xref: /linux/fs/xfs/xfs_refcount_item.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 
24 kmem_zone_t	*xfs_cui_zone;
25 kmem_zone_t	*xfs_cud_zone;
26 
27 static const struct xfs_item_ops xfs_cui_item_ops;
28 
29 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
30 {
31 	return container_of(lip, struct xfs_cui_log_item, cui_item);
32 }
33 
34 STATIC void
35 xfs_cui_item_free(
36 	struct xfs_cui_log_item	*cuip)
37 {
38 	if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
39 		kmem_free(cuip);
40 	else
41 		kmem_cache_free(xfs_cui_zone, cuip);
42 }
43 
44 /*
45  * Freeing the CUI requires that we remove it from the AIL if it has already
46  * been placed there. However, the CUI may not yet have been placed in the AIL
47  * when called by xfs_cui_release() from CUD processing due to the ordering of
48  * committed vs unpin operations in bulk insert operations. Hence the reference
49  * count to ensure only the last caller frees the CUI.
50  */
51 STATIC void
52 xfs_cui_release(
53 	struct xfs_cui_log_item	*cuip)
54 {
55 	ASSERT(atomic_read(&cuip->cui_refcount) > 0);
56 	if (atomic_dec_and_test(&cuip->cui_refcount)) {
57 		xfs_trans_ail_delete(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
58 		xfs_cui_item_free(cuip);
59 	}
60 }
61 
62 
63 STATIC void
64 xfs_cui_item_size(
65 	struct xfs_log_item	*lip,
66 	int			*nvecs,
67 	int			*nbytes)
68 {
69 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
70 
71 	*nvecs += 1;
72 	*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
73 }
74 
75 /*
76  * This is called to fill in the vector of log iovecs for the
77  * given cui log item. We use only 1 iovec, and we point that
78  * at the cui_log_format structure embedded in the cui item.
79  * It is at this point that we assert that all of the extent
80  * slots in the cui item have been filled.
81  */
82 STATIC void
83 xfs_cui_item_format(
84 	struct xfs_log_item	*lip,
85 	struct xfs_log_vec	*lv)
86 {
87 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
88 	struct xfs_log_iovec	*vecp = NULL;
89 
90 	ASSERT(atomic_read(&cuip->cui_next_extent) ==
91 			cuip->cui_format.cui_nextents);
92 
93 	cuip->cui_format.cui_type = XFS_LI_CUI;
94 	cuip->cui_format.cui_size = 1;
95 
96 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
97 			xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
98 }
99 
100 /*
101  * The unpin operation is the last place an CUI is manipulated in the log. It is
102  * either inserted in the AIL or aborted in the event of a log I/O error. In
103  * either case, the CUI transaction has been successfully committed to make it
104  * this far. Therefore, we expect whoever committed the CUI to either construct
105  * and commit the CUD or drop the CUD's reference in the event of error. Simply
106  * drop the log's CUI reference now that the log is done with it.
107  */
108 STATIC void
109 xfs_cui_item_unpin(
110 	struct xfs_log_item	*lip,
111 	int			remove)
112 {
113 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
114 
115 	xfs_cui_release(cuip);
116 }
117 
118 /*
119  * The CUI has been either committed or aborted if the transaction has been
120  * cancelled. If the transaction was cancelled, an CUD isn't going to be
121  * constructed and thus we free the CUI here directly.
122  */
123 STATIC void
124 xfs_cui_item_release(
125 	struct xfs_log_item	*lip)
126 {
127 	xfs_cui_release(CUI_ITEM(lip));
128 }
129 
130 /*
131  * Allocate and initialize an cui item with the given number of extents.
132  */
133 STATIC struct xfs_cui_log_item *
134 xfs_cui_init(
135 	struct xfs_mount		*mp,
136 	uint				nextents)
137 
138 {
139 	struct xfs_cui_log_item		*cuip;
140 
141 	ASSERT(nextents > 0);
142 	if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
143 		cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
144 				0);
145 	else
146 		cuip = kmem_zone_zalloc(xfs_cui_zone, 0);
147 
148 	xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
149 	cuip->cui_format.cui_nextents = nextents;
150 	cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
151 	atomic_set(&cuip->cui_next_extent, 0);
152 	atomic_set(&cuip->cui_refcount, 2);
153 
154 	return cuip;
155 }
156 
157 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
158 {
159 	return container_of(lip, struct xfs_cud_log_item, cud_item);
160 }
161 
162 STATIC void
163 xfs_cud_item_size(
164 	struct xfs_log_item	*lip,
165 	int			*nvecs,
166 	int			*nbytes)
167 {
168 	*nvecs += 1;
169 	*nbytes += sizeof(struct xfs_cud_log_format);
170 }
171 
172 /*
173  * This is called to fill in the vector of log iovecs for the
174  * given cud log item. We use only 1 iovec, and we point that
175  * at the cud_log_format structure embedded in the cud item.
176  * It is at this point that we assert that all of the extent
177  * slots in the cud item have been filled.
178  */
179 STATIC void
180 xfs_cud_item_format(
181 	struct xfs_log_item	*lip,
182 	struct xfs_log_vec	*lv)
183 {
184 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
185 	struct xfs_log_iovec	*vecp = NULL;
186 
187 	cudp->cud_format.cud_type = XFS_LI_CUD;
188 	cudp->cud_format.cud_size = 1;
189 
190 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
191 			sizeof(struct xfs_cud_log_format));
192 }
193 
194 /*
195  * The CUD is either committed or aborted if the transaction is cancelled. If
196  * the transaction is cancelled, drop our reference to the CUI and free the
197  * CUD.
198  */
199 STATIC void
200 xfs_cud_item_release(
201 	struct xfs_log_item	*lip)
202 {
203 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
204 
205 	xfs_cui_release(cudp->cud_cuip);
206 	kmem_cache_free(xfs_cud_zone, cudp);
207 }
208 
209 static const struct xfs_item_ops xfs_cud_item_ops = {
210 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
211 	.iop_size	= xfs_cud_item_size,
212 	.iop_format	= xfs_cud_item_format,
213 	.iop_release	= xfs_cud_item_release,
214 };
215 
216 static struct xfs_cud_log_item *
217 xfs_trans_get_cud(
218 	struct xfs_trans		*tp,
219 	struct xfs_cui_log_item		*cuip)
220 {
221 	struct xfs_cud_log_item		*cudp;
222 
223 	cudp = kmem_zone_zalloc(xfs_cud_zone, 0);
224 	xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
225 			  &xfs_cud_item_ops);
226 	cudp->cud_cuip = cuip;
227 	cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
228 
229 	xfs_trans_add_item(tp, &cudp->cud_item);
230 	return cudp;
231 }
232 
233 /*
234  * Finish an refcount update and log it to the CUD. Note that the
235  * transaction is marked dirty regardless of whether the refcount
236  * update succeeds or fails to support the CUI/CUD lifecycle rules.
237  */
238 static int
239 xfs_trans_log_finish_refcount_update(
240 	struct xfs_trans		*tp,
241 	struct xfs_cud_log_item		*cudp,
242 	enum xfs_refcount_intent_type	type,
243 	xfs_fsblock_t			startblock,
244 	xfs_extlen_t			blockcount,
245 	xfs_fsblock_t			*new_fsb,
246 	xfs_extlen_t			*new_len,
247 	struct xfs_btree_cur		**pcur)
248 {
249 	int				error;
250 
251 	error = xfs_refcount_finish_one(tp, type, startblock,
252 			blockcount, new_fsb, new_len, pcur);
253 
254 	/*
255 	 * Mark the transaction dirty, even on error. This ensures the
256 	 * transaction is aborted, which:
257 	 *
258 	 * 1.) releases the CUI and frees the CUD
259 	 * 2.) shuts down the filesystem
260 	 */
261 	tp->t_flags |= XFS_TRANS_DIRTY;
262 	set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
263 
264 	return error;
265 }
266 
267 /* Sort refcount intents by AG. */
268 static int
269 xfs_refcount_update_diff_items(
270 	void				*priv,
271 	struct list_head		*a,
272 	struct list_head		*b)
273 {
274 	struct xfs_mount		*mp = priv;
275 	struct xfs_refcount_intent	*ra;
276 	struct xfs_refcount_intent	*rb;
277 
278 	ra = container_of(a, struct xfs_refcount_intent, ri_list);
279 	rb = container_of(b, struct xfs_refcount_intent, ri_list);
280 	return  XFS_FSB_TO_AGNO(mp, ra->ri_startblock) -
281 		XFS_FSB_TO_AGNO(mp, rb->ri_startblock);
282 }
283 
284 /* Set the phys extent flags for this reverse mapping. */
285 static void
286 xfs_trans_set_refcount_flags(
287 	struct xfs_phys_extent		*refc,
288 	enum xfs_refcount_intent_type	type)
289 {
290 	refc->pe_flags = 0;
291 	switch (type) {
292 	case XFS_REFCOUNT_INCREASE:
293 	case XFS_REFCOUNT_DECREASE:
294 	case XFS_REFCOUNT_ALLOC_COW:
295 	case XFS_REFCOUNT_FREE_COW:
296 		refc->pe_flags |= type;
297 		break;
298 	default:
299 		ASSERT(0);
300 	}
301 }
302 
303 /* Log refcount updates in the intent item. */
304 STATIC void
305 xfs_refcount_update_log_item(
306 	struct xfs_trans		*tp,
307 	struct xfs_cui_log_item		*cuip,
308 	struct xfs_refcount_intent	*refc)
309 {
310 	uint				next_extent;
311 	struct xfs_phys_extent		*ext;
312 
313 	tp->t_flags |= XFS_TRANS_DIRTY;
314 	set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
315 
316 	/*
317 	 * atomic_inc_return gives us the value after the increment;
318 	 * we want to use it as an array index so we need to subtract 1 from
319 	 * it.
320 	 */
321 	next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
322 	ASSERT(next_extent < cuip->cui_format.cui_nextents);
323 	ext = &cuip->cui_format.cui_extents[next_extent];
324 	ext->pe_startblock = refc->ri_startblock;
325 	ext->pe_len = refc->ri_blockcount;
326 	xfs_trans_set_refcount_flags(ext, refc->ri_type);
327 }
328 
329 static struct xfs_log_item *
330 xfs_refcount_update_create_intent(
331 	struct xfs_trans		*tp,
332 	struct list_head		*items,
333 	unsigned int			count,
334 	bool				sort)
335 {
336 	struct xfs_mount		*mp = tp->t_mountp;
337 	struct xfs_cui_log_item		*cuip = xfs_cui_init(mp, count);
338 	struct xfs_refcount_intent	*refc;
339 
340 	ASSERT(count > 0);
341 
342 	xfs_trans_add_item(tp, &cuip->cui_item);
343 	if (sort)
344 		list_sort(mp, items, xfs_refcount_update_diff_items);
345 	list_for_each_entry(refc, items, ri_list)
346 		xfs_refcount_update_log_item(tp, cuip, refc);
347 	return &cuip->cui_item;
348 }
349 
350 /* Get an CUD so we can process all the deferred refcount updates. */
351 static struct xfs_log_item *
352 xfs_refcount_update_create_done(
353 	struct xfs_trans		*tp,
354 	struct xfs_log_item		*intent,
355 	unsigned int			count)
356 {
357 	return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item;
358 }
359 
360 /* Process a deferred refcount update. */
361 STATIC int
362 xfs_refcount_update_finish_item(
363 	struct xfs_trans		*tp,
364 	struct xfs_log_item		*done,
365 	struct list_head		*item,
366 	struct xfs_btree_cur		**state)
367 {
368 	struct xfs_refcount_intent	*refc;
369 	xfs_fsblock_t			new_fsb;
370 	xfs_extlen_t			new_aglen;
371 	int				error;
372 
373 	refc = container_of(item, struct xfs_refcount_intent, ri_list);
374 	error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done),
375 			refc->ri_type, refc->ri_startblock, refc->ri_blockcount,
376 			&new_fsb, &new_aglen, state);
377 
378 	/* Did we run out of reservation?  Requeue what we didn't finish. */
379 	if (!error && new_aglen > 0) {
380 		ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE ||
381 		       refc->ri_type == XFS_REFCOUNT_DECREASE);
382 		refc->ri_startblock = new_fsb;
383 		refc->ri_blockcount = new_aglen;
384 		return -EAGAIN;
385 	}
386 	kmem_free(refc);
387 	return error;
388 }
389 
390 /* Abort all pending CUIs. */
391 STATIC void
392 xfs_refcount_update_abort_intent(
393 	struct xfs_log_item		*intent)
394 {
395 	xfs_cui_release(CUI_ITEM(intent));
396 }
397 
398 /* Cancel a deferred refcount update. */
399 STATIC void
400 xfs_refcount_update_cancel_item(
401 	struct list_head		*item)
402 {
403 	struct xfs_refcount_intent	*refc;
404 
405 	refc = container_of(item, struct xfs_refcount_intent, ri_list);
406 	kmem_free(refc);
407 }
408 
409 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
410 	.max_items	= XFS_CUI_MAX_FAST_EXTENTS,
411 	.create_intent	= xfs_refcount_update_create_intent,
412 	.abort_intent	= xfs_refcount_update_abort_intent,
413 	.create_done	= xfs_refcount_update_create_done,
414 	.finish_item	= xfs_refcount_update_finish_item,
415 	.finish_cleanup = xfs_refcount_finish_one_cleanup,
416 	.cancel_item	= xfs_refcount_update_cancel_item,
417 };
418 
419 /*
420  * Process a refcount update intent item that was recovered from the log.
421  * We need to update the refcountbt.
422  */
423 STATIC int
424 xfs_cui_item_recover(
425 	struct xfs_log_item		*lip,
426 	struct xfs_trans		*parent_tp)
427 {
428 	struct xfs_bmbt_irec		irec;
429 	struct xfs_cui_log_item		*cuip = CUI_ITEM(lip);
430 	struct xfs_phys_extent		*refc;
431 	struct xfs_cud_log_item		*cudp;
432 	struct xfs_trans		*tp;
433 	struct xfs_btree_cur		*rcur = NULL;
434 	struct xfs_mount		*mp = parent_tp->t_mountp;
435 	xfs_fsblock_t			startblock_fsb;
436 	xfs_fsblock_t			new_fsb;
437 	xfs_extlen_t			new_len;
438 	unsigned int			refc_type;
439 	bool				op_ok;
440 	bool				requeue_only = false;
441 	enum xfs_refcount_intent_type	type;
442 	int				i;
443 	int				error = 0;
444 
445 	/*
446 	 * First check the validity of the extents described by the
447 	 * CUI.  If any are bad, then assume that all are bad and
448 	 * just toss the CUI.
449 	 */
450 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
451 		refc = &cuip->cui_format.cui_extents[i];
452 		startblock_fsb = XFS_BB_TO_FSB(mp,
453 				   XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
454 		switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
455 		case XFS_REFCOUNT_INCREASE:
456 		case XFS_REFCOUNT_DECREASE:
457 		case XFS_REFCOUNT_ALLOC_COW:
458 		case XFS_REFCOUNT_FREE_COW:
459 			op_ok = true;
460 			break;
461 		default:
462 			op_ok = false;
463 			break;
464 		}
465 		if (!op_ok || startblock_fsb == 0 ||
466 		    refc->pe_len == 0 ||
467 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
468 		    refc->pe_len >= mp->m_sb.sb_agblocks ||
469 		    (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
470 			/*
471 			 * This will pull the CUI from the AIL and
472 			 * free the memory associated with it.
473 			 */
474 			xfs_cui_release(cuip);
475 			return -EFSCORRUPTED;
476 		}
477 	}
478 
479 	/*
480 	 * Under normal operation, refcount updates are deferred, so we
481 	 * wouldn't be adding them directly to a transaction.  All
482 	 * refcount updates manage reservation usage internally and
483 	 * dynamically by deferring work that won't fit in the
484 	 * transaction.  Normally, any work that needs to be deferred
485 	 * gets attached to the same defer_ops that scheduled the
486 	 * refcount update.  However, we're in log recovery here, so we
487 	 * we use the passed in defer_ops and to finish up any work that
488 	 * doesn't fit.  We need to reserve enough blocks to handle a
489 	 * full btree split on either end of the refcount range.
490 	 */
491 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
492 			mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
493 	if (error)
494 		return error;
495 	/*
496 	 * Recovery stashes all deferred ops during intent processing and
497 	 * finishes them on completion. Transfer current dfops state to this
498 	 * transaction and transfer the result back before we return.
499 	 */
500 	xfs_defer_move(tp, parent_tp);
501 	cudp = xfs_trans_get_cud(tp, cuip);
502 
503 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
504 		refc = &cuip->cui_format.cui_extents[i];
505 		refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
506 		switch (refc_type) {
507 		case XFS_REFCOUNT_INCREASE:
508 		case XFS_REFCOUNT_DECREASE:
509 		case XFS_REFCOUNT_ALLOC_COW:
510 		case XFS_REFCOUNT_FREE_COW:
511 			type = refc_type;
512 			break;
513 		default:
514 			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
515 			error = -EFSCORRUPTED;
516 			goto abort_error;
517 		}
518 		if (requeue_only) {
519 			new_fsb = refc->pe_startblock;
520 			new_len = refc->pe_len;
521 		} else
522 			error = xfs_trans_log_finish_refcount_update(tp, cudp,
523 				type, refc->pe_startblock, refc->pe_len,
524 				&new_fsb, &new_len, &rcur);
525 		if (error)
526 			goto abort_error;
527 
528 		/* Requeue what we didn't finish. */
529 		if (new_len > 0) {
530 			irec.br_startblock = new_fsb;
531 			irec.br_blockcount = new_len;
532 			switch (type) {
533 			case XFS_REFCOUNT_INCREASE:
534 				xfs_refcount_increase_extent(tp, &irec);
535 				break;
536 			case XFS_REFCOUNT_DECREASE:
537 				xfs_refcount_decrease_extent(tp, &irec);
538 				break;
539 			case XFS_REFCOUNT_ALLOC_COW:
540 				xfs_refcount_alloc_cow_extent(tp,
541 						irec.br_startblock,
542 						irec.br_blockcount);
543 				break;
544 			case XFS_REFCOUNT_FREE_COW:
545 				xfs_refcount_free_cow_extent(tp,
546 						irec.br_startblock,
547 						irec.br_blockcount);
548 				break;
549 			default:
550 				ASSERT(0);
551 			}
552 			requeue_only = true;
553 		}
554 	}
555 
556 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
557 	xfs_defer_move(parent_tp, tp);
558 	error = xfs_trans_commit(tp);
559 	return error;
560 
561 abort_error:
562 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
563 	xfs_defer_move(parent_tp, tp);
564 	xfs_trans_cancel(tp);
565 	return error;
566 }
567 
568 STATIC bool
569 xfs_cui_item_match(
570 	struct xfs_log_item	*lip,
571 	uint64_t		intent_id)
572 {
573 	return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
574 }
575 
576 static const struct xfs_item_ops xfs_cui_item_ops = {
577 	.iop_size	= xfs_cui_item_size,
578 	.iop_format	= xfs_cui_item_format,
579 	.iop_unpin	= xfs_cui_item_unpin,
580 	.iop_release	= xfs_cui_item_release,
581 	.iop_recover	= xfs_cui_item_recover,
582 	.iop_match	= xfs_cui_item_match,
583 };
584 
585 /*
586  * Copy an CUI format buffer from the given buf, and into the destination
587  * CUI format structure.  The CUI/CUD items were designed not to need any
588  * special alignment handling.
589  */
590 static int
591 xfs_cui_copy_format(
592 	struct xfs_log_iovec		*buf,
593 	struct xfs_cui_log_format	*dst_cui_fmt)
594 {
595 	struct xfs_cui_log_format	*src_cui_fmt;
596 	uint				len;
597 
598 	src_cui_fmt = buf->i_addr;
599 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
600 
601 	if (buf->i_len == len) {
602 		memcpy(dst_cui_fmt, src_cui_fmt, len);
603 		return 0;
604 	}
605 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
606 	return -EFSCORRUPTED;
607 }
608 
609 /*
610  * This routine is called to create an in-core extent refcount update
611  * item from the cui format structure which was logged on disk.
612  * It allocates an in-core cui, copies the extents from the format
613  * structure into it, and adds the cui to the AIL with the given
614  * LSN.
615  */
616 STATIC int
617 xlog_recover_cui_commit_pass2(
618 	struct xlog			*log,
619 	struct list_head		*buffer_list,
620 	struct xlog_recover_item	*item,
621 	xfs_lsn_t			lsn)
622 {
623 	int				error;
624 	struct xfs_mount		*mp = log->l_mp;
625 	struct xfs_cui_log_item		*cuip;
626 	struct xfs_cui_log_format	*cui_formatp;
627 
628 	cui_formatp = item->ri_buf[0].i_addr;
629 
630 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
631 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
632 	if (error) {
633 		xfs_cui_item_free(cuip);
634 		return error;
635 	}
636 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
637 	/*
638 	 * Insert the intent into the AIL directly and drop one reference so
639 	 * that finishing or canceling the work will drop the other.
640 	 */
641 	xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn);
642 	xfs_cui_release(cuip);
643 	return 0;
644 }
645 
646 const struct xlog_recover_item_ops xlog_cui_item_ops = {
647 	.item_type		= XFS_LI_CUI,
648 	.commit_pass2		= xlog_recover_cui_commit_pass2,
649 };
650 
651 /*
652  * This routine is called when an CUD format structure is found in a committed
653  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
654  * was still in the log. To do this it searches the AIL for the CUI with an id
655  * equal to that in the CUD format structure. If we find it we drop the CUD
656  * reference, which removes the CUI from the AIL and frees it.
657  */
658 STATIC int
659 xlog_recover_cud_commit_pass2(
660 	struct xlog			*log,
661 	struct list_head		*buffer_list,
662 	struct xlog_recover_item	*item,
663 	xfs_lsn_t			lsn)
664 {
665 	struct xfs_cud_log_format	*cud_formatp;
666 
667 	cud_formatp = item->ri_buf[0].i_addr;
668 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
669 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
670 		return -EFSCORRUPTED;
671 	}
672 
673 	xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
674 	return 0;
675 }
676 
677 const struct xlog_recover_item_ops xlog_cud_item_ops = {
678 	.item_type		= XFS_LI_CUD,
679 	.commit_pass2		= xlog_recover_cud_commit_pass2,
680 };
681