1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_refcount_item.h" 18 #include "xfs_log.h" 19 #include "xfs_refcount.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 24 struct kmem_cache *xfs_cui_cache; 25 struct kmem_cache *xfs_cud_cache; 26 27 static const struct xfs_item_ops xfs_cui_item_ops; 28 29 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_cui_log_item, cui_item); 32 } 33 34 STATIC void 35 xfs_cui_item_free( 36 struct xfs_cui_log_item *cuip) 37 { 38 kmem_free(cuip->cui_item.li_lv_shadow); 39 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 40 kmem_free(cuip); 41 else 42 kmem_cache_free(xfs_cui_cache, cuip); 43 } 44 45 /* 46 * Freeing the CUI requires that we remove it from the AIL if it has already 47 * been placed there. However, the CUI may not yet have been placed in the AIL 48 * when called by xfs_cui_release() from CUD processing due to the ordering of 49 * committed vs unpin operations in bulk insert operations. Hence the reference 50 * count to ensure only the last caller frees the CUI. 51 */ 52 STATIC void 53 xfs_cui_release( 54 struct xfs_cui_log_item *cuip) 55 { 56 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 57 if (!atomic_dec_and_test(&cuip->cui_refcount)) 58 return; 59 60 xfs_trans_ail_delete(&cuip->cui_item, 0); 61 xfs_cui_item_free(cuip); 62 } 63 64 65 STATIC void 66 xfs_cui_item_size( 67 struct xfs_log_item *lip, 68 int *nvecs, 69 int *nbytes) 70 { 71 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 72 73 *nvecs += 1; 74 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 75 } 76 77 /* 78 * This is called to fill in the vector of log iovecs for the 79 * given cui log item. We use only 1 iovec, and we point that 80 * at the cui_log_format structure embedded in the cui item. 81 * It is at this point that we assert that all of the extent 82 * slots in the cui item have been filled. 83 */ 84 STATIC void 85 xfs_cui_item_format( 86 struct xfs_log_item *lip, 87 struct xfs_log_vec *lv) 88 { 89 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 90 struct xfs_log_iovec *vecp = NULL; 91 92 ASSERT(atomic_read(&cuip->cui_next_extent) == 93 cuip->cui_format.cui_nextents); 94 95 cuip->cui_format.cui_type = XFS_LI_CUI; 96 cuip->cui_format.cui_size = 1; 97 98 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 99 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 100 } 101 102 /* 103 * The unpin operation is the last place an CUI is manipulated in the log. It is 104 * either inserted in the AIL or aborted in the event of a log I/O error. In 105 * either case, the CUI transaction has been successfully committed to make it 106 * this far. Therefore, we expect whoever committed the CUI to either construct 107 * and commit the CUD or drop the CUD's reference in the event of error. Simply 108 * drop the log's CUI reference now that the log is done with it. 109 */ 110 STATIC void 111 xfs_cui_item_unpin( 112 struct xfs_log_item *lip, 113 int remove) 114 { 115 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 116 117 xfs_cui_release(cuip); 118 } 119 120 /* 121 * The CUI has been either committed or aborted if the transaction has been 122 * cancelled. If the transaction was cancelled, an CUD isn't going to be 123 * constructed and thus we free the CUI here directly. 124 */ 125 STATIC void 126 xfs_cui_item_release( 127 struct xfs_log_item *lip) 128 { 129 xfs_cui_release(CUI_ITEM(lip)); 130 } 131 132 /* 133 * Allocate and initialize an cui item with the given number of extents. 134 */ 135 STATIC struct xfs_cui_log_item * 136 xfs_cui_init( 137 struct xfs_mount *mp, 138 uint nextents) 139 140 { 141 struct xfs_cui_log_item *cuip; 142 143 ASSERT(nextents > 0); 144 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 145 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 146 0); 147 else 148 cuip = kmem_cache_zalloc(xfs_cui_cache, 149 GFP_KERNEL | __GFP_NOFAIL); 150 151 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); 152 cuip->cui_format.cui_nextents = nextents; 153 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 154 atomic_set(&cuip->cui_next_extent, 0); 155 atomic_set(&cuip->cui_refcount, 2); 156 157 return cuip; 158 } 159 160 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 161 { 162 return container_of(lip, struct xfs_cud_log_item, cud_item); 163 } 164 165 STATIC void 166 xfs_cud_item_size( 167 struct xfs_log_item *lip, 168 int *nvecs, 169 int *nbytes) 170 { 171 *nvecs += 1; 172 *nbytes += sizeof(struct xfs_cud_log_format); 173 } 174 175 /* 176 * This is called to fill in the vector of log iovecs for the 177 * given cud log item. We use only 1 iovec, and we point that 178 * at the cud_log_format structure embedded in the cud item. 179 * It is at this point that we assert that all of the extent 180 * slots in the cud item have been filled. 181 */ 182 STATIC void 183 xfs_cud_item_format( 184 struct xfs_log_item *lip, 185 struct xfs_log_vec *lv) 186 { 187 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 188 struct xfs_log_iovec *vecp = NULL; 189 190 cudp->cud_format.cud_type = XFS_LI_CUD; 191 cudp->cud_format.cud_size = 1; 192 193 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 194 sizeof(struct xfs_cud_log_format)); 195 } 196 197 /* 198 * The CUD is either committed or aborted if the transaction is cancelled. If 199 * the transaction is cancelled, drop our reference to the CUI and free the 200 * CUD. 201 */ 202 STATIC void 203 xfs_cud_item_release( 204 struct xfs_log_item *lip) 205 { 206 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 207 208 xfs_cui_release(cudp->cud_cuip); 209 kmem_free(cudp->cud_item.li_lv_shadow); 210 kmem_cache_free(xfs_cud_cache, cudp); 211 } 212 213 static struct xfs_log_item * 214 xfs_cud_item_intent( 215 struct xfs_log_item *lip) 216 { 217 return &CUD_ITEM(lip)->cud_cuip->cui_item; 218 } 219 220 static const struct xfs_item_ops xfs_cud_item_ops = { 221 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 222 XFS_ITEM_INTENT_DONE, 223 .iop_size = xfs_cud_item_size, 224 .iop_format = xfs_cud_item_format, 225 .iop_release = xfs_cud_item_release, 226 .iop_intent = xfs_cud_item_intent, 227 }; 228 229 static struct xfs_cud_log_item * 230 xfs_trans_get_cud( 231 struct xfs_trans *tp, 232 struct xfs_cui_log_item *cuip) 233 { 234 struct xfs_cud_log_item *cudp; 235 236 cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL); 237 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, 238 &xfs_cud_item_ops); 239 cudp->cud_cuip = cuip; 240 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 241 242 xfs_trans_add_item(tp, &cudp->cud_item); 243 return cudp; 244 } 245 246 /* 247 * Finish an refcount update and log it to the CUD. Note that the 248 * transaction is marked dirty regardless of whether the refcount 249 * update succeeds or fails to support the CUI/CUD lifecycle rules. 250 */ 251 static int 252 xfs_trans_log_finish_refcount_update( 253 struct xfs_trans *tp, 254 struct xfs_cud_log_item *cudp, 255 struct xfs_refcount_intent *ri, 256 struct xfs_btree_cur **pcur) 257 { 258 int error; 259 260 error = xfs_refcount_finish_one(tp, ri, pcur); 261 262 /* 263 * Mark the transaction dirty, even on error. This ensures the 264 * transaction is aborted, which: 265 * 266 * 1.) releases the CUI and frees the CUD 267 * 2.) shuts down the filesystem 268 */ 269 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 270 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 271 272 return error; 273 } 274 275 /* Sort refcount intents by AG. */ 276 static int 277 xfs_refcount_update_diff_items( 278 void *priv, 279 const struct list_head *a, 280 const struct list_head *b) 281 { 282 struct xfs_mount *mp = priv; 283 struct xfs_refcount_intent *ra; 284 struct xfs_refcount_intent *rb; 285 286 ra = container_of(a, struct xfs_refcount_intent, ri_list); 287 rb = container_of(b, struct xfs_refcount_intent, ri_list); 288 return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) - 289 XFS_FSB_TO_AGNO(mp, rb->ri_startblock); 290 } 291 292 /* Set the phys extent flags for this reverse mapping. */ 293 static void 294 xfs_trans_set_refcount_flags( 295 struct xfs_phys_extent *pmap, 296 enum xfs_refcount_intent_type type) 297 { 298 pmap->pe_flags = 0; 299 switch (type) { 300 case XFS_REFCOUNT_INCREASE: 301 case XFS_REFCOUNT_DECREASE: 302 case XFS_REFCOUNT_ALLOC_COW: 303 case XFS_REFCOUNT_FREE_COW: 304 pmap->pe_flags |= type; 305 break; 306 default: 307 ASSERT(0); 308 } 309 } 310 311 /* Log refcount updates in the intent item. */ 312 STATIC void 313 xfs_refcount_update_log_item( 314 struct xfs_trans *tp, 315 struct xfs_cui_log_item *cuip, 316 struct xfs_refcount_intent *ri) 317 { 318 uint next_extent; 319 struct xfs_phys_extent *pmap; 320 321 tp->t_flags |= XFS_TRANS_DIRTY; 322 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 323 324 /* 325 * atomic_inc_return gives us the value after the increment; 326 * we want to use it as an array index so we need to subtract 1 from 327 * it. 328 */ 329 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; 330 ASSERT(next_extent < cuip->cui_format.cui_nextents); 331 pmap = &cuip->cui_format.cui_extents[next_extent]; 332 pmap->pe_startblock = ri->ri_startblock; 333 pmap->pe_len = ri->ri_blockcount; 334 xfs_trans_set_refcount_flags(pmap, ri->ri_type); 335 } 336 337 static struct xfs_log_item * 338 xfs_refcount_update_create_intent( 339 struct xfs_trans *tp, 340 struct list_head *items, 341 unsigned int count, 342 bool sort) 343 { 344 struct xfs_mount *mp = tp->t_mountp; 345 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); 346 struct xfs_refcount_intent *ri; 347 348 ASSERT(count > 0); 349 350 xfs_trans_add_item(tp, &cuip->cui_item); 351 if (sort) 352 list_sort(mp, items, xfs_refcount_update_diff_items); 353 list_for_each_entry(ri, items, ri_list) 354 xfs_refcount_update_log_item(tp, cuip, ri); 355 return &cuip->cui_item; 356 } 357 358 /* Get an CUD so we can process all the deferred refcount updates. */ 359 static struct xfs_log_item * 360 xfs_refcount_update_create_done( 361 struct xfs_trans *tp, 362 struct xfs_log_item *intent, 363 unsigned int count) 364 { 365 return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item; 366 } 367 368 /* Process a deferred refcount update. */ 369 STATIC int 370 xfs_refcount_update_finish_item( 371 struct xfs_trans *tp, 372 struct xfs_log_item *done, 373 struct list_head *item, 374 struct xfs_btree_cur **state) 375 { 376 struct xfs_refcount_intent *ri; 377 int error; 378 379 ri = container_of(item, struct xfs_refcount_intent, ri_list); 380 error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), ri, 381 state); 382 383 /* Did we run out of reservation? Requeue what we didn't finish. */ 384 if (!error && ri->ri_blockcount > 0) { 385 ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE || 386 ri->ri_type == XFS_REFCOUNT_DECREASE); 387 return -EAGAIN; 388 } 389 kmem_cache_free(xfs_refcount_intent_cache, ri); 390 return error; 391 } 392 393 /* Abort all pending CUIs. */ 394 STATIC void 395 xfs_refcount_update_abort_intent( 396 struct xfs_log_item *intent) 397 { 398 xfs_cui_release(CUI_ITEM(intent)); 399 } 400 401 /* Cancel a deferred refcount update. */ 402 STATIC void 403 xfs_refcount_update_cancel_item( 404 struct list_head *item) 405 { 406 struct xfs_refcount_intent *ri; 407 408 ri = container_of(item, struct xfs_refcount_intent, ri_list); 409 kmem_cache_free(xfs_refcount_intent_cache, ri); 410 } 411 412 const struct xfs_defer_op_type xfs_refcount_update_defer_type = { 413 .max_items = XFS_CUI_MAX_FAST_EXTENTS, 414 .create_intent = xfs_refcount_update_create_intent, 415 .abort_intent = xfs_refcount_update_abort_intent, 416 .create_done = xfs_refcount_update_create_done, 417 .finish_item = xfs_refcount_update_finish_item, 418 .finish_cleanup = xfs_refcount_finish_one_cleanup, 419 .cancel_item = xfs_refcount_update_cancel_item, 420 }; 421 422 /* Is this recovered CUI ok? */ 423 static inline bool 424 xfs_cui_validate_phys( 425 struct xfs_mount *mp, 426 struct xfs_phys_extent *pmap) 427 { 428 if (!xfs_has_reflink(mp)) 429 return false; 430 431 if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS) 432 return false; 433 434 switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 435 case XFS_REFCOUNT_INCREASE: 436 case XFS_REFCOUNT_DECREASE: 437 case XFS_REFCOUNT_ALLOC_COW: 438 case XFS_REFCOUNT_FREE_COW: 439 break; 440 default: 441 return false; 442 } 443 444 return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len); 445 } 446 447 /* 448 * Process a refcount update intent item that was recovered from the log. 449 * We need to update the refcountbt. 450 */ 451 STATIC int 452 xfs_cui_item_recover( 453 struct xfs_log_item *lip, 454 struct list_head *capture_list) 455 { 456 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 457 struct xfs_cud_log_item *cudp; 458 struct xfs_trans *tp; 459 struct xfs_btree_cur *rcur = NULL; 460 struct xfs_mount *mp = lip->li_log->l_mp; 461 unsigned int refc_type; 462 bool requeue_only = false; 463 int i; 464 int error = 0; 465 466 /* 467 * First check the validity of the extents described by the 468 * CUI. If any are bad, then assume that all are bad and 469 * just toss the CUI. 470 */ 471 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 472 if (!xfs_cui_validate_phys(mp, 473 &cuip->cui_format.cui_extents[i])) { 474 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 475 &cuip->cui_format, 476 sizeof(cuip->cui_format)); 477 return -EFSCORRUPTED; 478 } 479 } 480 481 /* 482 * Under normal operation, refcount updates are deferred, so we 483 * wouldn't be adding them directly to a transaction. All 484 * refcount updates manage reservation usage internally and 485 * dynamically by deferring work that won't fit in the 486 * transaction. Normally, any work that needs to be deferred 487 * gets attached to the same defer_ops that scheduled the 488 * refcount update. However, we're in log recovery here, so we 489 * use the passed in defer_ops and to finish up any work that 490 * doesn't fit. We need to reserve enough blocks to handle a 491 * full btree split on either end of the refcount range. 492 */ 493 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 494 mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); 495 if (error) 496 return error; 497 498 cudp = xfs_trans_get_cud(tp, cuip); 499 500 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 501 struct xfs_refcount_intent fake = { }; 502 struct xfs_phys_extent *pmap; 503 504 pmap = &cuip->cui_format.cui_extents[i]; 505 refc_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 506 switch (refc_type) { 507 case XFS_REFCOUNT_INCREASE: 508 case XFS_REFCOUNT_DECREASE: 509 case XFS_REFCOUNT_ALLOC_COW: 510 case XFS_REFCOUNT_FREE_COW: 511 fake.ri_type = refc_type; 512 break; 513 default: 514 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 515 &cuip->cui_format, 516 sizeof(cuip->cui_format)); 517 error = -EFSCORRUPTED; 518 goto abort_error; 519 } 520 521 fake.ri_startblock = pmap->pe_startblock; 522 fake.ri_blockcount = pmap->pe_len; 523 if (!requeue_only) 524 error = xfs_trans_log_finish_refcount_update(tp, cudp, 525 &fake, &rcur); 526 if (error == -EFSCORRUPTED) 527 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 528 &cuip->cui_format, 529 sizeof(cuip->cui_format)); 530 if (error) 531 goto abort_error; 532 533 /* Requeue what we didn't finish. */ 534 if (fake.ri_blockcount > 0) { 535 struct xfs_bmbt_irec irec = { 536 .br_startblock = fake.ri_startblock, 537 .br_blockcount = fake.ri_blockcount, 538 }; 539 540 switch (fake.ri_type) { 541 case XFS_REFCOUNT_INCREASE: 542 xfs_refcount_increase_extent(tp, &irec); 543 break; 544 case XFS_REFCOUNT_DECREASE: 545 xfs_refcount_decrease_extent(tp, &irec); 546 break; 547 case XFS_REFCOUNT_ALLOC_COW: 548 xfs_refcount_alloc_cow_extent(tp, 549 irec.br_startblock, 550 irec.br_blockcount); 551 break; 552 case XFS_REFCOUNT_FREE_COW: 553 xfs_refcount_free_cow_extent(tp, 554 irec.br_startblock, 555 irec.br_blockcount); 556 break; 557 default: 558 ASSERT(0); 559 } 560 requeue_only = true; 561 } 562 } 563 564 xfs_refcount_finish_one_cleanup(tp, rcur, error); 565 return xfs_defer_ops_capture_and_commit(tp, capture_list); 566 567 abort_error: 568 xfs_refcount_finish_one_cleanup(tp, rcur, error); 569 xfs_trans_cancel(tp); 570 return error; 571 } 572 573 STATIC bool 574 xfs_cui_item_match( 575 struct xfs_log_item *lip, 576 uint64_t intent_id) 577 { 578 return CUI_ITEM(lip)->cui_format.cui_id == intent_id; 579 } 580 581 /* Relog an intent item to push the log tail forward. */ 582 static struct xfs_log_item * 583 xfs_cui_item_relog( 584 struct xfs_log_item *intent, 585 struct xfs_trans *tp) 586 { 587 struct xfs_cud_log_item *cudp; 588 struct xfs_cui_log_item *cuip; 589 struct xfs_phys_extent *pmap; 590 unsigned int count; 591 592 count = CUI_ITEM(intent)->cui_format.cui_nextents; 593 pmap = CUI_ITEM(intent)->cui_format.cui_extents; 594 595 tp->t_flags |= XFS_TRANS_DIRTY; 596 cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent)); 597 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 598 599 cuip = xfs_cui_init(tp->t_mountp, count); 600 memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap)); 601 atomic_set(&cuip->cui_next_extent, count); 602 xfs_trans_add_item(tp, &cuip->cui_item); 603 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 604 return &cuip->cui_item; 605 } 606 607 static const struct xfs_item_ops xfs_cui_item_ops = { 608 .flags = XFS_ITEM_INTENT, 609 .iop_size = xfs_cui_item_size, 610 .iop_format = xfs_cui_item_format, 611 .iop_unpin = xfs_cui_item_unpin, 612 .iop_release = xfs_cui_item_release, 613 .iop_recover = xfs_cui_item_recover, 614 .iop_match = xfs_cui_item_match, 615 .iop_relog = xfs_cui_item_relog, 616 }; 617 618 static inline void 619 xfs_cui_copy_format( 620 struct xfs_cui_log_format *dst, 621 const struct xfs_cui_log_format *src) 622 { 623 unsigned int i; 624 625 memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents)); 626 627 for (i = 0; i < src->cui_nextents; i++) 628 memcpy(&dst->cui_extents[i], &src->cui_extents[i], 629 sizeof(struct xfs_phys_extent)); 630 } 631 632 /* 633 * This routine is called to create an in-core extent refcount update 634 * item from the cui format structure which was logged on disk. 635 * It allocates an in-core cui, copies the extents from the format 636 * structure into it, and adds the cui to the AIL with the given 637 * LSN. 638 */ 639 STATIC int 640 xlog_recover_cui_commit_pass2( 641 struct xlog *log, 642 struct list_head *buffer_list, 643 struct xlog_recover_item *item, 644 xfs_lsn_t lsn) 645 { 646 struct xfs_mount *mp = log->l_mp; 647 struct xfs_cui_log_item *cuip; 648 struct xfs_cui_log_format *cui_formatp; 649 size_t len; 650 651 cui_formatp = item->ri_buf[0].i_addr; 652 653 if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) { 654 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 655 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 656 return -EFSCORRUPTED; 657 } 658 659 len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents); 660 if (item->ri_buf[0].i_len != len) { 661 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 662 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 663 return -EFSCORRUPTED; 664 } 665 666 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 667 xfs_cui_copy_format(&cuip->cui_format, cui_formatp); 668 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 669 /* 670 * Insert the intent into the AIL directly and drop one reference so 671 * that finishing or canceling the work will drop the other. 672 */ 673 xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn); 674 xfs_cui_release(cuip); 675 return 0; 676 } 677 678 const struct xlog_recover_item_ops xlog_cui_item_ops = { 679 .item_type = XFS_LI_CUI, 680 .commit_pass2 = xlog_recover_cui_commit_pass2, 681 }; 682 683 /* 684 * This routine is called when an CUD format structure is found in a committed 685 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 686 * was still in the log. To do this it searches the AIL for the CUI with an id 687 * equal to that in the CUD format structure. If we find it we drop the CUD 688 * reference, which removes the CUI from the AIL and frees it. 689 */ 690 STATIC int 691 xlog_recover_cud_commit_pass2( 692 struct xlog *log, 693 struct list_head *buffer_list, 694 struct xlog_recover_item *item, 695 xfs_lsn_t lsn) 696 { 697 struct xfs_cud_log_format *cud_formatp; 698 699 cud_formatp = item->ri_buf[0].i_addr; 700 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { 701 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 702 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 703 return -EFSCORRUPTED; 704 } 705 706 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); 707 return 0; 708 } 709 710 const struct xlog_recover_item_ops xlog_cud_item_ops = { 711 .item_type = XFS_LI_CUD, 712 .commit_pass2 = xlog_recover_cud_commit_pass2, 713 }; 714