xref: /linux/fs/xfs/xfs_refcount_item.c (revision f2c6dbd220170c2396fb019ead67fbada1e23ebd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_ag.h"
24 #include "xfs_btree.h"
25 #include "xfs_trace.h"
26 
27 struct kmem_cache	*xfs_cui_cache;
28 struct kmem_cache	*xfs_cud_cache;
29 
30 static const struct xfs_item_ops xfs_cui_item_ops;
31 
32 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
33 {
34 	return container_of(lip, struct xfs_cui_log_item, cui_item);
35 }
36 
37 STATIC void
38 xfs_cui_item_free(
39 	struct xfs_cui_log_item	*cuip)
40 {
41 	kvfree(cuip->cui_item.li_lv_shadow);
42 	if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
43 		kfree(cuip);
44 	else
45 		kmem_cache_free(xfs_cui_cache, cuip);
46 }
47 
48 /*
49  * Freeing the CUI requires that we remove it from the AIL if it has already
50  * been placed there. However, the CUI may not yet have been placed in the AIL
51  * when called by xfs_cui_release() from CUD processing due to the ordering of
52  * committed vs unpin operations in bulk insert operations. Hence the reference
53  * count to ensure only the last caller frees the CUI.
54  */
55 STATIC void
56 xfs_cui_release(
57 	struct xfs_cui_log_item	*cuip)
58 {
59 	ASSERT(atomic_read(&cuip->cui_refcount) > 0);
60 	if (!atomic_dec_and_test(&cuip->cui_refcount))
61 		return;
62 
63 	xfs_trans_ail_delete(&cuip->cui_item, 0);
64 	xfs_cui_item_free(cuip);
65 }
66 
67 
68 STATIC void
69 xfs_cui_item_size(
70 	struct xfs_log_item	*lip,
71 	int			*nvecs,
72 	int			*nbytes)
73 {
74 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
75 
76 	*nvecs += 1;
77 	*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
78 }
79 
80 /*
81  * This is called to fill in the vector of log iovecs for the
82  * given cui log item. We use only 1 iovec, and we point that
83  * at the cui_log_format structure embedded in the cui item.
84  * It is at this point that we assert that all of the extent
85  * slots in the cui item have been filled.
86  */
87 STATIC void
88 xfs_cui_item_format(
89 	struct xfs_log_item	*lip,
90 	struct xfs_log_vec	*lv)
91 {
92 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
93 	struct xfs_log_iovec	*vecp = NULL;
94 
95 	ASSERT(atomic_read(&cuip->cui_next_extent) ==
96 			cuip->cui_format.cui_nextents);
97 
98 	cuip->cui_format.cui_type = XFS_LI_CUI;
99 	cuip->cui_format.cui_size = 1;
100 
101 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
102 			xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
103 }
104 
105 /*
106  * The unpin operation is the last place an CUI is manipulated in the log. It is
107  * either inserted in the AIL or aborted in the event of a log I/O error. In
108  * either case, the CUI transaction has been successfully committed to make it
109  * this far. Therefore, we expect whoever committed the CUI to either construct
110  * and commit the CUD or drop the CUD's reference in the event of error. Simply
111  * drop the log's CUI reference now that the log is done with it.
112  */
113 STATIC void
114 xfs_cui_item_unpin(
115 	struct xfs_log_item	*lip,
116 	int			remove)
117 {
118 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
119 
120 	xfs_cui_release(cuip);
121 }
122 
123 /*
124  * The CUI has been either committed or aborted if the transaction has been
125  * cancelled. If the transaction was cancelled, an CUD isn't going to be
126  * constructed and thus we free the CUI here directly.
127  */
128 STATIC void
129 xfs_cui_item_release(
130 	struct xfs_log_item	*lip)
131 {
132 	xfs_cui_release(CUI_ITEM(lip));
133 }
134 
135 /*
136  * Allocate and initialize an cui item with the given number of extents.
137  */
138 STATIC struct xfs_cui_log_item *
139 xfs_cui_init(
140 	struct xfs_mount		*mp,
141 	uint				nextents)
142 
143 {
144 	struct xfs_cui_log_item		*cuip;
145 
146 	ASSERT(nextents > 0);
147 	if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
148 		cuip = kzalloc(xfs_cui_log_item_sizeof(nextents),
149 				GFP_KERNEL | __GFP_NOFAIL);
150 	else
151 		cuip = kmem_cache_zalloc(xfs_cui_cache,
152 					 GFP_KERNEL | __GFP_NOFAIL);
153 
154 	xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
155 	cuip->cui_format.cui_nextents = nextents;
156 	cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
157 	atomic_set(&cuip->cui_next_extent, 0);
158 	atomic_set(&cuip->cui_refcount, 2);
159 
160 	return cuip;
161 }
162 
163 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
164 {
165 	return container_of(lip, struct xfs_cud_log_item, cud_item);
166 }
167 
168 STATIC void
169 xfs_cud_item_size(
170 	struct xfs_log_item	*lip,
171 	int			*nvecs,
172 	int			*nbytes)
173 {
174 	*nvecs += 1;
175 	*nbytes += sizeof(struct xfs_cud_log_format);
176 }
177 
178 /*
179  * This is called to fill in the vector of log iovecs for the
180  * given cud log item. We use only 1 iovec, and we point that
181  * at the cud_log_format structure embedded in the cud item.
182  * It is at this point that we assert that all of the extent
183  * slots in the cud item have been filled.
184  */
185 STATIC void
186 xfs_cud_item_format(
187 	struct xfs_log_item	*lip,
188 	struct xfs_log_vec	*lv)
189 {
190 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
191 	struct xfs_log_iovec	*vecp = NULL;
192 
193 	cudp->cud_format.cud_type = XFS_LI_CUD;
194 	cudp->cud_format.cud_size = 1;
195 
196 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
197 			sizeof(struct xfs_cud_log_format));
198 }
199 
200 /*
201  * The CUD is either committed or aborted if the transaction is cancelled. If
202  * the transaction is cancelled, drop our reference to the CUI and free the
203  * CUD.
204  */
205 STATIC void
206 xfs_cud_item_release(
207 	struct xfs_log_item	*lip)
208 {
209 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
210 
211 	xfs_cui_release(cudp->cud_cuip);
212 	kvfree(cudp->cud_item.li_lv_shadow);
213 	kmem_cache_free(xfs_cud_cache, cudp);
214 }
215 
216 static struct xfs_log_item *
217 xfs_cud_item_intent(
218 	struct xfs_log_item	*lip)
219 {
220 	return &CUD_ITEM(lip)->cud_cuip->cui_item;
221 }
222 
223 static const struct xfs_item_ops xfs_cud_item_ops = {
224 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
225 			  XFS_ITEM_INTENT_DONE,
226 	.iop_size	= xfs_cud_item_size,
227 	.iop_format	= xfs_cud_item_format,
228 	.iop_release	= xfs_cud_item_release,
229 	.iop_intent	= xfs_cud_item_intent,
230 };
231 
232 static inline struct xfs_refcount_intent *ci_entry(const struct list_head *e)
233 {
234 	return list_entry(e, struct xfs_refcount_intent, ri_list);
235 }
236 
237 /* Sort refcount intents by AG. */
238 static int
239 xfs_refcount_update_diff_items(
240 	void				*priv,
241 	const struct list_head		*a,
242 	const struct list_head		*b)
243 {
244 	struct xfs_refcount_intent	*ra = ci_entry(a);
245 	struct xfs_refcount_intent	*rb = ci_entry(b);
246 
247 	return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
248 }
249 
250 /* Log refcount updates in the intent item. */
251 STATIC void
252 xfs_refcount_update_log_item(
253 	struct xfs_trans		*tp,
254 	struct xfs_cui_log_item		*cuip,
255 	struct xfs_refcount_intent	*ri)
256 {
257 	uint				next_extent;
258 	struct xfs_phys_extent		*pmap;
259 
260 	/*
261 	 * atomic_inc_return gives us the value after the increment;
262 	 * we want to use it as an array index so we need to subtract 1 from
263 	 * it.
264 	 */
265 	next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
266 	ASSERT(next_extent < cuip->cui_format.cui_nextents);
267 	pmap = &cuip->cui_format.cui_extents[next_extent];
268 	pmap->pe_startblock = ri->ri_startblock;
269 	pmap->pe_len = ri->ri_blockcount;
270 
271 	pmap->pe_flags = 0;
272 	switch (ri->ri_type) {
273 	case XFS_REFCOUNT_INCREASE:
274 	case XFS_REFCOUNT_DECREASE:
275 	case XFS_REFCOUNT_ALLOC_COW:
276 	case XFS_REFCOUNT_FREE_COW:
277 		pmap->pe_flags |= ri->ri_type;
278 		break;
279 	default:
280 		ASSERT(0);
281 	}
282 }
283 
284 static struct xfs_log_item *
285 xfs_refcount_update_create_intent(
286 	struct xfs_trans		*tp,
287 	struct list_head		*items,
288 	unsigned int			count,
289 	bool				sort)
290 {
291 	struct xfs_mount		*mp = tp->t_mountp;
292 	struct xfs_cui_log_item		*cuip = xfs_cui_init(mp, count);
293 	struct xfs_refcount_intent	*ri;
294 
295 	ASSERT(count > 0);
296 
297 	if (sort)
298 		list_sort(mp, items, xfs_refcount_update_diff_items);
299 	list_for_each_entry(ri, items, ri_list)
300 		xfs_refcount_update_log_item(tp, cuip, ri);
301 	return &cuip->cui_item;
302 }
303 
304 /* Get an CUD so we can process all the deferred refcount updates. */
305 static struct xfs_log_item *
306 xfs_refcount_update_create_done(
307 	struct xfs_trans		*tp,
308 	struct xfs_log_item		*intent,
309 	unsigned int			count)
310 {
311 	struct xfs_cui_log_item		*cuip = CUI_ITEM(intent);
312 	struct xfs_cud_log_item		*cudp;
313 
314 	cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL);
315 	xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
316 			  &xfs_cud_item_ops);
317 	cudp->cud_cuip = cuip;
318 	cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
319 
320 	return &cudp->cud_item;
321 }
322 
323 /* Add this deferred CUI to the transaction. */
324 void
325 xfs_refcount_defer_add(
326 	struct xfs_trans		*tp,
327 	struct xfs_refcount_intent	*ri)
328 {
329 	struct xfs_mount		*mp = tp->t_mountp;
330 
331 	trace_xfs_refcount_defer(mp, ri);
332 
333 	ri->ri_pag = xfs_perag_intent_get(mp, ri->ri_startblock);
334 	xfs_defer_add(tp, &ri->ri_list, &xfs_refcount_update_defer_type);
335 }
336 
337 /* Cancel a deferred refcount update. */
338 STATIC void
339 xfs_refcount_update_cancel_item(
340 	struct list_head		*item)
341 {
342 	struct xfs_refcount_intent	*ri = ci_entry(item);
343 
344 	xfs_perag_intent_put(ri->ri_pag);
345 	kmem_cache_free(xfs_refcount_intent_cache, ri);
346 }
347 
348 /* Process a deferred refcount update. */
349 STATIC int
350 xfs_refcount_update_finish_item(
351 	struct xfs_trans		*tp,
352 	struct xfs_log_item		*done,
353 	struct list_head		*item,
354 	struct xfs_btree_cur		**state)
355 {
356 	struct xfs_refcount_intent	*ri = ci_entry(item);
357 	int				error;
358 
359 	/* Did we run out of reservation?  Requeue what we didn't finish. */
360 	error = xfs_refcount_finish_one(tp, ri, state);
361 	if (!error && ri->ri_blockcount > 0) {
362 		ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE ||
363 		       ri->ri_type == XFS_REFCOUNT_DECREASE);
364 		return -EAGAIN;
365 	}
366 
367 	xfs_refcount_update_cancel_item(item);
368 	return error;
369 }
370 
371 /* Clean up after calling xfs_refcount_finish_one. */
372 STATIC void
373 xfs_refcount_finish_one_cleanup(
374 	struct xfs_trans	*tp,
375 	struct xfs_btree_cur	*rcur,
376 	int			error)
377 {
378 	struct xfs_buf		*agbp;
379 
380 	if (rcur == NULL)
381 		return;
382 	agbp = rcur->bc_ag.agbp;
383 	xfs_btree_del_cursor(rcur, error);
384 	if (error)
385 		xfs_trans_brelse(tp, agbp);
386 }
387 
388 /* Abort all pending CUIs. */
389 STATIC void
390 xfs_refcount_update_abort_intent(
391 	struct xfs_log_item		*intent)
392 {
393 	xfs_cui_release(CUI_ITEM(intent));
394 }
395 
396 /* Is this recovered CUI ok? */
397 static inline bool
398 xfs_cui_validate_phys(
399 	struct xfs_mount		*mp,
400 	struct xfs_phys_extent		*pmap)
401 {
402 	if (!xfs_has_reflink(mp))
403 		return false;
404 
405 	if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)
406 		return false;
407 
408 	switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
409 	case XFS_REFCOUNT_INCREASE:
410 	case XFS_REFCOUNT_DECREASE:
411 	case XFS_REFCOUNT_ALLOC_COW:
412 	case XFS_REFCOUNT_FREE_COW:
413 		break;
414 	default:
415 		return false;
416 	}
417 
418 	return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len);
419 }
420 
421 static inline void
422 xfs_cui_recover_work(
423 	struct xfs_mount		*mp,
424 	struct xfs_defer_pending	*dfp,
425 	struct xfs_phys_extent		*pmap)
426 {
427 	struct xfs_refcount_intent	*ri;
428 
429 	ri = kmem_cache_alloc(xfs_refcount_intent_cache,
430 			GFP_KERNEL | __GFP_NOFAIL);
431 	ri->ri_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
432 	ri->ri_startblock = pmap->pe_startblock;
433 	ri->ri_blockcount = pmap->pe_len;
434 	ri->ri_pag = xfs_perag_intent_get(mp, pmap->pe_startblock);
435 
436 	xfs_defer_add_item(dfp, &ri->ri_list);
437 }
438 
439 /*
440  * Process a refcount update intent item that was recovered from the log.
441  * We need to update the refcountbt.
442  */
443 STATIC int
444 xfs_refcount_recover_work(
445 	struct xfs_defer_pending	*dfp,
446 	struct list_head		*capture_list)
447 {
448 	struct xfs_trans_res		resv;
449 	struct xfs_log_item		*lip = dfp->dfp_intent;
450 	struct xfs_cui_log_item		*cuip = CUI_ITEM(lip);
451 	struct xfs_trans		*tp;
452 	struct xfs_mount		*mp = lip->li_log->l_mp;
453 	int				i;
454 	int				error = 0;
455 
456 	/*
457 	 * First check the validity of the extents described by the
458 	 * CUI.  If any are bad, then assume that all are bad and
459 	 * just toss the CUI.
460 	 */
461 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
462 		if (!xfs_cui_validate_phys(mp,
463 					&cuip->cui_format.cui_extents[i])) {
464 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
465 					&cuip->cui_format,
466 					sizeof(cuip->cui_format));
467 			return -EFSCORRUPTED;
468 		}
469 
470 		xfs_cui_recover_work(mp, dfp, &cuip->cui_format.cui_extents[i]);
471 	}
472 
473 	/*
474 	 * Under normal operation, refcount updates are deferred, so we
475 	 * wouldn't be adding them directly to a transaction.  All
476 	 * refcount updates manage reservation usage internally and
477 	 * dynamically by deferring work that won't fit in the
478 	 * transaction.  Normally, any work that needs to be deferred
479 	 * gets attached to the same defer_ops that scheduled the
480 	 * refcount update.  However, we're in log recovery here, so we
481 	 * use the passed in defer_ops and to finish up any work that
482 	 * doesn't fit.  We need to reserve enough blocks to handle a
483 	 * full btree split on either end of the refcount range.
484 	 */
485 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
486 	error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0,
487 			XFS_TRANS_RESERVE, &tp);
488 	if (error)
489 		return error;
490 
491 	error = xlog_recover_finish_intent(tp, dfp);
492 	if (error == -EFSCORRUPTED)
493 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
494 				&cuip->cui_format,
495 				sizeof(cuip->cui_format));
496 	if (error)
497 		goto abort_error;
498 
499 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
500 
501 abort_error:
502 	xfs_trans_cancel(tp);
503 	return error;
504 }
505 
506 /* Relog an intent item to push the log tail forward. */
507 static struct xfs_log_item *
508 xfs_refcount_relog_intent(
509 	struct xfs_trans		*tp,
510 	struct xfs_log_item		*intent,
511 	struct xfs_log_item		*done_item)
512 {
513 	struct xfs_cui_log_item		*cuip;
514 	struct xfs_phys_extent		*pmap;
515 	unsigned int			count;
516 
517 	count = CUI_ITEM(intent)->cui_format.cui_nextents;
518 	pmap = CUI_ITEM(intent)->cui_format.cui_extents;
519 
520 	cuip = xfs_cui_init(tp->t_mountp, count);
521 	memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap));
522 	atomic_set(&cuip->cui_next_extent, count);
523 
524 	return &cuip->cui_item;
525 }
526 
527 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
528 	.name		= "refcount",
529 	.max_items	= XFS_CUI_MAX_FAST_EXTENTS,
530 	.create_intent	= xfs_refcount_update_create_intent,
531 	.abort_intent	= xfs_refcount_update_abort_intent,
532 	.create_done	= xfs_refcount_update_create_done,
533 	.finish_item	= xfs_refcount_update_finish_item,
534 	.finish_cleanup = xfs_refcount_finish_one_cleanup,
535 	.cancel_item	= xfs_refcount_update_cancel_item,
536 	.recover_work	= xfs_refcount_recover_work,
537 	.relog_intent	= xfs_refcount_relog_intent,
538 };
539 
540 STATIC bool
541 xfs_cui_item_match(
542 	struct xfs_log_item	*lip,
543 	uint64_t		intent_id)
544 {
545 	return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
546 }
547 
548 static const struct xfs_item_ops xfs_cui_item_ops = {
549 	.flags		= XFS_ITEM_INTENT,
550 	.iop_size	= xfs_cui_item_size,
551 	.iop_format	= xfs_cui_item_format,
552 	.iop_unpin	= xfs_cui_item_unpin,
553 	.iop_release	= xfs_cui_item_release,
554 	.iop_match	= xfs_cui_item_match,
555 };
556 
557 static inline void
558 xfs_cui_copy_format(
559 	struct xfs_cui_log_format	*dst,
560 	const struct xfs_cui_log_format	*src)
561 {
562 	unsigned int			i;
563 
564 	memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents));
565 
566 	for (i = 0; i < src->cui_nextents; i++)
567 		memcpy(&dst->cui_extents[i], &src->cui_extents[i],
568 				sizeof(struct xfs_phys_extent));
569 }
570 
571 /*
572  * This routine is called to create an in-core extent refcount update
573  * item from the cui format structure which was logged on disk.
574  * It allocates an in-core cui, copies the extents from the format
575  * structure into it, and adds the cui to the AIL with the given
576  * LSN.
577  */
578 STATIC int
579 xlog_recover_cui_commit_pass2(
580 	struct xlog			*log,
581 	struct list_head		*buffer_list,
582 	struct xlog_recover_item	*item,
583 	xfs_lsn_t			lsn)
584 {
585 	struct xfs_mount		*mp = log->l_mp;
586 	struct xfs_cui_log_item		*cuip;
587 	struct xfs_cui_log_format	*cui_formatp;
588 	size_t				len;
589 
590 	cui_formatp = item->ri_buf[0].i_addr;
591 
592 	if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) {
593 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
594 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
595 		return -EFSCORRUPTED;
596 	}
597 
598 	len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents);
599 	if (item->ri_buf[0].i_len != len) {
600 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
601 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
602 		return -EFSCORRUPTED;
603 	}
604 
605 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
606 	xfs_cui_copy_format(&cuip->cui_format, cui_formatp);
607 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
608 
609 	xlog_recover_intent_item(log, &cuip->cui_item, lsn,
610 			&xfs_refcount_update_defer_type);
611 	return 0;
612 }
613 
614 const struct xlog_recover_item_ops xlog_cui_item_ops = {
615 	.item_type		= XFS_LI_CUI,
616 	.commit_pass2		= xlog_recover_cui_commit_pass2,
617 };
618 
619 /*
620  * This routine is called when an CUD format structure is found in a committed
621  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
622  * was still in the log. To do this it searches the AIL for the CUI with an id
623  * equal to that in the CUD format structure. If we find it we drop the CUD
624  * reference, which removes the CUI from the AIL and frees it.
625  */
626 STATIC int
627 xlog_recover_cud_commit_pass2(
628 	struct xlog			*log,
629 	struct list_head		*buffer_list,
630 	struct xlog_recover_item	*item,
631 	xfs_lsn_t			lsn)
632 {
633 	struct xfs_cud_log_format	*cud_formatp;
634 
635 	cud_formatp = item->ri_buf[0].i_addr;
636 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
637 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
638 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
639 		return -EFSCORRUPTED;
640 	}
641 
642 	xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
643 	return 0;
644 }
645 
646 const struct xlog_recover_item_ops xlog_cud_item_ops = {
647 	.item_type		= XFS_LI_CUD,
648 	.commit_pass2		= xlog_recover_cud_commit_pass2,
649 };
650