ 1015 1016 /* 1017 * Ensure the reflink bit is set in both inodes. 1018 */ 1019 STATIC int 1020 xfs_reflink_set_inode_flag( 1021 struct xfs_inode *src, 1022 struct xfs_inode *dest) 1023 { 1024 struct xfs_mount *mp = src->i_mount; 1025 int error; 1026 struct xfs_trans *tp; 1027 1028 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest)) 1029 return 0; 1030 1031 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1032 if (error) 1033 goto out_error; 1034 1035 /* Lock both files against IO */ 1036 if (src->i_ino == dest->i_ino) 1037 xfs_ilock(src, XFS_ILOCK_EXCL); 1038 else 1039 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL); 1040 1041 if (!xfs_is_reflink_inode(src)) { 1042 trace_xfs_reflink_set_inode_flag(src); 1043 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL); 1044 src->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1045 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE); 1046 xfs_ifork_init_cow(src); 1047 } else 1048 xfs_iunlock(src, XFS_ILOCK_EXCL); 1049 1050 if (src->i_ino == dest->i_ino) 1051 goto commit_flags; 1052 1053 if (!xfs_is_reflink_inode(dest)) { 1054 trace_xfs_reflink_set_inode_flag(dest); 1055 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1056 dest->i_diflags2 |= XFS_DIFLAG2_REFLINK; 1057 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1058 xfs_ifork_init_cow(dest); 1059 } else 1060 xfs_iunlock(dest, XFS_ILOCK_EXCL); 1061 1062 commit_flags: 1063 error = xfs_trans_commit(tp); 1064 if (error) 1065 goto out_error; 1066 return error; 1067 1068 out_error: 1069 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_); 1070 return error; 1071 } 1072 1073 /* 1074 * Update destination inode size & cowextsize hint, if necessary. 1075 */ 1076 int 1077 xfs_reflink_update_dest( 1078 struct xfs_inode *dest, 1079 xfs_off_t newlen, 1080 xfs_extlen_t cowextsize, 1081 unsigned int remap_flags) 1082 { 1083 struct xfs_mount *mp = dest->i_mount; 1084 struct xfs_trans *tp; 1085 int error; 1086 1087 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0) 1088 return 0; 1089 1090 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1091 if (error) 1092 goto out_error; 1093 1094 xfs_ilock(dest, XFS_ILOCK_EXCL); 1095 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL); 1096 1097 if (newlen > i_size_read(VFS_I(dest))) { 1098 trace_xfs_reflink_update_inode_size(dest, newlen); 1099 i_size_write(VFS_I(dest), newlen); 1100 dest->i_disk_size = newlen; 1101 } 1102 1103 if (cowextsize) { 1104 dest->i_cowextsize = cowextsize; 1105 dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE; 1106 } 1107 1108 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE); 1109 1110 error = xfs_trans_commit(tp); 1111 if (error) 1112 goto out_error; 1113 return error; 1114 1115 out_error: 1116 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_); 1117 return error; 1118 } 1119 1120 /* 1121 * Do we have enough reserve in this AG to handle a reflink? The refcount 1122 * btree already reserved all the space it needs, but the rmap btree can grow 1123 * infinitely, so we won't allow more reflinks when the AG is down to the 1124 * btree reserves. 1125 */ 1126 static int 1127 xfs_reflink_ag_has_free_space( 1128 struct xfs_mount *mp, 1129 xfs_agnumber_t agno) 1130 { 1131 struct xfs_perag *pag; 1132 int error = 0; 1133 1134 if (!xfs_has_rmapbt(mp)) 1135 return 0; 1136 1137 pag = xfs_perag_get(mp, agno); 1138 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) || 1139 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA)) 1140 error = -ENOSPC; 1141 xfs_perag_put(pag); 1142 return error; 1143 } 1144 1145 /* 1146 * Remap the given extent into the file. The dmap blockcount will be set to 1147 * the number of blocks that were actually remapped. 1148 */ 1149 STATIC int 1150 xfs_reflink_remap_extent( 1151 struct xfs_inode *ip, 1152 struct xfs_bmbt_irec *dmap, 1153 xfs_off_t new_isize) 1154 { 1155 struct xfs_bmbt_irec smap; 1156 struct xfs_mount *mp = ip->i_mount; 1157 struct xfs_trans *tp; 1158 xfs_off_t newlen; 1159 int64_t qdelta = 0; 1160 unsigned int resblks; 1161 bool quota_reserved = true; 1162 bool smap_real; 1163 bool dmap_written = xfs_bmap_is_written_extent(dmap); 1164 int iext_delta = 0; 1165 int nimaps; 1166 int error; 1167 1168 /* 1169 * Start a rolling transaction to switch the mappings. 1170 * 1171 * Adding a written extent to the extent map can cause a bmbt split, 1172 * and removing a mapped extent from the extent can cause a bmbt split. 1173 * The two operations cannot both cause a split since they operate on 1174 * the same index in the bmap btree, so we only need a reservation for 1175 * one bmbt split if either thing is happening. However, we haven't 1176 * locked the inode yet, so we reserve assuming this is the case. 1177 * 1178 * The first allocation call tries to reserve enough space to handle 1179 * mapping dmap into a sparse part of the file plus the bmbt split. We 1180 * haven't locked the inode or read the existing mapping yet, so we do 1181 * not know for sure that we need the space. This should succeed most 1182 * of the time. 1183 * 1184 * If the first attempt fails, try again but reserving only enough 1185 * space to handle a bmbt split. This is the hard minimum requirement, 1186 * and we revisit quota reservations later when we know more about what 1187 * we're remapping. 1188 */ 1189 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK); 1190 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1191 resblks + dmap->br_blockcount, 0, false, &tp); 1192 if (error == -EDQUOT || error == -ENOSPC) { 1193 quota_reserved = false; 1194 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 1195 resblks, 0, false, &tp); 1196 } 1197 if (error) 1198 goto out; 1199 1200 /* 1201 * Read what's currently mapped in the destination file into smap. 1202 * If smap isn't a hole, we will have to remove it before we can add 1203 * dmap to the destination file. 1204 */ 1205 nimaps = 1; 1206 error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount, 1207 &smap, &nimaps, 0); 1208 if (error) 1209 goto out_cancel; 1210 ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff); 1211 smap_real = xfs_bmap_is_real_extent(&smap); 1212 1213 /* 1214 * We can only remap as many blocks as the smaller of the two extent 1215 * maps, because we can only remap one extent at a time. 1216 */ 1217 dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount); 1218 ASSERT(dmap->br_blockcount == smap.br_blockcount); 1219 1220 trace_xfs_reflink_remap_extent_dest(ip, &smap); 1221 1222 /* 1223 * Two extents mapped to the same physical block must not have 1224 * different states; that's filesystem corruption. Move on to the next 1225 * extent if they're both holes or both the same physical extent. 1226 */ 1227 if (dmap->br_startblock == smap.br_startblock) { 1228 if (dmap->br_state != smap.br_state) 1229 error = -EFSCORRUPTED; 1230 goto out_cancel; 1231 } 1232 1233 /* If both extents are unwritten, leave them alone. */ 1234 if (dmap->br_state == XFS_EXT_UNWRITTEN && 1235 smap.br_state == XFS_EXT_UNWRITTEN) 1236 goto out_cancel; 1237 1238 /* No reflinking if the AG of the dest mapping is low on space. */ 1239 if (dmap_written) { 1240 error = xfs_reflink_ag_has_free_space(mp, 1241 XFS_FSB_TO_AGNO(mp, dmap->br_startblock)); 1242 if (error) 1243 goto out_cancel; 1244 } 1245 1246 /* 1247 * Increase quota reservation if we think the quota block counter for 1248 * this file could increase. 1249 * 1250 * If we are mapping a written extent into the file, we need to have 1251 * enough quota block count reservation to handle the blocks in that 1252 * extent. We log only the delta to the quota block counts, so if the 1253 * extent we're unmapping also has blocks allocated to it, we don't 1254 * need a quota reservation for the extent itself. 1255 * 1256 * Note that if we're replacing a delalloc reservation with a written 1257 * extent, we have to take the full quota reservation because removing 1258 * the delalloc reservation gives the block count back to the quota 1259 * count. This is suboptimal, but the VFS flushed the dest range 1260 * before we started. That should have removed all the delalloc 1261 * reservations, but we code defensively. 1262 * 1263 * xfs_trans_alloc_inode above already tried to grab an even larger 1264 * quota reservation, and kicked off a blockgc scan if it couldn't. 1265 * If we can't get a potentially smaller quota reservation now, we're 1266 * done. 1267 */ 1268 if (!quota_reserved && !smap_real && dmap_written) { 1269 error = xfs_trans_reserve_quota_nblks(tp, ip, 1270 dmap->br_blockcount, 0, false); 1271 if (error) 1272 goto out_cancel; 1273 } 1274 1275 if (smap_real) 1276 ++iext_delta; 1277 1278 if (dmap_written) 1279 ++iext_delta; 1280 1281 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta); 1282 if (error == -EFBIG) 1283 error = xfs_iext_count_upgrade(tp, ip, iext_delta); 1284 if (error) 1285 goto out_cancel; 1286 1287 if (smap_real) { 1288 /* 1289 * If the extent we're unmapping is backed by storage (written 1290 * or not), unmap the extent and drop its refcount. 1291 */ 1292 xfs_bmap_unmap_extent(tp, ip, &smap); 1293 xfs_refcount_decrease_extent(tp, &smap); 1294 qdelta -= smap.br_blockcount; 1295 } else if (smap.br_startblock == DELAYSTARTBLOCK) { 1296 int done; 1297 1298 /* 1299 * If the extent we're unmapping is a delalloc reservation, 1300 * we can use the regular bunmapi function to release the 1301 * incore state. Dropping the delalloc reservation takes care 1302 * of the quota reservation for us. 1303 */ 1304 error = xfs_bunmapi(NULL, ip, smap.br_startoff, 1305 smap.br_blockcount, 0, 1, &done); 1306 if (error) 1307 goto out_cancel; 1308 ASSERT(done); 1309 } 1310 1311 /* 1312 * If the extent we're sharing is backed by written storage, increase 1313 * its refcount and map it into the file. 1314 */ 1315 if (dmap_written) { 1316 xfs_refcount_increase_extent(tp, dmap); 1317 xfs_bmap_map_extent(tp, ip, dmap); 1318 qdelta += dmap->br_blockcount; 1319 } 1320 1321 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta); 1322 1323 /* Update dest isize if needed. */ 1324 newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount); 1325 newlen = min_t(xfs_off_t, newlen, new_isize); 1326 if (newlen > i_size_read(VFS_I(ip))) { 1327 trace_xfs_reflink_update_inode_size(ip, newlen); 1328 i_size_write(VFS_I(ip), newlen); 1329 ip->i_disk_size = newlen; 1330 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1331 } 1332 1333 /* Commit everything and unlock. */ 1334 error = xfs_trans_commit(tp); 1335 goto out_unlock; 1336 1337 out_cancel: 1338 xfs_trans_cancel(tp); 1339 out_unlock: 1340 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1341 out: 1342 if (error) 1343 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_); 1344 return error; 1345 } 1346 1347 /* Remap a range of one file to the other. */ 1348 int 1349 xfs_reflink_remap_blocks( 1350 struct xfs_inode *src, 1351 loff_t pos_in, 1352 struct xfs_inode *dest, 1353 loff_t pos_out, 1354 loff_t remap_len, 1355 loff_t *remapped) 1356 { 1357 struct xfs_bmbt_irec imap; 1358 struct xfs_mount *mp = src->i_mount; 1359 xfs_fileoff_t srcoff = XFS_B_TO_FSBT(mp, pos_in); 1360 xfs_fileoff_t destoff = XFS_B_TO_FSBT(mp, pos_out); 1361 xfs_filblks_t len; 1362 xfs_filblks_t remapped_len = 0; 1363 xfs_off_t new_isize = pos_out + remap_len; 1364 int nimaps; 1365 int error = 0; 1366 1367 len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len), 1368 XFS_MAX_FILEOFF); 1369 1370 trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff); 1371 1372 while (len > 0) { 1373 unsigned int lock_mode; 1374 1375 /* Read extent from the source file */ 1376 nimaps = 1; 1377 lock_mode = xfs_ilock_data_map_shared(src); 1378 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0); 1379 xfs_iunlock(src, lock_mode); 1380 if (error) 1381 break; 1382 /* 1383 * The caller supposedly flushed all dirty pages in the source 1384 * file range, which means that writeback should have allocated 1385 * or deleted all delalloc reservations in that range. If we 1386 * find one, that's a good sign that something is seriously 1387 * wrong here. 1388 */ 1389 ASSERT(nimaps == 1 && imap.br_startoff == srcoff); 1390 if (imap.br_startblock == DELAYSTARTBLOCK) { 1391 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1392 error = -EFSCORRUPTED; 1393 break; 1394 } 1395 1396 trace_xfs_reflink_remap_extent_src(src, &imap); 1397 1398 /* Remap into the destination file at the given offset. */ 1399 imap.br_startoff = destoff; 1400 error = xfs_reflink_remap_extent(dest, &imap, new_isize); 1401 if (error) 1402 break; 1403 1404 if (fatal_signal_pending(current)) { 1405 error = -EINTR; 1406 break; 1407 } 1408 1409 /* Advance drange/srange */ 1410 srcoff += imap.br_blockcount; 1411 destoff += imap.br_blockcount; 1412 len -= imap.br_blockcount; 1413 remapped_len += imap.br_blockcount; 1414 } 1415 1416 if (error) 1417 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_); 1418 *remapped = min_t(loff_t, remap_len, 1419 XFS_FSB_TO_B(src->i_mount, remapped_len)); 1420 return error; 1421 } 1422 1423 /* 1424 * If we're reflinking to a point past the destination file's EOF, we must 1425 * zero any speculative post-EOF preallocations that sit between the old EOF 1426 * and the destination file offset. 1427 */ 1428 static int 1429 xfs_reflink_zero_posteof( 1430 struct xfs_inode *ip, 1431 loff_t pos) 1432 { 1433 loff_t isize = i_size_read(VFS_I(ip)); 1434 1435 if (pos <= isize) 1436 return 0; 1437 1438 trace_xfs_zero_eof(ip, isize, pos - isize); 1439 return xfs_zero_range(ip, isize, pos - isize, NULL); 1440 } 1441 1442 /* 1443 * Prepare two files for range cloning. Upon a successful return both inodes 1444 * will have the iolock and mmaplock held, the page cache of the out file will 1445 * be truncated, and any leases on the out file will have been broken. This 1446 * function borrows heavily from xfs_file_aio_write_checks. 1447 * 1448 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't 1449 * checked that the bytes beyond EOF physically match. Hence we cannot use the 1450 * EOF block in the source dedupe range because it's not a complete block match, 1451 * hence can introduce a corruption into the file that has it's block replaced. 1452 * 1453 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be 1454 * "block aligned" for the purposes of cloning entire files. However, if the 1455 * source file range includes the EOF block and it lands within the existing EOF 1456 * of the destination file, then we can expose stale data from beyond the source 1457 * file EOF in the destination file. 1458 * 1459 * XFS doesn't support partial block sharing, so in both cases we have check 1460 * these cases ourselves. For dedupe, we can simply round the length to dedupe 1461 * down to the previous whole block and ignore the partial EOF block. While this 1462 * means we can't dedupe the last block of a file, this is an acceptible 1463 * tradeoff for simplicity on implementation. 1464 * 1465 * For cloning, we want to share the partial EOF block if it is also the new EOF 1466 * block of the destination file. If the partial EOF block lies inside the 1467 * existing destination EOF, then we have to abort the clone to avoid exposing 1468 * stale data in the destination file. Hence we reject these clone attempts with 1469 * -EINVAL in this case. 1470 */ 1471 int 1472 xfs_reflink_remap_prep( 1473 struct file *file_in, 1474 loff_t pos_in, 1475 struct file *file_out, 1476 loff_t pos_out, 1477 loff_t *len, 1478 unsigned int remap_flags) 1479 { 1480 struct inode *inode_in = file_inode(file_in); 1481 struct xfs_inode *src = XFS_I(inode_in); 1482 struct inode *inode_out = file_inode(file_out); 1483 struct xfs_inode *dest = XFS_I(inode_out); 1484 int ret; 1485 1486 /* Lock both files against IO */ 1487 ret = xfs_ilock2_io_mmap(src, dest); 1488 if (ret) 1489 return ret; 1490 1491 /* Check file eligibility and prepare for block sharing. */ 1492 ret = -EINVAL; 1493 /* Don't reflink realtime inodes */ 1494 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest)) 1495 goto out_unlock; 1496 1497 /* Don't share DAX file data with non-DAX file. */ 1498 if (IS_DAX(inode_in) != IS_DAX(inode_out)) 1499 goto out_unlock; 1500 1501 if (!IS_DAX(inode_in)) 1502 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, 1503 pos_out, len, remap_flags); 1504 else 1505 ret = dax_remap_file_range_prep(file_in, pos_in, file_out, 1506 pos_out, len, remap_flags, &xfs_read_iomap_ops); 1507 if (ret || *len == 0) 1508 goto out_unlock; 1509 1510 /* Attach dquots to dest inode before changing block map */ 1511 ret = xfs_qm_dqattach(dest); 1512 if (ret) 1513 goto out_unlock; 1514 1515 /* 1516 * Zero existing post-eof speculative preallocations in the destination 1517 * file. 1518 */ 1519 ret = xfs_reflink_zero_posteof(dest, pos_out); 1520 if (ret) 1521 goto out_unlock; 1522 1523 /* Set flags and remap blocks. */ 1524 ret = xfs_reflink_set_inode_flag(src, dest); 1525 if (ret) 1526 goto out_unlock; 1527 1528 /* 1529 * If pos_out > EOF, we may have dirtied blocks between EOF and 1530 * pos_out. In that case, we need to extend the flush and unmap to cover 1531 * from EOF to the end of the copy length. 1532 */ 1533 if (pos_out > XFS_ISIZE(dest)) { 1534 loff_t flen = *len + (pos_out - XFS_ISIZE(dest)); 1535 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen); 1536 } else { 1537 ret = xfs_flush_unmap_range(dest, pos_out, *len); 1538 } 1539 if (ret) 1540 goto out_unlock; 1541 1542 return 0; 1543 out_unlock: 1544 xfs_iunlock2_io_mmap(src, dest); 1545 return ret; 1546 } 1547 1548 /* Does this inode need the reflink flag? */ 1549 int 1550 xfs_reflink_inode_has_shared_extents( 1551 struct xfs_trans *tp, 1552 struct xfs_inode *ip, 1553 bool *has_shared) 1554 { 1555 struct xfs_bmbt_irec got; 1556 struct xfs_mount *mp = ip->i_mount; 1557 struct xfs_ifork *ifp; 1558 struct xfs_iext_cursor icur; 1559 bool found; 1560 int error; 1561 1562 ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 1563 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK); 1564 if (error) 1565 return error; 1566 1567 *has_shared = false; 1568 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got); 1569 while (found) { 1570 struct xfs_perag *pag; 1571 xfs_agblock_t agbno; 1572 xfs_extlen_t aglen; 1573 xfs_agblock_t rbno; 1574 xfs_extlen_t rlen; 1575 1576 if (isnullstartblock(got.br_startblock) || 1577 got.br_state != XFS_EXT_NORM) 1578 goto next; 1579 1580 pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock)); 1581 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock); 1582 aglen = got.br_blockcount; 1583 error = xfs_reflink_find_shared(pag, tp, agbno, aglen, 1584 &rbno, &rlen, false); 1585 xfs_perag_put(pag); 1586 if (error) 1587 return error; 1588 1589 /* Is there still a shared block here? */ 1590 if (rbno != NULLAGBLOCK) { 1591 *has_shared = true; 1592 return 0; 1593 } 1594 next: 1595 found = xfs_iext_next_extent(ifp, &icur, &got); 1596 } 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * Clear the inode reflink flag if there are no shared extents. 1603 * 1604 * The caller is responsible for joining the inode to the transaction passed in. 1605 * The inode will be joined to the transaction that is returned to the caller. 1606 */ 1607 int 1608 xfs_reflink_clear_inode_flag( 1609 struct xfs_inode *ip, 1610 struct xfs_trans **tpp) 1611 { 1612 bool needs_flag; 1613 int error = 0; 1614 1615 ASSERT(xfs_is_reflink_inode(ip)); 1616 1617 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag); 1618 if (error || needs_flag) 1619 return error; 1620 1621 /* 1622 * We didn't find any shared blocks so turn off the reflink flag. 1623 * First, get rid of any leftover CoW mappings. 1624 */ 1625 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF, 1626 true); 1627 if (error) 1628 return error; 1629 1630 /* Clear the inode flag. */ 1631 trace_xfs_reflink_unset_inode_flag(ip); 1632 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK; 1633 xfs_inode_clear_cowblocks_tag(ip); 1634 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE); 1635 1636 return error; 1637 } 1638 1639 /* 1640 * Clear the inode reflink flag if there are no shared extents and the size 1641 * hasn't changed. 1642 */ 1643 STATIC int 1644 xfs_reflink_try_clear_inode_flag( 1645 struct xfs_inode *ip) 1646 { 1647 struct xfs_mount *mp = ip->i_mount; 1648 struct xfs_trans *tp; 1649 int error = 0; 1650 1651 /* Start a rolling transaction to remove the mappings */ 1652 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp); 1653 if (error) 1654 return error; 1655 1656 xfs_ilock(ip, XFS_ILOCK_EXCL); 1657 xfs_trans_ijoin(tp, ip, 0); 1658 1659 error = xfs_reflink_clear_inode_flag(ip, &tp); 1660 if (error) 1661 goto cancel; 1662 1663 error = xfs_trans_commit(tp); 1664 if (error) 1665 goto out; 1666 1667 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1668 return 0; 1669 cancel: 1670 xfs_trans_cancel(tp); 1671 out: 1672 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1673 return error; 1674 } 1675 1676 /* 1677 * Pre-COW all shared blocks within a given byte range of a file and turn off 1678 * the reflink flag if we unshare all of the file's blocks. 1679 */ 1680 int 1681 xfs_reflink_unshare( 1682 struct xfs_inode *ip, 1683 xfs_off_t offset, 1684 xfs_off_t len) 1685 { 1686 struct inode *inode = VFS_I(ip); 1687 int error; 1688 1689 if (!xfs_is_reflink_inode(ip)) 1690 return 0; 1691 1692 trace_xfs_reflink_unshare(ip, offset, len); 1693 1694 inode_dio_wait(inode); 1695 1696 if (IS_DAX(inode)) 1697 error = dax_file_unshare(inode, offset, len, 1698 &xfs_dax_write_iomap_ops); 1699 else 1700 error = iomap_file_unshare(inode, offset, len, 1701 &xfs_buffered_write_iomap_ops); 1702 if (error) 1703 goto out; 1704 1705 error = filemap_write_and_wait_range(inode->i_mapping, offset, 1706 offset + len - 1); 1707 if (error) 1708 goto out; 1709 1710 /* Turn off the reflink flag if possible. */ 1711 error = xfs_reflink_try_clear_inode_flag(ip); 1712 if (error) 1713 goto out; 1714 return 0; 1715 1716 out: 1717 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_); 1718 return error; 1719 } 1720