1 /* 2 * Copyright (C) 2016 Oracle. All Rights Reserved. 3 * 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it would be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 19 */ 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_trans.h" 29 #include "xfs_trans_priv.h" 30 #include "xfs_buf_item.h" 31 #include "xfs_refcount_item.h" 32 #include "xfs_log.h" 33 #include "xfs_refcount.h" 34 35 36 kmem_zone_t *xfs_cui_zone; 37 kmem_zone_t *xfs_cud_zone; 38 39 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 40 { 41 return container_of(lip, struct xfs_cui_log_item, cui_item); 42 } 43 44 void 45 xfs_cui_item_free( 46 struct xfs_cui_log_item *cuip) 47 { 48 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 49 kmem_free(cuip); 50 else 51 kmem_zone_free(xfs_cui_zone, cuip); 52 } 53 54 STATIC void 55 xfs_cui_item_size( 56 struct xfs_log_item *lip, 57 int *nvecs, 58 int *nbytes) 59 { 60 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 61 62 *nvecs += 1; 63 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 64 } 65 66 /* 67 * This is called to fill in the vector of log iovecs for the 68 * given cui log item. We use only 1 iovec, and we point that 69 * at the cui_log_format structure embedded in the cui item. 70 * It is at this point that we assert that all of the extent 71 * slots in the cui item have been filled. 72 */ 73 STATIC void 74 xfs_cui_item_format( 75 struct xfs_log_item *lip, 76 struct xfs_log_vec *lv) 77 { 78 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 79 struct xfs_log_iovec *vecp = NULL; 80 81 ASSERT(atomic_read(&cuip->cui_next_extent) == 82 cuip->cui_format.cui_nextents); 83 84 cuip->cui_format.cui_type = XFS_LI_CUI; 85 cuip->cui_format.cui_size = 1; 86 87 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 88 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 89 } 90 91 /* 92 * Pinning has no meaning for an cui item, so just return. 93 */ 94 STATIC void 95 xfs_cui_item_pin( 96 struct xfs_log_item *lip) 97 { 98 } 99 100 /* 101 * The unpin operation is the last place an CUI is manipulated in the log. It is 102 * either inserted in the AIL or aborted in the event of a log I/O error. In 103 * either case, the CUI transaction has been successfully committed to make it 104 * this far. Therefore, we expect whoever committed the CUI to either construct 105 * and commit the CUD or drop the CUD's reference in the event of error. Simply 106 * drop the log's CUI reference now that the log is done with it. 107 */ 108 STATIC void 109 xfs_cui_item_unpin( 110 struct xfs_log_item *lip, 111 int remove) 112 { 113 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 114 115 xfs_cui_release(cuip); 116 } 117 118 /* 119 * CUI items have no locking or pushing. However, since CUIs are pulled from 120 * the AIL when their corresponding CUDs are committed to disk, their situation 121 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller 122 * will eventually flush the log. This should help in getting the CUI out of 123 * the AIL. 124 */ 125 STATIC uint 126 xfs_cui_item_push( 127 struct xfs_log_item *lip, 128 struct list_head *buffer_list) 129 { 130 return XFS_ITEM_PINNED; 131 } 132 133 /* 134 * The CUI has been either committed or aborted if the transaction has been 135 * cancelled. If the transaction was cancelled, an CUD isn't going to be 136 * constructed and thus we free the CUI here directly. 137 */ 138 STATIC void 139 xfs_cui_item_unlock( 140 struct xfs_log_item *lip) 141 { 142 if (lip->li_flags & XFS_LI_ABORTED) 143 xfs_cui_item_free(CUI_ITEM(lip)); 144 } 145 146 /* 147 * The CUI is logged only once and cannot be moved in the log, so simply return 148 * the lsn at which it's been logged. 149 */ 150 STATIC xfs_lsn_t 151 xfs_cui_item_committed( 152 struct xfs_log_item *lip, 153 xfs_lsn_t lsn) 154 { 155 return lsn; 156 } 157 158 /* 159 * The CUI dependency tracking op doesn't do squat. It can't because 160 * it doesn't know where the free extent is coming from. The dependency 161 * tracking has to be handled by the "enclosing" metadata object. For 162 * example, for inodes, the inode is locked throughout the extent freeing 163 * so the dependency should be recorded there. 164 */ 165 STATIC void 166 xfs_cui_item_committing( 167 struct xfs_log_item *lip, 168 xfs_lsn_t lsn) 169 { 170 } 171 172 /* 173 * This is the ops vector shared by all cui log items. 174 */ 175 static const struct xfs_item_ops xfs_cui_item_ops = { 176 .iop_size = xfs_cui_item_size, 177 .iop_format = xfs_cui_item_format, 178 .iop_pin = xfs_cui_item_pin, 179 .iop_unpin = xfs_cui_item_unpin, 180 .iop_unlock = xfs_cui_item_unlock, 181 .iop_committed = xfs_cui_item_committed, 182 .iop_push = xfs_cui_item_push, 183 .iop_committing = xfs_cui_item_committing, 184 }; 185 186 /* 187 * Allocate and initialize an cui item with the given number of extents. 188 */ 189 struct xfs_cui_log_item * 190 xfs_cui_init( 191 struct xfs_mount *mp, 192 uint nextents) 193 194 { 195 struct xfs_cui_log_item *cuip; 196 197 ASSERT(nextents > 0); 198 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 199 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 200 KM_SLEEP); 201 else 202 cuip = kmem_zone_zalloc(xfs_cui_zone, KM_SLEEP); 203 204 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); 205 cuip->cui_format.cui_nextents = nextents; 206 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 207 atomic_set(&cuip->cui_next_extent, 0); 208 atomic_set(&cuip->cui_refcount, 2); 209 210 return cuip; 211 } 212 213 /* 214 * Freeing the CUI requires that we remove it from the AIL if it has already 215 * been placed there. However, the CUI may not yet have been placed in the AIL 216 * when called by xfs_cui_release() from CUD processing due to the ordering of 217 * committed vs unpin operations in bulk insert operations. Hence the reference 218 * count to ensure only the last caller frees the CUI. 219 */ 220 void 221 xfs_cui_release( 222 struct xfs_cui_log_item *cuip) 223 { 224 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 225 if (atomic_dec_and_test(&cuip->cui_refcount)) { 226 xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); 227 xfs_cui_item_free(cuip); 228 } 229 } 230 231 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 232 { 233 return container_of(lip, struct xfs_cud_log_item, cud_item); 234 } 235 236 STATIC void 237 xfs_cud_item_size( 238 struct xfs_log_item *lip, 239 int *nvecs, 240 int *nbytes) 241 { 242 *nvecs += 1; 243 *nbytes += sizeof(struct xfs_cud_log_format); 244 } 245 246 /* 247 * This is called to fill in the vector of log iovecs for the 248 * given cud log item. We use only 1 iovec, and we point that 249 * at the cud_log_format structure embedded in the cud item. 250 * It is at this point that we assert that all of the extent 251 * slots in the cud item have been filled. 252 */ 253 STATIC void 254 xfs_cud_item_format( 255 struct xfs_log_item *lip, 256 struct xfs_log_vec *lv) 257 { 258 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 259 struct xfs_log_iovec *vecp = NULL; 260 261 cudp->cud_format.cud_type = XFS_LI_CUD; 262 cudp->cud_format.cud_size = 1; 263 264 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 265 sizeof(struct xfs_cud_log_format)); 266 } 267 268 /* 269 * Pinning has no meaning for an cud item, so just return. 270 */ 271 STATIC void 272 xfs_cud_item_pin( 273 struct xfs_log_item *lip) 274 { 275 } 276 277 /* 278 * Since pinning has no meaning for an cud item, unpinning does 279 * not either. 280 */ 281 STATIC void 282 xfs_cud_item_unpin( 283 struct xfs_log_item *lip, 284 int remove) 285 { 286 } 287 288 /* 289 * There isn't much you can do to push on an cud item. It is simply stuck 290 * waiting for the log to be flushed to disk. 291 */ 292 STATIC uint 293 xfs_cud_item_push( 294 struct xfs_log_item *lip, 295 struct list_head *buffer_list) 296 { 297 return XFS_ITEM_PINNED; 298 } 299 300 /* 301 * The CUD is either committed or aborted if the transaction is cancelled. If 302 * the transaction is cancelled, drop our reference to the CUI and free the 303 * CUD. 304 */ 305 STATIC void 306 xfs_cud_item_unlock( 307 struct xfs_log_item *lip) 308 { 309 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 310 311 if (lip->li_flags & XFS_LI_ABORTED) { 312 xfs_cui_release(cudp->cud_cuip); 313 kmem_zone_free(xfs_cud_zone, cudp); 314 } 315 } 316 317 /* 318 * When the cud item is committed to disk, all we need to do is delete our 319 * reference to our partner cui item and then free ourselves. Since we're 320 * freeing ourselves we must return -1 to keep the transaction code from 321 * further referencing this item. 322 */ 323 STATIC xfs_lsn_t 324 xfs_cud_item_committed( 325 struct xfs_log_item *lip, 326 xfs_lsn_t lsn) 327 { 328 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 329 330 /* 331 * Drop the CUI reference regardless of whether the CUD has been 332 * aborted. Once the CUD transaction is constructed, it is the sole 333 * responsibility of the CUD to release the CUI (even if the CUI is 334 * aborted due to log I/O error). 335 */ 336 xfs_cui_release(cudp->cud_cuip); 337 kmem_zone_free(xfs_cud_zone, cudp); 338 339 return (xfs_lsn_t)-1; 340 } 341 342 /* 343 * The CUD dependency tracking op doesn't do squat. It can't because 344 * it doesn't know where the free extent is coming from. The dependency 345 * tracking has to be handled by the "enclosing" metadata object. For 346 * example, for inodes, the inode is locked throughout the extent freeing 347 * so the dependency should be recorded there. 348 */ 349 STATIC void 350 xfs_cud_item_committing( 351 struct xfs_log_item *lip, 352 xfs_lsn_t lsn) 353 { 354 } 355 356 /* 357 * This is the ops vector shared by all cud log items. 358 */ 359 static const struct xfs_item_ops xfs_cud_item_ops = { 360 .iop_size = xfs_cud_item_size, 361 .iop_format = xfs_cud_item_format, 362 .iop_pin = xfs_cud_item_pin, 363 .iop_unpin = xfs_cud_item_unpin, 364 .iop_unlock = xfs_cud_item_unlock, 365 .iop_committed = xfs_cud_item_committed, 366 .iop_push = xfs_cud_item_push, 367 .iop_committing = xfs_cud_item_committing, 368 }; 369 370 /* 371 * Allocate and initialize an cud item with the given number of extents. 372 */ 373 struct xfs_cud_log_item * 374 xfs_cud_init( 375 struct xfs_mount *mp, 376 struct xfs_cui_log_item *cuip) 377 378 { 379 struct xfs_cud_log_item *cudp; 380 381 cudp = kmem_zone_zalloc(xfs_cud_zone, KM_SLEEP); 382 xfs_log_item_init(mp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops); 383 cudp->cud_cuip = cuip; 384 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 385 386 return cudp; 387 } 388 389 /* 390 * Process a refcount update intent item that was recovered from the log. 391 * We need to update the refcountbt. 392 */ 393 int 394 xfs_cui_recover( 395 struct xfs_mount *mp, 396 struct xfs_cui_log_item *cuip) 397 { 398 int i; 399 int error = 0; 400 unsigned int refc_type; 401 struct xfs_phys_extent *refc; 402 xfs_fsblock_t startblock_fsb; 403 bool op_ok; 404 struct xfs_cud_log_item *cudp; 405 struct xfs_trans *tp; 406 struct xfs_btree_cur *rcur = NULL; 407 enum xfs_refcount_intent_type type; 408 xfs_fsblock_t firstfsb; 409 xfs_fsblock_t new_fsb; 410 xfs_extlen_t new_len; 411 struct xfs_bmbt_irec irec; 412 struct xfs_defer_ops dfops; 413 bool requeue_only = false; 414 415 ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)); 416 417 /* 418 * First check the validity of the extents described by the 419 * CUI. If any are bad, then assume that all are bad and 420 * just toss the CUI. 421 */ 422 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 423 refc = &cuip->cui_format.cui_extents[i]; 424 startblock_fsb = XFS_BB_TO_FSB(mp, 425 XFS_FSB_TO_DADDR(mp, refc->pe_startblock)); 426 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 427 case XFS_REFCOUNT_INCREASE: 428 case XFS_REFCOUNT_DECREASE: 429 case XFS_REFCOUNT_ALLOC_COW: 430 case XFS_REFCOUNT_FREE_COW: 431 op_ok = true; 432 break; 433 default: 434 op_ok = false; 435 break; 436 } 437 if (!op_ok || startblock_fsb == 0 || 438 refc->pe_len == 0 || 439 startblock_fsb >= mp->m_sb.sb_dblocks || 440 refc->pe_len >= mp->m_sb.sb_agblocks || 441 (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) { 442 /* 443 * This will pull the CUI from the AIL and 444 * free the memory associated with it. 445 */ 446 set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); 447 xfs_cui_release(cuip); 448 return -EIO; 449 } 450 } 451 452 /* 453 * Under normal operation, refcount updates are deferred, so we 454 * wouldn't be adding them directly to a transaction. All 455 * refcount updates manage reservation usage internally and 456 * dynamically by deferring work that won't fit in the 457 * transaction. Normally, any work that needs to be deferred 458 * gets attached to the same defer_ops that scheduled the 459 * refcount update. However, we're in log recovery here, so we 460 * we create our own defer_ops and use that to finish up any 461 * work that doesn't fit. 462 */ 463 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); 464 if (error) 465 return error; 466 cudp = xfs_trans_get_cud(tp, cuip); 467 468 xfs_defer_init(&dfops, &firstfsb); 469 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 470 refc = &cuip->cui_format.cui_extents[i]; 471 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 472 switch (refc_type) { 473 case XFS_REFCOUNT_INCREASE: 474 case XFS_REFCOUNT_DECREASE: 475 case XFS_REFCOUNT_ALLOC_COW: 476 case XFS_REFCOUNT_FREE_COW: 477 type = refc_type; 478 break; 479 default: 480 error = -EFSCORRUPTED; 481 goto abort_error; 482 } 483 if (requeue_only) { 484 new_fsb = refc->pe_startblock; 485 new_len = refc->pe_len; 486 } else 487 error = xfs_trans_log_finish_refcount_update(tp, cudp, 488 &dfops, type, refc->pe_startblock, refc->pe_len, 489 &new_fsb, &new_len, &rcur); 490 if (error) 491 goto abort_error; 492 493 /* Requeue what we didn't finish. */ 494 if (new_len > 0) { 495 irec.br_startblock = new_fsb; 496 irec.br_blockcount = new_len; 497 switch (type) { 498 case XFS_REFCOUNT_INCREASE: 499 error = xfs_refcount_increase_extent( 500 tp->t_mountp, &dfops, &irec); 501 break; 502 case XFS_REFCOUNT_DECREASE: 503 error = xfs_refcount_decrease_extent( 504 tp->t_mountp, &dfops, &irec); 505 break; 506 case XFS_REFCOUNT_ALLOC_COW: 507 error = xfs_refcount_alloc_cow_extent( 508 tp->t_mountp, &dfops, 509 irec.br_startblock, 510 irec.br_blockcount); 511 break; 512 case XFS_REFCOUNT_FREE_COW: 513 error = xfs_refcount_free_cow_extent( 514 tp->t_mountp, &dfops, 515 irec.br_startblock, 516 irec.br_blockcount); 517 break; 518 default: 519 ASSERT(0); 520 } 521 if (error) 522 goto abort_error; 523 requeue_only = true; 524 } 525 } 526 527 xfs_refcount_finish_one_cleanup(tp, rcur, error); 528 error = xfs_defer_finish(&tp, &dfops, NULL); 529 if (error) 530 goto abort_defer; 531 set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); 532 error = xfs_trans_commit(tp); 533 return error; 534 535 abort_error: 536 xfs_refcount_finish_one_cleanup(tp, rcur, error); 537 abort_defer: 538 xfs_defer_cancel(&dfops); 539 xfs_trans_cancel(tp); 540 return error; 541 } 542