xref: /linux/fs/xfs/xfs_mount.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44 
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48 
49 void
50 xfs_uuid_table_free(void)
51 {
52 	if (xfs_uuid_table_size == 0)
53 		return;
54 	kfree(xfs_uuid_table);
55 	xfs_uuid_table = NULL;
56 	xfs_uuid_table_size = 0;
57 }
58 
59 /*
60  * See if the UUID is unique among mounted XFS filesystems.
61  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62  */
63 STATIC int
64 xfs_uuid_mount(
65 	struct xfs_mount	*mp)
66 {
67 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
68 	int			hole, i;
69 
70 	/* Publish UUID in struct super_block */
71 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72 
73 	if (xfs_has_nouuid(mp))
74 		return 0;
75 
76 	if (uuid_is_null(uuid)) {
77 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_null(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = krealloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			GFP_KERNEL | __GFP_NOFAIL);
95 		hole = xfs_uuid_table_size++;
96 	}
97 	xfs_uuid_table[hole] = *uuid;
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 
100 	return 0;
101 
102  out_duplicate:
103 	mutex_unlock(&xfs_uuid_table_mutex);
104 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 	return -EINVAL;
106 }
107 
108 STATIC void
109 xfs_uuid_unmount(
110 	struct xfs_mount	*mp)
111 {
112 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
113 	int			i;
114 
115 	if (xfs_has_nouuid(mp))
116 		return;
117 
118 	mutex_lock(&xfs_uuid_table_mutex);
119 	for (i = 0; i < xfs_uuid_table_size; i++) {
120 		if (uuid_is_null(&xfs_uuid_table[i]))
121 			continue;
122 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 			continue;
124 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 		break;
126 	}
127 	ASSERT(i < xfs_uuid_table_size);
128 	mutex_unlock(&xfs_uuid_table_mutex);
129 }
130 
131 /*
132  * Check size of device based on the (data/realtime) block count.
133  * Note: this check is used by the growfs code as well as mount.
134  */
135 int
136 xfs_sb_validate_fsb_count(
137 	xfs_sb_t	*sbp,
138 	uint64_t	nblocks)
139 {
140 	uint64_t		max_bytes;
141 
142 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
143 
144 	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 		return -EFBIG;
146 
147 	/* Limited by ULONG_MAX of page cache index */
148 	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 		return -EFBIG;
150 	return 0;
151 }
152 
153 /*
154  * xfs_readsb
155  *
156  * Does the initial read of the superblock.
157  */
158 int
159 xfs_readsb(
160 	struct xfs_mount *mp,
161 	int		flags)
162 {
163 	unsigned int	sector_size;
164 	struct xfs_buf	*bp;
165 	struct xfs_sb	*sbp = &mp->m_sb;
166 	int		error;
167 	int		loud = !(flags & XFS_MFSI_QUIET);
168 	const struct xfs_buf_ops *buf_ops;
169 
170 	ASSERT(mp->m_sb_bp == NULL);
171 	ASSERT(mp->m_ddev_targp != NULL);
172 
173 	/*
174 	 * For the initial read, we must guess at the sector
175 	 * size based on the block device.  It's enough to
176 	 * get the sb_sectsize out of the superblock and
177 	 * then reread with the proper length.
178 	 * We don't verify it yet, because it may not be complete.
179 	 */
180 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
181 	buf_ops = NULL;
182 
183 	/*
184 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
185 	 * around at all times to optimize access to the superblock.
186 	 */
187 reread:
188 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
189 				      BTOBB(sector_size), &bp, buf_ops);
190 	if (error) {
191 		if (loud)
192 			xfs_warn(mp, "SB validate failed with error %d.", error);
193 		/* bad CRC means corrupted metadata */
194 		if (error == -EFSBADCRC)
195 			error = -EFSCORRUPTED;
196 		return error;
197 	}
198 
199 	/*
200 	 * Initialize the mount structure from the superblock.
201 	 */
202 	xfs_sb_from_disk(sbp, bp->b_addr);
203 
204 	/*
205 	 * If we haven't validated the superblock, do so now before we try
206 	 * to check the sector size and reread the superblock appropriately.
207 	 */
208 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
209 		if (loud)
210 			xfs_warn(mp, "Invalid superblock magic number");
211 		error = -EINVAL;
212 		goto release_buf;
213 	}
214 
215 	/*
216 	 * We must be able to do sector-sized and sector-aligned IO.
217 	 */
218 	if (sector_size > sbp->sb_sectsize) {
219 		if (loud)
220 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
221 				sector_size, sbp->sb_sectsize);
222 		error = -ENOSYS;
223 		goto release_buf;
224 	}
225 
226 	if (buf_ops == NULL) {
227 		/*
228 		 * Re-read the superblock so the buffer is correctly sized,
229 		 * and properly verified.
230 		 */
231 		xfs_buf_relse(bp);
232 		sector_size = sbp->sb_sectsize;
233 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
234 		goto reread;
235 	}
236 
237 	mp->m_features |= xfs_sb_version_to_features(sbp);
238 	xfs_reinit_percpu_counters(mp);
239 
240 	/*
241 	 * If logged xattrs are enabled after log recovery finishes, then set
242 	 * the opstate so that log recovery will work properly.
243 	 */
244 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
245 		xfs_set_using_logged_xattrs(mp);
246 
247 	/* no need to be quiet anymore, so reset the buf ops */
248 	bp->b_ops = &xfs_sb_buf_ops;
249 
250 	mp->m_sb_bp = bp;
251 	xfs_buf_unlock(bp);
252 	return 0;
253 
254 release_buf:
255 	xfs_buf_relse(bp);
256 	return error;
257 }
258 
259 /*
260  * If the sunit/swidth change would move the precomputed root inode value, we
261  * must reject the ondisk change because repair will stumble over that.
262  * However, we allow the mount to proceed because we never rejected this
263  * combination before.  Returns true to update the sb, false otherwise.
264  */
265 static inline int
266 xfs_check_new_dalign(
267 	struct xfs_mount	*mp,
268 	int			new_dalign,
269 	bool			*update_sb)
270 {
271 	struct xfs_sb		*sbp = &mp->m_sb;
272 	xfs_ino_t		calc_ino;
273 
274 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
275 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
276 
277 	if (sbp->sb_rootino == calc_ino) {
278 		*update_sb = true;
279 		return 0;
280 	}
281 
282 	xfs_warn(mp,
283 "Cannot change stripe alignment; would require moving root inode.");
284 
285 	/*
286 	 * XXX: Next time we add a new incompat feature, this should start
287 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
288 	 * that we're ignoring the administrator's instructions.
289 	 */
290 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
291 	*update_sb = false;
292 	return 0;
293 }
294 
295 /*
296  * If we were provided with new sunit/swidth values as mount options, make sure
297  * that they pass basic alignment and superblock feature checks, and convert
298  * them into the same units (FSB) that everything else expects.  This step
299  * /must/ be done before computing the inode geometry.
300  */
301 STATIC int
302 xfs_validate_new_dalign(
303 	struct xfs_mount	*mp)
304 {
305 	if (mp->m_dalign == 0)
306 		return 0;
307 
308 	/*
309 	 * If stripe unit and stripe width are not multiples
310 	 * of the fs blocksize turn off alignment.
311 	 */
312 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
313 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
314 		xfs_warn(mp,
315 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
316 			mp->m_sb.sb_blocksize);
317 		return -EINVAL;
318 	}
319 
320 	/*
321 	 * Convert the stripe unit and width to FSBs.
322 	 */
323 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
324 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
325 		xfs_warn(mp,
326 	"alignment check failed: sunit/swidth vs. agsize(%d)",
327 			mp->m_sb.sb_agblocks);
328 		return -EINVAL;
329 	}
330 
331 	if (!mp->m_dalign) {
332 		xfs_warn(mp,
333 	"alignment check failed: sunit(%d) less than bsize(%d)",
334 			mp->m_dalign, mp->m_sb.sb_blocksize);
335 		return -EINVAL;
336 	}
337 
338 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
339 
340 	if (!xfs_has_dalign(mp)) {
341 		xfs_warn(mp,
342 "cannot change alignment: superblock does not support data alignment");
343 		return -EINVAL;
344 	}
345 
346 	return 0;
347 }
348 
349 /* Update alignment values based on mount options and sb values. */
350 STATIC int
351 xfs_update_alignment(
352 	struct xfs_mount	*mp)
353 {
354 	struct xfs_sb		*sbp = &mp->m_sb;
355 
356 	if (mp->m_dalign) {
357 		bool		update_sb;
358 		int		error;
359 
360 		if (sbp->sb_unit == mp->m_dalign &&
361 		    sbp->sb_width == mp->m_swidth)
362 			return 0;
363 
364 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
365 		if (error || !update_sb)
366 			return error;
367 
368 		sbp->sb_unit = mp->m_dalign;
369 		sbp->sb_width = mp->m_swidth;
370 		mp->m_update_sb = true;
371 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
372 		mp->m_dalign = sbp->sb_unit;
373 		mp->m_swidth = sbp->sb_width;
374 	}
375 
376 	return 0;
377 }
378 
379 /*
380  * precalculate the low space thresholds for dynamic speculative preallocation.
381  */
382 void
383 xfs_set_low_space_thresholds(
384 	struct xfs_mount	*mp)
385 {
386 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
387 	uint64_t		rtexts = mp->m_sb.sb_rextents;
388 	int			i;
389 
390 	do_div(dblocks, 100);
391 	do_div(rtexts, 100);
392 
393 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
394 		mp->m_low_space[i] = dblocks * (i + 1);
395 		mp->m_low_rtexts[i] = rtexts * (i + 1);
396 	}
397 }
398 
399 /*
400  * Check that the data (and log if separate) is an ok size.
401  */
402 STATIC int
403 xfs_check_sizes(
404 	struct xfs_mount *mp)
405 {
406 	struct xfs_buf	*bp;
407 	xfs_daddr_t	d;
408 	int		error;
409 
410 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
411 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
412 		xfs_warn(mp, "filesystem size mismatch detected");
413 		return -EFBIG;
414 	}
415 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
416 					d - XFS_FSS_TO_BB(mp, 1),
417 					XFS_FSS_TO_BB(mp, 1), &bp, NULL);
418 	if (error) {
419 		xfs_warn(mp, "last sector read failed");
420 		return error;
421 	}
422 	xfs_buf_relse(bp);
423 
424 	if (mp->m_logdev_targp == mp->m_ddev_targp)
425 		return 0;
426 
427 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
428 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
429 		xfs_warn(mp, "log size mismatch detected");
430 		return -EFBIG;
431 	}
432 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
433 					d - XFS_FSB_TO_BB(mp, 1),
434 					XFS_FSB_TO_BB(mp, 1), &bp, NULL);
435 	if (error) {
436 		xfs_warn(mp, "log device read failed");
437 		return error;
438 	}
439 	xfs_buf_relse(bp);
440 	return 0;
441 }
442 
443 /*
444  * Clear the quotaflags in memory and in the superblock.
445  */
446 int
447 xfs_mount_reset_sbqflags(
448 	struct xfs_mount	*mp)
449 {
450 	mp->m_qflags = 0;
451 
452 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
453 	if (mp->m_sb.sb_qflags == 0)
454 		return 0;
455 	spin_lock(&mp->m_sb_lock);
456 	mp->m_sb.sb_qflags = 0;
457 	spin_unlock(&mp->m_sb_lock);
458 
459 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
460 		return 0;
461 
462 	return xfs_sync_sb(mp, false);
463 }
464 
465 static const char *const xfs_free_pool_name[] = {
466 	[XC_FREE_BLOCKS]	= "free blocks",
467 	[XC_FREE_RTEXTENTS]	= "free rt extents",
468 	[XC_FREE_RTAVAILABLE]	= "available rt extents",
469 };
470 
471 uint64_t
472 xfs_default_resblks(
473 	struct xfs_mount	*mp,
474 	enum xfs_free_counter	ctr)
475 {
476 	switch (ctr) {
477 	case XC_FREE_BLOCKS:
478 		/*
479 		 * Default to 5% or 8192 FSBs of space reserved, whichever is
480 		 * smaller.
481 		 *
482 		 * This is intended to cover concurrent allocation transactions
483 		 * when we initially hit ENOSPC.  These each require a 4 block
484 		 * reservation. Hence by default we cover roughly 2000
485 		 * concurrent allocation reservations.
486 		 */
487 		return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
488 	case XC_FREE_RTEXTENTS:
489 	case XC_FREE_RTAVAILABLE:
490 		if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
491 			return xfs_zoned_default_resblks(mp, ctr);
492 		return 0;
493 	default:
494 		ASSERT(0);
495 		return 0;
496 	}
497 }
498 
499 /* Ensure the summary counts are correct. */
500 STATIC int
501 xfs_check_summary_counts(
502 	struct xfs_mount	*mp)
503 {
504 	int			error = 0;
505 
506 	/*
507 	 * The AG0 superblock verifier rejects in-progress filesystems,
508 	 * so we should never see the flag set this far into mounting.
509 	 */
510 	if (mp->m_sb.sb_inprogress) {
511 		xfs_err(mp, "sb_inprogress set after log recovery??");
512 		WARN_ON(1);
513 		return -EFSCORRUPTED;
514 	}
515 
516 	/*
517 	 * Now the log is mounted, we know if it was an unclean shutdown or
518 	 * not. If it was, with the first phase of recovery has completed, we
519 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
520 	 * but they are recovered transactionally in the second recovery phase
521 	 * later.
522 	 *
523 	 * If the log was clean when we mounted, we can check the summary
524 	 * counters.  If any of them are obviously incorrect, we can recompute
525 	 * them from the AGF headers in the next step.
526 	 */
527 	if (xfs_is_clean(mp) &&
528 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
529 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
530 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
531 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
532 
533 	/*
534 	 * We can safely re-initialise incore superblock counters from the
535 	 * per-ag data. These may not be correct if the filesystem was not
536 	 * cleanly unmounted, so we waited for recovery to finish before doing
537 	 * this.
538 	 *
539 	 * If the filesystem was cleanly unmounted or the previous check did
540 	 * not flag anything weird, then we can trust the values in the
541 	 * superblock to be correct and we don't need to do anything here.
542 	 * Otherwise, recalculate the summary counters.
543 	 */
544 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
545 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
546 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
547 		if (error)
548 			return error;
549 	}
550 
551 	/*
552 	 * Older kernels misused sb_frextents to reflect both incore
553 	 * reservations made by running transactions and the actual count of
554 	 * free rt extents in the ondisk metadata.  Transactions committed
555 	 * during runtime can therefore contain a superblock update that
556 	 * undercounts the number of free rt extents tracked in the rt bitmap.
557 	 * A clean unmount record will have the correct frextents value since
558 	 * there can be no other transactions running at that point.
559 	 *
560 	 * If we're mounting the rt volume after recovering the log, recompute
561 	 * frextents from the rtbitmap file to fix the inconsistency.
562 	 */
563 	if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
564 		error = xfs_rtalloc_reinit_frextents(mp);
565 		if (error)
566 			return error;
567 	}
568 
569 	return 0;
570 }
571 
572 static void
573 xfs_unmount_check(
574 	struct xfs_mount	*mp)
575 {
576 	if (xfs_is_shutdown(mp))
577 		return;
578 
579 	if (percpu_counter_sum(&mp->m_ifree) >
580 			percpu_counter_sum(&mp->m_icount)) {
581 		xfs_alert(mp, "ifree/icount mismatch at unmount");
582 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
583 	}
584 }
585 
586 /*
587  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
588  * internal inode structures can be sitting in the CIL and AIL at this point,
589  * so we need to unpin them, write them back and/or reclaim them before unmount
590  * can proceed.  In other words, callers are required to have inactivated all
591  * inodes.
592  *
593  * An inode cluster that has been freed can have its buffer still pinned in
594  * memory because the transaction is still sitting in a iclog. The stale inodes
595  * on that buffer will be pinned to the buffer until the transaction hits the
596  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
597  * may never see the pinned buffer, so nothing will push out the iclog and
598  * unpin the buffer.
599  *
600  * Hence we need to force the log to unpin everything first. However, log
601  * forces don't wait for the discards they issue to complete, so we have to
602  * explicitly wait for them to complete here as well.
603  *
604  * Then we can tell the world we are unmounting so that error handling knows
605  * that the filesystem is going away and we should error out anything that we
606  * have been retrying in the background.  This will prevent never-ending
607  * retries in AIL pushing from hanging the unmount.
608  *
609  * Finally, we can push the AIL to clean all the remaining dirty objects, then
610  * reclaim the remaining inodes that are still in memory at this point in time.
611  */
612 static void
613 xfs_unmount_flush_inodes(
614 	struct xfs_mount	*mp)
615 {
616 	xfs_log_force(mp, XFS_LOG_SYNC);
617 	xfs_extent_busy_wait_all(mp);
618 	flush_workqueue(xfs_discard_wq);
619 
620 	xfs_set_unmounting(mp);
621 
622 	xfs_ail_push_all_sync(mp->m_ail);
623 	xfs_inodegc_stop(mp);
624 	cancel_delayed_work_sync(&mp->m_reclaim_work);
625 	xfs_reclaim_inodes(mp);
626 	xfs_health_unmount(mp);
627 }
628 
629 static void
630 xfs_mount_setup_inode_geom(
631 	struct xfs_mount	*mp)
632 {
633 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
634 
635 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
636 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
637 
638 	xfs_ialloc_setup_geometry(mp);
639 }
640 
641 /* Mount the metadata directory tree root. */
642 STATIC int
643 xfs_mount_setup_metadir(
644 	struct xfs_mount	*mp)
645 {
646 	int			error;
647 
648 	/* Load the metadata directory root inode into memory. */
649 	error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
650 			&mp->m_metadirip);
651 	if (error)
652 		xfs_warn(mp, "Failed to load metadir root directory, error %d",
653 				error);
654 	return error;
655 }
656 
657 /* Compute maximum possible height for per-AG btree types for this fs. */
658 static inline void
659 xfs_agbtree_compute_maxlevels(
660 	struct xfs_mount	*mp)
661 {
662 	unsigned int		levels;
663 
664 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
665 	levels = max(levels, mp->m_rmap_maxlevels);
666 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
667 }
668 
669 /* Maximum atomic write IO size that the kernel allows. */
670 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp)
671 {
672 	return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT));
673 }
674 
675 static inline unsigned int max_pow_of_two_factor(const unsigned int nr)
676 {
677 	return 1 << (ffs(nr) - 1);
678 }
679 
680 /*
681  * If the data device advertises atomic write support, limit the size of data
682  * device atomic writes to the greatest power-of-two factor of the AG size so
683  * that every atomic write unit aligns with the start of every AG.  This is
684  * required so that the per-AG allocations for an atomic write will always be
685  * aligned compatibly with the alignment requirements of the storage.
686  *
687  * If the data device doesn't advertise atomic writes, then there are no
688  * alignment restrictions and the largest out-of-place write we can do
689  * ourselves is the number of blocks that user files can allocate from any AG.
690  */
691 static inline xfs_extlen_t xfs_calc_perag_awu_max(struct xfs_mount *mp)
692 {
693 	if (mp->m_ddev_targp->bt_bdev_awu_min > 0)
694 		return max_pow_of_two_factor(mp->m_sb.sb_agblocks);
695 	return rounddown_pow_of_two(mp->m_ag_max_usable);
696 }
697 
698 /*
699  * Reflink on the realtime device requires rtgroups, and atomic writes require
700  * reflink.
701  *
702  * If the realtime device advertises atomic write support, limit the size of
703  * data device atomic writes to the greatest power-of-two factor of the rtgroup
704  * size so that every atomic write unit aligns with the start of every rtgroup.
705  * This is required so that the per-rtgroup allocations for an atomic write
706  * will always be aligned compatibly with the alignment requirements of the
707  * storage.
708  *
709  * If the rt device doesn't advertise atomic writes, then there are no
710  * alignment restrictions and the largest out-of-place write we can do
711  * ourselves is the number of blocks that user files can allocate from any
712  * rtgroup.
713  */
714 static inline xfs_extlen_t xfs_calc_rtgroup_awu_max(struct xfs_mount *mp)
715 {
716 	struct xfs_groups	*rgs = &mp->m_groups[XG_TYPE_RTG];
717 
718 	if (rgs->blocks == 0)
719 		return 0;
720 	if (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_bdev_awu_min > 0)
721 		return max_pow_of_two_factor(rgs->blocks);
722 	return rounddown_pow_of_two(rgs->blocks);
723 }
724 
725 /* Compute the maximum atomic write unit size for each section. */
726 static inline void
727 xfs_calc_atomic_write_unit_max(
728 	struct xfs_mount	*mp)
729 {
730 	struct xfs_groups	*ags = &mp->m_groups[XG_TYPE_AG];
731 	struct xfs_groups	*rgs = &mp->m_groups[XG_TYPE_RTG];
732 
733 	const xfs_extlen_t	max_write = xfs_calc_atomic_write_max(mp);
734 	const xfs_extlen_t	max_ioend = xfs_reflink_max_atomic_cow(mp);
735 	const xfs_extlen_t	max_agsize = xfs_calc_perag_awu_max(mp);
736 	const xfs_extlen_t	max_rgsize = xfs_calc_rtgroup_awu_max(mp);
737 
738 	ags->awu_max = min3(max_write, max_ioend, max_agsize);
739 	rgs->awu_max = min3(max_write, max_ioend, max_rgsize);
740 
741 	trace_xfs_calc_atomic_write_unit_max(mp, max_write, max_ioend,
742 			max_agsize, max_rgsize);
743 }
744 
745 /*
746  * Try to set the atomic write maximum to a new value that we got from
747  * userspace via mount option.
748  */
749 int
750 xfs_set_max_atomic_write_opt(
751 	struct xfs_mount	*mp,
752 	unsigned long long	new_max_bytes)
753 {
754 	const xfs_filblks_t	new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes);
755 	const xfs_extlen_t	max_write = xfs_calc_atomic_write_max(mp);
756 	const xfs_extlen_t	max_group =
757 		max(mp->m_groups[XG_TYPE_AG].blocks,
758 		    mp->m_groups[XG_TYPE_RTG].blocks);
759 	const xfs_extlen_t	max_group_write =
760 		max(xfs_calc_perag_awu_max(mp), xfs_calc_rtgroup_awu_max(mp));
761 	int			error;
762 
763 	if (new_max_bytes == 0)
764 		goto set_limit;
765 
766 	ASSERT(max_write <= U32_MAX);
767 
768 	/* generic_atomic_write_valid enforces power of two length */
769 	if (!is_power_of_2(new_max_bytes)) {
770 		xfs_warn(mp,
771  "max atomic write size of %llu bytes is not a power of 2",
772 				new_max_bytes);
773 		return -EINVAL;
774 	}
775 
776 	if (new_max_bytes & mp->m_blockmask) {
777 		xfs_warn(mp,
778  "max atomic write size of %llu bytes not aligned with fsblock",
779 				new_max_bytes);
780 		return -EINVAL;
781 	}
782 
783 	if (new_max_fsbs > max_write) {
784 		xfs_warn(mp,
785  "max atomic write size of %lluk cannot be larger than max write size %lluk",
786 				new_max_bytes >> 10,
787 				XFS_FSB_TO_B(mp, max_write) >> 10);
788 		return -EINVAL;
789 	}
790 
791 	if (new_max_fsbs > max_group) {
792 		xfs_warn(mp,
793  "max atomic write size of %lluk cannot be larger than allocation group size %lluk",
794 				new_max_bytes >> 10,
795 				XFS_FSB_TO_B(mp, max_group) >> 10);
796 		return -EINVAL;
797 	}
798 
799 	if (new_max_fsbs > max_group_write) {
800 		xfs_warn(mp,
801  "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk",
802 				new_max_bytes >> 10,
803 				XFS_FSB_TO_B(mp, max_group_write) >> 10);
804 		return -EINVAL;
805 	}
806 
807 set_limit:
808 	error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs);
809 	if (error) {
810 		xfs_warn(mp,
811  "cannot support completing atomic writes of %lluk",
812 				new_max_bytes >> 10);
813 		return error;
814 	}
815 
816 	xfs_calc_atomic_write_unit_max(mp);
817 	mp->m_awu_max_bytes = new_max_bytes;
818 	return 0;
819 }
820 
821 /* Compute maximum possible height for realtime btree types for this fs. */
822 static inline void
823 xfs_rtbtree_compute_maxlevels(
824 	struct xfs_mount	*mp)
825 {
826 	mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
827 				      mp->m_rtrefc_maxlevels);
828 }
829 
830 /*
831  * This function does the following on an initial mount of a file system:
832  *	- reads the superblock from disk and init the mount struct
833  *	- if we're a 32-bit kernel, do a size check on the superblock
834  *		so we don't mount terabyte filesystems
835  *	- init mount struct realtime fields
836  *	- allocate inode hash table for fs
837  *	- init directory manager
838  *	- perform recovery and init the log manager
839  */
840 int
841 xfs_mountfs(
842 	struct xfs_mount	*mp)
843 {
844 	struct xfs_sb		*sbp = &(mp->m_sb);
845 	struct xfs_inode	*rip;
846 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
847 	uint			quotamount = 0;
848 	uint			quotaflags = 0;
849 	int			error = 0;
850 	int			i;
851 
852 	xfs_sb_mount_common(mp, sbp);
853 
854 	/*
855 	 * Check for a mismatched features2 values.  Older kernels read & wrote
856 	 * into the wrong sb offset for sb_features2 on some platforms due to
857 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
858 	 * which made older superblock reading/writing routines swap it as a
859 	 * 64-bit value.
860 	 *
861 	 * For backwards compatibility, we make both slots equal.
862 	 *
863 	 * If we detect a mismatched field, we OR the set bits into the existing
864 	 * features2 field in case it has already been modified; we don't want
865 	 * to lose any features.  We then update the bad location with the ORed
866 	 * value so that older kernels will see any features2 flags. The
867 	 * superblock writeback code ensures the new sb_features2 is copied to
868 	 * sb_bad_features2 before it is logged or written to disk.
869 	 */
870 	if (xfs_sb_has_mismatched_features2(sbp)) {
871 		xfs_warn(mp, "correcting sb_features alignment problem");
872 		sbp->sb_features2 |= sbp->sb_bad_features2;
873 		mp->m_update_sb = true;
874 	}
875 
876 
877 	/* always use v2 inodes by default now */
878 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
879 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
880 		mp->m_features |= XFS_FEAT_NLINK;
881 		mp->m_update_sb = true;
882 	}
883 
884 	/*
885 	 * If we were given new sunit/swidth options, do some basic validation
886 	 * checks and convert the incore dalign and swidth values to the
887 	 * same units (FSB) that everything else uses.  This /must/ happen
888 	 * before computing the inode geometry.
889 	 */
890 	error = xfs_validate_new_dalign(mp);
891 	if (error)
892 		goto out;
893 
894 	xfs_alloc_compute_maxlevels(mp);
895 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
896 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
897 	xfs_mount_setup_inode_geom(mp);
898 	xfs_rmapbt_compute_maxlevels(mp);
899 	xfs_rtrmapbt_compute_maxlevels(mp);
900 	xfs_refcountbt_compute_maxlevels(mp);
901 	xfs_rtrefcountbt_compute_maxlevels(mp);
902 
903 	xfs_agbtree_compute_maxlevels(mp);
904 	xfs_rtbtree_compute_maxlevels(mp);
905 
906 	/*
907 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
908 	 * is NOT aligned turn off m_dalign since allocator alignment is within
909 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
910 	 * we must compute the free space and rmap btree geometry before doing
911 	 * this.
912 	 */
913 	error = xfs_update_alignment(mp);
914 	if (error)
915 		goto out;
916 
917 	/* enable fail_at_unmount as default */
918 	mp->m_fail_unmount = true;
919 
920 	error = xfs_mount_sysfs_init(mp);
921 	if (error)
922 		goto out_remove_scrub_stats;
923 
924 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
925 
926 	error = xfs_errortag_init(mp);
927 	if (error)
928 		goto out_remove_sysfs;
929 
930 	error = xfs_uuid_mount(mp);
931 	if (error)
932 		goto out_remove_errortag;
933 
934 	/*
935 	 * Update the preferred write size based on the information from the
936 	 * on-disk superblock.
937 	 */
938 	mp->m_allocsize_log =
939 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
940 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
941 
942 	/* set the low space thresholds for dynamic preallocation */
943 	xfs_set_low_space_thresholds(mp);
944 
945 	/*
946 	 * If enabled, sparse inode chunk alignment is expected to match the
947 	 * cluster size. Full inode chunk alignment must match the chunk size,
948 	 * but that is checked on sb read verification...
949 	 */
950 	if (xfs_has_sparseinodes(mp) &&
951 	    mp->m_sb.sb_spino_align !=
952 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
953 		xfs_warn(mp,
954 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
955 			 mp->m_sb.sb_spino_align,
956 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
957 		error = -EINVAL;
958 		goto out_remove_uuid;
959 	}
960 
961 	/*
962 	 * Check that the data (and log if separate) is an ok size.
963 	 */
964 	error = xfs_check_sizes(mp);
965 	if (error)
966 		goto out_remove_uuid;
967 
968 	/*
969 	 * Initialize realtime fields in the mount structure
970 	 */
971 	error = xfs_rtmount_init(mp);
972 	if (error) {
973 		xfs_warn(mp, "RT mount failed");
974 		goto out_remove_uuid;
975 	}
976 
977 	/*
978 	 *  Copies the low order bits of the timestamp and the randomly
979 	 *  set "sequence" number out of a UUID.
980 	 */
981 	mp->m_fixedfsid[0] =
982 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
983 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
984 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
985 
986 	error = xfs_da_mount(mp);
987 	if (error) {
988 		xfs_warn(mp, "Failed dir/attr init: %d", error);
989 		goto out_remove_uuid;
990 	}
991 
992 	/*
993 	 * Initialize the precomputed transaction reservations values.
994 	 */
995 	xfs_trans_init(mp);
996 
997 	/*
998 	 * Allocate and initialize the per-ag data.
999 	 */
1000 	error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
1001 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
1002 	if (error) {
1003 		xfs_warn(mp, "Failed per-ag init: %d", error);
1004 		goto out_free_dir;
1005 	}
1006 
1007 	error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
1008 			mp->m_sb.sb_rextents);
1009 	if (error) {
1010 		xfs_warn(mp, "Failed rtgroup init: %d", error);
1011 		goto out_free_perag;
1012 	}
1013 
1014 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
1015 		xfs_warn(mp, "no log defined");
1016 		error = -EFSCORRUPTED;
1017 		goto out_free_rtgroup;
1018 	}
1019 
1020 	error = xfs_inodegc_register_shrinker(mp);
1021 	if (error)
1022 		goto out_fail_wait;
1023 
1024 	/*
1025 	 * If we're resuming quota status, pick up the preliminary qflags from
1026 	 * the ondisk superblock so that we know if we should recover dquots.
1027 	 */
1028 	if (xfs_is_resuming_quotaon(mp))
1029 		xfs_qm_resume_quotaon(mp);
1030 
1031 	/*
1032 	 * Log's mount-time initialization. The first part of recovery can place
1033 	 * some items on the AIL, to be handled when recovery is finished or
1034 	 * cancelled.
1035 	 */
1036 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1037 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1038 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1039 	if (error) {
1040 		xfs_warn(mp, "log mount failed");
1041 		goto out_inodegc_shrinker;
1042 	}
1043 
1044 	/*
1045 	 * If we're resuming quota status and recovered the log, re-sample the
1046 	 * qflags from the ondisk superblock now that we've recovered it, just
1047 	 * in case someone shut down enforcement just before a crash.
1048 	 */
1049 	if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
1050 		xfs_qm_resume_quotaon(mp);
1051 
1052 	/*
1053 	 * If logged xattrs are still enabled after log recovery finishes, then
1054 	 * they'll be available until unmount.  Otherwise, turn them off.
1055 	 */
1056 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
1057 		xfs_set_using_logged_xattrs(mp);
1058 	else
1059 		xfs_clear_using_logged_xattrs(mp);
1060 
1061 	/* Enable background inode inactivation workers. */
1062 	xfs_inodegc_start(mp);
1063 	xfs_blockgc_start(mp);
1064 
1065 	/*
1066 	 * Now that we've recovered any pending superblock feature bit
1067 	 * additions, we can finish setting up the attr2 behaviour for the
1068 	 * mount. The noattr2 option overrides the superblock flag, so only
1069 	 * check the superblock feature flag if the mount option is not set.
1070 	 */
1071 	if (xfs_has_noattr2(mp)) {
1072 		mp->m_features &= ~XFS_FEAT_ATTR2;
1073 	} else if (!xfs_has_attr2(mp) &&
1074 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
1075 		mp->m_features |= XFS_FEAT_ATTR2;
1076 	}
1077 
1078 	if (xfs_has_metadir(mp)) {
1079 		error = xfs_mount_setup_metadir(mp);
1080 		if (error)
1081 			goto out_free_metadir;
1082 	}
1083 
1084 	/*
1085 	 * Get and sanity-check the root inode.
1086 	 * Save the pointer to it in the mount structure.
1087 	 */
1088 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
1089 			 XFS_ILOCK_EXCL, &rip);
1090 	if (error) {
1091 		xfs_warn(mp,
1092 			"Failed to read root inode 0x%llx, error %d",
1093 			sbp->sb_rootino, -error);
1094 		goto out_free_metadir;
1095 	}
1096 
1097 	ASSERT(rip != NULL);
1098 
1099 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
1100 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1101 			(unsigned long long)rip->i_ino);
1102 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1103 		error = -EFSCORRUPTED;
1104 		goto out_rele_rip;
1105 	}
1106 	mp->m_rootip = rip;	/* save it */
1107 
1108 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1109 
1110 	/*
1111 	 * Initialize realtime inode pointers in the mount structure
1112 	 */
1113 	error = xfs_rtmount_inodes(mp);
1114 	if (error) {
1115 		/*
1116 		 * Free up the root inode.
1117 		 */
1118 		xfs_warn(mp, "failed to read RT inodes");
1119 		goto out_rele_rip;
1120 	}
1121 
1122 	/* Make sure the summary counts are ok. */
1123 	error = xfs_check_summary_counts(mp);
1124 	if (error)
1125 		goto out_rtunmount;
1126 
1127 	/*
1128 	 * If this is a read-only mount defer the superblock updates until
1129 	 * the next remount into writeable mode.  Otherwise we would never
1130 	 * perform the update e.g. for the root filesystem.
1131 	 */
1132 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
1133 		error = xfs_sync_sb(mp, false);
1134 		if (error) {
1135 			xfs_warn(mp, "failed to write sb changes");
1136 			goto out_rtunmount;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * Initialise the XFS quota management subsystem for this mount
1142 	 */
1143 	if (XFS_IS_QUOTA_ON(mp)) {
1144 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1145 		if (error)
1146 			goto out_rtunmount;
1147 	} else {
1148 		/*
1149 		 * If a file system had quotas running earlier, but decided to
1150 		 * mount without -o uquota/pquota/gquota options, revoke the
1151 		 * quotachecked license.
1152 		 */
1153 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1154 			xfs_notice(mp, "resetting quota flags");
1155 			error = xfs_mount_reset_sbqflags(mp);
1156 			if (error)
1157 				goto out_rtunmount;
1158 		}
1159 	}
1160 
1161 	/*
1162 	 * Finish recovering the file system.  This part needed to be delayed
1163 	 * until after the root and real-time bitmap inodes were consistently
1164 	 * read in.  Temporarily create per-AG space reservations for metadata
1165 	 * btree shape changes because space freeing transactions (for inode
1166 	 * inactivation) require the per-AG reservation in lieu of reserving
1167 	 * blocks.
1168 	 */
1169 	error = xfs_fs_reserve_ag_blocks(mp);
1170 	if (error && error == -ENOSPC)
1171 		xfs_warn(mp,
1172 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1173 	error = xfs_log_mount_finish(mp);
1174 	xfs_fs_unreserve_ag_blocks(mp);
1175 	if (error) {
1176 		xfs_warn(mp, "log mount finish failed");
1177 		goto out_rtunmount;
1178 	}
1179 
1180 	/*
1181 	 * Now the log is fully replayed, we can transition to full read-only
1182 	 * mode for read-only mounts. This will sync all the metadata and clean
1183 	 * the log so that the recovery we just performed does not have to be
1184 	 * replayed again on the next mount.
1185 	 *
1186 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1187 	 * semantically identical operations.
1188 	 */
1189 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1190 		xfs_log_clean(mp);
1191 
1192 	if (xfs_has_zoned(mp)) {
1193 		error = xfs_mount_zones(mp);
1194 		if (error)
1195 			goto out_rtunmount;
1196 	}
1197 
1198 	/*
1199 	 * Complete the quota initialisation, post-log-replay component.
1200 	 */
1201 	if (quotamount) {
1202 		ASSERT(mp->m_qflags == 0);
1203 		mp->m_qflags = quotaflags;
1204 
1205 		xfs_qm_mount_quotas(mp);
1206 	}
1207 
1208 	/*
1209 	 * Now we are mounted, reserve a small amount of unused space for
1210 	 * privileged transactions. This is needed so that transaction
1211 	 * space required for critical operations can dip into this pool
1212 	 * when at ENOSPC. This is needed for operations like create with
1213 	 * attr, unwritten extent conversion at ENOSPC, garbage collection
1214 	 * etc. Data allocations are not allowed to use this reserved space.
1215 	 *
1216 	 * This may drive us straight to ENOSPC on mount, but that implies
1217 	 * we were already there on the last unmount. Warn if this occurs.
1218 	 */
1219 	if (!xfs_is_readonly(mp)) {
1220 		for (i = 0; i < XC_FREE_NR; i++) {
1221 			error = xfs_reserve_blocks(mp, i,
1222 					xfs_default_resblks(mp, i));
1223 			if (error)
1224 				xfs_warn(mp,
1225 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1226 					xfs_free_pool_name[i]);
1227 		}
1228 
1229 		/* Reserve AG blocks for future btree expansion. */
1230 		error = xfs_fs_reserve_ag_blocks(mp);
1231 		if (error && error != -ENOSPC)
1232 			goto out_agresv;
1233 
1234 		xfs_zone_gc_start(mp);
1235 	}
1236 
1237 	/*
1238 	 * Pre-calculate atomic write unit max.  This involves computations
1239 	 * derived from transaction reservations, so we must do this after the
1240 	 * log is fully initialized.
1241 	 */
1242 	error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes);
1243 	if (error)
1244 		goto out_agresv;
1245 
1246 	return 0;
1247 
1248  out_agresv:
1249 	xfs_fs_unreserve_ag_blocks(mp);
1250 	xfs_qm_unmount_quotas(mp);
1251 	if (xfs_has_zoned(mp))
1252 		xfs_unmount_zones(mp);
1253  out_rtunmount:
1254 	xfs_rtunmount_inodes(mp);
1255  out_rele_rip:
1256 	xfs_irele(rip);
1257 	/* Clean out dquots that might be in memory after quotacheck. */
1258 	xfs_qm_unmount(mp);
1259  out_free_metadir:
1260 	if (mp->m_metadirip)
1261 		xfs_irele(mp->m_metadirip);
1262 
1263 	/*
1264 	 * Inactivate all inodes that might still be in memory after a log
1265 	 * intent recovery failure so that reclaim can free them.  Metadata
1266 	 * inodes and the root directory shouldn't need inactivation, but the
1267 	 * mount failed for some reason, so pull down all the state and flee.
1268 	 */
1269 	xfs_inodegc_flush(mp);
1270 
1271 	/*
1272 	 * Flush all inode reclamation work and flush the log.
1273 	 * We have to do this /after/ rtunmount and qm_unmount because those
1274 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1275 	 *
1276 	 * This is slightly different from the unmountfs call sequence
1277 	 * because we could be tearing down a partially set up mount.  In
1278 	 * particular, if log_mount_finish fails we bail out without calling
1279 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1280 	 * quota inodes.
1281 	 */
1282 	xfs_unmount_flush_inodes(mp);
1283 	xfs_log_mount_cancel(mp);
1284  out_inodegc_shrinker:
1285 	shrinker_free(mp->m_inodegc_shrinker);
1286  out_fail_wait:
1287 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1288 		xfs_buftarg_drain(mp->m_logdev_targp);
1289 	xfs_buftarg_drain(mp->m_ddev_targp);
1290  out_free_rtgroup:
1291 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1292  out_free_perag:
1293 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1294  out_free_dir:
1295 	xfs_da_unmount(mp);
1296  out_remove_uuid:
1297 	xfs_uuid_unmount(mp);
1298  out_remove_errortag:
1299 	xfs_errortag_del(mp);
1300  out_remove_sysfs:
1301 	xfs_mount_sysfs_del(mp);
1302  out_remove_scrub_stats:
1303 	xchk_stats_unregister(mp->m_scrub_stats);
1304  out:
1305 	return error;
1306 }
1307 
1308 /*
1309  * This flushes out the inodes,dquots and the superblock, unmounts the
1310  * log and makes sure that incore structures are freed.
1311  */
1312 void
1313 xfs_unmountfs(
1314 	struct xfs_mount	*mp)
1315 {
1316 	int			error;
1317 
1318 	/*
1319 	 * Perform all on-disk metadata updates required to inactivate inodes
1320 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1321 	 * and discarding CoW fork preallocations can cause shape changes to
1322 	 * the free inode and refcount btrees, respectively, so we must finish
1323 	 * this before we discard the metadata space reservations.  Metadata
1324 	 * inodes and the root directory do not require inactivation.
1325 	 */
1326 	xfs_inodegc_flush(mp);
1327 
1328 	xfs_blockgc_stop(mp);
1329 	if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1330 		xfs_zone_gc_stop(mp);
1331 	xfs_fs_unreserve_ag_blocks(mp);
1332 	xfs_qm_unmount_quotas(mp);
1333 	if (xfs_has_zoned(mp))
1334 		xfs_unmount_zones(mp);
1335 	xfs_rtunmount_inodes(mp);
1336 	xfs_irele(mp->m_rootip);
1337 	if (mp->m_metadirip)
1338 		xfs_irele(mp->m_metadirip);
1339 
1340 	xfs_unmount_flush_inodes(mp);
1341 
1342 	xfs_qm_unmount(mp);
1343 
1344 	/*
1345 	 * Unreserve any blocks we have so that when we unmount we don't account
1346 	 * the reserved free space as used. This is really only necessary for
1347 	 * lazy superblock counting because it trusts the incore superblock
1348 	 * counters to be absolutely correct on clean unmount.
1349 	 *
1350 	 * We don't bother correcting this elsewhere for lazy superblock
1351 	 * counting because on mount of an unclean filesystem we reconstruct the
1352 	 * correct counter value and this is irrelevant.
1353 	 *
1354 	 * For non-lazy counter filesystems, this doesn't matter at all because
1355 	 * we only every apply deltas to the superblock and hence the incore
1356 	 * value does not matter....
1357 	 */
1358 	error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1359 	if (error)
1360 		xfs_warn(mp, "Unable to free reserved block pool. "
1361 				"Freespace may not be correct on next mount.");
1362 	xfs_unmount_check(mp);
1363 
1364 	/*
1365 	 * Indicate that it's ok to clear log incompat bits before cleaning
1366 	 * the log and writing the unmount record.
1367 	 */
1368 	xfs_set_done_with_log_incompat(mp);
1369 	xfs_log_unmount(mp);
1370 	xfs_da_unmount(mp);
1371 	xfs_uuid_unmount(mp);
1372 
1373 #if defined(DEBUG)
1374 	xfs_errortag_clearall(mp);
1375 #endif
1376 	shrinker_free(mp->m_inodegc_shrinker);
1377 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1378 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1379 	xfs_errortag_del(mp);
1380 	xchk_stats_unregister(mp->m_scrub_stats);
1381 	xfs_mount_sysfs_del(mp);
1382 }
1383 
1384 /*
1385  * Determine whether modifications can proceed. The caller specifies the minimum
1386  * freeze level for which modifications should not be allowed. This allows
1387  * certain operations to proceed while the freeze sequence is in progress, if
1388  * necessary.
1389  */
1390 bool
1391 xfs_fs_writable(
1392 	struct xfs_mount	*mp,
1393 	int			level)
1394 {
1395 	ASSERT(level > SB_UNFROZEN);
1396 	if ((mp->m_super->s_writers.frozen >= level) ||
1397 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1398 		return false;
1399 
1400 	return true;
1401 }
1402 
1403 /*
1404  * Estimate the amount of free space that is not available to userspace and is
1405  * not explicitly reserved from the incore fdblocks.  This includes:
1406  *
1407  * - The minimum number of blocks needed to support splitting a bmap btree
1408  * - The blocks currently in use by the freespace btrees because they record
1409  *   the actual blocks that will fill per-AG metadata space reservations
1410  */
1411 uint64_t
1412 xfs_freecounter_unavailable(
1413 	struct xfs_mount	*mp,
1414 	enum xfs_free_counter	ctr)
1415 {
1416 	if (ctr != XC_FREE_BLOCKS)
1417 		return 0;
1418 	return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1419 }
1420 
1421 void
1422 xfs_add_freecounter(
1423 	struct xfs_mount	*mp,
1424 	enum xfs_free_counter	ctr,
1425 	uint64_t		delta)
1426 {
1427 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1428 	uint64_t		res_used;
1429 
1430 	/*
1431 	 * If the reserve pool is depleted, put blocks back into it first.
1432 	 * Most of the time the pool is full.
1433 	 */
1434 	if (likely(counter->res_avail == counter->res_total)) {
1435 		percpu_counter_add(&counter->count, delta);
1436 		return;
1437 	}
1438 
1439 	spin_lock(&mp->m_sb_lock);
1440 	res_used = counter->res_total - counter->res_avail;
1441 	if (res_used > delta) {
1442 		counter->res_avail += delta;
1443 	} else {
1444 		delta -= res_used;
1445 		counter->res_avail = counter->res_total;
1446 		percpu_counter_add(&counter->count, delta);
1447 	}
1448 	spin_unlock(&mp->m_sb_lock);
1449 }
1450 
1451 
1452 /* Adjust in-core free blocks or RT extents. */
1453 int
1454 xfs_dec_freecounter(
1455 	struct xfs_mount	*mp,
1456 	enum xfs_free_counter	ctr,
1457 	uint64_t		delta,
1458 	bool			rsvd)
1459 {
1460 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1461 	s32			batch;
1462 
1463 	ASSERT(ctr < XC_FREE_NR);
1464 
1465 	/*
1466 	 * Taking blocks away, need to be more accurate the closer we
1467 	 * are to zero.
1468 	 *
1469 	 * If the counter has a value of less than 2 * max batch size,
1470 	 * then make everything serialise as we are real close to
1471 	 * ENOSPC.
1472 	 */
1473 	if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1474 				     XFS_FDBLOCKS_BATCH) < 0)
1475 		batch = 1;
1476 	else
1477 		batch = XFS_FDBLOCKS_BATCH;
1478 
1479 	/*
1480 	 * Set aside allocbt blocks because these blocks are tracked as free
1481 	 * space but not available for allocation. Technically this means that a
1482 	 * single reservation cannot consume all remaining free space, but the
1483 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1484 	 * The tradeoff without this is that filesystems that maintain high
1485 	 * perag block reservations can over reserve physical block availability
1486 	 * and fail physical allocation, which leads to much more serious
1487 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1488 	 * slightly premature -ENOSPC.
1489 	 */
1490 	percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1491 	if (__percpu_counter_compare(&counter->count,
1492 			xfs_freecounter_unavailable(mp, ctr),
1493 			XFS_FDBLOCKS_BATCH) < 0) {
1494 		/*
1495 		 * Lock up the sb for dipping into reserves before releasing the
1496 		 * space that took us to ENOSPC.
1497 		 */
1498 		spin_lock(&mp->m_sb_lock);
1499 		percpu_counter_add(&counter->count, delta);
1500 		if (!rsvd)
1501 			goto fdblocks_enospc;
1502 		if (delta > counter->res_avail) {
1503 			if (ctr == XC_FREE_BLOCKS)
1504 				xfs_warn_once(mp,
1505 "Reserve blocks depleted! Consider increasing reserve pool size.");
1506 			goto fdblocks_enospc;
1507 		}
1508 		counter->res_avail -= delta;
1509 		trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1510 		spin_unlock(&mp->m_sb_lock);
1511 	}
1512 
1513 	/* we had space! */
1514 	return 0;
1515 
1516 fdblocks_enospc:
1517 	trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1518 	spin_unlock(&mp->m_sb_lock);
1519 	return -ENOSPC;
1520 }
1521 
1522 /*
1523  * Used to free the superblock along various error paths.
1524  */
1525 void
1526 xfs_freesb(
1527 	struct xfs_mount	*mp)
1528 {
1529 	struct xfs_buf		*bp = mp->m_sb_bp;
1530 
1531 	xfs_buf_lock(bp);
1532 	mp->m_sb_bp = NULL;
1533 	xfs_buf_relse(bp);
1534 }
1535 
1536 /*
1537  * If the underlying (data/log/rt) device is readonly, there are some
1538  * operations that cannot proceed.
1539  */
1540 int
1541 xfs_dev_is_read_only(
1542 	struct xfs_mount	*mp,
1543 	char			*message)
1544 {
1545 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1546 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1547 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1548 		xfs_notice(mp, "%s required on read-only device.", message);
1549 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1550 		return -EROFS;
1551 	}
1552 	return 0;
1553 }
1554 
1555 /* Force the summary counters to be recalculated at next mount. */
1556 void
1557 xfs_force_summary_recalc(
1558 	struct xfs_mount	*mp)
1559 {
1560 	if (!xfs_has_lazysbcount(mp))
1561 		return;
1562 
1563 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1564 }
1565 
1566 /*
1567  * Enable a log incompat feature flag in the primary superblock.  The caller
1568  * cannot have any other transactions in progress.
1569  */
1570 int
1571 xfs_add_incompat_log_feature(
1572 	struct xfs_mount	*mp,
1573 	uint32_t		feature)
1574 {
1575 	struct xfs_dsb		*dsb;
1576 	int			error;
1577 
1578 	ASSERT(hweight32(feature) == 1);
1579 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1580 
1581 	/*
1582 	 * Force the log to disk and kick the background AIL thread to reduce
1583 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1584 	 * the primary superblock buffer.  This isn't a data integrity
1585 	 * operation, so we don't need a synchronous push.
1586 	 */
1587 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1588 	if (error)
1589 		return error;
1590 	xfs_ail_push_all(mp->m_ail);
1591 
1592 	/*
1593 	 * Lock the primary superblock buffer to serialize all callers that
1594 	 * are trying to set feature bits.
1595 	 */
1596 	xfs_buf_lock(mp->m_sb_bp);
1597 	xfs_buf_hold(mp->m_sb_bp);
1598 
1599 	if (xfs_is_shutdown(mp)) {
1600 		error = -EIO;
1601 		goto rele;
1602 	}
1603 
1604 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1605 		goto rele;
1606 
1607 	/*
1608 	 * Write the primary superblock to disk immediately, because we need
1609 	 * the log_incompat bit to be set in the primary super now to protect
1610 	 * the log items that we're going to commit later.
1611 	 */
1612 	dsb = mp->m_sb_bp->b_addr;
1613 	xfs_sb_to_disk(dsb, &mp->m_sb);
1614 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1615 	error = xfs_bwrite(mp->m_sb_bp);
1616 	if (error)
1617 		goto shutdown;
1618 
1619 	/*
1620 	 * Add the feature bits to the incore superblock before we unlock the
1621 	 * buffer.
1622 	 */
1623 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1624 	xfs_buf_relse(mp->m_sb_bp);
1625 
1626 	/* Log the superblock to disk. */
1627 	return xfs_sync_sb(mp, false);
1628 shutdown:
1629 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1630 rele:
1631 	xfs_buf_relse(mp->m_sb_bp);
1632 	return error;
1633 }
1634 
1635 /*
1636  * Clear all the log incompat flags from the superblock.
1637  *
1638  * The caller cannot be in a transaction, must ensure that the log does not
1639  * contain any log items protected by any log incompat bit, and must ensure
1640  * that there are no other threads that depend on the state of the log incompat
1641  * feature flags in the primary super.
1642  *
1643  * Returns true if the superblock is dirty.
1644  */
1645 bool
1646 xfs_clear_incompat_log_features(
1647 	struct xfs_mount	*mp)
1648 {
1649 	bool			ret = false;
1650 
1651 	if (!xfs_has_crc(mp) ||
1652 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1653 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1654 	    xfs_is_shutdown(mp) ||
1655 	    !xfs_is_done_with_log_incompat(mp))
1656 		return false;
1657 
1658 	/*
1659 	 * Update the incore superblock.  We synchronize on the primary super
1660 	 * buffer lock to be consistent with the add function, though at least
1661 	 * in theory this shouldn't be necessary.
1662 	 */
1663 	xfs_buf_lock(mp->m_sb_bp);
1664 	xfs_buf_hold(mp->m_sb_bp);
1665 
1666 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1667 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1668 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1669 		ret = true;
1670 	}
1671 
1672 	xfs_buf_relse(mp->m_sb_bp);
1673 	return ret;
1674 }
1675 
1676 /*
1677  * Update the in-core delayed block counter.
1678  *
1679  * We prefer to update the counter without having to take a spinlock for every
1680  * counter update (i.e. batching).  Each change to delayed allocation
1681  * reservations can change can easily exceed the default percpu counter
1682  * batching, so we use a larger batch factor here.
1683  *
1684  * Note that we don't currently have any callers requiring fast summation
1685  * (e.g. percpu_counter_read) so we can use a big batch value here.
1686  */
1687 #define XFS_DELALLOC_BATCH	(4096)
1688 void
1689 xfs_mod_delalloc(
1690 	struct xfs_inode	*ip,
1691 	int64_t			data_delta,
1692 	int64_t			ind_delta)
1693 {
1694 	struct xfs_mount	*mp = ip->i_mount;
1695 
1696 	if (XFS_IS_REALTIME_INODE(ip)) {
1697 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1698 				xfs_blen_to_rtbxlen(mp, data_delta),
1699 				XFS_DELALLOC_BATCH);
1700 		if (!ind_delta)
1701 			return;
1702 		data_delta = 0;
1703 	}
1704 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1705 			XFS_DELALLOC_BATCH);
1706 }
1707