1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 49 50 51 #ifdef HAVE_PERCPU_SB 52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 53 int); 54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 55 int); 56 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 57 int64_t, int); 58 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 59 60 #else 61 62 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 63 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 64 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 65 66 #endif 67 68 static const struct { 69 short offset; 70 short type; /* 0 = integer 71 * 1 = binary / string (no translation) 72 */ 73 } xfs_sb_info[] = { 74 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 75 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 76 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 77 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 78 { offsetof(xfs_sb_t, sb_rextents), 0 }, 79 { offsetof(xfs_sb_t, sb_uuid), 1 }, 80 { offsetof(xfs_sb_t, sb_logstart), 0 }, 81 { offsetof(xfs_sb_t, sb_rootino), 0 }, 82 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 83 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 84 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 85 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 86 { offsetof(xfs_sb_t, sb_agcount), 0 }, 87 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 88 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 89 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 90 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 91 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 92 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 93 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 94 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 95 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 96 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 97 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 98 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 99 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 100 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 101 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 102 { offsetof(xfs_sb_t, sb_icount), 0 }, 103 { offsetof(xfs_sb_t, sb_ifree), 0 }, 104 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 105 { offsetof(xfs_sb_t, sb_frextents), 0 }, 106 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 107 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 108 { offsetof(xfs_sb_t, sb_qflags), 0 }, 109 { offsetof(xfs_sb_t, sb_flags), 0 }, 110 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 111 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 112 { offsetof(xfs_sb_t, sb_unit), 0 }, 113 { offsetof(xfs_sb_t, sb_width), 0 }, 114 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 115 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 116 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 117 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 118 { offsetof(xfs_sb_t, sb_features2), 0 }, 119 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 120 { sizeof(xfs_sb_t), 0 } 121 }; 122 123 static DEFINE_MUTEX(xfs_uuid_table_mutex); 124 static int xfs_uuid_table_size; 125 static uuid_t *xfs_uuid_table; 126 127 /* 128 * See if the UUID is unique among mounted XFS filesystems. 129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 130 */ 131 STATIC int 132 xfs_uuid_mount( 133 struct xfs_mount *mp) 134 { 135 uuid_t *uuid = &mp->m_sb.sb_uuid; 136 int hole, i; 137 138 if (mp->m_flags & XFS_MOUNT_NOUUID) 139 return 0; 140 141 if (uuid_is_nil(uuid)) { 142 cmn_err(CE_WARN, 143 "XFS: Filesystem %s has nil UUID - can't mount", 144 mp->m_fsname); 145 return XFS_ERROR(EINVAL); 146 } 147 148 mutex_lock(&xfs_uuid_table_mutex); 149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 150 if (uuid_is_nil(&xfs_uuid_table[i])) { 151 hole = i; 152 continue; 153 } 154 if (uuid_equal(uuid, &xfs_uuid_table[i])) 155 goto out_duplicate; 156 } 157 158 if (hole < 0) { 159 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 161 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 162 KM_SLEEP); 163 hole = xfs_uuid_table_size++; 164 } 165 xfs_uuid_table[hole] = *uuid; 166 mutex_unlock(&xfs_uuid_table_mutex); 167 168 return 0; 169 170 out_duplicate: 171 mutex_unlock(&xfs_uuid_table_mutex); 172 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", 173 mp->m_fsname); 174 return XFS_ERROR(EINVAL); 175 } 176 177 STATIC void 178 xfs_uuid_unmount( 179 struct xfs_mount *mp) 180 { 181 uuid_t *uuid = &mp->m_sb.sb_uuid; 182 int i; 183 184 if (mp->m_flags & XFS_MOUNT_NOUUID) 185 return; 186 187 mutex_lock(&xfs_uuid_table_mutex); 188 for (i = 0; i < xfs_uuid_table_size; i++) { 189 if (uuid_is_nil(&xfs_uuid_table[i])) 190 continue; 191 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 192 continue; 193 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 194 break; 195 } 196 ASSERT(i < xfs_uuid_table_size); 197 mutex_unlock(&xfs_uuid_table_mutex); 198 } 199 200 201 /* 202 * Free up the resources associated with a mount structure. Assume that 203 * the structure was initially zeroed, so we can tell which fields got 204 * initialized. 205 */ 206 STATIC void 207 xfs_free_perag( 208 xfs_mount_t *mp) 209 { 210 if (mp->m_perag) { 211 int agno; 212 213 for (agno = 0; agno < mp->m_maxagi; agno++) 214 if (mp->m_perag[agno].pagb_list) 215 kmem_free(mp->m_perag[agno].pagb_list); 216 kmem_free(mp->m_perag); 217 } 218 } 219 220 /* 221 * Check size of device based on the (data/realtime) block count. 222 * Note: this check is used by the growfs code as well as mount. 223 */ 224 int 225 xfs_sb_validate_fsb_count( 226 xfs_sb_t *sbp, 227 __uint64_t nblocks) 228 { 229 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 230 ASSERT(sbp->sb_blocklog >= BBSHIFT); 231 232 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 233 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 234 return E2BIG; 235 #else /* Limited by UINT_MAX of sectors */ 236 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 237 return E2BIG; 238 #endif 239 return 0; 240 } 241 242 /* 243 * Check the validity of the SB found. 244 */ 245 STATIC int 246 xfs_mount_validate_sb( 247 xfs_mount_t *mp, 248 xfs_sb_t *sbp, 249 int flags) 250 { 251 /* 252 * If the log device and data device have the 253 * same device number, the log is internal. 254 * Consequently, the sb_logstart should be non-zero. If 255 * we have a zero sb_logstart in this case, we may be trying to mount 256 * a volume filesystem in a non-volume manner. 257 */ 258 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 259 xfs_fs_mount_cmn_err(flags, "bad magic number"); 260 return XFS_ERROR(EWRONGFS); 261 } 262 263 if (!xfs_sb_good_version(sbp)) { 264 xfs_fs_mount_cmn_err(flags, "bad version"); 265 return XFS_ERROR(EWRONGFS); 266 } 267 268 if (unlikely( 269 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 270 xfs_fs_mount_cmn_err(flags, 271 "filesystem is marked as having an external log; " 272 "specify logdev on the\nmount command line."); 273 return XFS_ERROR(EINVAL); 274 } 275 276 if (unlikely( 277 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 278 xfs_fs_mount_cmn_err(flags, 279 "filesystem is marked as having an internal log; " 280 "do not specify logdev on\nthe mount command line."); 281 return XFS_ERROR(EINVAL); 282 } 283 284 /* 285 * More sanity checking. These were stolen directly from 286 * xfs_repair. 287 */ 288 if (unlikely( 289 sbp->sb_agcount <= 0 || 290 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 291 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 292 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 293 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 294 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 295 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 296 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 297 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 298 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 299 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 300 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 301 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 302 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 303 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 304 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 305 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 306 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 307 return XFS_ERROR(EFSCORRUPTED); 308 } 309 310 /* 311 * Sanity check AG count, size fields against data size field 312 */ 313 if (unlikely( 314 sbp->sb_dblocks == 0 || 315 sbp->sb_dblocks > 316 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 317 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 318 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 319 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 320 return XFS_ERROR(EFSCORRUPTED); 321 } 322 323 /* 324 * Until this is fixed only page-sized or smaller data blocks work. 325 */ 326 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 327 xfs_fs_mount_cmn_err(flags, 328 "file system with blocksize %d bytes", 329 sbp->sb_blocksize); 330 xfs_fs_mount_cmn_err(flags, 331 "only pagesize (%ld) or less will currently work.", 332 PAGE_SIZE); 333 return XFS_ERROR(ENOSYS); 334 } 335 336 /* 337 * Currently only very few inode sizes are supported. 338 */ 339 switch (sbp->sb_inodesize) { 340 case 256: 341 case 512: 342 case 1024: 343 case 2048: 344 break; 345 default: 346 xfs_fs_mount_cmn_err(flags, 347 "inode size of %d bytes not supported", 348 sbp->sb_inodesize); 349 return XFS_ERROR(ENOSYS); 350 } 351 352 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 353 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 354 xfs_fs_mount_cmn_err(flags, 355 "file system too large to be mounted on this system."); 356 return XFS_ERROR(E2BIG); 357 } 358 359 if (unlikely(sbp->sb_inprogress)) { 360 xfs_fs_mount_cmn_err(flags, "file system busy"); 361 return XFS_ERROR(EFSCORRUPTED); 362 } 363 364 /* 365 * Version 1 directory format has never worked on Linux. 366 */ 367 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 368 xfs_fs_mount_cmn_err(flags, 369 "file system using version 1 directory format"); 370 return XFS_ERROR(ENOSYS); 371 } 372 373 return 0; 374 } 375 376 STATIC void 377 xfs_initialize_perag_icache( 378 xfs_perag_t *pag) 379 { 380 if (!pag->pag_ici_init) { 381 rwlock_init(&pag->pag_ici_lock); 382 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 383 pag->pag_ici_init = 1; 384 } 385 } 386 387 xfs_agnumber_t 388 xfs_initialize_perag( 389 xfs_mount_t *mp, 390 xfs_agnumber_t agcount) 391 { 392 xfs_agnumber_t index, max_metadata; 393 xfs_perag_t *pag; 394 xfs_agino_t agino; 395 xfs_ino_t ino; 396 xfs_sb_t *sbp = &mp->m_sb; 397 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 398 399 /* Check to see if the filesystem can overflow 32 bit inodes */ 400 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 401 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 402 403 /* Clear the mount flag if no inode can overflow 32 bits 404 * on this filesystem, or if specifically requested.. 405 */ 406 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 407 mp->m_flags |= XFS_MOUNT_32BITINODES; 408 } else { 409 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 410 } 411 412 /* If we can overflow then setup the ag headers accordingly */ 413 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 414 /* Calculate how much should be reserved for inodes to 415 * meet the max inode percentage. 416 */ 417 if (mp->m_maxicount) { 418 __uint64_t icount; 419 420 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 421 do_div(icount, 100); 422 icount += sbp->sb_agblocks - 1; 423 do_div(icount, sbp->sb_agblocks); 424 max_metadata = icount; 425 } else { 426 max_metadata = agcount; 427 } 428 for (index = 0; index < agcount; index++) { 429 ino = XFS_AGINO_TO_INO(mp, index, agino); 430 if (ino > max_inum) { 431 index++; 432 break; 433 } 434 435 /* This ag is preferred for inodes */ 436 pag = &mp->m_perag[index]; 437 pag->pagi_inodeok = 1; 438 if (index < max_metadata) 439 pag->pagf_metadata = 1; 440 xfs_initialize_perag_icache(pag); 441 } 442 } else { 443 /* Setup default behavior for smaller filesystems */ 444 for (index = 0; index < agcount; index++) { 445 pag = &mp->m_perag[index]; 446 pag->pagi_inodeok = 1; 447 xfs_initialize_perag_icache(pag); 448 } 449 } 450 return index; 451 } 452 453 void 454 xfs_sb_from_disk( 455 xfs_sb_t *to, 456 xfs_dsb_t *from) 457 { 458 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 459 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 460 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 461 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 462 to->sb_rextents = be64_to_cpu(from->sb_rextents); 463 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 464 to->sb_logstart = be64_to_cpu(from->sb_logstart); 465 to->sb_rootino = be64_to_cpu(from->sb_rootino); 466 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 467 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 468 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 469 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 470 to->sb_agcount = be32_to_cpu(from->sb_agcount); 471 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 472 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 473 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 474 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 475 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 476 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 477 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 478 to->sb_blocklog = from->sb_blocklog; 479 to->sb_sectlog = from->sb_sectlog; 480 to->sb_inodelog = from->sb_inodelog; 481 to->sb_inopblog = from->sb_inopblog; 482 to->sb_agblklog = from->sb_agblklog; 483 to->sb_rextslog = from->sb_rextslog; 484 to->sb_inprogress = from->sb_inprogress; 485 to->sb_imax_pct = from->sb_imax_pct; 486 to->sb_icount = be64_to_cpu(from->sb_icount); 487 to->sb_ifree = be64_to_cpu(from->sb_ifree); 488 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 489 to->sb_frextents = be64_to_cpu(from->sb_frextents); 490 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 491 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 492 to->sb_qflags = be16_to_cpu(from->sb_qflags); 493 to->sb_flags = from->sb_flags; 494 to->sb_shared_vn = from->sb_shared_vn; 495 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 496 to->sb_unit = be32_to_cpu(from->sb_unit); 497 to->sb_width = be32_to_cpu(from->sb_width); 498 to->sb_dirblklog = from->sb_dirblklog; 499 to->sb_logsectlog = from->sb_logsectlog; 500 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 501 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 502 to->sb_features2 = be32_to_cpu(from->sb_features2); 503 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 504 } 505 506 /* 507 * Copy in core superblock to ondisk one. 508 * 509 * The fields argument is mask of superblock fields to copy. 510 */ 511 void 512 xfs_sb_to_disk( 513 xfs_dsb_t *to, 514 xfs_sb_t *from, 515 __int64_t fields) 516 { 517 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 518 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 519 xfs_sb_field_t f; 520 int first; 521 int size; 522 523 ASSERT(fields); 524 if (!fields) 525 return; 526 527 while (fields) { 528 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 529 first = xfs_sb_info[f].offset; 530 size = xfs_sb_info[f + 1].offset - first; 531 532 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 533 534 if (size == 1 || xfs_sb_info[f].type == 1) { 535 memcpy(to_ptr + first, from_ptr + first, size); 536 } else { 537 switch (size) { 538 case 2: 539 *(__be16 *)(to_ptr + first) = 540 cpu_to_be16(*(__u16 *)(from_ptr + first)); 541 break; 542 case 4: 543 *(__be32 *)(to_ptr + first) = 544 cpu_to_be32(*(__u32 *)(from_ptr + first)); 545 break; 546 case 8: 547 *(__be64 *)(to_ptr + first) = 548 cpu_to_be64(*(__u64 *)(from_ptr + first)); 549 break; 550 default: 551 ASSERT(0); 552 } 553 } 554 555 fields &= ~(1LL << f); 556 } 557 } 558 559 /* 560 * xfs_readsb 561 * 562 * Does the initial read of the superblock. 563 */ 564 int 565 xfs_readsb(xfs_mount_t *mp, int flags) 566 { 567 unsigned int sector_size; 568 unsigned int extra_flags; 569 xfs_buf_t *bp; 570 int error; 571 572 ASSERT(mp->m_sb_bp == NULL); 573 ASSERT(mp->m_ddev_targp != NULL); 574 575 /* 576 * Allocate a (locked) buffer to hold the superblock. 577 * This will be kept around at all times to optimize 578 * access to the superblock. 579 */ 580 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 581 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 582 583 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 584 BTOBB(sector_size), extra_flags); 585 if (!bp || XFS_BUF_ISERROR(bp)) { 586 xfs_fs_mount_cmn_err(flags, "SB read failed"); 587 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 588 goto fail; 589 } 590 ASSERT(XFS_BUF_ISBUSY(bp)); 591 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 592 593 /* 594 * Initialize the mount structure from the superblock. 595 * But first do some basic consistency checking. 596 */ 597 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 598 599 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 600 if (error) { 601 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 602 goto fail; 603 } 604 605 /* 606 * We must be able to do sector-sized and sector-aligned IO. 607 */ 608 if (sector_size > mp->m_sb.sb_sectsize) { 609 xfs_fs_mount_cmn_err(flags, 610 "device supports only %u byte sectors (not %u)", 611 sector_size, mp->m_sb.sb_sectsize); 612 error = ENOSYS; 613 goto fail; 614 } 615 616 /* 617 * If device sector size is smaller than the superblock size, 618 * re-read the superblock so the buffer is correctly sized. 619 */ 620 if (sector_size < mp->m_sb.sb_sectsize) { 621 XFS_BUF_UNMANAGE(bp); 622 xfs_buf_relse(bp); 623 sector_size = mp->m_sb.sb_sectsize; 624 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 625 BTOBB(sector_size), extra_flags); 626 if (!bp || XFS_BUF_ISERROR(bp)) { 627 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 628 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 629 goto fail; 630 } 631 ASSERT(XFS_BUF_ISBUSY(bp)); 632 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 633 } 634 635 /* Initialize per-cpu counters */ 636 xfs_icsb_reinit_counters(mp); 637 638 mp->m_sb_bp = bp; 639 xfs_buf_relse(bp); 640 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 641 return 0; 642 643 fail: 644 if (bp) { 645 XFS_BUF_UNMANAGE(bp); 646 xfs_buf_relse(bp); 647 } 648 return error; 649 } 650 651 652 /* 653 * xfs_mount_common 654 * 655 * Mount initialization code establishing various mount 656 * fields from the superblock associated with the given 657 * mount structure 658 */ 659 STATIC void 660 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 661 { 662 mp->m_agfrotor = mp->m_agirotor = 0; 663 spin_lock_init(&mp->m_agirotor_lock); 664 mp->m_maxagi = mp->m_sb.sb_agcount; 665 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 666 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 667 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 668 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 669 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 670 mp->m_blockmask = sbp->sb_blocksize - 1; 671 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 672 mp->m_blockwmask = mp->m_blockwsize - 1; 673 674 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 675 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 676 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 677 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 678 679 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 680 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 681 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 682 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 683 684 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 685 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 686 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 687 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 688 689 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 690 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 691 sbp->sb_inopblock); 692 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 693 } 694 695 /* 696 * xfs_initialize_perag_data 697 * 698 * Read in each per-ag structure so we can count up the number of 699 * allocated inodes, free inodes and used filesystem blocks as this 700 * information is no longer persistent in the superblock. Once we have 701 * this information, write it into the in-core superblock structure. 702 */ 703 STATIC int 704 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 705 { 706 xfs_agnumber_t index; 707 xfs_perag_t *pag; 708 xfs_sb_t *sbp = &mp->m_sb; 709 uint64_t ifree = 0; 710 uint64_t ialloc = 0; 711 uint64_t bfree = 0; 712 uint64_t bfreelst = 0; 713 uint64_t btree = 0; 714 int error; 715 716 for (index = 0; index < agcount; index++) { 717 /* 718 * read the agf, then the agi. This gets us 719 * all the information we need and populates the 720 * per-ag structures for us. 721 */ 722 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 723 if (error) 724 return error; 725 726 error = xfs_ialloc_pagi_init(mp, NULL, index); 727 if (error) 728 return error; 729 pag = &mp->m_perag[index]; 730 ifree += pag->pagi_freecount; 731 ialloc += pag->pagi_count; 732 bfree += pag->pagf_freeblks; 733 bfreelst += pag->pagf_flcount; 734 btree += pag->pagf_btreeblks; 735 } 736 /* 737 * Overwrite incore superblock counters with just-read data 738 */ 739 spin_lock(&mp->m_sb_lock); 740 sbp->sb_ifree = ifree; 741 sbp->sb_icount = ialloc; 742 sbp->sb_fdblocks = bfree + bfreelst + btree; 743 spin_unlock(&mp->m_sb_lock); 744 745 /* Fixup the per-cpu counters as well. */ 746 xfs_icsb_reinit_counters(mp); 747 748 return 0; 749 } 750 751 /* 752 * Update alignment values based on mount options and sb values 753 */ 754 STATIC int 755 xfs_update_alignment(xfs_mount_t *mp) 756 { 757 xfs_sb_t *sbp = &(mp->m_sb); 758 759 if (mp->m_dalign) { 760 /* 761 * If stripe unit and stripe width are not multiples 762 * of the fs blocksize turn off alignment. 763 */ 764 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 765 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 766 if (mp->m_flags & XFS_MOUNT_RETERR) { 767 cmn_err(CE_WARN, 768 "XFS: alignment check 1 failed"); 769 return XFS_ERROR(EINVAL); 770 } 771 mp->m_dalign = mp->m_swidth = 0; 772 } else { 773 /* 774 * Convert the stripe unit and width to FSBs. 775 */ 776 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 777 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 778 if (mp->m_flags & XFS_MOUNT_RETERR) { 779 return XFS_ERROR(EINVAL); 780 } 781 xfs_fs_cmn_err(CE_WARN, mp, 782 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 783 mp->m_dalign, mp->m_swidth, 784 sbp->sb_agblocks); 785 786 mp->m_dalign = 0; 787 mp->m_swidth = 0; 788 } else if (mp->m_dalign) { 789 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 790 } else { 791 if (mp->m_flags & XFS_MOUNT_RETERR) { 792 xfs_fs_cmn_err(CE_WARN, mp, 793 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 794 mp->m_dalign, 795 mp->m_blockmask +1); 796 return XFS_ERROR(EINVAL); 797 } 798 mp->m_swidth = 0; 799 } 800 } 801 802 /* 803 * Update superblock with new values 804 * and log changes 805 */ 806 if (xfs_sb_version_hasdalign(sbp)) { 807 if (sbp->sb_unit != mp->m_dalign) { 808 sbp->sb_unit = mp->m_dalign; 809 mp->m_update_flags |= XFS_SB_UNIT; 810 } 811 if (sbp->sb_width != mp->m_swidth) { 812 sbp->sb_width = mp->m_swidth; 813 mp->m_update_flags |= XFS_SB_WIDTH; 814 } 815 } 816 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 817 xfs_sb_version_hasdalign(&mp->m_sb)) { 818 mp->m_dalign = sbp->sb_unit; 819 mp->m_swidth = sbp->sb_width; 820 } 821 822 return 0; 823 } 824 825 /* 826 * Set the maximum inode count for this filesystem 827 */ 828 STATIC void 829 xfs_set_maxicount(xfs_mount_t *mp) 830 { 831 xfs_sb_t *sbp = &(mp->m_sb); 832 __uint64_t icount; 833 834 if (sbp->sb_imax_pct) { 835 /* 836 * Make sure the maximum inode count is a multiple 837 * of the units we allocate inodes in. 838 */ 839 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 840 do_div(icount, 100); 841 do_div(icount, mp->m_ialloc_blks); 842 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 843 sbp->sb_inopblog; 844 } else { 845 mp->m_maxicount = 0; 846 } 847 } 848 849 /* 850 * Set the default minimum read and write sizes unless 851 * already specified in a mount option. 852 * We use smaller I/O sizes when the file system 853 * is being used for NFS service (wsync mount option). 854 */ 855 STATIC void 856 xfs_set_rw_sizes(xfs_mount_t *mp) 857 { 858 xfs_sb_t *sbp = &(mp->m_sb); 859 int readio_log, writeio_log; 860 861 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 862 if (mp->m_flags & XFS_MOUNT_WSYNC) { 863 readio_log = XFS_WSYNC_READIO_LOG; 864 writeio_log = XFS_WSYNC_WRITEIO_LOG; 865 } else { 866 readio_log = XFS_READIO_LOG_LARGE; 867 writeio_log = XFS_WRITEIO_LOG_LARGE; 868 } 869 } else { 870 readio_log = mp->m_readio_log; 871 writeio_log = mp->m_writeio_log; 872 } 873 874 if (sbp->sb_blocklog > readio_log) { 875 mp->m_readio_log = sbp->sb_blocklog; 876 } else { 877 mp->m_readio_log = readio_log; 878 } 879 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 880 if (sbp->sb_blocklog > writeio_log) { 881 mp->m_writeio_log = sbp->sb_blocklog; 882 } else { 883 mp->m_writeio_log = writeio_log; 884 } 885 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 886 } 887 888 /* 889 * Set whether we're using inode alignment. 890 */ 891 STATIC void 892 xfs_set_inoalignment(xfs_mount_t *mp) 893 { 894 if (xfs_sb_version_hasalign(&mp->m_sb) && 895 mp->m_sb.sb_inoalignmt >= 896 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 897 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 898 else 899 mp->m_inoalign_mask = 0; 900 /* 901 * If we are using stripe alignment, check whether 902 * the stripe unit is a multiple of the inode alignment 903 */ 904 if (mp->m_dalign && mp->m_inoalign_mask && 905 !(mp->m_dalign & mp->m_inoalign_mask)) 906 mp->m_sinoalign = mp->m_dalign; 907 else 908 mp->m_sinoalign = 0; 909 } 910 911 /* 912 * Check that the data (and log if separate) are an ok size. 913 */ 914 STATIC int 915 xfs_check_sizes(xfs_mount_t *mp) 916 { 917 xfs_buf_t *bp; 918 xfs_daddr_t d; 919 int error; 920 921 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 922 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 923 cmn_err(CE_WARN, "XFS: size check 1 failed"); 924 return XFS_ERROR(E2BIG); 925 } 926 error = xfs_read_buf(mp, mp->m_ddev_targp, 927 d - XFS_FSS_TO_BB(mp, 1), 928 XFS_FSS_TO_BB(mp, 1), 0, &bp); 929 if (!error) { 930 xfs_buf_relse(bp); 931 } else { 932 cmn_err(CE_WARN, "XFS: size check 2 failed"); 933 if (error == ENOSPC) 934 error = XFS_ERROR(E2BIG); 935 return error; 936 } 937 938 if (mp->m_logdev_targp != mp->m_ddev_targp) { 939 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 940 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 941 cmn_err(CE_WARN, "XFS: size check 3 failed"); 942 return XFS_ERROR(E2BIG); 943 } 944 error = xfs_read_buf(mp, mp->m_logdev_targp, 945 d - XFS_FSB_TO_BB(mp, 1), 946 XFS_FSB_TO_BB(mp, 1), 0, &bp); 947 if (!error) { 948 xfs_buf_relse(bp); 949 } else { 950 cmn_err(CE_WARN, "XFS: size check 3 failed"); 951 if (error == ENOSPC) 952 error = XFS_ERROR(E2BIG); 953 return error; 954 } 955 } 956 return 0; 957 } 958 959 /* 960 * This function does the following on an initial mount of a file system: 961 * - reads the superblock from disk and init the mount struct 962 * - if we're a 32-bit kernel, do a size check on the superblock 963 * so we don't mount terabyte filesystems 964 * - init mount struct realtime fields 965 * - allocate inode hash table for fs 966 * - init directory manager 967 * - perform recovery and init the log manager 968 */ 969 int 970 xfs_mountfs( 971 xfs_mount_t *mp) 972 { 973 xfs_sb_t *sbp = &(mp->m_sb); 974 xfs_inode_t *rip; 975 __uint64_t resblks; 976 uint quotamount, quotaflags; 977 int error = 0; 978 979 xfs_mount_common(mp, sbp); 980 981 /* 982 * Check for a mismatched features2 values. Older kernels 983 * read & wrote into the wrong sb offset for sb_features2 984 * on some platforms due to xfs_sb_t not being 64bit size aligned 985 * when sb_features2 was added, which made older superblock 986 * reading/writing routines swap it as a 64-bit value. 987 * 988 * For backwards compatibility, we make both slots equal. 989 * 990 * If we detect a mismatched field, we OR the set bits into the 991 * existing features2 field in case it has already been modified; we 992 * don't want to lose any features. We then update the bad location 993 * with the ORed value so that older kernels will see any features2 994 * flags, and mark the two fields as needing updates once the 995 * transaction subsystem is online. 996 */ 997 if (xfs_sb_has_mismatched_features2(sbp)) { 998 cmn_err(CE_WARN, 999 "XFS: correcting sb_features alignment problem"); 1000 sbp->sb_features2 |= sbp->sb_bad_features2; 1001 sbp->sb_bad_features2 = sbp->sb_features2; 1002 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1003 1004 /* 1005 * Re-check for ATTR2 in case it was found in bad_features2 1006 * slot. 1007 */ 1008 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1009 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1010 mp->m_flags |= XFS_MOUNT_ATTR2; 1011 } 1012 1013 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1014 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1015 xfs_sb_version_removeattr2(&mp->m_sb); 1016 mp->m_update_flags |= XFS_SB_FEATURES2; 1017 1018 /* update sb_versionnum for the clearing of the morebits */ 1019 if (!sbp->sb_features2) 1020 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1021 } 1022 1023 /* 1024 * Check if sb_agblocks is aligned at stripe boundary 1025 * If sb_agblocks is NOT aligned turn off m_dalign since 1026 * allocator alignment is within an ag, therefore ag has 1027 * to be aligned at stripe boundary. 1028 */ 1029 error = xfs_update_alignment(mp); 1030 if (error) 1031 goto out; 1032 1033 xfs_alloc_compute_maxlevels(mp); 1034 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1035 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1036 xfs_ialloc_compute_maxlevels(mp); 1037 1038 xfs_set_maxicount(mp); 1039 1040 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1041 1042 error = xfs_uuid_mount(mp); 1043 if (error) 1044 goto out; 1045 1046 /* 1047 * Set the minimum read and write sizes 1048 */ 1049 xfs_set_rw_sizes(mp); 1050 1051 /* 1052 * Set the inode cluster size. 1053 * This may still be overridden by the file system 1054 * block size if it is larger than the chosen cluster size. 1055 */ 1056 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1057 1058 /* 1059 * Set inode alignment fields 1060 */ 1061 xfs_set_inoalignment(mp); 1062 1063 /* 1064 * Check that the data (and log if separate) are an ok size. 1065 */ 1066 error = xfs_check_sizes(mp); 1067 if (error) 1068 goto out_remove_uuid; 1069 1070 /* 1071 * Initialize realtime fields in the mount structure 1072 */ 1073 error = xfs_rtmount_init(mp); 1074 if (error) { 1075 cmn_err(CE_WARN, "XFS: RT mount failed"); 1076 goto out_remove_uuid; 1077 } 1078 1079 /* 1080 * Copies the low order bits of the timestamp and the randomly 1081 * set "sequence" number out of a UUID. 1082 */ 1083 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1084 1085 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1086 1087 xfs_dir_mount(mp); 1088 1089 /* 1090 * Initialize the attribute manager's entries. 1091 */ 1092 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1093 1094 /* 1095 * Initialize the precomputed transaction reservations values. 1096 */ 1097 xfs_trans_init(mp); 1098 1099 /* 1100 * Allocate and initialize the per-ag data. 1101 */ 1102 init_rwsem(&mp->m_peraglock); 1103 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), 1104 KM_MAYFAIL); 1105 if (!mp->m_perag) 1106 goto out_remove_uuid; 1107 1108 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1109 1110 if (!sbp->sb_logblocks) { 1111 cmn_err(CE_WARN, "XFS: no log defined"); 1112 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1113 error = XFS_ERROR(EFSCORRUPTED); 1114 goto out_free_perag; 1115 } 1116 1117 /* 1118 * log's mount-time initialization. Perform 1st part recovery if needed 1119 */ 1120 error = xfs_log_mount(mp, mp->m_logdev_targp, 1121 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1122 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1123 if (error) { 1124 cmn_err(CE_WARN, "XFS: log mount failed"); 1125 goto out_free_perag; 1126 } 1127 1128 /* 1129 * Now the log is mounted, we know if it was an unclean shutdown or 1130 * not. If it was, with the first phase of recovery has completed, we 1131 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1132 * but they are recovered transactionally in the second recovery phase 1133 * later. 1134 * 1135 * Hence we can safely re-initialise incore superblock counters from 1136 * the per-ag data. These may not be correct if the filesystem was not 1137 * cleanly unmounted, so we need to wait for recovery to finish before 1138 * doing this. 1139 * 1140 * If the filesystem was cleanly unmounted, then we can trust the 1141 * values in the superblock to be correct and we don't need to do 1142 * anything here. 1143 * 1144 * If we are currently making the filesystem, the initialisation will 1145 * fail as the perag data is in an undefined state. 1146 */ 1147 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1148 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1149 !mp->m_sb.sb_inprogress) { 1150 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1151 if (error) 1152 goto out_free_perag; 1153 } 1154 1155 /* 1156 * Get and sanity-check the root inode. 1157 * Save the pointer to it in the mount structure. 1158 */ 1159 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1160 if (error) { 1161 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1162 goto out_log_dealloc; 1163 } 1164 1165 ASSERT(rip != NULL); 1166 1167 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1168 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1169 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1170 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1171 (unsigned long long)rip->i_ino); 1172 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1173 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1174 mp); 1175 error = XFS_ERROR(EFSCORRUPTED); 1176 goto out_rele_rip; 1177 } 1178 mp->m_rootip = rip; /* save it */ 1179 1180 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1181 1182 /* 1183 * Initialize realtime inode pointers in the mount structure 1184 */ 1185 error = xfs_rtmount_inodes(mp); 1186 if (error) { 1187 /* 1188 * Free up the root inode. 1189 */ 1190 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1191 goto out_rele_rip; 1192 } 1193 1194 /* 1195 * If this is a read-only mount defer the superblock updates until 1196 * the next remount into writeable mode. Otherwise we would never 1197 * perform the update e.g. for the root filesystem. 1198 */ 1199 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1200 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1201 if (error) { 1202 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1203 goto out_rtunmount; 1204 } 1205 } 1206 1207 /* 1208 * Initialise the XFS quota management subsystem for this mount 1209 */ 1210 error = XFS_QM_INIT(mp, "amount, "aflags); 1211 if (error) 1212 goto out_rtunmount; 1213 1214 /* 1215 * Finish recovering the file system. This part needed to be 1216 * delayed until after the root and real-time bitmap inodes 1217 * were consistently read in. 1218 */ 1219 error = xfs_log_mount_finish(mp); 1220 if (error) { 1221 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1222 goto out_rtunmount; 1223 } 1224 1225 /* 1226 * Complete the quota initialisation, post-log-replay component. 1227 */ 1228 error = XFS_QM_MOUNT(mp, quotamount, quotaflags); 1229 if (error) 1230 goto out_rtunmount; 1231 1232 /* 1233 * Now we are mounted, reserve a small amount of unused space for 1234 * privileged transactions. This is needed so that transaction 1235 * space required for critical operations can dip into this pool 1236 * when at ENOSPC. This is needed for operations like create with 1237 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1238 * are not allowed to use this reserved space. 1239 * 1240 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1241 * This may drive us straight to ENOSPC on mount, but that implies 1242 * we were already there on the last unmount. Warn if this occurs. 1243 */ 1244 resblks = mp->m_sb.sb_dblocks; 1245 do_div(resblks, 20); 1246 resblks = min_t(__uint64_t, resblks, 1024); 1247 error = xfs_reserve_blocks(mp, &resblks, NULL); 1248 if (error) 1249 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1250 "Continuing without a reserve pool."); 1251 1252 return 0; 1253 1254 out_rtunmount: 1255 xfs_rtunmount_inodes(mp); 1256 out_rele_rip: 1257 IRELE(rip); 1258 out_log_dealloc: 1259 xfs_log_unmount(mp); 1260 out_free_perag: 1261 xfs_free_perag(mp); 1262 out_remove_uuid: 1263 xfs_uuid_unmount(mp); 1264 out: 1265 return error; 1266 } 1267 1268 /* 1269 * This flushes out the inodes,dquots and the superblock, unmounts the 1270 * log and makes sure that incore structures are freed. 1271 */ 1272 void 1273 xfs_unmountfs( 1274 struct xfs_mount *mp) 1275 { 1276 __uint64_t resblks; 1277 int error; 1278 1279 /* 1280 * Release dquot that rootinode, rbmino and rsumino might be holding, 1281 * and release the quota inodes. 1282 */ 1283 XFS_QM_UNMOUNT(mp); 1284 1285 xfs_rtunmount_inodes(mp); 1286 IRELE(mp->m_rootip); 1287 1288 /* 1289 * We can potentially deadlock here if we have an inode cluster 1290 * that has been freed has its buffer still pinned in memory because 1291 * the transaction is still sitting in a iclog. The stale inodes 1292 * on that buffer will have their flush locks held until the 1293 * transaction hits the disk and the callbacks run. the inode 1294 * flush takes the flush lock unconditionally and with nothing to 1295 * push out the iclog we will never get that unlocked. hence we 1296 * need to force the log first. 1297 */ 1298 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1299 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC); 1300 1301 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); 1302 1303 if (mp->m_quotainfo) 1304 XFS_QM_DONE(mp); 1305 1306 /* 1307 * Flush out the log synchronously so that we know for sure 1308 * that nothing is pinned. This is important because bflush() 1309 * will skip pinned buffers. 1310 */ 1311 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1312 1313 xfs_binval(mp->m_ddev_targp); 1314 if (mp->m_rtdev_targp) { 1315 xfs_binval(mp->m_rtdev_targp); 1316 } 1317 1318 /* 1319 * Unreserve any blocks we have so that when we unmount we don't account 1320 * the reserved free space as used. This is really only necessary for 1321 * lazy superblock counting because it trusts the incore superblock 1322 * counters to be absolutely correct on clean unmount. 1323 * 1324 * We don't bother correcting this elsewhere for lazy superblock 1325 * counting because on mount of an unclean filesystem we reconstruct the 1326 * correct counter value and this is irrelevant. 1327 * 1328 * For non-lazy counter filesystems, this doesn't matter at all because 1329 * we only every apply deltas to the superblock and hence the incore 1330 * value does not matter.... 1331 */ 1332 resblks = 0; 1333 error = xfs_reserve_blocks(mp, &resblks, NULL); 1334 if (error) 1335 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1336 "Freespace may not be correct on next mount."); 1337 1338 error = xfs_log_sbcount(mp, 1); 1339 if (error) 1340 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1341 "Freespace may not be correct on next mount."); 1342 xfs_unmountfs_writesb(mp); 1343 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1344 xfs_log_unmount_write(mp); 1345 xfs_log_unmount(mp); 1346 xfs_uuid_unmount(mp); 1347 1348 #if defined(DEBUG) 1349 xfs_errortag_clearall(mp, 0); 1350 #endif 1351 xfs_free_perag(mp); 1352 } 1353 1354 STATIC void 1355 xfs_unmountfs_wait(xfs_mount_t *mp) 1356 { 1357 if (mp->m_logdev_targp != mp->m_ddev_targp) 1358 xfs_wait_buftarg(mp->m_logdev_targp); 1359 if (mp->m_rtdev_targp) 1360 xfs_wait_buftarg(mp->m_rtdev_targp); 1361 xfs_wait_buftarg(mp->m_ddev_targp); 1362 } 1363 1364 int 1365 xfs_fs_writable(xfs_mount_t *mp) 1366 { 1367 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1368 (mp->m_flags & XFS_MOUNT_RDONLY)); 1369 } 1370 1371 /* 1372 * xfs_log_sbcount 1373 * 1374 * Called either periodically to keep the on disk superblock values 1375 * roughly up to date or from unmount to make sure the values are 1376 * correct on a clean unmount. 1377 * 1378 * Note this code can be called during the process of freezing, so 1379 * we may need to use the transaction allocator which does not not 1380 * block when the transaction subsystem is in its frozen state. 1381 */ 1382 int 1383 xfs_log_sbcount( 1384 xfs_mount_t *mp, 1385 uint sync) 1386 { 1387 xfs_trans_t *tp; 1388 int error; 1389 1390 if (!xfs_fs_writable(mp)) 1391 return 0; 1392 1393 xfs_icsb_sync_counters(mp, 0); 1394 1395 /* 1396 * we don't need to do this if we are updating the superblock 1397 * counters on every modification. 1398 */ 1399 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1400 return 0; 1401 1402 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1403 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1404 XFS_DEFAULT_LOG_COUNT); 1405 if (error) { 1406 xfs_trans_cancel(tp, 0); 1407 return error; 1408 } 1409 1410 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1411 if (sync) 1412 xfs_trans_set_sync(tp); 1413 error = xfs_trans_commit(tp, 0); 1414 return error; 1415 } 1416 1417 int 1418 xfs_unmountfs_writesb(xfs_mount_t *mp) 1419 { 1420 xfs_buf_t *sbp; 1421 int error = 0; 1422 1423 /* 1424 * skip superblock write if fs is read-only, or 1425 * if we are doing a forced umount. 1426 */ 1427 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1428 XFS_FORCED_SHUTDOWN(mp))) { 1429 1430 sbp = xfs_getsb(mp, 0); 1431 1432 XFS_BUF_UNDONE(sbp); 1433 XFS_BUF_UNREAD(sbp); 1434 XFS_BUF_UNDELAYWRITE(sbp); 1435 XFS_BUF_WRITE(sbp); 1436 XFS_BUF_UNASYNC(sbp); 1437 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1438 xfsbdstrat(mp, sbp); 1439 error = xfs_iowait(sbp); 1440 if (error) 1441 xfs_ioerror_alert("xfs_unmountfs_writesb", 1442 mp, sbp, XFS_BUF_ADDR(sbp)); 1443 xfs_buf_relse(sbp); 1444 } 1445 return error; 1446 } 1447 1448 /* 1449 * xfs_mod_sb() can be used to copy arbitrary changes to the 1450 * in-core superblock into the superblock buffer to be logged. 1451 * It does not provide the higher level of locking that is 1452 * needed to protect the in-core superblock from concurrent 1453 * access. 1454 */ 1455 void 1456 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1457 { 1458 xfs_buf_t *bp; 1459 int first; 1460 int last; 1461 xfs_mount_t *mp; 1462 xfs_sb_field_t f; 1463 1464 ASSERT(fields); 1465 if (!fields) 1466 return; 1467 mp = tp->t_mountp; 1468 bp = xfs_trans_getsb(tp, mp, 0); 1469 first = sizeof(xfs_sb_t); 1470 last = 0; 1471 1472 /* translate/copy */ 1473 1474 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1475 1476 /* find modified range */ 1477 1478 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1479 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1480 first = xfs_sb_info[f].offset; 1481 1482 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1483 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1484 last = xfs_sb_info[f + 1].offset - 1; 1485 1486 xfs_trans_log_buf(tp, bp, first, last); 1487 } 1488 1489 1490 /* 1491 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1492 * a delta to a specified field in the in-core superblock. Simply 1493 * switch on the field indicated and apply the delta to that field. 1494 * Fields are not allowed to dip below zero, so if the delta would 1495 * do this do not apply it and return EINVAL. 1496 * 1497 * The m_sb_lock must be held when this routine is called. 1498 */ 1499 int 1500 xfs_mod_incore_sb_unlocked( 1501 xfs_mount_t *mp, 1502 xfs_sb_field_t field, 1503 int64_t delta, 1504 int rsvd) 1505 { 1506 int scounter; /* short counter for 32 bit fields */ 1507 long long lcounter; /* long counter for 64 bit fields */ 1508 long long res_used, rem; 1509 1510 /* 1511 * With the in-core superblock spin lock held, switch 1512 * on the indicated field. Apply the delta to the 1513 * proper field. If the fields value would dip below 1514 * 0, then do not apply the delta and return EINVAL. 1515 */ 1516 switch (field) { 1517 case XFS_SBS_ICOUNT: 1518 lcounter = (long long)mp->m_sb.sb_icount; 1519 lcounter += delta; 1520 if (lcounter < 0) { 1521 ASSERT(0); 1522 return XFS_ERROR(EINVAL); 1523 } 1524 mp->m_sb.sb_icount = lcounter; 1525 return 0; 1526 case XFS_SBS_IFREE: 1527 lcounter = (long long)mp->m_sb.sb_ifree; 1528 lcounter += delta; 1529 if (lcounter < 0) { 1530 ASSERT(0); 1531 return XFS_ERROR(EINVAL); 1532 } 1533 mp->m_sb.sb_ifree = lcounter; 1534 return 0; 1535 case XFS_SBS_FDBLOCKS: 1536 lcounter = (long long) 1537 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1538 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1539 1540 if (delta > 0) { /* Putting blocks back */ 1541 if (res_used > delta) { 1542 mp->m_resblks_avail += delta; 1543 } else { 1544 rem = delta - res_used; 1545 mp->m_resblks_avail = mp->m_resblks; 1546 lcounter += rem; 1547 } 1548 } else { /* Taking blocks away */ 1549 1550 lcounter += delta; 1551 1552 /* 1553 * If were out of blocks, use any available reserved blocks if 1554 * were allowed to. 1555 */ 1556 1557 if (lcounter < 0) { 1558 if (rsvd) { 1559 lcounter = (long long)mp->m_resblks_avail + delta; 1560 if (lcounter < 0) { 1561 return XFS_ERROR(ENOSPC); 1562 } 1563 mp->m_resblks_avail = lcounter; 1564 return 0; 1565 } else { /* not reserved */ 1566 return XFS_ERROR(ENOSPC); 1567 } 1568 } 1569 } 1570 1571 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1572 return 0; 1573 case XFS_SBS_FREXTENTS: 1574 lcounter = (long long)mp->m_sb.sb_frextents; 1575 lcounter += delta; 1576 if (lcounter < 0) { 1577 return XFS_ERROR(ENOSPC); 1578 } 1579 mp->m_sb.sb_frextents = lcounter; 1580 return 0; 1581 case XFS_SBS_DBLOCKS: 1582 lcounter = (long long)mp->m_sb.sb_dblocks; 1583 lcounter += delta; 1584 if (lcounter < 0) { 1585 ASSERT(0); 1586 return XFS_ERROR(EINVAL); 1587 } 1588 mp->m_sb.sb_dblocks = lcounter; 1589 return 0; 1590 case XFS_SBS_AGCOUNT: 1591 scounter = mp->m_sb.sb_agcount; 1592 scounter += delta; 1593 if (scounter < 0) { 1594 ASSERT(0); 1595 return XFS_ERROR(EINVAL); 1596 } 1597 mp->m_sb.sb_agcount = scounter; 1598 return 0; 1599 case XFS_SBS_IMAX_PCT: 1600 scounter = mp->m_sb.sb_imax_pct; 1601 scounter += delta; 1602 if (scounter < 0) { 1603 ASSERT(0); 1604 return XFS_ERROR(EINVAL); 1605 } 1606 mp->m_sb.sb_imax_pct = scounter; 1607 return 0; 1608 case XFS_SBS_REXTSIZE: 1609 scounter = mp->m_sb.sb_rextsize; 1610 scounter += delta; 1611 if (scounter < 0) { 1612 ASSERT(0); 1613 return XFS_ERROR(EINVAL); 1614 } 1615 mp->m_sb.sb_rextsize = scounter; 1616 return 0; 1617 case XFS_SBS_RBMBLOCKS: 1618 scounter = mp->m_sb.sb_rbmblocks; 1619 scounter += delta; 1620 if (scounter < 0) { 1621 ASSERT(0); 1622 return XFS_ERROR(EINVAL); 1623 } 1624 mp->m_sb.sb_rbmblocks = scounter; 1625 return 0; 1626 case XFS_SBS_RBLOCKS: 1627 lcounter = (long long)mp->m_sb.sb_rblocks; 1628 lcounter += delta; 1629 if (lcounter < 0) { 1630 ASSERT(0); 1631 return XFS_ERROR(EINVAL); 1632 } 1633 mp->m_sb.sb_rblocks = lcounter; 1634 return 0; 1635 case XFS_SBS_REXTENTS: 1636 lcounter = (long long)mp->m_sb.sb_rextents; 1637 lcounter += delta; 1638 if (lcounter < 0) { 1639 ASSERT(0); 1640 return XFS_ERROR(EINVAL); 1641 } 1642 mp->m_sb.sb_rextents = lcounter; 1643 return 0; 1644 case XFS_SBS_REXTSLOG: 1645 scounter = mp->m_sb.sb_rextslog; 1646 scounter += delta; 1647 if (scounter < 0) { 1648 ASSERT(0); 1649 return XFS_ERROR(EINVAL); 1650 } 1651 mp->m_sb.sb_rextslog = scounter; 1652 return 0; 1653 default: 1654 ASSERT(0); 1655 return XFS_ERROR(EINVAL); 1656 } 1657 } 1658 1659 /* 1660 * xfs_mod_incore_sb() is used to change a field in the in-core 1661 * superblock structure by the specified delta. This modification 1662 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1663 * routine to do the work. 1664 */ 1665 int 1666 xfs_mod_incore_sb( 1667 xfs_mount_t *mp, 1668 xfs_sb_field_t field, 1669 int64_t delta, 1670 int rsvd) 1671 { 1672 int status; 1673 1674 /* check for per-cpu counters */ 1675 switch (field) { 1676 #ifdef HAVE_PERCPU_SB 1677 case XFS_SBS_ICOUNT: 1678 case XFS_SBS_IFREE: 1679 case XFS_SBS_FDBLOCKS: 1680 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1681 status = xfs_icsb_modify_counters(mp, field, 1682 delta, rsvd); 1683 break; 1684 } 1685 /* FALLTHROUGH */ 1686 #endif 1687 default: 1688 spin_lock(&mp->m_sb_lock); 1689 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1690 spin_unlock(&mp->m_sb_lock); 1691 break; 1692 } 1693 1694 return status; 1695 } 1696 1697 /* 1698 * xfs_mod_incore_sb_batch() is used to change more than one field 1699 * in the in-core superblock structure at a time. This modification 1700 * is protected by a lock internal to this module. The fields and 1701 * changes to those fields are specified in the array of xfs_mod_sb 1702 * structures passed in. 1703 * 1704 * Either all of the specified deltas will be applied or none of 1705 * them will. If any modified field dips below 0, then all modifications 1706 * will be backed out and EINVAL will be returned. 1707 */ 1708 int 1709 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1710 { 1711 int status=0; 1712 xfs_mod_sb_t *msbp; 1713 1714 /* 1715 * Loop through the array of mod structures and apply each 1716 * individually. If any fail, then back out all those 1717 * which have already been applied. Do all of this within 1718 * the scope of the m_sb_lock so that all of the changes will 1719 * be atomic. 1720 */ 1721 spin_lock(&mp->m_sb_lock); 1722 msbp = &msb[0]; 1723 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1724 /* 1725 * Apply the delta at index n. If it fails, break 1726 * from the loop so we'll fall into the undo loop 1727 * below. 1728 */ 1729 switch (msbp->msb_field) { 1730 #ifdef HAVE_PERCPU_SB 1731 case XFS_SBS_ICOUNT: 1732 case XFS_SBS_IFREE: 1733 case XFS_SBS_FDBLOCKS: 1734 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1735 spin_unlock(&mp->m_sb_lock); 1736 status = xfs_icsb_modify_counters(mp, 1737 msbp->msb_field, 1738 msbp->msb_delta, rsvd); 1739 spin_lock(&mp->m_sb_lock); 1740 break; 1741 } 1742 /* FALLTHROUGH */ 1743 #endif 1744 default: 1745 status = xfs_mod_incore_sb_unlocked(mp, 1746 msbp->msb_field, 1747 msbp->msb_delta, rsvd); 1748 break; 1749 } 1750 1751 if (status != 0) { 1752 break; 1753 } 1754 } 1755 1756 /* 1757 * If we didn't complete the loop above, then back out 1758 * any changes made to the superblock. If you add code 1759 * between the loop above and here, make sure that you 1760 * preserve the value of status. Loop back until 1761 * we step below the beginning of the array. Make sure 1762 * we don't touch anything back there. 1763 */ 1764 if (status != 0) { 1765 msbp--; 1766 while (msbp >= msb) { 1767 switch (msbp->msb_field) { 1768 #ifdef HAVE_PERCPU_SB 1769 case XFS_SBS_ICOUNT: 1770 case XFS_SBS_IFREE: 1771 case XFS_SBS_FDBLOCKS: 1772 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1773 spin_unlock(&mp->m_sb_lock); 1774 status = xfs_icsb_modify_counters(mp, 1775 msbp->msb_field, 1776 -(msbp->msb_delta), 1777 rsvd); 1778 spin_lock(&mp->m_sb_lock); 1779 break; 1780 } 1781 /* FALLTHROUGH */ 1782 #endif 1783 default: 1784 status = xfs_mod_incore_sb_unlocked(mp, 1785 msbp->msb_field, 1786 -(msbp->msb_delta), 1787 rsvd); 1788 break; 1789 } 1790 ASSERT(status == 0); 1791 msbp--; 1792 } 1793 } 1794 spin_unlock(&mp->m_sb_lock); 1795 return status; 1796 } 1797 1798 /* 1799 * xfs_getsb() is called to obtain the buffer for the superblock. 1800 * The buffer is returned locked and read in from disk. 1801 * The buffer should be released with a call to xfs_brelse(). 1802 * 1803 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1804 * the superblock buffer if it can be locked without sleeping. 1805 * If it can't then we'll return NULL. 1806 */ 1807 xfs_buf_t * 1808 xfs_getsb( 1809 xfs_mount_t *mp, 1810 int flags) 1811 { 1812 xfs_buf_t *bp; 1813 1814 ASSERT(mp->m_sb_bp != NULL); 1815 bp = mp->m_sb_bp; 1816 if (flags & XFS_BUF_TRYLOCK) { 1817 if (!XFS_BUF_CPSEMA(bp)) { 1818 return NULL; 1819 } 1820 } else { 1821 XFS_BUF_PSEMA(bp, PRIBIO); 1822 } 1823 XFS_BUF_HOLD(bp); 1824 ASSERT(XFS_BUF_ISDONE(bp)); 1825 return bp; 1826 } 1827 1828 /* 1829 * Used to free the superblock along various error paths. 1830 */ 1831 void 1832 xfs_freesb( 1833 xfs_mount_t *mp) 1834 { 1835 xfs_buf_t *bp; 1836 1837 /* 1838 * Use xfs_getsb() so that the buffer will be locked 1839 * when we call xfs_buf_relse(). 1840 */ 1841 bp = xfs_getsb(mp, 0); 1842 XFS_BUF_UNMANAGE(bp); 1843 xfs_buf_relse(bp); 1844 mp->m_sb_bp = NULL; 1845 } 1846 1847 /* 1848 * Used to log changes to the superblock unit and width fields which could 1849 * be altered by the mount options, as well as any potential sb_features2 1850 * fixup. Only the first superblock is updated. 1851 */ 1852 int 1853 xfs_mount_log_sb( 1854 xfs_mount_t *mp, 1855 __int64_t fields) 1856 { 1857 xfs_trans_t *tp; 1858 int error; 1859 1860 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1861 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1862 XFS_SB_VERSIONNUM)); 1863 1864 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1865 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1866 XFS_DEFAULT_LOG_COUNT); 1867 if (error) { 1868 xfs_trans_cancel(tp, 0); 1869 return error; 1870 } 1871 xfs_mod_sb(tp, fields); 1872 error = xfs_trans_commit(tp, 0); 1873 return error; 1874 } 1875 1876 1877 #ifdef HAVE_PERCPU_SB 1878 /* 1879 * Per-cpu incore superblock counters 1880 * 1881 * Simple concept, difficult implementation 1882 * 1883 * Basically, replace the incore superblock counters with a distributed per cpu 1884 * counter for contended fields (e.g. free block count). 1885 * 1886 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1887 * hence needs to be accurately read when we are running low on space. Hence 1888 * there is a method to enable and disable the per-cpu counters based on how 1889 * much "stuff" is available in them. 1890 * 1891 * Basically, a counter is enabled if there is enough free resource to justify 1892 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1893 * ENOSPC), then we disable the counters to synchronise all callers and 1894 * re-distribute the available resources. 1895 * 1896 * If, once we redistributed the available resources, we still get a failure, 1897 * we disable the per-cpu counter and go through the slow path. 1898 * 1899 * The slow path is the current xfs_mod_incore_sb() function. This means that 1900 * when we disable a per-cpu counter, we need to drain its resources back to 1901 * the global superblock. We do this after disabling the counter to prevent 1902 * more threads from queueing up on the counter. 1903 * 1904 * Essentially, this means that we still need a lock in the fast path to enable 1905 * synchronisation between the global counters and the per-cpu counters. This 1906 * is not a problem because the lock will be local to a CPU almost all the time 1907 * and have little contention except when we get to ENOSPC conditions. 1908 * 1909 * Basically, this lock becomes a barrier that enables us to lock out the fast 1910 * path while we do things like enabling and disabling counters and 1911 * synchronising the counters. 1912 * 1913 * Locking rules: 1914 * 1915 * 1. m_sb_lock before picking up per-cpu locks 1916 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1917 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1918 * 4. modifying per-cpu counters requires holding per-cpu lock 1919 * 5. modifying global counters requires holding m_sb_lock 1920 * 6. enabling or disabling a counter requires holding the m_sb_lock 1921 * and _none_ of the per-cpu locks. 1922 * 1923 * Disabled counters are only ever re-enabled by a balance operation 1924 * that results in more free resources per CPU than a given threshold. 1925 * To ensure counters don't remain disabled, they are rebalanced when 1926 * the global resource goes above a higher threshold (i.e. some hysteresis 1927 * is present to prevent thrashing). 1928 */ 1929 1930 #ifdef CONFIG_HOTPLUG_CPU 1931 /* 1932 * hot-plug CPU notifier support. 1933 * 1934 * We need a notifier per filesystem as we need to be able to identify 1935 * the filesystem to balance the counters out. This is achieved by 1936 * having a notifier block embedded in the xfs_mount_t and doing pointer 1937 * magic to get the mount pointer from the notifier block address. 1938 */ 1939 STATIC int 1940 xfs_icsb_cpu_notify( 1941 struct notifier_block *nfb, 1942 unsigned long action, 1943 void *hcpu) 1944 { 1945 xfs_icsb_cnts_t *cntp; 1946 xfs_mount_t *mp; 1947 1948 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1949 cntp = (xfs_icsb_cnts_t *) 1950 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1951 switch (action) { 1952 case CPU_UP_PREPARE: 1953 case CPU_UP_PREPARE_FROZEN: 1954 /* Easy Case - initialize the area and locks, and 1955 * then rebalance when online does everything else for us. */ 1956 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1957 break; 1958 case CPU_ONLINE: 1959 case CPU_ONLINE_FROZEN: 1960 xfs_icsb_lock(mp); 1961 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1962 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1963 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1964 xfs_icsb_unlock(mp); 1965 break; 1966 case CPU_DEAD: 1967 case CPU_DEAD_FROZEN: 1968 /* Disable all the counters, then fold the dead cpu's 1969 * count into the total on the global superblock and 1970 * re-enable the counters. */ 1971 xfs_icsb_lock(mp); 1972 spin_lock(&mp->m_sb_lock); 1973 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1974 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1975 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1976 1977 mp->m_sb.sb_icount += cntp->icsb_icount; 1978 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1979 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1980 1981 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1982 1983 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1984 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1985 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1986 spin_unlock(&mp->m_sb_lock); 1987 xfs_icsb_unlock(mp); 1988 break; 1989 } 1990 1991 return NOTIFY_OK; 1992 } 1993 #endif /* CONFIG_HOTPLUG_CPU */ 1994 1995 int 1996 xfs_icsb_init_counters( 1997 xfs_mount_t *mp) 1998 { 1999 xfs_icsb_cnts_t *cntp; 2000 int i; 2001 2002 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2003 if (mp->m_sb_cnts == NULL) 2004 return -ENOMEM; 2005 2006 #ifdef CONFIG_HOTPLUG_CPU 2007 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2008 mp->m_icsb_notifier.priority = 0; 2009 register_hotcpu_notifier(&mp->m_icsb_notifier); 2010 #endif /* CONFIG_HOTPLUG_CPU */ 2011 2012 for_each_online_cpu(i) { 2013 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2014 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2015 } 2016 2017 mutex_init(&mp->m_icsb_mutex); 2018 2019 /* 2020 * start with all counters disabled so that the 2021 * initial balance kicks us off correctly 2022 */ 2023 mp->m_icsb_counters = -1; 2024 return 0; 2025 } 2026 2027 void 2028 xfs_icsb_reinit_counters( 2029 xfs_mount_t *mp) 2030 { 2031 xfs_icsb_lock(mp); 2032 /* 2033 * start with all counters disabled so that the 2034 * initial balance kicks us off correctly 2035 */ 2036 mp->m_icsb_counters = -1; 2037 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2038 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2039 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2040 xfs_icsb_unlock(mp); 2041 } 2042 2043 void 2044 xfs_icsb_destroy_counters( 2045 xfs_mount_t *mp) 2046 { 2047 if (mp->m_sb_cnts) { 2048 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2049 free_percpu(mp->m_sb_cnts); 2050 } 2051 mutex_destroy(&mp->m_icsb_mutex); 2052 } 2053 2054 STATIC_INLINE void 2055 xfs_icsb_lock_cntr( 2056 xfs_icsb_cnts_t *icsbp) 2057 { 2058 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2059 ndelay(1000); 2060 } 2061 } 2062 2063 STATIC_INLINE void 2064 xfs_icsb_unlock_cntr( 2065 xfs_icsb_cnts_t *icsbp) 2066 { 2067 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2068 } 2069 2070 2071 STATIC_INLINE void 2072 xfs_icsb_lock_all_counters( 2073 xfs_mount_t *mp) 2074 { 2075 xfs_icsb_cnts_t *cntp; 2076 int i; 2077 2078 for_each_online_cpu(i) { 2079 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2080 xfs_icsb_lock_cntr(cntp); 2081 } 2082 } 2083 2084 STATIC_INLINE void 2085 xfs_icsb_unlock_all_counters( 2086 xfs_mount_t *mp) 2087 { 2088 xfs_icsb_cnts_t *cntp; 2089 int i; 2090 2091 for_each_online_cpu(i) { 2092 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2093 xfs_icsb_unlock_cntr(cntp); 2094 } 2095 } 2096 2097 STATIC void 2098 xfs_icsb_count( 2099 xfs_mount_t *mp, 2100 xfs_icsb_cnts_t *cnt, 2101 int flags) 2102 { 2103 xfs_icsb_cnts_t *cntp; 2104 int i; 2105 2106 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2107 2108 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2109 xfs_icsb_lock_all_counters(mp); 2110 2111 for_each_online_cpu(i) { 2112 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2113 cnt->icsb_icount += cntp->icsb_icount; 2114 cnt->icsb_ifree += cntp->icsb_ifree; 2115 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2116 } 2117 2118 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2119 xfs_icsb_unlock_all_counters(mp); 2120 } 2121 2122 STATIC int 2123 xfs_icsb_counter_disabled( 2124 xfs_mount_t *mp, 2125 xfs_sb_field_t field) 2126 { 2127 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2128 return test_bit(field, &mp->m_icsb_counters); 2129 } 2130 2131 STATIC void 2132 xfs_icsb_disable_counter( 2133 xfs_mount_t *mp, 2134 xfs_sb_field_t field) 2135 { 2136 xfs_icsb_cnts_t cnt; 2137 2138 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2139 2140 /* 2141 * If we are already disabled, then there is nothing to do 2142 * here. We check before locking all the counters to avoid 2143 * the expensive lock operation when being called in the 2144 * slow path and the counter is already disabled. This is 2145 * safe because the only time we set or clear this state is under 2146 * the m_icsb_mutex. 2147 */ 2148 if (xfs_icsb_counter_disabled(mp, field)) 2149 return; 2150 2151 xfs_icsb_lock_all_counters(mp); 2152 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2153 /* drain back to superblock */ 2154 2155 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2156 switch(field) { 2157 case XFS_SBS_ICOUNT: 2158 mp->m_sb.sb_icount = cnt.icsb_icount; 2159 break; 2160 case XFS_SBS_IFREE: 2161 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2162 break; 2163 case XFS_SBS_FDBLOCKS: 2164 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2165 break; 2166 default: 2167 BUG(); 2168 } 2169 } 2170 2171 xfs_icsb_unlock_all_counters(mp); 2172 } 2173 2174 STATIC void 2175 xfs_icsb_enable_counter( 2176 xfs_mount_t *mp, 2177 xfs_sb_field_t field, 2178 uint64_t count, 2179 uint64_t resid) 2180 { 2181 xfs_icsb_cnts_t *cntp; 2182 int i; 2183 2184 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2185 2186 xfs_icsb_lock_all_counters(mp); 2187 for_each_online_cpu(i) { 2188 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2189 switch (field) { 2190 case XFS_SBS_ICOUNT: 2191 cntp->icsb_icount = count + resid; 2192 break; 2193 case XFS_SBS_IFREE: 2194 cntp->icsb_ifree = count + resid; 2195 break; 2196 case XFS_SBS_FDBLOCKS: 2197 cntp->icsb_fdblocks = count + resid; 2198 break; 2199 default: 2200 BUG(); 2201 break; 2202 } 2203 resid = 0; 2204 } 2205 clear_bit(field, &mp->m_icsb_counters); 2206 xfs_icsb_unlock_all_counters(mp); 2207 } 2208 2209 void 2210 xfs_icsb_sync_counters_locked( 2211 xfs_mount_t *mp, 2212 int flags) 2213 { 2214 xfs_icsb_cnts_t cnt; 2215 2216 xfs_icsb_count(mp, &cnt, flags); 2217 2218 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2219 mp->m_sb.sb_icount = cnt.icsb_icount; 2220 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2221 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2222 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2223 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2224 } 2225 2226 /* 2227 * Accurate update of per-cpu counters to incore superblock 2228 */ 2229 void 2230 xfs_icsb_sync_counters( 2231 xfs_mount_t *mp, 2232 int flags) 2233 { 2234 spin_lock(&mp->m_sb_lock); 2235 xfs_icsb_sync_counters_locked(mp, flags); 2236 spin_unlock(&mp->m_sb_lock); 2237 } 2238 2239 /* 2240 * Balance and enable/disable counters as necessary. 2241 * 2242 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2243 * chosen to be the same number as single on disk allocation chunk per CPU, and 2244 * free blocks is something far enough zero that we aren't going thrash when we 2245 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2246 * prevent looping endlessly when xfs_alloc_space asks for more than will 2247 * be distributed to a single CPU but each CPU has enough blocks to be 2248 * reenabled. 2249 * 2250 * Note that we can be called when counters are already disabled. 2251 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2252 * prevent locking every per-cpu counter needlessly. 2253 */ 2254 2255 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2256 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2257 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2258 STATIC void 2259 xfs_icsb_balance_counter_locked( 2260 xfs_mount_t *mp, 2261 xfs_sb_field_t field, 2262 int min_per_cpu) 2263 { 2264 uint64_t count, resid; 2265 int weight = num_online_cpus(); 2266 uint64_t min = (uint64_t)min_per_cpu; 2267 2268 /* disable counter and sync counter */ 2269 xfs_icsb_disable_counter(mp, field); 2270 2271 /* update counters - first CPU gets residual*/ 2272 switch (field) { 2273 case XFS_SBS_ICOUNT: 2274 count = mp->m_sb.sb_icount; 2275 resid = do_div(count, weight); 2276 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2277 return; 2278 break; 2279 case XFS_SBS_IFREE: 2280 count = mp->m_sb.sb_ifree; 2281 resid = do_div(count, weight); 2282 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2283 return; 2284 break; 2285 case XFS_SBS_FDBLOCKS: 2286 count = mp->m_sb.sb_fdblocks; 2287 resid = do_div(count, weight); 2288 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2289 return; 2290 break; 2291 default: 2292 BUG(); 2293 count = resid = 0; /* quiet, gcc */ 2294 break; 2295 } 2296 2297 xfs_icsb_enable_counter(mp, field, count, resid); 2298 } 2299 2300 STATIC void 2301 xfs_icsb_balance_counter( 2302 xfs_mount_t *mp, 2303 xfs_sb_field_t fields, 2304 int min_per_cpu) 2305 { 2306 spin_lock(&mp->m_sb_lock); 2307 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2308 spin_unlock(&mp->m_sb_lock); 2309 } 2310 2311 STATIC int 2312 xfs_icsb_modify_counters( 2313 xfs_mount_t *mp, 2314 xfs_sb_field_t field, 2315 int64_t delta, 2316 int rsvd) 2317 { 2318 xfs_icsb_cnts_t *icsbp; 2319 long long lcounter; /* long counter for 64 bit fields */ 2320 int cpu, ret = 0; 2321 2322 might_sleep(); 2323 again: 2324 cpu = get_cpu(); 2325 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2326 2327 /* 2328 * if the counter is disabled, go to slow path 2329 */ 2330 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2331 goto slow_path; 2332 xfs_icsb_lock_cntr(icsbp); 2333 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2334 xfs_icsb_unlock_cntr(icsbp); 2335 goto slow_path; 2336 } 2337 2338 switch (field) { 2339 case XFS_SBS_ICOUNT: 2340 lcounter = icsbp->icsb_icount; 2341 lcounter += delta; 2342 if (unlikely(lcounter < 0)) 2343 goto balance_counter; 2344 icsbp->icsb_icount = lcounter; 2345 break; 2346 2347 case XFS_SBS_IFREE: 2348 lcounter = icsbp->icsb_ifree; 2349 lcounter += delta; 2350 if (unlikely(lcounter < 0)) 2351 goto balance_counter; 2352 icsbp->icsb_ifree = lcounter; 2353 break; 2354 2355 case XFS_SBS_FDBLOCKS: 2356 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2357 2358 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2359 lcounter += delta; 2360 if (unlikely(lcounter < 0)) 2361 goto balance_counter; 2362 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2363 break; 2364 default: 2365 BUG(); 2366 break; 2367 } 2368 xfs_icsb_unlock_cntr(icsbp); 2369 put_cpu(); 2370 return 0; 2371 2372 slow_path: 2373 put_cpu(); 2374 2375 /* 2376 * serialise with a mutex so we don't burn lots of cpu on 2377 * the superblock lock. We still need to hold the superblock 2378 * lock, however, when we modify the global structures. 2379 */ 2380 xfs_icsb_lock(mp); 2381 2382 /* 2383 * Now running atomically. 2384 * 2385 * If the counter is enabled, someone has beaten us to rebalancing. 2386 * Drop the lock and try again in the fast path.... 2387 */ 2388 if (!(xfs_icsb_counter_disabled(mp, field))) { 2389 xfs_icsb_unlock(mp); 2390 goto again; 2391 } 2392 2393 /* 2394 * The counter is currently disabled. Because we are 2395 * running atomically here, we know a rebalance cannot 2396 * be in progress. Hence we can go straight to operating 2397 * on the global superblock. We do not call xfs_mod_incore_sb() 2398 * here even though we need to get the m_sb_lock. Doing so 2399 * will cause us to re-enter this function and deadlock. 2400 * Hence we get the m_sb_lock ourselves and then call 2401 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2402 * directly on the global counters. 2403 */ 2404 spin_lock(&mp->m_sb_lock); 2405 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2406 spin_unlock(&mp->m_sb_lock); 2407 2408 /* 2409 * Now that we've modified the global superblock, we 2410 * may be able to re-enable the distributed counters 2411 * (e.g. lots of space just got freed). After that 2412 * we are done. 2413 */ 2414 if (ret != ENOSPC) 2415 xfs_icsb_balance_counter(mp, field, 0); 2416 xfs_icsb_unlock(mp); 2417 return ret; 2418 2419 balance_counter: 2420 xfs_icsb_unlock_cntr(icsbp); 2421 put_cpu(); 2422 2423 /* 2424 * We may have multiple threads here if multiple per-cpu 2425 * counters run dry at the same time. This will mean we can 2426 * do more balances than strictly necessary but it is not 2427 * the common slowpath case. 2428 */ 2429 xfs_icsb_lock(mp); 2430 2431 /* 2432 * running atomically. 2433 * 2434 * This will leave the counter in the correct state for future 2435 * accesses. After the rebalance, we simply try again and our retry 2436 * will either succeed through the fast path or slow path without 2437 * another balance operation being required. 2438 */ 2439 xfs_icsb_balance_counter(mp, field, delta); 2440 xfs_icsb_unlock(mp); 2441 goto again; 2442 } 2443 2444 #endif 2445