1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_refcount_item.h" 18 #include "xfs_log.h" 19 #include "xfs_refcount.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 24 struct kmem_cache *xfs_cui_cache; 25 struct kmem_cache *xfs_cud_cache; 26 27 static const struct xfs_item_ops xfs_cui_item_ops; 28 29 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_cui_log_item, cui_item); 32 } 33 34 STATIC void 35 xfs_cui_item_free( 36 struct xfs_cui_log_item *cuip) 37 { 38 kmem_free(cuip->cui_item.li_lv_shadow); 39 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 40 kmem_free(cuip); 41 else 42 kmem_cache_free(xfs_cui_cache, cuip); 43 } 44 45 /* 46 * Freeing the CUI requires that we remove it from the AIL if it has already 47 * been placed there. However, the CUI may not yet have been placed in the AIL 48 * when called by xfs_cui_release() from CUD processing due to the ordering of 49 * committed vs unpin operations in bulk insert operations. Hence the reference 50 * count to ensure only the last caller frees the CUI. 51 */ 52 STATIC void 53 xfs_cui_release( 54 struct xfs_cui_log_item *cuip) 55 { 56 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 57 if (!atomic_dec_and_test(&cuip->cui_refcount)) 58 return; 59 60 xfs_trans_ail_delete(&cuip->cui_item, 0); 61 xfs_cui_item_free(cuip); 62 } 63 64 65 STATIC void 66 xfs_cui_item_size( 67 struct xfs_log_item *lip, 68 int *nvecs, 69 int *nbytes) 70 { 71 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 72 73 *nvecs += 1; 74 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 75 } 76 77 /* 78 * This is called to fill in the vector of log iovecs for the 79 * given cui log item. We use only 1 iovec, and we point that 80 * at the cui_log_format structure embedded in the cui item. 81 * It is at this point that we assert that all of the extent 82 * slots in the cui item have been filled. 83 */ 84 STATIC void 85 xfs_cui_item_format( 86 struct xfs_log_item *lip, 87 struct xfs_log_vec *lv) 88 { 89 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 90 struct xfs_log_iovec *vecp = NULL; 91 92 ASSERT(atomic_read(&cuip->cui_next_extent) == 93 cuip->cui_format.cui_nextents); 94 95 cuip->cui_format.cui_type = XFS_LI_CUI; 96 cuip->cui_format.cui_size = 1; 97 98 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 99 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 100 } 101 102 /* 103 * The unpin operation is the last place an CUI is manipulated in the log. It is 104 * either inserted in the AIL or aborted in the event of a log I/O error. In 105 * either case, the CUI transaction has been successfully committed to make it 106 * this far. Therefore, we expect whoever committed the CUI to either construct 107 * and commit the CUD or drop the CUD's reference in the event of error. Simply 108 * drop the log's CUI reference now that the log is done with it. 109 */ 110 STATIC void 111 xfs_cui_item_unpin( 112 struct xfs_log_item *lip, 113 int remove) 114 { 115 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 116 117 xfs_cui_release(cuip); 118 } 119 120 /* 121 * The CUI has been either committed or aborted if the transaction has been 122 * cancelled. If the transaction was cancelled, an CUD isn't going to be 123 * constructed and thus we free the CUI here directly. 124 */ 125 STATIC void 126 xfs_cui_item_release( 127 struct xfs_log_item *lip) 128 { 129 xfs_cui_release(CUI_ITEM(lip)); 130 } 131 132 /* 133 * Allocate and initialize an cui item with the given number of extents. 134 */ 135 STATIC struct xfs_cui_log_item * 136 xfs_cui_init( 137 struct xfs_mount *mp, 138 uint nextents) 139 140 { 141 struct xfs_cui_log_item *cuip; 142 143 ASSERT(nextents > 0); 144 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 145 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 146 0); 147 else 148 cuip = kmem_cache_zalloc(xfs_cui_cache, 149 GFP_KERNEL | __GFP_NOFAIL); 150 151 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); 152 cuip->cui_format.cui_nextents = nextents; 153 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 154 atomic_set(&cuip->cui_next_extent, 0); 155 atomic_set(&cuip->cui_refcount, 2); 156 157 return cuip; 158 } 159 160 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 161 { 162 return container_of(lip, struct xfs_cud_log_item, cud_item); 163 } 164 165 STATIC void 166 xfs_cud_item_size( 167 struct xfs_log_item *lip, 168 int *nvecs, 169 int *nbytes) 170 { 171 *nvecs += 1; 172 *nbytes += sizeof(struct xfs_cud_log_format); 173 } 174 175 /* 176 * This is called to fill in the vector of log iovecs for the 177 * given cud log item. We use only 1 iovec, and we point that 178 * at the cud_log_format structure embedded in the cud item. 179 * It is at this point that we assert that all of the extent 180 * slots in the cud item have been filled. 181 */ 182 STATIC void 183 xfs_cud_item_format( 184 struct xfs_log_item *lip, 185 struct xfs_log_vec *lv) 186 { 187 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 188 struct xfs_log_iovec *vecp = NULL; 189 190 cudp->cud_format.cud_type = XFS_LI_CUD; 191 cudp->cud_format.cud_size = 1; 192 193 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 194 sizeof(struct xfs_cud_log_format)); 195 } 196 197 /* 198 * The CUD is either committed or aborted if the transaction is cancelled. If 199 * the transaction is cancelled, drop our reference to the CUI and free the 200 * CUD. 201 */ 202 STATIC void 203 xfs_cud_item_release( 204 struct xfs_log_item *lip) 205 { 206 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 207 208 xfs_cui_release(cudp->cud_cuip); 209 kmem_free(cudp->cud_item.li_lv_shadow); 210 kmem_cache_free(xfs_cud_cache, cudp); 211 } 212 213 static struct xfs_log_item * 214 xfs_cud_item_intent( 215 struct xfs_log_item *lip) 216 { 217 return &CUD_ITEM(lip)->cud_cuip->cui_item; 218 } 219 220 static const struct xfs_item_ops xfs_cud_item_ops = { 221 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 222 XFS_ITEM_INTENT_DONE, 223 .iop_size = xfs_cud_item_size, 224 .iop_format = xfs_cud_item_format, 225 .iop_release = xfs_cud_item_release, 226 .iop_intent = xfs_cud_item_intent, 227 }; 228 229 static struct xfs_cud_log_item * 230 xfs_trans_get_cud( 231 struct xfs_trans *tp, 232 struct xfs_cui_log_item *cuip) 233 { 234 struct xfs_cud_log_item *cudp; 235 236 cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL); 237 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, 238 &xfs_cud_item_ops); 239 cudp->cud_cuip = cuip; 240 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 241 242 xfs_trans_add_item(tp, &cudp->cud_item); 243 return cudp; 244 } 245 246 /* 247 * Finish an refcount update and log it to the CUD. Note that the 248 * transaction is marked dirty regardless of whether the refcount 249 * update succeeds or fails to support the CUI/CUD lifecycle rules. 250 */ 251 static int 252 xfs_trans_log_finish_refcount_update( 253 struct xfs_trans *tp, 254 struct xfs_cud_log_item *cudp, 255 enum xfs_refcount_intent_type type, 256 xfs_fsblock_t startblock, 257 xfs_extlen_t blockcount, 258 xfs_fsblock_t *new_fsb, 259 xfs_extlen_t *new_len, 260 struct xfs_btree_cur **pcur) 261 { 262 int error; 263 264 error = xfs_refcount_finish_one(tp, type, startblock, 265 blockcount, new_fsb, new_len, pcur); 266 267 /* 268 * Mark the transaction dirty, even on error. This ensures the 269 * transaction is aborted, which: 270 * 271 * 1.) releases the CUI and frees the CUD 272 * 2.) shuts down the filesystem 273 */ 274 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 275 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 276 277 return error; 278 } 279 280 /* Sort refcount intents by AG. */ 281 static int 282 xfs_refcount_update_diff_items( 283 void *priv, 284 const struct list_head *a, 285 const struct list_head *b) 286 { 287 struct xfs_mount *mp = priv; 288 struct xfs_refcount_intent *ra; 289 struct xfs_refcount_intent *rb; 290 291 ra = container_of(a, struct xfs_refcount_intent, ri_list); 292 rb = container_of(b, struct xfs_refcount_intent, ri_list); 293 return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) - 294 XFS_FSB_TO_AGNO(mp, rb->ri_startblock); 295 } 296 297 /* Set the phys extent flags for this reverse mapping. */ 298 static void 299 xfs_trans_set_refcount_flags( 300 struct xfs_phys_extent *refc, 301 enum xfs_refcount_intent_type type) 302 { 303 refc->pe_flags = 0; 304 switch (type) { 305 case XFS_REFCOUNT_INCREASE: 306 case XFS_REFCOUNT_DECREASE: 307 case XFS_REFCOUNT_ALLOC_COW: 308 case XFS_REFCOUNT_FREE_COW: 309 refc->pe_flags |= type; 310 break; 311 default: 312 ASSERT(0); 313 } 314 } 315 316 /* Log refcount updates in the intent item. */ 317 STATIC void 318 xfs_refcount_update_log_item( 319 struct xfs_trans *tp, 320 struct xfs_cui_log_item *cuip, 321 struct xfs_refcount_intent *refc) 322 { 323 uint next_extent; 324 struct xfs_phys_extent *ext; 325 326 tp->t_flags |= XFS_TRANS_DIRTY; 327 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 328 329 /* 330 * atomic_inc_return gives us the value after the increment; 331 * we want to use it as an array index so we need to subtract 1 from 332 * it. 333 */ 334 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; 335 ASSERT(next_extent < cuip->cui_format.cui_nextents); 336 ext = &cuip->cui_format.cui_extents[next_extent]; 337 ext->pe_startblock = refc->ri_startblock; 338 ext->pe_len = refc->ri_blockcount; 339 xfs_trans_set_refcount_flags(ext, refc->ri_type); 340 } 341 342 static struct xfs_log_item * 343 xfs_refcount_update_create_intent( 344 struct xfs_trans *tp, 345 struct list_head *items, 346 unsigned int count, 347 bool sort) 348 { 349 struct xfs_mount *mp = tp->t_mountp; 350 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); 351 struct xfs_refcount_intent *refc; 352 353 ASSERT(count > 0); 354 355 xfs_trans_add_item(tp, &cuip->cui_item); 356 if (sort) 357 list_sort(mp, items, xfs_refcount_update_diff_items); 358 list_for_each_entry(refc, items, ri_list) 359 xfs_refcount_update_log_item(tp, cuip, refc); 360 return &cuip->cui_item; 361 } 362 363 /* Get an CUD so we can process all the deferred refcount updates. */ 364 static struct xfs_log_item * 365 xfs_refcount_update_create_done( 366 struct xfs_trans *tp, 367 struct xfs_log_item *intent, 368 unsigned int count) 369 { 370 return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item; 371 } 372 373 /* Process a deferred refcount update. */ 374 STATIC int 375 xfs_refcount_update_finish_item( 376 struct xfs_trans *tp, 377 struct xfs_log_item *done, 378 struct list_head *item, 379 struct xfs_btree_cur **state) 380 { 381 struct xfs_refcount_intent *refc; 382 xfs_fsblock_t new_fsb; 383 xfs_extlen_t new_aglen; 384 int error; 385 386 refc = container_of(item, struct xfs_refcount_intent, ri_list); 387 error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), 388 refc->ri_type, refc->ri_startblock, refc->ri_blockcount, 389 &new_fsb, &new_aglen, state); 390 391 /* Did we run out of reservation? Requeue what we didn't finish. */ 392 if (!error && new_aglen > 0) { 393 ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE || 394 refc->ri_type == XFS_REFCOUNT_DECREASE); 395 refc->ri_startblock = new_fsb; 396 refc->ri_blockcount = new_aglen; 397 return -EAGAIN; 398 } 399 kmem_cache_free(xfs_refcount_intent_cache, refc); 400 return error; 401 } 402 403 /* Abort all pending CUIs. */ 404 STATIC void 405 xfs_refcount_update_abort_intent( 406 struct xfs_log_item *intent) 407 { 408 xfs_cui_release(CUI_ITEM(intent)); 409 } 410 411 /* Cancel a deferred refcount update. */ 412 STATIC void 413 xfs_refcount_update_cancel_item( 414 struct list_head *item) 415 { 416 struct xfs_refcount_intent *refc; 417 418 refc = container_of(item, struct xfs_refcount_intent, ri_list); 419 kmem_cache_free(xfs_refcount_intent_cache, refc); 420 } 421 422 const struct xfs_defer_op_type xfs_refcount_update_defer_type = { 423 .max_items = XFS_CUI_MAX_FAST_EXTENTS, 424 .create_intent = xfs_refcount_update_create_intent, 425 .abort_intent = xfs_refcount_update_abort_intent, 426 .create_done = xfs_refcount_update_create_done, 427 .finish_item = xfs_refcount_update_finish_item, 428 .finish_cleanup = xfs_refcount_finish_one_cleanup, 429 .cancel_item = xfs_refcount_update_cancel_item, 430 }; 431 432 /* Is this recovered CUI ok? */ 433 static inline bool 434 xfs_cui_validate_phys( 435 struct xfs_mount *mp, 436 struct xfs_phys_extent *refc) 437 { 438 if (!xfs_has_reflink(mp)) 439 return false; 440 441 if (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS) 442 return false; 443 444 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 445 case XFS_REFCOUNT_INCREASE: 446 case XFS_REFCOUNT_DECREASE: 447 case XFS_REFCOUNT_ALLOC_COW: 448 case XFS_REFCOUNT_FREE_COW: 449 break; 450 default: 451 return false; 452 } 453 454 return xfs_verify_fsbext(mp, refc->pe_startblock, refc->pe_len); 455 } 456 457 /* 458 * Process a refcount update intent item that was recovered from the log. 459 * We need to update the refcountbt. 460 */ 461 STATIC int 462 xfs_cui_item_recover( 463 struct xfs_log_item *lip, 464 struct list_head *capture_list) 465 { 466 struct xfs_bmbt_irec irec; 467 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 468 struct xfs_phys_extent *refc; 469 struct xfs_cud_log_item *cudp; 470 struct xfs_trans *tp; 471 struct xfs_btree_cur *rcur = NULL; 472 struct xfs_mount *mp = lip->li_log->l_mp; 473 xfs_fsblock_t new_fsb; 474 xfs_extlen_t new_len; 475 unsigned int refc_type; 476 bool requeue_only = false; 477 enum xfs_refcount_intent_type type; 478 int i; 479 int error = 0; 480 481 /* 482 * First check the validity of the extents described by the 483 * CUI. If any are bad, then assume that all are bad and 484 * just toss the CUI. 485 */ 486 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 487 if (!xfs_cui_validate_phys(mp, 488 &cuip->cui_format.cui_extents[i])) { 489 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 490 &cuip->cui_format, 491 sizeof(cuip->cui_format)); 492 return -EFSCORRUPTED; 493 } 494 } 495 496 /* 497 * Under normal operation, refcount updates are deferred, so we 498 * wouldn't be adding them directly to a transaction. All 499 * refcount updates manage reservation usage internally and 500 * dynamically by deferring work that won't fit in the 501 * transaction. Normally, any work that needs to be deferred 502 * gets attached to the same defer_ops that scheduled the 503 * refcount update. However, we're in log recovery here, so we 504 * use the passed in defer_ops and to finish up any work that 505 * doesn't fit. We need to reserve enough blocks to handle a 506 * full btree split on either end of the refcount range. 507 */ 508 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 509 mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); 510 if (error) 511 return error; 512 513 cudp = xfs_trans_get_cud(tp, cuip); 514 515 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 516 refc = &cuip->cui_format.cui_extents[i]; 517 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 518 switch (refc_type) { 519 case XFS_REFCOUNT_INCREASE: 520 case XFS_REFCOUNT_DECREASE: 521 case XFS_REFCOUNT_ALLOC_COW: 522 case XFS_REFCOUNT_FREE_COW: 523 type = refc_type; 524 break; 525 default: 526 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 527 error = -EFSCORRUPTED; 528 goto abort_error; 529 } 530 if (requeue_only) { 531 new_fsb = refc->pe_startblock; 532 new_len = refc->pe_len; 533 } else 534 error = xfs_trans_log_finish_refcount_update(tp, cudp, 535 type, refc->pe_startblock, refc->pe_len, 536 &new_fsb, &new_len, &rcur); 537 if (error == -EFSCORRUPTED) 538 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 539 refc, sizeof(*refc)); 540 if (error) 541 goto abort_error; 542 543 /* Requeue what we didn't finish. */ 544 if (new_len > 0) { 545 irec.br_startblock = new_fsb; 546 irec.br_blockcount = new_len; 547 switch (type) { 548 case XFS_REFCOUNT_INCREASE: 549 xfs_refcount_increase_extent(tp, &irec); 550 break; 551 case XFS_REFCOUNT_DECREASE: 552 xfs_refcount_decrease_extent(tp, &irec); 553 break; 554 case XFS_REFCOUNT_ALLOC_COW: 555 xfs_refcount_alloc_cow_extent(tp, 556 irec.br_startblock, 557 irec.br_blockcount); 558 break; 559 case XFS_REFCOUNT_FREE_COW: 560 xfs_refcount_free_cow_extent(tp, 561 irec.br_startblock, 562 irec.br_blockcount); 563 break; 564 default: 565 ASSERT(0); 566 } 567 requeue_only = true; 568 } 569 } 570 571 xfs_refcount_finish_one_cleanup(tp, rcur, error); 572 return xfs_defer_ops_capture_and_commit(tp, capture_list); 573 574 abort_error: 575 xfs_refcount_finish_one_cleanup(tp, rcur, error); 576 xfs_trans_cancel(tp); 577 return error; 578 } 579 580 STATIC bool 581 xfs_cui_item_match( 582 struct xfs_log_item *lip, 583 uint64_t intent_id) 584 { 585 return CUI_ITEM(lip)->cui_format.cui_id == intent_id; 586 } 587 588 /* Relog an intent item to push the log tail forward. */ 589 static struct xfs_log_item * 590 xfs_cui_item_relog( 591 struct xfs_log_item *intent, 592 struct xfs_trans *tp) 593 { 594 struct xfs_cud_log_item *cudp; 595 struct xfs_cui_log_item *cuip; 596 struct xfs_phys_extent *extp; 597 unsigned int count; 598 599 count = CUI_ITEM(intent)->cui_format.cui_nextents; 600 extp = CUI_ITEM(intent)->cui_format.cui_extents; 601 602 tp->t_flags |= XFS_TRANS_DIRTY; 603 cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent)); 604 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 605 606 cuip = xfs_cui_init(tp->t_mountp, count); 607 memcpy(cuip->cui_format.cui_extents, extp, count * sizeof(*extp)); 608 atomic_set(&cuip->cui_next_extent, count); 609 xfs_trans_add_item(tp, &cuip->cui_item); 610 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 611 return &cuip->cui_item; 612 } 613 614 static const struct xfs_item_ops xfs_cui_item_ops = { 615 .flags = XFS_ITEM_INTENT, 616 .iop_size = xfs_cui_item_size, 617 .iop_format = xfs_cui_item_format, 618 .iop_unpin = xfs_cui_item_unpin, 619 .iop_release = xfs_cui_item_release, 620 .iop_recover = xfs_cui_item_recover, 621 .iop_match = xfs_cui_item_match, 622 .iop_relog = xfs_cui_item_relog, 623 }; 624 625 /* 626 * Copy an CUI format buffer from the given buf, and into the destination 627 * CUI format structure. The CUI/CUD items were designed not to need any 628 * special alignment handling. 629 */ 630 static int 631 xfs_cui_copy_format( 632 struct xfs_log_iovec *buf, 633 struct xfs_cui_log_format *dst_cui_fmt) 634 { 635 struct xfs_cui_log_format *src_cui_fmt; 636 uint len; 637 638 src_cui_fmt = buf->i_addr; 639 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 640 641 if (buf->i_len == len) { 642 memcpy(dst_cui_fmt, src_cui_fmt, len); 643 return 0; 644 } 645 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 646 return -EFSCORRUPTED; 647 } 648 649 /* 650 * This routine is called to create an in-core extent refcount update 651 * item from the cui format structure which was logged on disk. 652 * It allocates an in-core cui, copies the extents from the format 653 * structure into it, and adds the cui to the AIL with the given 654 * LSN. 655 */ 656 STATIC int 657 xlog_recover_cui_commit_pass2( 658 struct xlog *log, 659 struct list_head *buffer_list, 660 struct xlog_recover_item *item, 661 xfs_lsn_t lsn) 662 { 663 int error; 664 struct xfs_mount *mp = log->l_mp; 665 struct xfs_cui_log_item *cuip; 666 struct xfs_cui_log_format *cui_formatp; 667 668 cui_formatp = item->ri_buf[0].i_addr; 669 670 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 671 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 672 if (error) { 673 xfs_cui_item_free(cuip); 674 return error; 675 } 676 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 677 /* 678 * Insert the intent into the AIL directly and drop one reference so 679 * that finishing or canceling the work will drop the other. 680 */ 681 xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn); 682 xfs_cui_release(cuip); 683 return 0; 684 } 685 686 const struct xlog_recover_item_ops xlog_cui_item_ops = { 687 .item_type = XFS_LI_CUI, 688 .commit_pass2 = xlog_recover_cui_commit_pass2, 689 }; 690 691 /* 692 * This routine is called when an CUD format structure is found in a committed 693 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 694 * was still in the log. To do this it searches the AIL for the CUI with an id 695 * equal to that in the CUD format structure. If we find it we drop the CUD 696 * reference, which removes the CUI from the AIL and frees it. 697 */ 698 STATIC int 699 xlog_recover_cud_commit_pass2( 700 struct xlog *log, 701 struct list_head *buffer_list, 702 struct xlog_recover_item *item, 703 xfs_lsn_t lsn) 704 { 705 struct xfs_cud_log_format *cud_formatp; 706 707 cud_formatp = item->ri_buf[0].i_addr; 708 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { 709 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 710 return -EFSCORRUPTED; 711 } 712 713 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); 714 return 0; 715 } 716 717 const struct xlog_recover_item_ops xlog_cud_item_ops = { 718 .item_type = XFS_LI_CUD, 719 .commit_pass2 = xlog_recover_cud_commit_pass2, 720 }; 721