xref: /linux/fs/xfs/xfs_refcount_item.c (revision f4fee216df7d28b87d1c9cc60bcebfecb51c1a05)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_ag.h"
24 
25 struct kmem_cache	*xfs_cui_cache;
26 struct kmem_cache	*xfs_cud_cache;
27 
28 static const struct xfs_item_ops xfs_cui_item_ops;
29 
30 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
31 {
32 	return container_of(lip, struct xfs_cui_log_item, cui_item);
33 }
34 
35 STATIC void
36 xfs_cui_item_free(
37 	struct xfs_cui_log_item	*cuip)
38 {
39 	kvfree(cuip->cui_item.li_lv_shadow);
40 	if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
41 		kfree(cuip);
42 	else
43 		kmem_cache_free(xfs_cui_cache, cuip);
44 }
45 
46 /*
47  * Freeing the CUI requires that we remove it from the AIL if it has already
48  * been placed there. However, the CUI may not yet have been placed in the AIL
49  * when called by xfs_cui_release() from CUD processing due to the ordering of
50  * committed vs unpin operations in bulk insert operations. Hence the reference
51  * count to ensure only the last caller frees the CUI.
52  */
53 STATIC void
54 xfs_cui_release(
55 	struct xfs_cui_log_item	*cuip)
56 {
57 	ASSERT(atomic_read(&cuip->cui_refcount) > 0);
58 	if (!atomic_dec_and_test(&cuip->cui_refcount))
59 		return;
60 
61 	xfs_trans_ail_delete(&cuip->cui_item, 0);
62 	xfs_cui_item_free(cuip);
63 }
64 
65 
66 STATIC void
67 xfs_cui_item_size(
68 	struct xfs_log_item	*lip,
69 	int			*nvecs,
70 	int			*nbytes)
71 {
72 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
73 
74 	*nvecs += 1;
75 	*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
76 }
77 
78 /*
79  * This is called to fill in the vector of log iovecs for the
80  * given cui log item. We use only 1 iovec, and we point that
81  * at the cui_log_format structure embedded in the cui item.
82  * It is at this point that we assert that all of the extent
83  * slots in the cui item have been filled.
84  */
85 STATIC void
86 xfs_cui_item_format(
87 	struct xfs_log_item	*lip,
88 	struct xfs_log_vec	*lv)
89 {
90 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
91 	struct xfs_log_iovec	*vecp = NULL;
92 
93 	ASSERT(atomic_read(&cuip->cui_next_extent) ==
94 			cuip->cui_format.cui_nextents);
95 
96 	cuip->cui_format.cui_type = XFS_LI_CUI;
97 	cuip->cui_format.cui_size = 1;
98 
99 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
100 			xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
101 }
102 
103 /*
104  * The unpin operation is the last place an CUI is manipulated in the log. It is
105  * either inserted in the AIL or aborted in the event of a log I/O error. In
106  * either case, the CUI transaction has been successfully committed to make it
107  * this far. Therefore, we expect whoever committed the CUI to either construct
108  * and commit the CUD or drop the CUD's reference in the event of error. Simply
109  * drop the log's CUI reference now that the log is done with it.
110  */
111 STATIC void
112 xfs_cui_item_unpin(
113 	struct xfs_log_item	*lip,
114 	int			remove)
115 {
116 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
117 
118 	xfs_cui_release(cuip);
119 }
120 
121 /*
122  * The CUI has been either committed or aborted if the transaction has been
123  * cancelled. If the transaction was cancelled, an CUD isn't going to be
124  * constructed and thus we free the CUI here directly.
125  */
126 STATIC void
127 xfs_cui_item_release(
128 	struct xfs_log_item	*lip)
129 {
130 	xfs_cui_release(CUI_ITEM(lip));
131 }
132 
133 /*
134  * Allocate and initialize an cui item with the given number of extents.
135  */
136 STATIC struct xfs_cui_log_item *
137 xfs_cui_init(
138 	struct xfs_mount		*mp,
139 	uint				nextents)
140 
141 {
142 	struct xfs_cui_log_item		*cuip;
143 
144 	ASSERT(nextents > 0);
145 	if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
146 		cuip = kzalloc(xfs_cui_log_item_sizeof(nextents),
147 				GFP_KERNEL | __GFP_NOFAIL);
148 	else
149 		cuip = kmem_cache_zalloc(xfs_cui_cache,
150 					 GFP_KERNEL | __GFP_NOFAIL);
151 
152 	xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
153 	cuip->cui_format.cui_nextents = nextents;
154 	cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
155 	atomic_set(&cuip->cui_next_extent, 0);
156 	atomic_set(&cuip->cui_refcount, 2);
157 
158 	return cuip;
159 }
160 
161 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
162 {
163 	return container_of(lip, struct xfs_cud_log_item, cud_item);
164 }
165 
166 STATIC void
167 xfs_cud_item_size(
168 	struct xfs_log_item	*lip,
169 	int			*nvecs,
170 	int			*nbytes)
171 {
172 	*nvecs += 1;
173 	*nbytes += sizeof(struct xfs_cud_log_format);
174 }
175 
176 /*
177  * This is called to fill in the vector of log iovecs for the
178  * given cud log item. We use only 1 iovec, and we point that
179  * at the cud_log_format structure embedded in the cud item.
180  * It is at this point that we assert that all of the extent
181  * slots in the cud item have been filled.
182  */
183 STATIC void
184 xfs_cud_item_format(
185 	struct xfs_log_item	*lip,
186 	struct xfs_log_vec	*lv)
187 {
188 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
189 	struct xfs_log_iovec	*vecp = NULL;
190 
191 	cudp->cud_format.cud_type = XFS_LI_CUD;
192 	cudp->cud_format.cud_size = 1;
193 
194 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
195 			sizeof(struct xfs_cud_log_format));
196 }
197 
198 /*
199  * The CUD is either committed or aborted if the transaction is cancelled. If
200  * the transaction is cancelled, drop our reference to the CUI and free the
201  * CUD.
202  */
203 STATIC void
204 xfs_cud_item_release(
205 	struct xfs_log_item	*lip)
206 {
207 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
208 
209 	xfs_cui_release(cudp->cud_cuip);
210 	kvfree(cudp->cud_item.li_lv_shadow);
211 	kmem_cache_free(xfs_cud_cache, cudp);
212 }
213 
214 static struct xfs_log_item *
215 xfs_cud_item_intent(
216 	struct xfs_log_item	*lip)
217 {
218 	return &CUD_ITEM(lip)->cud_cuip->cui_item;
219 }
220 
221 static const struct xfs_item_ops xfs_cud_item_ops = {
222 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
223 			  XFS_ITEM_INTENT_DONE,
224 	.iop_size	= xfs_cud_item_size,
225 	.iop_format	= xfs_cud_item_format,
226 	.iop_release	= xfs_cud_item_release,
227 	.iop_intent	= xfs_cud_item_intent,
228 };
229 
230 /* Sort refcount intents by AG. */
231 static int
232 xfs_refcount_update_diff_items(
233 	void				*priv,
234 	const struct list_head		*a,
235 	const struct list_head		*b)
236 {
237 	struct xfs_refcount_intent	*ra;
238 	struct xfs_refcount_intent	*rb;
239 
240 	ra = container_of(a, struct xfs_refcount_intent, ri_list);
241 	rb = container_of(b, struct xfs_refcount_intent, ri_list);
242 
243 	return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
244 }
245 
246 /* Set the phys extent flags for this reverse mapping. */
247 static void
248 xfs_trans_set_refcount_flags(
249 	struct xfs_phys_extent		*pmap,
250 	enum xfs_refcount_intent_type	type)
251 {
252 	pmap->pe_flags = 0;
253 	switch (type) {
254 	case XFS_REFCOUNT_INCREASE:
255 	case XFS_REFCOUNT_DECREASE:
256 	case XFS_REFCOUNT_ALLOC_COW:
257 	case XFS_REFCOUNT_FREE_COW:
258 		pmap->pe_flags |= type;
259 		break;
260 	default:
261 		ASSERT(0);
262 	}
263 }
264 
265 /* Log refcount updates in the intent item. */
266 STATIC void
267 xfs_refcount_update_log_item(
268 	struct xfs_trans		*tp,
269 	struct xfs_cui_log_item		*cuip,
270 	struct xfs_refcount_intent	*ri)
271 {
272 	uint				next_extent;
273 	struct xfs_phys_extent		*pmap;
274 
275 	/*
276 	 * atomic_inc_return gives us the value after the increment;
277 	 * we want to use it as an array index so we need to subtract 1 from
278 	 * it.
279 	 */
280 	next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
281 	ASSERT(next_extent < cuip->cui_format.cui_nextents);
282 	pmap = &cuip->cui_format.cui_extents[next_extent];
283 	pmap->pe_startblock = ri->ri_startblock;
284 	pmap->pe_len = ri->ri_blockcount;
285 	xfs_trans_set_refcount_flags(pmap, ri->ri_type);
286 }
287 
288 static struct xfs_log_item *
289 xfs_refcount_update_create_intent(
290 	struct xfs_trans		*tp,
291 	struct list_head		*items,
292 	unsigned int			count,
293 	bool				sort)
294 {
295 	struct xfs_mount		*mp = tp->t_mountp;
296 	struct xfs_cui_log_item		*cuip = xfs_cui_init(mp, count);
297 	struct xfs_refcount_intent	*ri;
298 
299 	ASSERT(count > 0);
300 
301 	if (sort)
302 		list_sort(mp, items, xfs_refcount_update_diff_items);
303 	list_for_each_entry(ri, items, ri_list)
304 		xfs_refcount_update_log_item(tp, cuip, ri);
305 	return &cuip->cui_item;
306 }
307 
308 /* Get an CUD so we can process all the deferred refcount updates. */
309 static struct xfs_log_item *
310 xfs_refcount_update_create_done(
311 	struct xfs_trans		*tp,
312 	struct xfs_log_item		*intent,
313 	unsigned int			count)
314 {
315 	struct xfs_cui_log_item		*cuip = CUI_ITEM(intent);
316 	struct xfs_cud_log_item		*cudp;
317 
318 	cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL);
319 	xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
320 			  &xfs_cud_item_ops);
321 	cudp->cud_cuip = cuip;
322 	cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
323 
324 	return &cudp->cud_item;
325 }
326 
327 /* Take a passive ref to the AG containing the space we're refcounting. */
328 void
329 xfs_refcount_update_get_group(
330 	struct xfs_mount		*mp,
331 	struct xfs_refcount_intent	*ri)
332 {
333 	xfs_agnumber_t			agno;
334 
335 	agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock);
336 	ri->ri_pag = xfs_perag_intent_get(mp, agno);
337 }
338 
339 /* Release a passive AG ref after finishing refcounting work. */
340 static inline void
341 xfs_refcount_update_put_group(
342 	struct xfs_refcount_intent	*ri)
343 {
344 	xfs_perag_intent_put(ri->ri_pag);
345 }
346 
347 /* Process a deferred refcount update. */
348 STATIC int
349 xfs_refcount_update_finish_item(
350 	struct xfs_trans		*tp,
351 	struct xfs_log_item		*done,
352 	struct list_head		*item,
353 	struct xfs_btree_cur		**state)
354 {
355 	struct xfs_refcount_intent	*ri;
356 	int				error;
357 
358 	ri = container_of(item, struct xfs_refcount_intent, ri_list);
359 
360 	/* Did we run out of reservation?  Requeue what we didn't finish. */
361 	error = xfs_refcount_finish_one(tp, ri, state);
362 	if (!error && ri->ri_blockcount > 0) {
363 		ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE ||
364 		       ri->ri_type == XFS_REFCOUNT_DECREASE);
365 		return -EAGAIN;
366 	}
367 
368 	xfs_refcount_update_put_group(ri);
369 	kmem_cache_free(xfs_refcount_intent_cache, ri);
370 	return error;
371 }
372 
373 /* Abort all pending CUIs. */
374 STATIC void
375 xfs_refcount_update_abort_intent(
376 	struct xfs_log_item		*intent)
377 {
378 	xfs_cui_release(CUI_ITEM(intent));
379 }
380 
381 /* Cancel a deferred refcount update. */
382 STATIC void
383 xfs_refcount_update_cancel_item(
384 	struct list_head		*item)
385 {
386 	struct xfs_refcount_intent	*ri;
387 
388 	ri = container_of(item, struct xfs_refcount_intent, ri_list);
389 
390 	xfs_refcount_update_put_group(ri);
391 	kmem_cache_free(xfs_refcount_intent_cache, ri);
392 }
393 
394 /* Is this recovered CUI ok? */
395 static inline bool
396 xfs_cui_validate_phys(
397 	struct xfs_mount		*mp,
398 	struct xfs_phys_extent		*pmap)
399 {
400 	if (!xfs_has_reflink(mp))
401 		return false;
402 
403 	if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)
404 		return false;
405 
406 	switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
407 	case XFS_REFCOUNT_INCREASE:
408 	case XFS_REFCOUNT_DECREASE:
409 	case XFS_REFCOUNT_ALLOC_COW:
410 	case XFS_REFCOUNT_FREE_COW:
411 		break;
412 	default:
413 		return false;
414 	}
415 
416 	return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len);
417 }
418 
419 static inline void
420 xfs_cui_recover_work(
421 	struct xfs_mount		*mp,
422 	struct xfs_defer_pending	*dfp,
423 	struct xfs_phys_extent		*pmap)
424 {
425 	struct xfs_refcount_intent	*ri;
426 
427 	ri = kmem_cache_alloc(xfs_refcount_intent_cache,
428 			GFP_KERNEL | __GFP_NOFAIL);
429 	ri->ri_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
430 	ri->ri_startblock = pmap->pe_startblock;
431 	ri->ri_blockcount = pmap->pe_len;
432 	xfs_refcount_update_get_group(mp, ri);
433 
434 	xfs_defer_add_item(dfp, &ri->ri_list);
435 }
436 
437 /*
438  * Process a refcount update intent item that was recovered from the log.
439  * We need to update the refcountbt.
440  */
441 STATIC int
442 xfs_refcount_recover_work(
443 	struct xfs_defer_pending	*dfp,
444 	struct list_head		*capture_list)
445 {
446 	struct xfs_trans_res		resv;
447 	struct xfs_log_item		*lip = dfp->dfp_intent;
448 	struct xfs_cui_log_item		*cuip = CUI_ITEM(lip);
449 	struct xfs_trans		*tp;
450 	struct xfs_mount		*mp = lip->li_log->l_mp;
451 	int				i;
452 	int				error = 0;
453 
454 	/*
455 	 * First check the validity of the extents described by the
456 	 * CUI.  If any are bad, then assume that all are bad and
457 	 * just toss the CUI.
458 	 */
459 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
460 		if (!xfs_cui_validate_phys(mp,
461 					&cuip->cui_format.cui_extents[i])) {
462 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
463 					&cuip->cui_format,
464 					sizeof(cuip->cui_format));
465 			return -EFSCORRUPTED;
466 		}
467 
468 		xfs_cui_recover_work(mp, dfp, &cuip->cui_format.cui_extents[i]);
469 	}
470 
471 	/*
472 	 * Under normal operation, refcount updates are deferred, so we
473 	 * wouldn't be adding them directly to a transaction.  All
474 	 * refcount updates manage reservation usage internally and
475 	 * dynamically by deferring work that won't fit in the
476 	 * transaction.  Normally, any work that needs to be deferred
477 	 * gets attached to the same defer_ops that scheduled the
478 	 * refcount update.  However, we're in log recovery here, so we
479 	 * use the passed in defer_ops and to finish up any work that
480 	 * doesn't fit.  We need to reserve enough blocks to handle a
481 	 * full btree split on either end of the refcount range.
482 	 */
483 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
484 	error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0,
485 			XFS_TRANS_RESERVE, &tp);
486 	if (error)
487 		return error;
488 
489 	error = xlog_recover_finish_intent(tp, dfp);
490 	if (error == -EFSCORRUPTED)
491 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
492 				&cuip->cui_format,
493 				sizeof(cuip->cui_format));
494 	if (error)
495 		goto abort_error;
496 
497 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
498 
499 abort_error:
500 	xfs_trans_cancel(tp);
501 	return error;
502 }
503 
504 /* Relog an intent item to push the log tail forward. */
505 static struct xfs_log_item *
506 xfs_refcount_relog_intent(
507 	struct xfs_trans		*tp,
508 	struct xfs_log_item		*intent,
509 	struct xfs_log_item		*done_item)
510 {
511 	struct xfs_cui_log_item		*cuip;
512 	struct xfs_phys_extent		*pmap;
513 	unsigned int			count;
514 
515 	count = CUI_ITEM(intent)->cui_format.cui_nextents;
516 	pmap = CUI_ITEM(intent)->cui_format.cui_extents;
517 
518 	cuip = xfs_cui_init(tp->t_mountp, count);
519 	memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap));
520 	atomic_set(&cuip->cui_next_extent, count);
521 
522 	return &cuip->cui_item;
523 }
524 
525 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
526 	.name		= "refcount",
527 	.max_items	= XFS_CUI_MAX_FAST_EXTENTS,
528 	.create_intent	= xfs_refcount_update_create_intent,
529 	.abort_intent	= xfs_refcount_update_abort_intent,
530 	.create_done	= xfs_refcount_update_create_done,
531 	.finish_item	= xfs_refcount_update_finish_item,
532 	.finish_cleanup = xfs_refcount_finish_one_cleanup,
533 	.cancel_item	= xfs_refcount_update_cancel_item,
534 	.recover_work	= xfs_refcount_recover_work,
535 	.relog_intent	= xfs_refcount_relog_intent,
536 };
537 
538 STATIC bool
539 xfs_cui_item_match(
540 	struct xfs_log_item	*lip,
541 	uint64_t		intent_id)
542 {
543 	return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
544 }
545 
546 static const struct xfs_item_ops xfs_cui_item_ops = {
547 	.flags		= XFS_ITEM_INTENT,
548 	.iop_size	= xfs_cui_item_size,
549 	.iop_format	= xfs_cui_item_format,
550 	.iop_unpin	= xfs_cui_item_unpin,
551 	.iop_release	= xfs_cui_item_release,
552 	.iop_match	= xfs_cui_item_match,
553 };
554 
555 static inline void
556 xfs_cui_copy_format(
557 	struct xfs_cui_log_format	*dst,
558 	const struct xfs_cui_log_format	*src)
559 {
560 	unsigned int			i;
561 
562 	memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents));
563 
564 	for (i = 0; i < src->cui_nextents; i++)
565 		memcpy(&dst->cui_extents[i], &src->cui_extents[i],
566 				sizeof(struct xfs_phys_extent));
567 }
568 
569 /*
570  * This routine is called to create an in-core extent refcount update
571  * item from the cui format structure which was logged on disk.
572  * It allocates an in-core cui, copies the extents from the format
573  * structure into it, and adds the cui to the AIL with the given
574  * LSN.
575  */
576 STATIC int
577 xlog_recover_cui_commit_pass2(
578 	struct xlog			*log,
579 	struct list_head		*buffer_list,
580 	struct xlog_recover_item	*item,
581 	xfs_lsn_t			lsn)
582 {
583 	struct xfs_mount		*mp = log->l_mp;
584 	struct xfs_cui_log_item		*cuip;
585 	struct xfs_cui_log_format	*cui_formatp;
586 	size_t				len;
587 
588 	cui_formatp = item->ri_buf[0].i_addr;
589 
590 	if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) {
591 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
592 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
593 		return -EFSCORRUPTED;
594 	}
595 
596 	len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents);
597 	if (item->ri_buf[0].i_len != len) {
598 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
599 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
600 		return -EFSCORRUPTED;
601 	}
602 
603 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
604 	xfs_cui_copy_format(&cuip->cui_format, cui_formatp);
605 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
606 
607 	xlog_recover_intent_item(log, &cuip->cui_item, lsn,
608 			&xfs_refcount_update_defer_type);
609 	return 0;
610 }
611 
612 const struct xlog_recover_item_ops xlog_cui_item_ops = {
613 	.item_type		= XFS_LI_CUI,
614 	.commit_pass2		= xlog_recover_cui_commit_pass2,
615 };
616 
617 /*
618  * This routine is called when an CUD format structure is found in a committed
619  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
620  * was still in the log. To do this it searches the AIL for the CUI with an id
621  * equal to that in the CUD format structure. If we find it we drop the CUD
622  * reference, which removes the CUI from the AIL and frees it.
623  */
624 STATIC int
625 xlog_recover_cud_commit_pass2(
626 	struct xlog			*log,
627 	struct list_head		*buffer_list,
628 	struct xlog_recover_item	*item,
629 	xfs_lsn_t			lsn)
630 {
631 	struct xfs_cud_log_format	*cud_formatp;
632 
633 	cud_formatp = item->ri_buf[0].i_addr;
634 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
635 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
636 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
637 		return -EFSCORRUPTED;
638 	}
639 
640 	xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
641 	return 0;
642 }
643 
644 const struct xlog_recover_item_ops xlog_cud_item_ops = {
645 	.item_type		= XFS_LI_CUD,
646 	.commit_pass2		= xlog_recover_cud_commit_pass2,
647 };
648