xref: /linux/fs/xfs/xfs_reflink.c (revision 50f2944009a25bb39a09f2f7bab64a73ce928bef)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 int
129 xfs_reflink_find_shared(
130 	struct xfs_mount	*mp,
131 	struct xfs_trans	*tp,
132 	xfs_agnumber_t		agno,
133 	xfs_agblock_t		agbno,
134 	xfs_extlen_t		aglen,
135 	xfs_agblock_t		*fbno,
136 	xfs_extlen_t		*flen,
137 	bool			find_end_of_shared)
138 {
139 	struct xfs_buf		*agbp;
140 	struct xfs_btree_cur	*cur;
141 	int			error;
142 
143 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 	if (error)
145 		return error;
146 
147 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agbp->b_pag);
148 
149 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 			find_end_of_shared);
151 
152 	xfs_btree_del_cursor(cur, error);
153 
154 	xfs_trans_brelse(tp, agbp);
155 	return error;
156 }
157 
158 /*
159  * Trim the mapping to the next block where there's a change in the
160  * shared/unshared status.  More specifically, this means that we
161  * find the lowest-numbered extent of shared blocks that coincides with
162  * the given block mapping.  If the shared extent overlaps the start of
163  * the mapping, trim the mapping to the end of the shared extent.  If
164  * the shared region intersects the mapping, trim the mapping to the
165  * start of the shared extent.  If there are no shared regions that
166  * overlap, just return the original extent.
167  */
168 int
169 xfs_reflink_trim_around_shared(
170 	struct xfs_inode	*ip,
171 	struct xfs_bmbt_irec	*irec,
172 	bool			*shared)
173 {
174 	xfs_agnumber_t		agno;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 			aglen, &fbno, &flen, true);
195 	if (error)
196 		return error;
197 
198 	*shared = false;
199 	if (fbno == NULLAGBLOCK) {
200 		/* No shared blocks at all. */
201 		return 0;
202 	} else if (fbno == agbno) {
203 		/*
204 		 * The start of this extent is shared.  Truncate the
205 		 * mapping at the end of the shared region so that a
206 		 * subsequent iteration starts at the start of the
207 		 * unshared region.
208 		 */
209 		irec->br_blockcount = flen;
210 		*shared = true;
211 		return 0;
212 	} else {
213 		/*
214 		 * There's a shared extent midway through this extent.
215 		 * Truncate the mapping at the start of the shared
216 		 * extent so that a subsequent iteration starts at the
217 		 * start of the shared region.
218 		 */
219 		irec->br_blockcount = fbno - agbno;
220 		return 0;
221 	}
222 }
223 
224 int
225 xfs_bmap_trim_cow(
226 	struct xfs_inode	*ip,
227 	struct xfs_bmbt_irec	*imap,
228 	bool			*shared)
229 {
230 	/* We can't update any real extents in always COW mode. */
231 	if (xfs_is_always_cow_inode(ip) &&
232 	    !isnullstartblock(imap->br_startblock)) {
233 		*shared = true;
234 		return 0;
235 	}
236 
237 	/* Trim the mapping to the nearest shared extent boundary. */
238 	return xfs_reflink_trim_around_shared(ip, imap, shared);
239 }
240 
241 static int
242 xfs_reflink_convert_cow_locked(
243 	struct xfs_inode	*ip,
244 	xfs_fileoff_t		offset_fsb,
245 	xfs_filblks_t		count_fsb)
246 {
247 	struct xfs_iext_cursor	icur;
248 	struct xfs_bmbt_irec	got;
249 	struct xfs_btree_cur	*dummy_cur = NULL;
250 	int			dummy_logflags;
251 	int			error = 0;
252 
253 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 		return 0;
255 
256 	do {
257 		if (got.br_startoff >= offset_fsb + count_fsb)
258 			break;
259 		if (got.br_state == XFS_EXT_NORM)
260 			continue;
261 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 			return -EIO;
263 
264 		xfs_trim_extent(&got, offset_fsb, count_fsb);
265 		if (!got.br_blockcount)
266 			continue;
267 
268 		got.br_state = XFS_EXT_NORM;
269 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 				XFS_COW_FORK, &icur, &dummy_cur, &got,
271 				&dummy_logflags);
272 		if (error)
273 			return error;
274 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275 
276 	return error;
277 }
278 
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
280 int
281 xfs_reflink_convert_cow(
282 	struct xfs_inode	*ip,
283 	xfs_off_t		offset,
284 	xfs_off_t		count)
285 {
286 	struct xfs_mount	*mp = ip->i_mount;
287 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
290 	int			error;
291 
292 	ASSERT(count != 0);
293 
294 	xfs_ilock(ip, XFS_ILOCK_EXCL);
295 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 	return error;
298 }
299 
300 /*
301  * Find the extent that maps the given range in the COW fork. Even if the extent
302  * is not shared we might have a preallocation for it in the COW fork. If so we
303  * use it that rather than trigger a new allocation.
304  */
305 static int
306 xfs_find_trim_cow_extent(
307 	struct xfs_inode	*ip,
308 	struct xfs_bmbt_irec	*imap,
309 	struct xfs_bmbt_irec	*cmap,
310 	bool			*shared,
311 	bool			*found)
312 {
313 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
314 	xfs_filblks_t		count_fsb = imap->br_blockcount;
315 	struct xfs_iext_cursor	icur;
316 
317 	*found = false;
318 
319 	/*
320 	 * If we don't find an overlapping extent, trim the range we need to
321 	 * allocate to fit the hole we found.
322 	 */
323 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 		cmap->br_startoff = offset_fsb + count_fsb;
325 	if (cmap->br_startoff > offset_fsb) {
326 		xfs_trim_extent(imap, imap->br_startoff,
327 				cmap->br_startoff - imap->br_startoff);
328 		return xfs_bmap_trim_cow(ip, imap, shared);
329 	}
330 
331 	*shared = true;
332 	if (isnullstartblock(cmap->br_startblock)) {
333 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 		return 0;
335 	}
336 
337 	/* real extent found - no need to allocate */
338 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 	*found = true;
340 	return 0;
341 }
342 
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
344 int
345 xfs_reflink_allocate_cow(
346 	struct xfs_inode	*ip,
347 	struct xfs_bmbt_irec	*imap,
348 	struct xfs_bmbt_irec	*cmap,
349 	bool			*shared,
350 	uint			*lockmode,
351 	bool			convert_now)
352 {
353 	struct xfs_mount	*mp = ip->i_mount;
354 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
355 	xfs_filblks_t		count_fsb = imap->br_blockcount;
356 	struct xfs_trans	*tp;
357 	int			nimaps, error = 0;
358 	bool			found;
359 	xfs_filblks_t		resaligned;
360 	xfs_extlen_t		resblks = 0;
361 
362 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
363 	if (!ip->i_cowfp) {
364 		ASSERT(!xfs_is_reflink_inode(ip));
365 		xfs_ifork_init_cow(ip);
366 	}
367 
368 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 	if (error || !*shared)
370 		return error;
371 	if (found)
372 		goto convert;
373 
374 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
377 
378 	xfs_iunlock(ip, *lockmode);
379 	*lockmode = 0;
380 
381 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
382 			false, &tp);
383 	if (error)
384 		return error;
385 
386 	*lockmode = XFS_ILOCK_EXCL;
387 
388 	/*
389 	 * Check for an overlapping extent again now that we dropped the ilock.
390 	 */
391 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
392 	if (error || !*shared)
393 		goto out_trans_cancel;
394 	if (found) {
395 		xfs_trans_cancel(tp);
396 		goto convert;
397 	}
398 
399 	/* Allocate the entire reservation as unwritten blocks. */
400 	nimaps = 1;
401 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
402 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
403 			&nimaps);
404 	if (error)
405 		goto out_trans_cancel;
406 
407 	xfs_inode_set_cowblocks_tag(ip);
408 	error = xfs_trans_commit(tp);
409 	if (error)
410 		return error;
411 
412 	/*
413 	 * Allocation succeeded but the requested range was not even partially
414 	 * satisfied?  Bail out!
415 	 */
416 	if (nimaps == 0)
417 		return -ENOSPC;
418 convert:
419 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
420 	/*
421 	 * COW fork extents are supposed to remain unwritten until we're ready
422 	 * to initiate a disk write.  For direct I/O we are going to write the
423 	 * data and need the conversion, but for buffered writes we're done.
424 	 */
425 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
426 		return 0;
427 	trace_xfs_reflink_convert_cow(ip, cmap);
428 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
429 	if (!error)
430 		cmap->br_state = XFS_EXT_NORM;
431 	return error;
432 
433 out_trans_cancel:
434 	xfs_trans_cancel(tp);
435 	return error;
436 }
437 
438 /*
439  * Cancel CoW reservations for some block range of an inode.
440  *
441  * If cancel_real is true this function cancels all COW fork extents for the
442  * inode; if cancel_real is false, real extents are not cleared.
443  *
444  * Caller must have already joined the inode to the current transaction. The
445  * inode will be joined to the transaction returned to the caller.
446  */
447 int
448 xfs_reflink_cancel_cow_blocks(
449 	struct xfs_inode		*ip,
450 	struct xfs_trans		**tpp,
451 	xfs_fileoff_t			offset_fsb,
452 	xfs_fileoff_t			end_fsb,
453 	bool				cancel_real)
454 {
455 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
456 	struct xfs_bmbt_irec		got, del;
457 	struct xfs_iext_cursor		icur;
458 	int				error = 0;
459 
460 	if (!xfs_inode_has_cow_data(ip))
461 		return 0;
462 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
463 		return 0;
464 
465 	/* Walk backwards until we're out of the I/O range... */
466 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
467 		del = got;
468 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
469 
470 		/* Extent delete may have bumped ext forward */
471 		if (!del.br_blockcount) {
472 			xfs_iext_prev(ifp, &icur);
473 			goto next_extent;
474 		}
475 
476 		trace_xfs_reflink_cancel_cow(ip, &del);
477 
478 		if (isnullstartblock(del.br_startblock)) {
479 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
480 					&icur, &got, &del);
481 			if (error)
482 				break;
483 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
484 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
485 
486 			/* Free the CoW orphan record. */
487 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
488 					del.br_blockcount);
489 
490 			xfs_free_extent_later(*tpp, del.br_startblock,
491 					  del.br_blockcount, NULL);
492 
493 			/* Roll the transaction */
494 			error = xfs_defer_finish(tpp);
495 			if (error)
496 				break;
497 
498 			/* Remove the mapping from the CoW fork. */
499 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
500 
501 			/* Remove the quota reservation */
502 			error = xfs_quota_unreserve_blkres(ip,
503 					del.br_blockcount);
504 			if (error)
505 				break;
506 		} else {
507 			/* Didn't do anything, push cursor back. */
508 			xfs_iext_prev(ifp, &icur);
509 		}
510 next_extent:
511 		if (!xfs_iext_get_extent(ifp, &icur, &got))
512 			break;
513 	}
514 
515 	/* clear tag if cow fork is emptied */
516 	if (!ifp->if_bytes)
517 		xfs_inode_clear_cowblocks_tag(ip);
518 	return error;
519 }
520 
521 /*
522  * Cancel CoW reservations for some byte range of an inode.
523  *
524  * If cancel_real is true this function cancels all COW fork extents for the
525  * inode; if cancel_real is false, real extents are not cleared.
526  */
527 int
528 xfs_reflink_cancel_cow_range(
529 	struct xfs_inode	*ip,
530 	xfs_off_t		offset,
531 	xfs_off_t		count,
532 	bool			cancel_real)
533 {
534 	struct xfs_trans	*tp;
535 	xfs_fileoff_t		offset_fsb;
536 	xfs_fileoff_t		end_fsb;
537 	int			error;
538 
539 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
540 	ASSERT(ip->i_cowfp);
541 
542 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
543 	if (count == NULLFILEOFF)
544 		end_fsb = NULLFILEOFF;
545 	else
546 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
547 
548 	/* Start a rolling transaction to remove the mappings */
549 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
550 			0, 0, 0, &tp);
551 	if (error)
552 		goto out;
553 
554 	xfs_ilock(ip, XFS_ILOCK_EXCL);
555 	xfs_trans_ijoin(tp, ip, 0);
556 
557 	/* Scrape out the old CoW reservations */
558 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
559 			cancel_real);
560 	if (error)
561 		goto out_cancel;
562 
563 	error = xfs_trans_commit(tp);
564 
565 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
566 	return error;
567 
568 out_cancel:
569 	xfs_trans_cancel(tp);
570 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
571 out:
572 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
573 	return error;
574 }
575 
576 /*
577  * Remap part of the CoW fork into the data fork.
578  *
579  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
580  * into the data fork; this function will remap what it can (at the end of the
581  * range) and update @end_fsb appropriately.  Each remap gets its own
582  * transaction because we can end up merging and splitting bmbt blocks for
583  * every remap operation and we'd like to keep the block reservation
584  * requirements as low as possible.
585  */
586 STATIC int
587 xfs_reflink_end_cow_extent(
588 	struct xfs_inode	*ip,
589 	xfs_fileoff_t		*offset_fsb,
590 	xfs_fileoff_t		end_fsb)
591 {
592 	struct xfs_iext_cursor	icur;
593 	struct xfs_bmbt_irec	got, del, data;
594 	struct xfs_mount	*mp = ip->i_mount;
595 	struct xfs_trans	*tp;
596 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
597 	unsigned int		resblks;
598 	int			nmaps;
599 	int			error;
600 
601 	/* No COW extents?  That's easy! */
602 	if (ifp->if_bytes == 0) {
603 		*offset_fsb = end_fsb;
604 		return 0;
605 	}
606 
607 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
608 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
609 			XFS_TRANS_RESERVE, &tp);
610 	if (error)
611 		return error;
612 
613 	/*
614 	 * Lock the inode.  We have to ijoin without automatic unlock because
615 	 * the lead transaction is the refcountbt record deletion; the data
616 	 * fork update follows as a deferred log item.
617 	 */
618 	xfs_ilock(ip, XFS_ILOCK_EXCL);
619 	xfs_trans_ijoin(tp, ip, 0);
620 
621 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
622 			XFS_IEXT_REFLINK_END_COW_CNT);
623 	if (error == -EFBIG)
624 		error = xfs_iext_count_upgrade(tp, ip,
625 				XFS_IEXT_REFLINK_END_COW_CNT);
626 	if (error)
627 		goto out_cancel;
628 
629 	/*
630 	 * In case of racing, overlapping AIO writes no COW extents might be
631 	 * left by the time I/O completes for the loser of the race.  In that
632 	 * case we are done.
633 	 */
634 	if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
635 	    got.br_startoff >= end_fsb) {
636 		*offset_fsb = end_fsb;
637 		goto out_cancel;
638 	}
639 
640 	/*
641 	 * Only remap real extents that contain data.  With AIO, speculative
642 	 * preallocations can leak into the range we are called upon, and we
643 	 * need to skip them.  Preserve @got for the eventual CoW fork
644 	 * deletion; from now on @del represents the mapping that we're
645 	 * actually remapping.
646 	 */
647 	while (!xfs_bmap_is_written_extent(&got)) {
648 		if (!xfs_iext_next_extent(ifp, &icur, &got) ||
649 		    got.br_startoff >= end_fsb) {
650 			*offset_fsb = end_fsb;
651 			goto out_cancel;
652 		}
653 	}
654 	del = got;
655 
656 	/* Grab the corresponding mapping in the data fork. */
657 	nmaps = 1;
658 	error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
659 			&nmaps, 0);
660 	if (error)
661 		goto out_cancel;
662 
663 	/* We can only remap the smaller of the two extent sizes. */
664 	data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
665 	del.br_blockcount = data.br_blockcount;
666 
667 	trace_xfs_reflink_cow_remap_from(ip, &del);
668 	trace_xfs_reflink_cow_remap_to(ip, &data);
669 
670 	if (xfs_bmap_is_real_extent(&data)) {
671 		/*
672 		 * If the extent we're remapping is backed by storage (written
673 		 * or not), unmap the extent and drop its refcount.
674 		 */
675 		xfs_bmap_unmap_extent(tp, ip, &data);
676 		xfs_refcount_decrease_extent(tp, &data);
677 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
678 				-data.br_blockcount);
679 	} else if (data.br_startblock == DELAYSTARTBLOCK) {
680 		int		done;
681 
682 		/*
683 		 * If the extent we're remapping is a delalloc reservation,
684 		 * we can use the regular bunmapi function to release the
685 		 * incore state.  Dropping the delalloc reservation takes care
686 		 * of the quota reservation for us.
687 		 */
688 		error = xfs_bunmapi(NULL, ip, data.br_startoff,
689 				data.br_blockcount, 0, 1, &done);
690 		if (error)
691 			goto out_cancel;
692 		ASSERT(done);
693 	}
694 
695 	/* Free the CoW orphan record. */
696 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
697 
698 	/* Map the new blocks into the data fork. */
699 	xfs_bmap_map_extent(tp, ip, &del);
700 
701 	/* Charge this new data fork mapping to the on-disk quota. */
702 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
703 			(long)del.br_blockcount);
704 
705 	/* Remove the mapping from the CoW fork. */
706 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
707 
708 	error = xfs_trans_commit(tp);
709 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
710 	if (error)
711 		return error;
712 
713 	/* Update the caller about how much progress we made. */
714 	*offset_fsb = del.br_startoff + del.br_blockcount;
715 	return 0;
716 
717 out_cancel:
718 	xfs_trans_cancel(tp);
719 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
720 	return error;
721 }
722 
723 /*
724  * Remap parts of a file's data fork after a successful CoW.
725  */
726 int
727 xfs_reflink_end_cow(
728 	struct xfs_inode		*ip,
729 	xfs_off_t			offset,
730 	xfs_off_t			count)
731 {
732 	xfs_fileoff_t			offset_fsb;
733 	xfs_fileoff_t			end_fsb;
734 	int				error = 0;
735 
736 	trace_xfs_reflink_end_cow(ip, offset, count);
737 
738 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
739 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
740 
741 	/*
742 	 * Walk forwards until we've remapped the I/O range.  The loop function
743 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
744 	 * extent.
745 	 *
746 	 * If we're being called by writeback then the pages will still
747 	 * have PageWriteback set, which prevents races with reflink remapping
748 	 * and truncate.  Reflink remapping prevents races with writeback by
749 	 * taking the iolock and mmaplock before flushing the pages and
750 	 * remapping, which means there won't be any further writeback or page
751 	 * cache dirtying until the reflink completes.
752 	 *
753 	 * We should never have two threads issuing writeback for the same file
754 	 * region.  There are also have post-eof checks in the writeback
755 	 * preparation code so that we don't bother writing out pages that are
756 	 * about to be truncated.
757 	 *
758 	 * If we're being called as part of directio write completion, the dio
759 	 * count is still elevated, which reflink and truncate will wait for.
760 	 * Reflink remapping takes the iolock and mmaplock and waits for
761 	 * pending dio to finish, which should prevent any directio until the
762 	 * remap completes.  Multiple concurrent directio writes to the same
763 	 * region are handled by end_cow processing only occurring for the
764 	 * threads which succeed; the outcome of multiple overlapping direct
765 	 * writes is not well defined anyway.
766 	 *
767 	 * It's possible that a buffered write and a direct write could collide
768 	 * here (the buffered write stumbles in after the dio flushes and
769 	 * invalidates the page cache and immediately queues writeback), but we
770 	 * have never supported this 100%.  If either disk write succeeds the
771 	 * blocks will be remapped.
772 	 */
773 	while (end_fsb > offset_fsb && !error)
774 		error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
775 
776 	if (error)
777 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
778 	return error;
779 }
780 
781 /*
782  * Free all CoW staging blocks that are still referenced by the ondisk refcount
783  * metadata.  The ondisk metadata does not track which inode created the
784  * staging extent, so callers must ensure that there are no cached inodes with
785  * live CoW staging extents.
786  */
787 int
788 xfs_reflink_recover_cow(
789 	struct xfs_mount	*mp)
790 {
791 	struct xfs_perag	*pag;
792 	xfs_agnumber_t		agno;
793 	int			error = 0;
794 
795 	if (!xfs_has_reflink(mp))
796 		return 0;
797 
798 	for_each_perag(mp, agno, pag) {
799 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
800 		if (error) {
801 			xfs_perag_put(pag);
802 			break;
803 		}
804 	}
805 
806 	return error;
807 }
808 
809 /*
810  * Reflinking (Block) Ranges of Two Files Together
811  *
812  * First, ensure that the reflink flag is set on both inodes.  The flag is an
813  * optimization to avoid unnecessary refcount btree lookups in the write path.
814  *
815  * Now we can iteratively remap the range of extents (and holes) in src to the
816  * corresponding ranges in dest.  Let drange and srange denote the ranges of
817  * logical blocks in dest and src touched by the reflink operation.
818  *
819  * While the length of drange is greater than zero,
820  *    - Read src's bmbt at the start of srange ("imap")
821  *    - If imap doesn't exist, make imap appear to start at the end of srange
822  *      with zero length.
823  *    - If imap starts before srange, advance imap to start at srange.
824  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
825  *    - Punch (imap start - srange start + imap len) blocks from dest at
826  *      offset (drange start).
827  *    - If imap points to a real range of pblks,
828  *         > Increase the refcount of the imap's pblks
829  *         > Map imap's pblks into dest at the offset
830  *           (drange start + imap start - srange start)
831  *    - Advance drange and srange by (imap start - srange start + imap len)
832  *
833  * Finally, if the reflink made dest longer, update both the in-core and
834  * on-disk file sizes.
835  *
836  * ASCII Art Demonstration:
837  *
838  * Let's say we want to reflink this source file:
839  *
840  * ----SSSSSSS-SSSSS----SSSSSS (src file)
841  *   <-------------------->
842  *
843  * into this destination file:
844  *
845  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
846  *        <-------------------->
847  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
848  * Observe that the range has different logical offsets in either file.
849  *
850  * Consider that the first extent in the source file doesn't line up with our
851  * reflink range.  Unmapping  and remapping are separate operations, so we can
852  * unmap more blocks from the destination file than we remap.
853  *
854  * ----SSSSSSS-SSSSS----SSSSSS
855  *   <------->
856  * --DDDDD---------DDDDD--DDD
857  *        <------->
858  *
859  * Now remap the source extent into the destination file:
860  *
861  * ----SSSSSSS-SSSSS----SSSSSS
862  *   <------->
863  * --DDDDD--SSSSSSSDDDDD--DDD
864  *        <------->
865  *
866  * Do likewise with the second hole and extent in our range.  Holes in the
867  * unmap range don't affect our operation.
868  *
869  * ----SSSSSSS-SSSSS----SSSSSS
870  *            <---->
871  * --DDDDD--SSSSSSS-SSSSS-DDD
872  *                 <---->
873  *
874  * Finally, unmap and remap part of the third extent.  This will increase the
875  * size of the destination file.
876  *
877  * ----SSSSSSS-SSSSS----SSSSSS
878  *                  <----->
879  * --DDDDD--SSSSSSS-SSSSS----SSS
880  *                       <----->
881  *
882  * Once we update the destination file's i_size, we're done.
883  */
884 
885 /*
886  * Ensure the reflink bit is set in both inodes.
887  */
888 STATIC int
889 xfs_reflink_set_inode_flag(
890 	struct xfs_inode	*src,
891 	struct xfs_inode	*dest)
892 {
893 	struct xfs_mount	*mp = src->i_mount;
894 	int			error;
895 	struct xfs_trans	*tp;
896 
897 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
898 		return 0;
899 
900 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
901 	if (error)
902 		goto out_error;
903 
904 	/* Lock both files against IO */
905 	if (src->i_ino == dest->i_ino)
906 		xfs_ilock(src, XFS_ILOCK_EXCL);
907 	else
908 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
909 
910 	if (!xfs_is_reflink_inode(src)) {
911 		trace_xfs_reflink_set_inode_flag(src);
912 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
913 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
914 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
915 		xfs_ifork_init_cow(src);
916 	} else
917 		xfs_iunlock(src, XFS_ILOCK_EXCL);
918 
919 	if (src->i_ino == dest->i_ino)
920 		goto commit_flags;
921 
922 	if (!xfs_is_reflink_inode(dest)) {
923 		trace_xfs_reflink_set_inode_flag(dest);
924 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
925 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
926 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
927 		xfs_ifork_init_cow(dest);
928 	} else
929 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
930 
931 commit_flags:
932 	error = xfs_trans_commit(tp);
933 	if (error)
934 		goto out_error;
935 	return error;
936 
937 out_error:
938 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
939 	return error;
940 }
941 
942 /*
943  * Update destination inode size & cowextsize hint, if necessary.
944  */
945 int
946 xfs_reflink_update_dest(
947 	struct xfs_inode	*dest,
948 	xfs_off_t		newlen,
949 	xfs_extlen_t		cowextsize,
950 	unsigned int		remap_flags)
951 {
952 	struct xfs_mount	*mp = dest->i_mount;
953 	struct xfs_trans	*tp;
954 	int			error;
955 
956 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
957 		return 0;
958 
959 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
960 	if (error)
961 		goto out_error;
962 
963 	xfs_ilock(dest, XFS_ILOCK_EXCL);
964 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
965 
966 	if (newlen > i_size_read(VFS_I(dest))) {
967 		trace_xfs_reflink_update_inode_size(dest, newlen);
968 		i_size_write(VFS_I(dest), newlen);
969 		dest->i_disk_size = newlen;
970 	}
971 
972 	if (cowextsize) {
973 		dest->i_cowextsize = cowextsize;
974 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
975 	}
976 
977 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
978 
979 	error = xfs_trans_commit(tp);
980 	if (error)
981 		goto out_error;
982 	return error;
983 
984 out_error:
985 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
986 	return error;
987 }
988 
989 /*
990  * Do we have enough reserve in this AG to handle a reflink?  The refcount
991  * btree already reserved all the space it needs, but the rmap btree can grow
992  * infinitely, so we won't allow more reflinks when the AG is down to the
993  * btree reserves.
994  */
995 static int
996 xfs_reflink_ag_has_free_space(
997 	struct xfs_mount	*mp,
998 	xfs_agnumber_t		agno)
999 {
1000 	struct xfs_perag	*pag;
1001 	int			error = 0;
1002 
1003 	if (!xfs_has_rmapbt(mp))
1004 		return 0;
1005 
1006 	pag = xfs_perag_get(mp, agno);
1007 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1008 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1009 		error = -ENOSPC;
1010 	xfs_perag_put(pag);
1011 	return error;
1012 }
1013 
1014 /*
1015  * Remap the given extent into the file.  The dmap blockcount will be set to
1016  * the number of blocks that were actually remapped.
1017  */
1018 STATIC int
1019 xfs_reflink_remap_extent(
1020 	struct xfs_inode	*ip,
1021 	struct xfs_bmbt_irec	*dmap,
1022 	xfs_off_t		new_isize)
1023 {
1024 	struct xfs_bmbt_irec	smap;
1025 	struct xfs_mount	*mp = ip->i_mount;
1026 	struct xfs_trans	*tp;
1027 	xfs_off_t		newlen;
1028 	int64_t			qdelta = 0;
1029 	unsigned int		resblks;
1030 	bool			quota_reserved = true;
1031 	bool			smap_real;
1032 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1033 	int			iext_delta = 0;
1034 	int			nimaps;
1035 	int			error;
1036 
1037 	/*
1038 	 * Start a rolling transaction to switch the mappings.
1039 	 *
1040 	 * Adding a written extent to the extent map can cause a bmbt split,
1041 	 * and removing a mapped extent from the extent can cause a bmbt split.
1042 	 * The two operations cannot both cause a split since they operate on
1043 	 * the same index in the bmap btree, so we only need a reservation for
1044 	 * one bmbt split if either thing is happening.  However, we haven't
1045 	 * locked the inode yet, so we reserve assuming this is the case.
1046 	 *
1047 	 * The first allocation call tries to reserve enough space to handle
1048 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1049 	 * haven't locked the inode or read the existing mapping yet, so we do
1050 	 * not know for sure that we need the space.  This should succeed most
1051 	 * of the time.
1052 	 *
1053 	 * If the first attempt fails, try again but reserving only enough
1054 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1055 	 * and we revisit quota reservations later when we know more about what
1056 	 * we're remapping.
1057 	 */
1058 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1059 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1060 			resblks + dmap->br_blockcount, 0, false, &tp);
1061 	if (error == -EDQUOT || error == -ENOSPC) {
1062 		quota_reserved = false;
1063 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1064 				resblks, 0, false, &tp);
1065 	}
1066 	if (error)
1067 		goto out;
1068 
1069 	/*
1070 	 * Read what's currently mapped in the destination file into smap.
1071 	 * If smap isn't a hole, we will have to remove it before we can add
1072 	 * dmap to the destination file.
1073 	 */
1074 	nimaps = 1;
1075 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1076 			&smap, &nimaps, 0);
1077 	if (error)
1078 		goto out_cancel;
1079 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1080 	smap_real = xfs_bmap_is_real_extent(&smap);
1081 
1082 	/*
1083 	 * We can only remap as many blocks as the smaller of the two extent
1084 	 * maps, because we can only remap one extent at a time.
1085 	 */
1086 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1087 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1088 
1089 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1090 
1091 	/*
1092 	 * Two extents mapped to the same physical block must not have
1093 	 * different states; that's filesystem corruption.  Move on to the next
1094 	 * extent if they're both holes or both the same physical extent.
1095 	 */
1096 	if (dmap->br_startblock == smap.br_startblock) {
1097 		if (dmap->br_state != smap.br_state)
1098 			error = -EFSCORRUPTED;
1099 		goto out_cancel;
1100 	}
1101 
1102 	/* If both extents are unwritten, leave them alone. */
1103 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1104 	    smap.br_state == XFS_EXT_UNWRITTEN)
1105 		goto out_cancel;
1106 
1107 	/* No reflinking if the AG of the dest mapping is low on space. */
1108 	if (dmap_written) {
1109 		error = xfs_reflink_ag_has_free_space(mp,
1110 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1111 		if (error)
1112 			goto out_cancel;
1113 	}
1114 
1115 	/*
1116 	 * Increase quota reservation if we think the quota block counter for
1117 	 * this file could increase.
1118 	 *
1119 	 * If we are mapping a written extent into the file, we need to have
1120 	 * enough quota block count reservation to handle the blocks in that
1121 	 * extent.  We log only the delta to the quota block counts, so if the
1122 	 * extent we're unmapping also has blocks allocated to it, we don't
1123 	 * need a quota reservation for the extent itself.
1124 	 *
1125 	 * Note that if we're replacing a delalloc reservation with a written
1126 	 * extent, we have to take the full quota reservation because removing
1127 	 * the delalloc reservation gives the block count back to the quota
1128 	 * count.  This is suboptimal, but the VFS flushed the dest range
1129 	 * before we started.  That should have removed all the delalloc
1130 	 * reservations, but we code defensively.
1131 	 *
1132 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1133 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1134 	 * If we can't get a potentially smaller quota reservation now, we're
1135 	 * done.
1136 	 */
1137 	if (!quota_reserved && !smap_real && dmap_written) {
1138 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1139 				dmap->br_blockcount, 0, false);
1140 		if (error)
1141 			goto out_cancel;
1142 	}
1143 
1144 	if (smap_real)
1145 		++iext_delta;
1146 
1147 	if (dmap_written)
1148 		++iext_delta;
1149 
1150 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1151 	if (error == -EFBIG)
1152 		error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1153 	if (error)
1154 		goto out_cancel;
1155 
1156 	if (smap_real) {
1157 		/*
1158 		 * If the extent we're unmapping is backed by storage (written
1159 		 * or not), unmap the extent and drop its refcount.
1160 		 */
1161 		xfs_bmap_unmap_extent(tp, ip, &smap);
1162 		xfs_refcount_decrease_extent(tp, &smap);
1163 		qdelta -= smap.br_blockcount;
1164 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1165 		int		done;
1166 
1167 		/*
1168 		 * If the extent we're unmapping is a delalloc reservation,
1169 		 * we can use the regular bunmapi function to release the
1170 		 * incore state.  Dropping the delalloc reservation takes care
1171 		 * of the quota reservation for us.
1172 		 */
1173 		error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1174 				smap.br_blockcount, 0, 1, &done);
1175 		if (error)
1176 			goto out_cancel;
1177 		ASSERT(done);
1178 	}
1179 
1180 	/*
1181 	 * If the extent we're sharing is backed by written storage, increase
1182 	 * its refcount and map it into the file.
1183 	 */
1184 	if (dmap_written) {
1185 		xfs_refcount_increase_extent(tp, dmap);
1186 		xfs_bmap_map_extent(tp, ip, dmap);
1187 		qdelta += dmap->br_blockcount;
1188 	}
1189 
1190 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1191 
1192 	/* Update dest isize if needed. */
1193 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1194 	newlen = min_t(xfs_off_t, newlen, new_isize);
1195 	if (newlen > i_size_read(VFS_I(ip))) {
1196 		trace_xfs_reflink_update_inode_size(ip, newlen);
1197 		i_size_write(VFS_I(ip), newlen);
1198 		ip->i_disk_size = newlen;
1199 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1200 	}
1201 
1202 	/* Commit everything and unlock. */
1203 	error = xfs_trans_commit(tp);
1204 	goto out_unlock;
1205 
1206 out_cancel:
1207 	xfs_trans_cancel(tp);
1208 out_unlock:
1209 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1210 out:
1211 	if (error)
1212 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1213 	return error;
1214 }
1215 
1216 /* Remap a range of one file to the other. */
1217 int
1218 xfs_reflink_remap_blocks(
1219 	struct xfs_inode	*src,
1220 	loff_t			pos_in,
1221 	struct xfs_inode	*dest,
1222 	loff_t			pos_out,
1223 	loff_t			remap_len,
1224 	loff_t			*remapped)
1225 {
1226 	struct xfs_bmbt_irec	imap;
1227 	struct xfs_mount	*mp = src->i_mount;
1228 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1229 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1230 	xfs_filblks_t		len;
1231 	xfs_filblks_t		remapped_len = 0;
1232 	xfs_off_t		new_isize = pos_out + remap_len;
1233 	int			nimaps;
1234 	int			error = 0;
1235 
1236 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1237 			XFS_MAX_FILEOFF);
1238 
1239 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1240 
1241 	while (len > 0) {
1242 		unsigned int	lock_mode;
1243 
1244 		/* Read extent from the source file */
1245 		nimaps = 1;
1246 		lock_mode = xfs_ilock_data_map_shared(src);
1247 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1248 		xfs_iunlock(src, lock_mode);
1249 		if (error)
1250 			break;
1251 		/*
1252 		 * The caller supposedly flushed all dirty pages in the source
1253 		 * file range, which means that writeback should have allocated
1254 		 * or deleted all delalloc reservations in that range.  If we
1255 		 * find one, that's a good sign that something is seriously
1256 		 * wrong here.
1257 		 */
1258 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1259 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1260 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1261 			error = -EFSCORRUPTED;
1262 			break;
1263 		}
1264 
1265 		trace_xfs_reflink_remap_extent_src(src, &imap);
1266 
1267 		/* Remap into the destination file at the given offset. */
1268 		imap.br_startoff = destoff;
1269 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1270 		if (error)
1271 			break;
1272 
1273 		if (fatal_signal_pending(current)) {
1274 			error = -EINTR;
1275 			break;
1276 		}
1277 
1278 		/* Advance drange/srange */
1279 		srcoff += imap.br_blockcount;
1280 		destoff += imap.br_blockcount;
1281 		len -= imap.br_blockcount;
1282 		remapped_len += imap.br_blockcount;
1283 	}
1284 
1285 	if (error)
1286 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1287 	*remapped = min_t(loff_t, remap_len,
1288 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1289 	return error;
1290 }
1291 
1292 /*
1293  * If we're reflinking to a point past the destination file's EOF, we must
1294  * zero any speculative post-EOF preallocations that sit between the old EOF
1295  * and the destination file offset.
1296  */
1297 static int
1298 xfs_reflink_zero_posteof(
1299 	struct xfs_inode	*ip,
1300 	loff_t			pos)
1301 {
1302 	loff_t			isize = i_size_read(VFS_I(ip));
1303 
1304 	if (pos <= isize)
1305 		return 0;
1306 
1307 	trace_xfs_zero_eof(ip, isize, pos - isize);
1308 	return xfs_zero_range(ip, isize, pos - isize, NULL);
1309 }
1310 
1311 /*
1312  * Prepare two files for range cloning.  Upon a successful return both inodes
1313  * will have the iolock and mmaplock held, the page cache of the out file will
1314  * be truncated, and any leases on the out file will have been broken.  This
1315  * function borrows heavily from xfs_file_aio_write_checks.
1316  *
1317  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1318  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1319  * EOF block in the source dedupe range because it's not a complete block match,
1320  * hence can introduce a corruption into the file that has it's block replaced.
1321  *
1322  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1323  * "block aligned" for the purposes of cloning entire files.  However, if the
1324  * source file range includes the EOF block and it lands within the existing EOF
1325  * of the destination file, then we can expose stale data from beyond the source
1326  * file EOF in the destination file.
1327  *
1328  * XFS doesn't support partial block sharing, so in both cases we have check
1329  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1330  * down to the previous whole block and ignore the partial EOF block. While this
1331  * means we can't dedupe the last block of a file, this is an acceptible
1332  * tradeoff for simplicity on implementation.
1333  *
1334  * For cloning, we want to share the partial EOF block if it is also the new EOF
1335  * block of the destination file. If the partial EOF block lies inside the
1336  * existing destination EOF, then we have to abort the clone to avoid exposing
1337  * stale data in the destination file. Hence we reject these clone attempts with
1338  * -EINVAL in this case.
1339  */
1340 int
1341 xfs_reflink_remap_prep(
1342 	struct file		*file_in,
1343 	loff_t			pos_in,
1344 	struct file		*file_out,
1345 	loff_t			pos_out,
1346 	loff_t			*len,
1347 	unsigned int		remap_flags)
1348 {
1349 	struct inode		*inode_in = file_inode(file_in);
1350 	struct xfs_inode	*src = XFS_I(inode_in);
1351 	struct inode		*inode_out = file_inode(file_out);
1352 	struct xfs_inode	*dest = XFS_I(inode_out);
1353 	int			ret;
1354 
1355 	/* Lock both files against IO */
1356 	ret = xfs_ilock2_io_mmap(src, dest);
1357 	if (ret)
1358 		return ret;
1359 
1360 	/* Check file eligibility and prepare for block sharing. */
1361 	ret = -EINVAL;
1362 	/* Don't reflink realtime inodes */
1363 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1364 		goto out_unlock;
1365 
1366 	/* Don't share DAX file data for now. */
1367 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1368 		goto out_unlock;
1369 
1370 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1371 			len, remap_flags);
1372 	if (ret || *len == 0)
1373 		goto out_unlock;
1374 
1375 	/* Attach dquots to dest inode before changing block map */
1376 	ret = xfs_qm_dqattach(dest);
1377 	if (ret)
1378 		goto out_unlock;
1379 
1380 	/*
1381 	 * Zero existing post-eof speculative preallocations in the destination
1382 	 * file.
1383 	 */
1384 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1385 	if (ret)
1386 		goto out_unlock;
1387 
1388 	/* Set flags and remap blocks. */
1389 	ret = xfs_reflink_set_inode_flag(src, dest);
1390 	if (ret)
1391 		goto out_unlock;
1392 
1393 	/*
1394 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1395 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1396 	 * from EOF to the end of the copy length.
1397 	 */
1398 	if (pos_out > XFS_ISIZE(dest)) {
1399 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1400 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1401 	} else {
1402 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1403 	}
1404 	if (ret)
1405 		goto out_unlock;
1406 
1407 	return 0;
1408 out_unlock:
1409 	xfs_iunlock2_io_mmap(src, dest);
1410 	return ret;
1411 }
1412 
1413 /* Does this inode need the reflink flag? */
1414 int
1415 xfs_reflink_inode_has_shared_extents(
1416 	struct xfs_trans		*tp,
1417 	struct xfs_inode		*ip,
1418 	bool				*has_shared)
1419 {
1420 	struct xfs_bmbt_irec		got;
1421 	struct xfs_mount		*mp = ip->i_mount;
1422 	struct xfs_ifork		*ifp;
1423 	xfs_agnumber_t			agno;
1424 	xfs_agblock_t			agbno;
1425 	xfs_extlen_t			aglen;
1426 	xfs_agblock_t			rbno;
1427 	xfs_extlen_t			rlen;
1428 	struct xfs_iext_cursor		icur;
1429 	bool				found;
1430 	int				error;
1431 
1432 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1433 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1434 	if (error)
1435 		return error;
1436 
1437 	*has_shared = false;
1438 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1439 	while (found) {
1440 		if (isnullstartblock(got.br_startblock) ||
1441 		    got.br_state != XFS_EXT_NORM)
1442 			goto next;
1443 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1444 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1445 		aglen = got.br_blockcount;
1446 
1447 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1448 				&rbno, &rlen, false);
1449 		if (error)
1450 			return error;
1451 		/* Is there still a shared block here? */
1452 		if (rbno != NULLAGBLOCK) {
1453 			*has_shared = true;
1454 			return 0;
1455 		}
1456 next:
1457 		found = xfs_iext_next_extent(ifp, &icur, &got);
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Clear the inode reflink flag if there are no shared extents.
1465  *
1466  * The caller is responsible for joining the inode to the transaction passed in.
1467  * The inode will be joined to the transaction that is returned to the caller.
1468  */
1469 int
1470 xfs_reflink_clear_inode_flag(
1471 	struct xfs_inode	*ip,
1472 	struct xfs_trans	**tpp)
1473 {
1474 	bool			needs_flag;
1475 	int			error = 0;
1476 
1477 	ASSERT(xfs_is_reflink_inode(ip));
1478 
1479 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1480 	if (error || needs_flag)
1481 		return error;
1482 
1483 	/*
1484 	 * We didn't find any shared blocks so turn off the reflink flag.
1485 	 * First, get rid of any leftover CoW mappings.
1486 	 */
1487 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1488 			true);
1489 	if (error)
1490 		return error;
1491 
1492 	/* Clear the inode flag. */
1493 	trace_xfs_reflink_unset_inode_flag(ip);
1494 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1495 	xfs_inode_clear_cowblocks_tag(ip);
1496 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1497 
1498 	return error;
1499 }
1500 
1501 /*
1502  * Clear the inode reflink flag if there are no shared extents and the size
1503  * hasn't changed.
1504  */
1505 STATIC int
1506 xfs_reflink_try_clear_inode_flag(
1507 	struct xfs_inode	*ip)
1508 {
1509 	struct xfs_mount	*mp = ip->i_mount;
1510 	struct xfs_trans	*tp;
1511 	int			error = 0;
1512 
1513 	/* Start a rolling transaction to remove the mappings */
1514 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1515 	if (error)
1516 		return error;
1517 
1518 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1519 	xfs_trans_ijoin(tp, ip, 0);
1520 
1521 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1522 	if (error)
1523 		goto cancel;
1524 
1525 	error = xfs_trans_commit(tp);
1526 	if (error)
1527 		goto out;
1528 
1529 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530 	return 0;
1531 cancel:
1532 	xfs_trans_cancel(tp);
1533 out:
1534 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1535 	return error;
1536 }
1537 
1538 /*
1539  * Pre-COW all shared blocks within a given byte range of a file and turn off
1540  * the reflink flag if we unshare all of the file's blocks.
1541  */
1542 int
1543 xfs_reflink_unshare(
1544 	struct xfs_inode	*ip,
1545 	xfs_off_t		offset,
1546 	xfs_off_t		len)
1547 {
1548 	struct inode		*inode = VFS_I(ip);
1549 	int			error;
1550 
1551 	if (!xfs_is_reflink_inode(ip))
1552 		return 0;
1553 
1554 	trace_xfs_reflink_unshare(ip, offset, len);
1555 
1556 	inode_dio_wait(inode);
1557 
1558 	error = iomap_file_unshare(inode, offset, len,
1559 			&xfs_buffered_write_iomap_ops);
1560 	if (error)
1561 		goto out;
1562 
1563 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1564 			offset + len - 1);
1565 	if (error)
1566 		goto out;
1567 
1568 	/* Turn off the reflink flag if possible. */
1569 	error = xfs_reflink_try_clear_inode_flag(ip);
1570 	if (error)
1571 		goto out;
1572 	return 0;
1573 
1574 out:
1575 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1576 	return error;
1577 }
1578