1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_sysfs.h" 45 #include "xfs_rmap_btree.h" 46 #include "xfs_refcount_btree.h" 47 #include "xfs_reflink.h" 48 #include "xfs_extent_busy.h" 49 50 51 static DEFINE_MUTEX(xfs_uuid_table_mutex); 52 static int xfs_uuid_table_size; 53 static uuid_t *xfs_uuid_table; 54 55 void 56 xfs_uuid_table_free(void) 57 { 58 if (xfs_uuid_table_size == 0) 59 return; 60 kmem_free(xfs_uuid_table); 61 xfs_uuid_table = NULL; 62 xfs_uuid_table_size = 0; 63 } 64 65 /* 66 * See if the UUID is unique among mounted XFS filesystems. 67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 68 */ 69 STATIC int 70 xfs_uuid_mount( 71 struct xfs_mount *mp) 72 { 73 uuid_t *uuid = &mp->m_sb.sb_uuid; 74 int hole, i; 75 76 /* Publish UUID in struct super_block */ 77 uuid_copy(&mp->m_super->s_uuid, uuid); 78 79 if (mp->m_flags & XFS_MOUNT_NOUUID) 80 return 0; 81 82 if (uuid_is_null(uuid)) { 83 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 84 return -EINVAL; 85 } 86 87 mutex_lock(&xfs_uuid_table_mutex); 88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 89 if (uuid_is_null(&xfs_uuid_table[i])) { 90 hole = i; 91 continue; 92 } 93 if (uuid_equal(uuid, &xfs_uuid_table[i])) 94 goto out_duplicate; 95 } 96 97 if (hole < 0) { 98 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 100 KM_SLEEP); 101 hole = xfs_uuid_table_size++; 102 } 103 xfs_uuid_table[hole] = *uuid; 104 mutex_unlock(&xfs_uuid_table_mutex); 105 106 return 0; 107 108 out_duplicate: 109 mutex_unlock(&xfs_uuid_table_mutex); 110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 111 return -EINVAL; 112 } 113 114 STATIC void 115 xfs_uuid_unmount( 116 struct xfs_mount *mp) 117 { 118 uuid_t *uuid = &mp->m_sb.sb_uuid; 119 int i; 120 121 if (mp->m_flags & XFS_MOUNT_NOUUID) 122 return; 123 124 mutex_lock(&xfs_uuid_table_mutex); 125 for (i = 0; i < xfs_uuid_table_size; i++) { 126 if (uuid_is_null(&xfs_uuid_table[i])) 127 continue; 128 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 129 continue; 130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 131 break; 132 } 133 ASSERT(i < xfs_uuid_table_size); 134 mutex_unlock(&xfs_uuid_table_mutex); 135 } 136 137 138 STATIC void 139 __xfs_free_perag( 140 struct rcu_head *head) 141 { 142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 143 144 ASSERT(atomic_read(&pag->pag_ref) == 0); 145 kmem_free(pag); 146 } 147 148 /* 149 * Free up the per-ag resources associated with the mount structure. 150 */ 151 STATIC void 152 xfs_free_perag( 153 xfs_mount_t *mp) 154 { 155 xfs_agnumber_t agno; 156 struct xfs_perag *pag; 157 158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 159 spin_lock(&mp->m_perag_lock); 160 pag = radix_tree_delete(&mp->m_perag_tree, agno); 161 spin_unlock(&mp->m_perag_lock); 162 ASSERT(pag); 163 ASSERT(atomic_read(&pag->pag_ref) == 0); 164 xfs_buf_hash_destroy(pag); 165 call_rcu(&pag->rcu_head, __xfs_free_perag); 166 } 167 } 168 169 /* 170 * Check size of device based on the (data/realtime) block count. 171 * Note: this check is used by the growfs code as well as mount. 172 */ 173 int 174 xfs_sb_validate_fsb_count( 175 xfs_sb_t *sbp, 176 uint64_t nblocks) 177 { 178 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 179 ASSERT(sbp->sb_blocklog >= BBSHIFT); 180 181 /* Limited by ULONG_MAX of page cache index */ 182 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 183 return -EFBIG; 184 return 0; 185 } 186 187 int 188 xfs_initialize_perag( 189 xfs_mount_t *mp, 190 xfs_agnumber_t agcount, 191 xfs_agnumber_t *maxagi) 192 { 193 xfs_agnumber_t index; 194 xfs_agnumber_t first_initialised = NULLAGNUMBER; 195 xfs_perag_t *pag; 196 int error = -ENOMEM; 197 198 /* 199 * Walk the current per-ag tree so we don't try to initialise AGs 200 * that already exist (growfs case). Allocate and insert all the 201 * AGs we don't find ready for initialisation. 202 */ 203 for (index = 0; index < agcount; index++) { 204 pag = xfs_perag_get(mp, index); 205 if (pag) { 206 xfs_perag_put(pag); 207 continue; 208 } 209 210 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 211 if (!pag) 212 goto out_unwind_new_pags; 213 pag->pag_agno = index; 214 pag->pag_mount = mp; 215 spin_lock_init(&pag->pag_ici_lock); 216 mutex_init(&pag->pag_ici_reclaim_lock); 217 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 218 if (xfs_buf_hash_init(pag)) 219 goto out_free_pag; 220 init_waitqueue_head(&pag->pagb_wait); 221 222 if (radix_tree_preload(GFP_NOFS)) 223 goto out_hash_destroy; 224 225 spin_lock(&mp->m_perag_lock); 226 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 227 BUG(); 228 spin_unlock(&mp->m_perag_lock); 229 radix_tree_preload_end(); 230 error = -EEXIST; 231 goto out_hash_destroy; 232 } 233 spin_unlock(&mp->m_perag_lock); 234 radix_tree_preload_end(); 235 /* first new pag is fully initialized */ 236 if (first_initialised == NULLAGNUMBER) 237 first_initialised = index; 238 } 239 240 index = xfs_set_inode_alloc(mp, agcount); 241 242 if (maxagi) 243 *maxagi = index; 244 245 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 246 return 0; 247 248 out_hash_destroy: 249 xfs_buf_hash_destroy(pag); 250 out_free_pag: 251 kmem_free(pag); 252 out_unwind_new_pags: 253 /* unwind any prior newly initialized pags */ 254 for (index = first_initialised; index < agcount; index++) { 255 pag = radix_tree_delete(&mp->m_perag_tree, index); 256 if (!pag) 257 break; 258 xfs_buf_hash_destroy(pag); 259 kmem_free(pag); 260 } 261 return error; 262 } 263 264 /* 265 * xfs_readsb 266 * 267 * Does the initial read of the superblock. 268 */ 269 int 270 xfs_readsb( 271 struct xfs_mount *mp, 272 int flags) 273 { 274 unsigned int sector_size; 275 struct xfs_buf *bp; 276 struct xfs_sb *sbp = &mp->m_sb; 277 int error; 278 int loud = !(flags & XFS_MFSI_QUIET); 279 const struct xfs_buf_ops *buf_ops; 280 281 ASSERT(mp->m_sb_bp == NULL); 282 ASSERT(mp->m_ddev_targp != NULL); 283 284 /* 285 * For the initial read, we must guess at the sector 286 * size based on the block device. It's enough to 287 * get the sb_sectsize out of the superblock and 288 * then reread with the proper length. 289 * We don't verify it yet, because it may not be complete. 290 */ 291 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 292 buf_ops = NULL; 293 294 /* 295 * Allocate a (locked) buffer to hold the superblock. This will be kept 296 * around at all times to optimize access to the superblock. Therefore, 297 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 298 * elevated. 299 */ 300 reread: 301 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 302 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 303 buf_ops); 304 if (error) { 305 if (loud) 306 xfs_warn(mp, "SB validate failed with error %d.", error); 307 /* bad CRC means corrupted metadata */ 308 if (error == -EFSBADCRC) 309 error = -EFSCORRUPTED; 310 return error; 311 } 312 313 /* 314 * Initialize the mount structure from the superblock. 315 */ 316 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 317 318 /* 319 * If we haven't validated the superblock, do so now before we try 320 * to check the sector size and reread the superblock appropriately. 321 */ 322 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 323 if (loud) 324 xfs_warn(mp, "Invalid superblock magic number"); 325 error = -EINVAL; 326 goto release_buf; 327 } 328 329 /* 330 * We must be able to do sector-sized and sector-aligned IO. 331 */ 332 if (sector_size > sbp->sb_sectsize) { 333 if (loud) 334 xfs_warn(mp, "device supports %u byte sectors (not %u)", 335 sector_size, sbp->sb_sectsize); 336 error = -ENOSYS; 337 goto release_buf; 338 } 339 340 if (buf_ops == NULL) { 341 /* 342 * Re-read the superblock so the buffer is correctly sized, 343 * and properly verified. 344 */ 345 xfs_buf_relse(bp); 346 sector_size = sbp->sb_sectsize; 347 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 348 goto reread; 349 } 350 351 xfs_reinit_percpu_counters(mp); 352 353 /* no need to be quiet anymore, so reset the buf ops */ 354 bp->b_ops = &xfs_sb_buf_ops; 355 356 mp->m_sb_bp = bp; 357 xfs_buf_unlock(bp); 358 return 0; 359 360 release_buf: 361 xfs_buf_relse(bp); 362 return error; 363 } 364 365 /* 366 * Update alignment values based on mount options and sb values 367 */ 368 STATIC int 369 xfs_update_alignment(xfs_mount_t *mp) 370 { 371 xfs_sb_t *sbp = &(mp->m_sb); 372 373 if (mp->m_dalign) { 374 /* 375 * If stripe unit and stripe width are not multiples 376 * of the fs blocksize turn off alignment. 377 */ 378 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 379 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 380 xfs_warn(mp, 381 "alignment check failed: sunit/swidth vs. blocksize(%d)", 382 sbp->sb_blocksize); 383 return -EINVAL; 384 } else { 385 /* 386 * Convert the stripe unit and width to FSBs. 387 */ 388 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 389 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 390 xfs_warn(mp, 391 "alignment check failed: sunit/swidth vs. agsize(%d)", 392 sbp->sb_agblocks); 393 return -EINVAL; 394 } else if (mp->m_dalign) { 395 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 396 } else { 397 xfs_warn(mp, 398 "alignment check failed: sunit(%d) less than bsize(%d)", 399 mp->m_dalign, sbp->sb_blocksize); 400 return -EINVAL; 401 } 402 } 403 404 /* 405 * Update superblock with new values 406 * and log changes 407 */ 408 if (xfs_sb_version_hasdalign(sbp)) { 409 if (sbp->sb_unit != mp->m_dalign) { 410 sbp->sb_unit = mp->m_dalign; 411 mp->m_update_sb = true; 412 } 413 if (sbp->sb_width != mp->m_swidth) { 414 sbp->sb_width = mp->m_swidth; 415 mp->m_update_sb = true; 416 } 417 } else { 418 xfs_warn(mp, 419 "cannot change alignment: superblock does not support data alignment"); 420 return -EINVAL; 421 } 422 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 423 xfs_sb_version_hasdalign(&mp->m_sb)) { 424 mp->m_dalign = sbp->sb_unit; 425 mp->m_swidth = sbp->sb_width; 426 } 427 428 return 0; 429 } 430 431 /* 432 * Set the maximum inode count for this filesystem 433 */ 434 STATIC void 435 xfs_set_maxicount(xfs_mount_t *mp) 436 { 437 xfs_sb_t *sbp = &(mp->m_sb); 438 uint64_t icount; 439 440 if (sbp->sb_imax_pct) { 441 /* 442 * Make sure the maximum inode count is a multiple 443 * of the units we allocate inodes in. 444 */ 445 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 446 do_div(icount, 100); 447 do_div(icount, mp->m_ialloc_blks); 448 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 449 sbp->sb_inopblog; 450 } else { 451 mp->m_maxicount = 0; 452 } 453 } 454 455 /* 456 * Set the default minimum read and write sizes unless 457 * already specified in a mount option. 458 * We use smaller I/O sizes when the file system 459 * is being used for NFS service (wsync mount option). 460 */ 461 STATIC void 462 xfs_set_rw_sizes(xfs_mount_t *mp) 463 { 464 xfs_sb_t *sbp = &(mp->m_sb); 465 int readio_log, writeio_log; 466 467 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 468 if (mp->m_flags & XFS_MOUNT_WSYNC) { 469 readio_log = XFS_WSYNC_READIO_LOG; 470 writeio_log = XFS_WSYNC_WRITEIO_LOG; 471 } else { 472 readio_log = XFS_READIO_LOG_LARGE; 473 writeio_log = XFS_WRITEIO_LOG_LARGE; 474 } 475 } else { 476 readio_log = mp->m_readio_log; 477 writeio_log = mp->m_writeio_log; 478 } 479 480 if (sbp->sb_blocklog > readio_log) { 481 mp->m_readio_log = sbp->sb_blocklog; 482 } else { 483 mp->m_readio_log = readio_log; 484 } 485 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 486 if (sbp->sb_blocklog > writeio_log) { 487 mp->m_writeio_log = sbp->sb_blocklog; 488 } else { 489 mp->m_writeio_log = writeio_log; 490 } 491 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 492 } 493 494 /* 495 * precalculate the low space thresholds for dynamic speculative preallocation. 496 */ 497 void 498 xfs_set_low_space_thresholds( 499 struct xfs_mount *mp) 500 { 501 int i; 502 503 for (i = 0; i < XFS_LOWSP_MAX; i++) { 504 uint64_t space = mp->m_sb.sb_dblocks; 505 506 do_div(space, 100); 507 mp->m_low_space[i] = space * (i + 1); 508 } 509 } 510 511 512 /* 513 * Set whether we're using inode alignment. 514 */ 515 STATIC void 516 xfs_set_inoalignment(xfs_mount_t *mp) 517 { 518 if (xfs_sb_version_hasalign(&mp->m_sb) && 519 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 520 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 521 else 522 mp->m_inoalign_mask = 0; 523 /* 524 * If we are using stripe alignment, check whether 525 * the stripe unit is a multiple of the inode alignment 526 */ 527 if (mp->m_dalign && mp->m_inoalign_mask && 528 !(mp->m_dalign & mp->m_inoalign_mask)) 529 mp->m_sinoalign = mp->m_dalign; 530 else 531 mp->m_sinoalign = 0; 532 } 533 534 /* 535 * Check that the data (and log if separate) is an ok size. 536 */ 537 STATIC int 538 xfs_check_sizes( 539 struct xfs_mount *mp) 540 { 541 struct xfs_buf *bp; 542 xfs_daddr_t d; 543 int error; 544 545 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 546 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 547 xfs_warn(mp, "filesystem size mismatch detected"); 548 return -EFBIG; 549 } 550 error = xfs_buf_read_uncached(mp->m_ddev_targp, 551 d - XFS_FSS_TO_BB(mp, 1), 552 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 553 if (error) { 554 xfs_warn(mp, "last sector read failed"); 555 return error; 556 } 557 xfs_buf_relse(bp); 558 559 if (mp->m_logdev_targp == mp->m_ddev_targp) 560 return 0; 561 562 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 563 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 564 xfs_warn(mp, "log size mismatch detected"); 565 return -EFBIG; 566 } 567 error = xfs_buf_read_uncached(mp->m_logdev_targp, 568 d - XFS_FSB_TO_BB(mp, 1), 569 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 570 if (error) { 571 xfs_warn(mp, "log device read failed"); 572 return error; 573 } 574 xfs_buf_relse(bp); 575 return 0; 576 } 577 578 /* 579 * Clear the quotaflags in memory and in the superblock. 580 */ 581 int 582 xfs_mount_reset_sbqflags( 583 struct xfs_mount *mp) 584 { 585 mp->m_qflags = 0; 586 587 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 588 if (mp->m_sb.sb_qflags == 0) 589 return 0; 590 spin_lock(&mp->m_sb_lock); 591 mp->m_sb.sb_qflags = 0; 592 spin_unlock(&mp->m_sb_lock); 593 594 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 595 return 0; 596 597 return xfs_sync_sb(mp, false); 598 } 599 600 uint64_t 601 xfs_default_resblks(xfs_mount_t *mp) 602 { 603 uint64_t resblks; 604 605 /* 606 * We default to 5% or 8192 fsbs of space reserved, whichever is 607 * smaller. This is intended to cover concurrent allocation 608 * transactions when we initially hit enospc. These each require a 4 609 * block reservation. Hence by default we cover roughly 2000 concurrent 610 * allocation reservations. 611 */ 612 resblks = mp->m_sb.sb_dblocks; 613 do_div(resblks, 20); 614 resblks = min_t(uint64_t, resblks, 8192); 615 return resblks; 616 } 617 618 /* 619 * This function does the following on an initial mount of a file system: 620 * - reads the superblock from disk and init the mount struct 621 * - if we're a 32-bit kernel, do a size check on the superblock 622 * so we don't mount terabyte filesystems 623 * - init mount struct realtime fields 624 * - allocate inode hash table for fs 625 * - init directory manager 626 * - perform recovery and init the log manager 627 */ 628 int 629 xfs_mountfs( 630 struct xfs_mount *mp) 631 { 632 struct xfs_sb *sbp = &(mp->m_sb); 633 struct xfs_inode *rip; 634 uint64_t resblks; 635 uint quotamount = 0; 636 uint quotaflags = 0; 637 int error = 0; 638 639 xfs_sb_mount_common(mp, sbp); 640 641 /* 642 * Check for a mismatched features2 values. Older kernels read & wrote 643 * into the wrong sb offset for sb_features2 on some platforms due to 644 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 645 * which made older superblock reading/writing routines swap it as a 646 * 64-bit value. 647 * 648 * For backwards compatibility, we make both slots equal. 649 * 650 * If we detect a mismatched field, we OR the set bits into the existing 651 * features2 field in case it has already been modified; we don't want 652 * to lose any features. We then update the bad location with the ORed 653 * value so that older kernels will see any features2 flags. The 654 * superblock writeback code ensures the new sb_features2 is copied to 655 * sb_bad_features2 before it is logged or written to disk. 656 */ 657 if (xfs_sb_has_mismatched_features2(sbp)) { 658 xfs_warn(mp, "correcting sb_features alignment problem"); 659 sbp->sb_features2 |= sbp->sb_bad_features2; 660 mp->m_update_sb = true; 661 662 /* 663 * Re-check for ATTR2 in case it was found in bad_features2 664 * slot. 665 */ 666 if (xfs_sb_version_hasattr2(&mp->m_sb) && 667 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 668 mp->m_flags |= XFS_MOUNT_ATTR2; 669 } 670 671 if (xfs_sb_version_hasattr2(&mp->m_sb) && 672 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 673 xfs_sb_version_removeattr2(&mp->m_sb); 674 mp->m_update_sb = true; 675 676 /* update sb_versionnum for the clearing of the morebits */ 677 if (!sbp->sb_features2) 678 mp->m_update_sb = true; 679 } 680 681 /* always use v2 inodes by default now */ 682 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 683 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 684 mp->m_update_sb = true; 685 } 686 687 /* 688 * Check if sb_agblocks is aligned at stripe boundary 689 * If sb_agblocks is NOT aligned turn off m_dalign since 690 * allocator alignment is within an ag, therefore ag has 691 * to be aligned at stripe boundary. 692 */ 693 error = xfs_update_alignment(mp); 694 if (error) 695 goto out; 696 697 xfs_alloc_compute_maxlevels(mp); 698 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 699 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 700 xfs_ialloc_compute_maxlevels(mp); 701 xfs_rmapbt_compute_maxlevels(mp); 702 xfs_refcountbt_compute_maxlevels(mp); 703 704 xfs_set_maxicount(mp); 705 706 /* enable fail_at_unmount as default */ 707 mp->m_fail_unmount = true; 708 709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 710 if (error) 711 goto out; 712 713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 714 &mp->m_kobj, "stats"); 715 if (error) 716 goto out_remove_sysfs; 717 718 error = xfs_error_sysfs_init(mp); 719 if (error) 720 goto out_del_stats; 721 722 error = xfs_errortag_init(mp); 723 if (error) 724 goto out_remove_error_sysfs; 725 726 error = xfs_uuid_mount(mp); 727 if (error) 728 goto out_remove_errortag; 729 730 /* 731 * Set the minimum read and write sizes 732 */ 733 xfs_set_rw_sizes(mp); 734 735 /* set the low space thresholds for dynamic preallocation */ 736 xfs_set_low_space_thresholds(mp); 737 738 /* 739 * Set the inode cluster size. 740 * This may still be overridden by the file system 741 * block size if it is larger than the chosen cluster size. 742 * 743 * For v5 filesystems, scale the cluster size with the inode size to 744 * keep a constant ratio of inode per cluster buffer, but only if mkfs 745 * has set the inode alignment value appropriately for larger cluster 746 * sizes. 747 */ 748 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 749 if (xfs_sb_version_hascrc(&mp->m_sb)) { 750 int new_size = mp->m_inode_cluster_size; 751 752 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 753 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 754 mp->m_inode_cluster_size = new_size; 755 } 756 757 /* 758 * If enabled, sparse inode chunk alignment is expected to match the 759 * cluster size. Full inode chunk alignment must match the chunk size, 760 * but that is checked on sb read verification... 761 */ 762 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 763 mp->m_sb.sb_spino_align != 764 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 765 xfs_warn(mp, 766 "Sparse inode block alignment (%u) must match cluster size (%llu).", 767 mp->m_sb.sb_spino_align, 768 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 769 error = -EINVAL; 770 goto out_remove_uuid; 771 } 772 773 /* 774 * Set inode alignment fields 775 */ 776 xfs_set_inoalignment(mp); 777 778 /* 779 * Check that the data (and log if separate) is an ok size. 780 */ 781 error = xfs_check_sizes(mp); 782 if (error) 783 goto out_remove_uuid; 784 785 /* 786 * Initialize realtime fields in the mount structure 787 */ 788 error = xfs_rtmount_init(mp); 789 if (error) { 790 xfs_warn(mp, "RT mount failed"); 791 goto out_remove_uuid; 792 } 793 794 /* 795 * Copies the low order bits of the timestamp and the randomly 796 * set "sequence" number out of a UUID. 797 */ 798 mp->m_fixedfsid[0] = 799 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 800 get_unaligned_be16(&sbp->sb_uuid.b[4]); 801 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 802 803 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 804 805 error = xfs_da_mount(mp); 806 if (error) { 807 xfs_warn(mp, "Failed dir/attr init: %d", error); 808 goto out_remove_uuid; 809 } 810 811 /* 812 * Initialize the precomputed transaction reservations values. 813 */ 814 xfs_trans_init(mp); 815 816 /* 817 * Allocate and initialize the per-ag data. 818 */ 819 spin_lock_init(&mp->m_perag_lock); 820 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 821 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 822 if (error) { 823 xfs_warn(mp, "Failed per-ag init: %d", error); 824 goto out_free_dir; 825 } 826 827 if (!sbp->sb_logblocks) { 828 xfs_warn(mp, "no log defined"); 829 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 830 error = -EFSCORRUPTED; 831 goto out_free_perag; 832 } 833 834 /* 835 * Log's mount-time initialization. The first part of recovery can place 836 * some items on the AIL, to be handled when recovery is finished or 837 * cancelled. 838 */ 839 error = xfs_log_mount(mp, mp->m_logdev_targp, 840 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 841 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 842 if (error) { 843 xfs_warn(mp, "log mount failed"); 844 goto out_fail_wait; 845 } 846 847 /* 848 * Now the log is mounted, we know if it was an unclean shutdown or 849 * not. If it was, with the first phase of recovery has completed, we 850 * have consistent AG blocks on disk. We have not recovered EFIs yet, 851 * but they are recovered transactionally in the second recovery phase 852 * later. 853 * 854 * Hence we can safely re-initialise incore superblock counters from 855 * the per-ag data. These may not be correct if the filesystem was not 856 * cleanly unmounted, so we need to wait for recovery to finish before 857 * doing this. 858 * 859 * If the filesystem was cleanly unmounted, then we can trust the 860 * values in the superblock to be correct and we don't need to do 861 * anything here. 862 * 863 * If we are currently making the filesystem, the initialisation will 864 * fail as the perag data is in an undefined state. 865 */ 866 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 867 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 868 !mp->m_sb.sb_inprogress) { 869 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 870 if (error) 871 goto out_log_dealloc; 872 } 873 874 /* 875 * Get and sanity-check the root inode. 876 * Save the pointer to it in the mount structure. 877 */ 878 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 879 if (error) { 880 xfs_warn(mp, "failed to read root inode"); 881 goto out_log_dealloc; 882 } 883 884 ASSERT(rip != NULL); 885 886 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 887 xfs_warn(mp, "corrupted root inode %llu: not a directory", 888 (unsigned long long)rip->i_ino); 889 xfs_iunlock(rip, XFS_ILOCK_EXCL); 890 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 891 mp); 892 error = -EFSCORRUPTED; 893 goto out_rele_rip; 894 } 895 mp->m_rootip = rip; /* save it */ 896 897 xfs_iunlock(rip, XFS_ILOCK_EXCL); 898 899 /* 900 * Initialize realtime inode pointers in the mount structure 901 */ 902 error = xfs_rtmount_inodes(mp); 903 if (error) { 904 /* 905 * Free up the root inode. 906 */ 907 xfs_warn(mp, "failed to read RT inodes"); 908 goto out_rele_rip; 909 } 910 911 /* 912 * If this is a read-only mount defer the superblock updates until 913 * the next remount into writeable mode. Otherwise we would never 914 * perform the update e.g. for the root filesystem. 915 */ 916 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 917 error = xfs_sync_sb(mp, false); 918 if (error) { 919 xfs_warn(mp, "failed to write sb changes"); 920 goto out_rtunmount; 921 } 922 } 923 924 /* 925 * Initialise the XFS quota management subsystem for this mount 926 */ 927 if (XFS_IS_QUOTA_RUNNING(mp)) { 928 error = xfs_qm_newmount(mp, "amount, "aflags); 929 if (error) 930 goto out_rtunmount; 931 } else { 932 ASSERT(!XFS_IS_QUOTA_ON(mp)); 933 934 /* 935 * If a file system had quotas running earlier, but decided to 936 * mount without -o uquota/pquota/gquota options, revoke the 937 * quotachecked license. 938 */ 939 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 940 xfs_notice(mp, "resetting quota flags"); 941 error = xfs_mount_reset_sbqflags(mp); 942 if (error) 943 goto out_rtunmount; 944 } 945 } 946 947 /* 948 * Finish recovering the file system. This part needed to be delayed 949 * until after the root and real-time bitmap inodes were consistently 950 * read in. 951 */ 952 error = xfs_log_mount_finish(mp); 953 if (error) { 954 xfs_warn(mp, "log mount finish failed"); 955 goto out_rtunmount; 956 } 957 958 /* 959 * Now the log is fully replayed, we can transition to full read-only 960 * mode for read-only mounts. This will sync all the metadata and clean 961 * the log so that the recovery we just performed does not have to be 962 * replayed again on the next mount. 963 * 964 * We use the same quiesce mechanism as the rw->ro remount, as they are 965 * semantically identical operations. 966 */ 967 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 968 XFS_MOUNT_RDONLY) { 969 xfs_quiesce_attr(mp); 970 } 971 972 /* 973 * Complete the quota initialisation, post-log-replay component. 974 */ 975 if (quotamount) { 976 ASSERT(mp->m_qflags == 0); 977 mp->m_qflags = quotaflags; 978 979 xfs_qm_mount_quotas(mp); 980 } 981 982 /* 983 * Now we are mounted, reserve a small amount of unused space for 984 * privileged transactions. This is needed so that transaction 985 * space required for critical operations can dip into this pool 986 * when at ENOSPC. This is needed for operations like create with 987 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 988 * are not allowed to use this reserved space. 989 * 990 * This may drive us straight to ENOSPC on mount, but that implies 991 * we were already there on the last unmount. Warn if this occurs. 992 */ 993 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 994 resblks = xfs_default_resblks(mp); 995 error = xfs_reserve_blocks(mp, &resblks, NULL); 996 if (error) 997 xfs_warn(mp, 998 "Unable to allocate reserve blocks. Continuing without reserve pool."); 999 1000 /* Recover any CoW blocks that never got remapped. */ 1001 error = xfs_reflink_recover_cow(mp); 1002 if (error) { 1003 xfs_err(mp, 1004 "Error %d recovering leftover CoW allocations.", error); 1005 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1006 goto out_quota; 1007 } 1008 1009 /* Reserve AG blocks for future btree expansion. */ 1010 error = xfs_fs_reserve_ag_blocks(mp); 1011 if (error && error != -ENOSPC) 1012 goto out_agresv; 1013 } 1014 1015 return 0; 1016 1017 out_agresv: 1018 xfs_fs_unreserve_ag_blocks(mp); 1019 out_quota: 1020 xfs_qm_unmount_quotas(mp); 1021 out_rtunmount: 1022 xfs_rtunmount_inodes(mp); 1023 out_rele_rip: 1024 IRELE(rip); 1025 /* Clean out dquots that might be in memory after quotacheck. */ 1026 xfs_qm_unmount(mp); 1027 /* 1028 * Cancel all delayed reclaim work and reclaim the inodes directly. 1029 * We have to do this /after/ rtunmount and qm_unmount because those 1030 * two will have scheduled delayed reclaim for the rt/quota inodes. 1031 * 1032 * This is slightly different from the unmountfs call sequence 1033 * because we could be tearing down a partially set up mount. In 1034 * particular, if log_mount_finish fails we bail out without calling 1035 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1036 * quota inodes. 1037 */ 1038 cancel_delayed_work_sync(&mp->m_reclaim_work); 1039 xfs_reclaim_inodes(mp, SYNC_WAIT); 1040 out_log_dealloc: 1041 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1042 xfs_log_mount_cancel(mp); 1043 out_fail_wait: 1044 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1045 xfs_wait_buftarg(mp->m_logdev_targp); 1046 xfs_wait_buftarg(mp->m_ddev_targp); 1047 out_free_perag: 1048 xfs_free_perag(mp); 1049 out_free_dir: 1050 xfs_da_unmount(mp); 1051 out_remove_uuid: 1052 xfs_uuid_unmount(mp); 1053 out_remove_errortag: 1054 xfs_errortag_del(mp); 1055 out_remove_error_sysfs: 1056 xfs_error_sysfs_del(mp); 1057 out_del_stats: 1058 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1059 out_remove_sysfs: 1060 xfs_sysfs_del(&mp->m_kobj); 1061 out: 1062 return error; 1063 } 1064 1065 /* 1066 * This flushes out the inodes,dquots and the superblock, unmounts the 1067 * log and makes sure that incore structures are freed. 1068 */ 1069 void 1070 xfs_unmountfs( 1071 struct xfs_mount *mp) 1072 { 1073 uint64_t resblks; 1074 int error; 1075 1076 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1077 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1078 1079 xfs_fs_unreserve_ag_blocks(mp); 1080 xfs_qm_unmount_quotas(mp); 1081 xfs_rtunmount_inodes(mp); 1082 IRELE(mp->m_rootip); 1083 1084 /* 1085 * We can potentially deadlock here if we have an inode cluster 1086 * that has been freed has its buffer still pinned in memory because 1087 * the transaction is still sitting in a iclog. The stale inodes 1088 * on that buffer will have their flush locks held until the 1089 * transaction hits the disk and the callbacks run. the inode 1090 * flush takes the flush lock unconditionally and with nothing to 1091 * push out the iclog we will never get that unlocked. hence we 1092 * need to force the log first. 1093 */ 1094 xfs_log_force(mp, XFS_LOG_SYNC); 1095 1096 /* 1097 * Wait for all busy extents to be freed, including completion of 1098 * any discard operation. 1099 */ 1100 xfs_extent_busy_wait_all(mp); 1101 flush_workqueue(xfs_discard_wq); 1102 1103 /* 1104 * We now need to tell the world we are unmounting. This will allow 1105 * us to detect that the filesystem is going away and we should error 1106 * out anything that we have been retrying in the background. This will 1107 * prevent neverending retries in AIL pushing from hanging the unmount. 1108 */ 1109 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1110 1111 /* 1112 * Flush all pending changes from the AIL. 1113 */ 1114 xfs_ail_push_all_sync(mp->m_ail); 1115 1116 /* 1117 * And reclaim all inodes. At this point there should be no dirty 1118 * inodes and none should be pinned or locked, but use synchronous 1119 * reclaim just to be sure. We can stop background inode reclaim 1120 * here as well if it is still running. 1121 */ 1122 cancel_delayed_work_sync(&mp->m_reclaim_work); 1123 xfs_reclaim_inodes(mp, SYNC_WAIT); 1124 1125 xfs_qm_unmount(mp); 1126 1127 /* 1128 * Unreserve any blocks we have so that when we unmount we don't account 1129 * the reserved free space as used. This is really only necessary for 1130 * lazy superblock counting because it trusts the incore superblock 1131 * counters to be absolutely correct on clean unmount. 1132 * 1133 * We don't bother correcting this elsewhere for lazy superblock 1134 * counting because on mount of an unclean filesystem we reconstruct the 1135 * correct counter value and this is irrelevant. 1136 * 1137 * For non-lazy counter filesystems, this doesn't matter at all because 1138 * we only every apply deltas to the superblock and hence the incore 1139 * value does not matter.... 1140 */ 1141 resblks = 0; 1142 error = xfs_reserve_blocks(mp, &resblks, NULL); 1143 if (error) 1144 xfs_warn(mp, "Unable to free reserved block pool. " 1145 "Freespace may not be correct on next mount."); 1146 1147 error = xfs_log_sbcount(mp); 1148 if (error) 1149 xfs_warn(mp, "Unable to update superblock counters. " 1150 "Freespace may not be correct on next mount."); 1151 1152 1153 xfs_log_unmount(mp); 1154 xfs_da_unmount(mp); 1155 xfs_uuid_unmount(mp); 1156 1157 #if defined(DEBUG) 1158 xfs_errortag_clearall(mp); 1159 #endif 1160 xfs_free_perag(mp); 1161 1162 xfs_errortag_del(mp); 1163 xfs_error_sysfs_del(mp); 1164 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1165 xfs_sysfs_del(&mp->m_kobj); 1166 } 1167 1168 /* 1169 * Determine whether modifications can proceed. The caller specifies the minimum 1170 * freeze level for which modifications should not be allowed. This allows 1171 * certain operations to proceed while the freeze sequence is in progress, if 1172 * necessary. 1173 */ 1174 bool 1175 xfs_fs_writable( 1176 struct xfs_mount *mp, 1177 int level) 1178 { 1179 ASSERT(level > SB_UNFROZEN); 1180 if ((mp->m_super->s_writers.frozen >= level) || 1181 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1182 return false; 1183 1184 return true; 1185 } 1186 1187 /* 1188 * xfs_log_sbcount 1189 * 1190 * Sync the superblock counters to disk. 1191 * 1192 * Note this code can be called during the process of freezing, so we use the 1193 * transaction allocator that does not block when the transaction subsystem is 1194 * in its frozen state. 1195 */ 1196 int 1197 xfs_log_sbcount(xfs_mount_t *mp) 1198 { 1199 /* allow this to proceed during the freeze sequence... */ 1200 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1201 return 0; 1202 1203 /* 1204 * we don't need to do this if we are updating the superblock 1205 * counters on every modification. 1206 */ 1207 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1208 return 0; 1209 1210 return xfs_sync_sb(mp, true); 1211 } 1212 1213 /* 1214 * Deltas for the inode count are +/-64, hence we use a large batch size 1215 * of 128 so we don't need to take the counter lock on every update. 1216 */ 1217 #define XFS_ICOUNT_BATCH 128 1218 int 1219 xfs_mod_icount( 1220 struct xfs_mount *mp, 1221 int64_t delta) 1222 { 1223 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1224 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1225 ASSERT(0); 1226 percpu_counter_add(&mp->m_icount, -delta); 1227 return -EINVAL; 1228 } 1229 return 0; 1230 } 1231 1232 int 1233 xfs_mod_ifree( 1234 struct xfs_mount *mp, 1235 int64_t delta) 1236 { 1237 percpu_counter_add(&mp->m_ifree, delta); 1238 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1239 ASSERT(0); 1240 percpu_counter_add(&mp->m_ifree, -delta); 1241 return -EINVAL; 1242 } 1243 return 0; 1244 } 1245 1246 /* 1247 * Deltas for the block count can vary from 1 to very large, but lock contention 1248 * only occurs on frequent small block count updates such as in the delayed 1249 * allocation path for buffered writes (page a time updates). Hence we set 1250 * a large batch count (1024) to minimise global counter updates except when 1251 * we get near to ENOSPC and we have to be very accurate with our updates. 1252 */ 1253 #define XFS_FDBLOCKS_BATCH 1024 1254 int 1255 xfs_mod_fdblocks( 1256 struct xfs_mount *mp, 1257 int64_t delta, 1258 bool rsvd) 1259 { 1260 int64_t lcounter; 1261 long long res_used; 1262 s32 batch; 1263 1264 if (delta > 0) { 1265 /* 1266 * If the reserve pool is depleted, put blocks back into it 1267 * first. Most of the time the pool is full. 1268 */ 1269 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1270 percpu_counter_add(&mp->m_fdblocks, delta); 1271 return 0; 1272 } 1273 1274 spin_lock(&mp->m_sb_lock); 1275 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1276 1277 if (res_used > delta) { 1278 mp->m_resblks_avail += delta; 1279 } else { 1280 delta -= res_used; 1281 mp->m_resblks_avail = mp->m_resblks; 1282 percpu_counter_add(&mp->m_fdblocks, delta); 1283 } 1284 spin_unlock(&mp->m_sb_lock); 1285 return 0; 1286 } 1287 1288 /* 1289 * Taking blocks away, need to be more accurate the closer we 1290 * are to zero. 1291 * 1292 * If the counter has a value of less than 2 * max batch size, 1293 * then make everything serialise as we are real close to 1294 * ENOSPC. 1295 */ 1296 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1297 XFS_FDBLOCKS_BATCH) < 0) 1298 batch = 1; 1299 else 1300 batch = XFS_FDBLOCKS_BATCH; 1301 1302 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1303 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1304 XFS_FDBLOCKS_BATCH) >= 0) { 1305 /* we had space! */ 1306 return 0; 1307 } 1308 1309 /* 1310 * lock up the sb for dipping into reserves before releasing the space 1311 * that took us to ENOSPC. 1312 */ 1313 spin_lock(&mp->m_sb_lock); 1314 percpu_counter_add(&mp->m_fdblocks, -delta); 1315 if (!rsvd) 1316 goto fdblocks_enospc; 1317 1318 lcounter = (long long)mp->m_resblks_avail + delta; 1319 if (lcounter >= 0) { 1320 mp->m_resblks_avail = lcounter; 1321 spin_unlock(&mp->m_sb_lock); 1322 return 0; 1323 } 1324 printk_once(KERN_WARNING 1325 "Filesystem \"%s\": reserve blocks depleted! " 1326 "Consider increasing reserve pool size.", 1327 mp->m_fsname); 1328 fdblocks_enospc: 1329 spin_unlock(&mp->m_sb_lock); 1330 return -ENOSPC; 1331 } 1332 1333 int 1334 xfs_mod_frextents( 1335 struct xfs_mount *mp, 1336 int64_t delta) 1337 { 1338 int64_t lcounter; 1339 int ret = 0; 1340 1341 spin_lock(&mp->m_sb_lock); 1342 lcounter = mp->m_sb.sb_frextents + delta; 1343 if (lcounter < 0) 1344 ret = -ENOSPC; 1345 else 1346 mp->m_sb.sb_frextents = lcounter; 1347 spin_unlock(&mp->m_sb_lock); 1348 return ret; 1349 } 1350 1351 /* 1352 * xfs_getsb() is called to obtain the buffer for the superblock. 1353 * The buffer is returned locked and read in from disk. 1354 * The buffer should be released with a call to xfs_brelse(). 1355 * 1356 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1357 * the superblock buffer if it can be locked without sleeping. 1358 * If it can't then we'll return NULL. 1359 */ 1360 struct xfs_buf * 1361 xfs_getsb( 1362 struct xfs_mount *mp, 1363 int flags) 1364 { 1365 struct xfs_buf *bp = mp->m_sb_bp; 1366 1367 if (!xfs_buf_trylock(bp)) { 1368 if (flags & XBF_TRYLOCK) 1369 return NULL; 1370 xfs_buf_lock(bp); 1371 } 1372 1373 xfs_buf_hold(bp); 1374 ASSERT(bp->b_flags & XBF_DONE); 1375 return bp; 1376 } 1377 1378 /* 1379 * Used to free the superblock along various error paths. 1380 */ 1381 void 1382 xfs_freesb( 1383 struct xfs_mount *mp) 1384 { 1385 struct xfs_buf *bp = mp->m_sb_bp; 1386 1387 xfs_buf_lock(bp); 1388 mp->m_sb_bp = NULL; 1389 xfs_buf_relse(bp); 1390 } 1391 1392 /* 1393 * If the underlying (data/log/rt) device is readonly, there are some 1394 * operations that cannot proceed. 1395 */ 1396 int 1397 xfs_dev_is_read_only( 1398 struct xfs_mount *mp, 1399 char *message) 1400 { 1401 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1402 xfs_readonly_buftarg(mp->m_logdev_targp) || 1403 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1404 xfs_notice(mp, "%s required on read-only device.", message); 1405 xfs_notice(mp, "write access unavailable, cannot proceed."); 1406 return -EROFS; 1407 } 1408 return 0; 1409 } 1410