xref: /linux/fs/xfs/xfs_mount.c (revision d80498398276ca8eee7ebdbe0d47e06d01317439)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 
48 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
49 
50 
51 #ifdef HAVE_PERCPU_SB
52 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
53 						int);
54 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
55 						int);
56 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
57 						int64_t, int);
58 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
59 
60 #else
61 
62 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
63 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
64 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
65 
66 #endif
67 
68 static const struct {
69 	short offset;
70 	short type;	/* 0 = integer
71 			 * 1 = binary / string (no translation)
72 			 */
73 } xfs_sb_info[] = {
74     { offsetof(xfs_sb_t, sb_magicnum),   0 },
75     { offsetof(xfs_sb_t, sb_blocksize),  0 },
76     { offsetof(xfs_sb_t, sb_dblocks),    0 },
77     { offsetof(xfs_sb_t, sb_rblocks),    0 },
78     { offsetof(xfs_sb_t, sb_rextents),   0 },
79     { offsetof(xfs_sb_t, sb_uuid),       1 },
80     { offsetof(xfs_sb_t, sb_logstart),   0 },
81     { offsetof(xfs_sb_t, sb_rootino),    0 },
82     { offsetof(xfs_sb_t, sb_rbmino),     0 },
83     { offsetof(xfs_sb_t, sb_rsumino),    0 },
84     { offsetof(xfs_sb_t, sb_rextsize),   0 },
85     { offsetof(xfs_sb_t, sb_agblocks),   0 },
86     { offsetof(xfs_sb_t, sb_agcount),    0 },
87     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
88     { offsetof(xfs_sb_t, sb_logblocks),  0 },
89     { offsetof(xfs_sb_t, sb_versionnum), 0 },
90     { offsetof(xfs_sb_t, sb_sectsize),   0 },
91     { offsetof(xfs_sb_t, sb_inodesize),  0 },
92     { offsetof(xfs_sb_t, sb_inopblock),  0 },
93     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
94     { offsetof(xfs_sb_t, sb_blocklog),   0 },
95     { offsetof(xfs_sb_t, sb_sectlog),    0 },
96     { offsetof(xfs_sb_t, sb_inodelog),   0 },
97     { offsetof(xfs_sb_t, sb_inopblog),   0 },
98     { offsetof(xfs_sb_t, sb_agblklog),   0 },
99     { offsetof(xfs_sb_t, sb_rextslog),   0 },
100     { offsetof(xfs_sb_t, sb_inprogress), 0 },
101     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
102     { offsetof(xfs_sb_t, sb_icount),     0 },
103     { offsetof(xfs_sb_t, sb_ifree),      0 },
104     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
105     { offsetof(xfs_sb_t, sb_frextents),  0 },
106     { offsetof(xfs_sb_t, sb_uquotino),   0 },
107     { offsetof(xfs_sb_t, sb_gquotino),   0 },
108     { offsetof(xfs_sb_t, sb_qflags),     0 },
109     { offsetof(xfs_sb_t, sb_flags),      0 },
110     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
111     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
112     { offsetof(xfs_sb_t, sb_unit),	 0 },
113     { offsetof(xfs_sb_t, sb_width),	 0 },
114     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
115     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
116     { offsetof(xfs_sb_t, sb_logsectsize),0 },
117     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
118     { offsetof(xfs_sb_t, sb_features2),	 0 },
119     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
120     { sizeof(xfs_sb_t),			 0 }
121 };
122 
123 static DEFINE_MUTEX(xfs_uuid_table_mutex);
124 static int xfs_uuid_table_size;
125 static uuid_t *xfs_uuid_table;
126 
127 /*
128  * See if the UUID is unique among mounted XFS filesystems.
129  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
130  */
131 STATIC int
132 xfs_uuid_mount(
133 	struct xfs_mount	*mp)
134 {
135 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
136 	int			hole, i;
137 
138 	if (mp->m_flags & XFS_MOUNT_NOUUID)
139 		return 0;
140 
141 	if (uuid_is_nil(uuid)) {
142 		cmn_err(CE_WARN,
143 			"XFS: Filesystem %s has nil UUID - can't mount",
144 			mp->m_fsname);
145 		return XFS_ERROR(EINVAL);
146 	}
147 
148 	mutex_lock(&xfs_uuid_table_mutex);
149 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 		if (uuid_is_nil(&xfs_uuid_table[i])) {
151 			hole = i;
152 			continue;
153 		}
154 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 			goto out_duplicate;
156 	}
157 
158 	if (hole < 0) {
159 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
162 			KM_SLEEP);
163 		hole = xfs_uuid_table_size++;
164 	}
165 	xfs_uuid_table[hole] = *uuid;
166 	mutex_unlock(&xfs_uuid_table_mutex);
167 
168 	return 0;
169 
170  out_duplicate:
171 	mutex_unlock(&xfs_uuid_table_mutex);
172 	cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
173 			 mp->m_fsname);
174 	return XFS_ERROR(EINVAL);
175 }
176 
177 STATIC void
178 xfs_uuid_unmount(
179 	struct xfs_mount	*mp)
180 {
181 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
182 	int			i;
183 
184 	if (mp->m_flags & XFS_MOUNT_NOUUID)
185 		return;
186 
187 	mutex_lock(&xfs_uuid_table_mutex);
188 	for (i = 0; i < xfs_uuid_table_size; i++) {
189 		if (uuid_is_nil(&xfs_uuid_table[i]))
190 			continue;
191 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
192 			continue;
193 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
194 		break;
195 	}
196 	ASSERT(i < xfs_uuid_table_size);
197 	mutex_unlock(&xfs_uuid_table_mutex);
198 }
199 
200 
201 /*
202  * Free up the resources associated with a mount structure.  Assume that
203  * the structure was initially zeroed, so we can tell which fields got
204  * initialized.
205  */
206 STATIC void
207 xfs_free_perag(
208 	xfs_mount_t	*mp)
209 {
210 	if (mp->m_perag) {
211 		int	agno;
212 
213 		for (agno = 0; agno < mp->m_maxagi; agno++)
214 			if (mp->m_perag[agno].pagb_list)
215 				kmem_free(mp->m_perag[agno].pagb_list);
216 		kmem_free(mp->m_perag);
217 	}
218 }
219 
220 /*
221  * Check size of device based on the (data/realtime) block count.
222  * Note: this check is used by the growfs code as well as mount.
223  */
224 int
225 xfs_sb_validate_fsb_count(
226 	xfs_sb_t	*sbp,
227 	__uint64_t	nblocks)
228 {
229 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
230 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
231 
232 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
233 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
234 		return E2BIG;
235 #else                  /* Limited by UINT_MAX of sectors */
236 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
237 		return E2BIG;
238 #endif
239 	return 0;
240 }
241 
242 /*
243  * Check the validity of the SB found.
244  */
245 STATIC int
246 xfs_mount_validate_sb(
247 	xfs_mount_t	*mp,
248 	xfs_sb_t	*sbp,
249 	int		flags)
250 {
251 	/*
252 	 * If the log device and data device have the
253 	 * same device number, the log is internal.
254 	 * Consequently, the sb_logstart should be non-zero.  If
255 	 * we have a zero sb_logstart in this case, we may be trying to mount
256 	 * a volume filesystem in a non-volume manner.
257 	 */
258 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
259 		xfs_fs_mount_cmn_err(flags, "bad magic number");
260 		return XFS_ERROR(EWRONGFS);
261 	}
262 
263 	if (!xfs_sb_good_version(sbp)) {
264 		xfs_fs_mount_cmn_err(flags, "bad version");
265 		return XFS_ERROR(EWRONGFS);
266 	}
267 
268 	if (unlikely(
269 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
270 		xfs_fs_mount_cmn_err(flags,
271 			"filesystem is marked as having an external log; "
272 			"specify logdev on the\nmount command line.");
273 		return XFS_ERROR(EINVAL);
274 	}
275 
276 	if (unlikely(
277 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
278 		xfs_fs_mount_cmn_err(flags,
279 			"filesystem is marked as having an internal log; "
280 			"do not specify logdev on\nthe mount command line.");
281 		return XFS_ERROR(EINVAL);
282 	}
283 
284 	/*
285 	 * More sanity checking. These were stolen directly from
286 	 * xfs_repair.
287 	 */
288 	if (unlikely(
289 	    sbp->sb_agcount <= 0					||
290 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
291 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
292 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
293 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
294 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
295 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
296 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
297 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
298 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
299 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
300 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
301 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
302 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
303 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
304 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
305 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
306 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
307 		return XFS_ERROR(EFSCORRUPTED);
308 	}
309 
310 	/*
311 	 * Sanity check AG count, size fields against data size field
312 	 */
313 	if (unlikely(
314 	    sbp->sb_dblocks == 0 ||
315 	    sbp->sb_dblocks >
316 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
317 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
318 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
319 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
320 		return XFS_ERROR(EFSCORRUPTED);
321 	}
322 
323 	/*
324 	 * Until this is fixed only page-sized or smaller data blocks work.
325 	 */
326 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
327 		xfs_fs_mount_cmn_err(flags,
328 			"file system with blocksize %d bytes",
329 			sbp->sb_blocksize);
330 		xfs_fs_mount_cmn_err(flags,
331 			"only pagesize (%ld) or less will currently work.",
332 			PAGE_SIZE);
333 		return XFS_ERROR(ENOSYS);
334 	}
335 
336 	/*
337 	 * Currently only very few inode sizes are supported.
338 	 */
339 	switch (sbp->sb_inodesize) {
340 	case 256:
341 	case 512:
342 	case 1024:
343 	case 2048:
344 		break;
345 	default:
346 		xfs_fs_mount_cmn_err(flags,
347 			"inode size of %d bytes not supported",
348 			sbp->sb_inodesize);
349 		return XFS_ERROR(ENOSYS);
350 	}
351 
352 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
353 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
354 		xfs_fs_mount_cmn_err(flags,
355 			"file system too large to be mounted on this system.");
356 		return XFS_ERROR(E2BIG);
357 	}
358 
359 	if (unlikely(sbp->sb_inprogress)) {
360 		xfs_fs_mount_cmn_err(flags, "file system busy");
361 		return XFS_ERROR(EFSCORRUPTED);
362 	}
363 
364 	/*
365 	 * Version 1 directory format has never worked on Linux.
366 	 */
367 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
368 		xfs_fs_mount_cmn_err(flags,
369 			"file system using version 1 directory format");
370 		return XFS_ERROR(ENOSYS);
371 	}
372 
373 	return 0;
374 }
375 
376 STATIC void
377 xfs_initialize_perag_icache(
378 	xfs_perag_t	*pag)
379 {
380 	if (!pag->pag_ici_init) {
381 		rwlock_init(&pag->pag_ici_lock);
382 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
383 		pag->pag_ici_init = 1;
384 	}
385 }
386 
387 xfs_agnumber_t
388 xfs_initialize_perag(
389 	xfs_mount_t	*mp,
390 	xfs_agnumber_t	agcount)
391 {
392 	xfs_agnumber_t	index, max_metadata;
393 	xfs_perag_t	*pag;
394 	xfs_agino_t	agino;
395 	xfs_ino_t	ino;
396 	xfs_sb_t	*sbp = &mp->m_sb;
397 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
398 
399 	/* Check to see if the filesystem can overflow 32 bit inodes */
400 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
401 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
402 
403 	/* Clear the mount flag if no inode can overflow 32 bits
404 	 * on this filesystem, or if specifically requested..
405 	 */
406 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
407 		mp->m_flags |= XFS_MOUNT_32BITINODES;
408 	} else {
409 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
410 	}
411 
412 	/* If we can overflow then setup the ag headers accordingly */
413 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
414 		/* Calculate how much should be reserved for inodes to
415 		 * meet the max inode percentage.
416 		 */
417 		if (mp->m_maxicount) {
418 			__uint64_t	icount;
419 
420 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
421 			do_div(icount, 100);
422 			icount += sbp->sb_agblocks - 1;
423 			do_div(icount, sbp->sb_agblocks);
424 			max_metadata = icount;
425 		} else {
426 			max_metadata = agcount;
427 		}
428 		for (index = 0; index < agcount; index++) {
429 			ino = XFS_AGINO_TO_INO(mp, index, agino);
430 			if (ino > max_inum) {
431 				index++;
432 				break;
433 			}
434 
435 			/* This ag is preferred for inodes */
436 			pag = &mp->m_perag[index];
437 			pag->pagi_inodeok = 1;
438 			if (index < max_metadata)
439 				pag->pagf_metadata = 1;
440 			xfs_initialize_perag_icache(pag);
441 		}
442 	} else {
443 		/* Setup default behavior for smaller filesystems */
444 		for (index = 0; index < agcount; index++) {
445 			pag = &mp->m_perag[index];
446 			pag->pagi_inodeok = 1;
447 			xfs_initialize_perag_icache(pag);
448 		}
449 	}
450 	return index;
451 }
452 
453 void
454 xfs_sb_from_disk(
455 	xfs_sb_t	*to,
456 	xfs_dsb_t	*from)
457 {
458 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
459 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
460 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
461 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
462 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
463 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
464 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
465 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
466 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
467 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
468 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
469 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
470 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
471 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
472 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
473 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
474 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
475 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
476 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
477 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
478 	to->sb_blocklog = from->sb_blocklog;
479 	to->sb_sectlog = from->sb_sectlog;
480 	to->sb_inodelog = from->sb_inodelog;
481 	to->sb_inopblog = from->sb_inopblog;
482 	to->sb_agblklog = from->sb_agblklog;
483 	to->sb_rextslog = from->sb_rextslog;
484 	to->sb_inprogress = from->sb_inprogress;
485 	to->sb_imax_pct = from->sb_imax_pct;
486 	to->sb_icount = be64_to_cpu(from->sb_icount);
487 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
488 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
489 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
490 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
491 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
492 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
493 	to->sb_flags = from->sb_flags;
494 	to->sb_shared_vn = from->sb_shared_vn;
495 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
496 	to->sb_unit = be32_to_cpu(from->sb_unit);
497 	to->sb_width = be32_to_cpu(from->sb_width);
498 	to->sb_dirblklog = from->sb_dirblklog;
499 	to->sb_logsectlog = from->sb_logsectlog;
500 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
501 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
502 	to->sb_features2 = be32_to_cpu(from->sb_features2);
503 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
504 }
505 
506 /*
507  * Copy in core superblock to ondisk one.
508  *
509  * The fields argument is mask of superblock fields to copy.
510  */
511 void
512 xfs_sb_to_disk(
513 	xfs_dsb_t	*to,
514 	xfs_sb_t	*from,
515 	__int64_t	fields)
516 {
517 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
518 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
519 	xfs_sb_field_t	f;
520 	int		first;
521 	int		size;
522 
523 	ASSERT(fields);
524 	if (!fields)
525 		return;
526 
527 	while (fields) {
528 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
529 		first = xfs_sb_info[f].offset;
530 		size = xfs_sb_info[f + 1].offset - first;
531 
532 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
533 
534 		if (size == 1 || xfs_sb_info[f].type == 1) {
535 			memcpy(to_ptr + first, from_ptr + first, size);
536 		} else {
537 			switch (size) {
538 			case 2:
539 				*(__be16 *)(to_ptr + first) =
540 					cpu_to_be16(*(__u16 *)(from_ptr + first));
541 				break;
542 			case 4:
543 				*(__be32 *)(to_ptr + first) =
544 					cpu_to_be32(*(__u32 *)(from_ptr + first));
545 				break;
546 			case 8:
547 				*(__be64 *)(to_ptr + first) =
548 					cpu_to_be64(*(__u64 *)(from_ptr + first));
549 				break;
550 			default:
551 				ASSERT(0);
552 			}
553 		}
554 
555 		fields &= ~(1LL << f);
556 	}
557 }
558 
559 /*
560  * xfs_readsb
561  *
562  * Does the initial read of the superblock.
563  */
564 int
565 xfs_readsb(xfs_mount_t *mp, int flags)
566 {
567 	unsigned int	sector_size;
568 	unsigned int	extra_flags;
569 	xfs_buf_t	*bp;
570 	int		error;
571 
572 	ASSERT(mp->m_sb_bp == NULL);
573 	ASSERT(mp->m_ddev_targp != NULL);
574 
575 	/*
576 	 * Allocate a (locked) buffer to hold the superblock.
577 	 * This will be kept around at all times to optimize
578 	 * access to the superblock.
579 	 */
580 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
581 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
582 
583 	bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
584 				BTOBB(sector_size), extra_flags);
585 	if (!bp || XFS_BUF_ISERROR(bp)) {
586 		xfs_fs_mount_cmn_err(flags, "SB read failed");
587 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
588 		goto fail;
589 	}
590 	ASSERT(XFS_BUF_ISBUSY(bp));
591 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
592 
593 	/*
594 	 * Initialize the mount structure from the superblock.
595 	 * But first do some basic consistency checking.
596 	 */
597 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
598 
599 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
600 	if (error) {
601 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
602 		goto fail;
603 	}
604 
605 	/*
606 	 * We must be able to do sector-sized and sector-aligned IO.
607 	 */
608 	if (sector_size > mp->m_sb.sb_sectsize) {
609 		xfs_fs_mount_cmn_err(flags,
610 			"device supports only %u byte sectors (not %u)",
611 			sector_size, mp->m_sb.sb_sectsize);
612 		error = ENOSYS;
613 		goto fail;
614 	}
615 
616 	/*
617 	 * If device sector size is smaller than the superblock size,
618 	 * re-read the superblock so the buffer is correctly sized.
619 	 */
620 	if (sector_size < mp->m_sb.sb_sectsize) {
621 		XFS_BUF_UNMANAGE(bp);
622 		xfs_buf_relse(bp);
623 		sector_size = mp->m_sb.sb_sectsize;
624 		bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
625 					BTOBB(sector_size), extra_flags);
626 		if (!bp || XFS_BUF_ISERROR(bp)) {
627 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
628 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
629 			goto fail;
630 		}
631 		ASSERT(XFS_BUF_ISBUSY(bp));
632 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
633 	}
634 
635 	/* Initialize per-cpu counters */
636 	xfs_icsb_reinit_counters(mp);
637 
638 	mp->m_sb_bp = bp;
639 	xfs_buf_relse(bp);
640 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
641 	return 0;
642 
643  fail:
644 	if (bp) {
645 		XFS_BUF_UNMANAGE(bp);
646 		xfs_buf_relse(bp);
647 	}
648 	return error;
649 }
650 
651 
652 /*
653  * xfs_mount_common
654  *
655  * Mount initialization code establishing various mount
656  * fields from the superblock associated with the given
657  * mount structure
658  */
659 STATIC void
660 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
661 {
662 	mp->m_agfrotor = mp->m_agirotor = 0;
663 	spin_lock_init(&mp->m_agirotor_lock);
664 	mp->m_maxagi = mp->m_sb.sb_agcount;
665 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
666 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
667 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
668 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
669 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
670 	mp->m_blockmask = sbp->sb_blocksize - 1;
671 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
672 	mp->m_blockwmask = mp->m_blockwsize - 1;
673 
674 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
675 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
676 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
677 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
678 
679 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
680 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
681 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
682 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
683 
684 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
685 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
686 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
687 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
688 
689 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
690 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
691 					sbp->sb_inopblock);
692 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
693 }
694 
695 /*
696  * xfs_initialize_perag_data
697  *
698  * Read in each per-ag structure so we can count up the number of
699  * allocated inodes, free inodes and used filesystem blocks as this
700  * information is no longer persistent in the superblock. Once we have
701  * this information, write it into the in-core superblock structure.
702  */
703 STATIC int
704 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
705 {
706 	xfs_agnumber_t	index;
707 	xfs_perag_t	*pag;
708 	xfs_sb_t	*sbp = &mp->m_sb;
709 	uint64_t	ifree = 0;
710 	uint64_t	ialloc = 0;
711 	uint64_t	bfree = 0;
712 	uint64_t	bfreelst = 0;
713 	uint64_t	btree = 0;
714 	int		error;
715 
716 	for (index = 0; index < agcount; index++) {
717 		/*
718 		 * read the agf, then the agi. This gets us
719 		 * all the information we need and populates the
720 		 * per-ag structures for us.
721 		 */
722 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
723 		if (error)
724 			return error;
725 
726 		error = xfs_ialloc_pagi_init(mp, NULL, index);
727 		if (error)
728 			return error;
729 		pag = &mp->m_perag[index];
730 		ifree += pag->pagi_freecount;
731 		ialloc += pag->pagi_count;
732 		bfree += pag->pagf_freeblks;
733 		bfreelst += pag->pagf_flcount;
734 		btree += pag->pagf_btreeblks;
735 	}
736 	/*
737 	 * Overwrite incore superblock counters with just-read data
738 	 */
739 	spin_lock(&mp->m_sb_lock);
740 	sbp->sb_ifree = ifree;
741 	sbp->sb_icount = ialloc;
742 	sbp->sb_fdblocks = bfree + bfreelst + btree;
743 	spin_unlock(&mp->m_sb_lock);
744 
745 	/* Fixup the per-cpu counters as well. */
746 	xfs_icsb_reinit_counters(mp);
747 
748 	return 0;
749 }
750 
751 /*
752  * Update alignment values based on mount options and sb values
753  */
754 STATIC int
755 xfs_update_alignment(xfs_mount_t *mp)
756 {
757 	xfs_sb_t	*sbp = &(mp->m_sb);
758 
759 	if (mp->m_dalign) {
760 		/*
761 		 * If stripe unit and stripe width are not multiples
762 		 * of the fs blocksize turn off alignment.
763 		 */
764 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
765 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
766 			if (mp->m_flags & XFS_MOUNT_RETERR) {
767 				cmn_err(CE_WARN,
768 					"XFS: alignment check 1 failed");
769 				return XFS_ERROR(EINVAL);
770 			}
771 			mp->m_dalign = mp->m_swidth = 0;
772 		} else {
773 			/*
774 			 * Convert the stripe unit and width to FSBs.
775 			 */
776 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
777 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
778 				if (mp->m_flags & XFS_MOUNT_RETERR) {
779 					return XFS_ERROR(EINVAL);
780 				}
781 				xfs_fs_cmn_err(CE_WARN, mp,
782 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
783 					mp->m_dalign, mp->m_swidth,
784 					sbp->sb_agblocks);
785 
786 				mp->m_dalign = 0;
787 				mp->m_swidth = 0;
788 			} else if (mp->m_dalign) {
789 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
790 			} else {
791 				if (mp->m_flags & XFS_MOUNT_RETERR) {
792 					xfs_fs_cmn_err(CE_WARN, mp,
793 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
794                                         	mp->m_dalign,
795 						mp->m_blockmask +1);
796 					return XFS_ERROR(EINVAL);
797 				}
798 				mp->m_swidth = 0;
799 			}
800 		}
801 
802 		/*
803 		 * Update superblock with new values
804 		 * and log changes
805 		 */
806 		if (xfs_sb_version_hasdalign(sbp)) {
807 			if (sbp->sb_unit != mp->m_dalign) {
808 				sbp->sb_unit = mp->m_dalign;
809 				mp->m_update_flags |= XFS_SB_UNIT;
810 			}
811 			if (sbp->sb_width != mp->m_swidth) {
812 				sbp->sb_width = mp->m_swidth;
813 				mp->m_update_flags |= XFS_SB_WIDTH;
814 			}
815 		}
816 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
817 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
818 			mp->m_dalign = sbp->sb_unit;
819 			mp->m_swidth = sbp->sb_width;
820 	}
821 
822 	return 0;
823 }
824 
825 /*
826  * Set the maximum inode count for this filesystem
827  */
828 STATIC void
829 xfs_set_maxicount(xfs_mount_t *mp)
830 {
831 	xfs_sb_t	*sbp = &(mp->m_sb);
832 	__uint64_t	icount;
833 
834 	if (sbp->sb_imax_pct) {
835 		/*
836 		 * Make sure the maximum inode count is a multiple
837 		 * of the units we allocate inodes in.
838 		 */
839 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
840 		do_div(icount, 100);
841 		do_div(icount, mp->m_ialloc_blks);
842 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
843 				   sbp->sb_inopblog;
844 	} else {
845 		mp->m_maxicount = 0;
846 	}
847 }
848 
849 /*
850  * Set the default minimum read and write sizes unless
851  * already specified in a mount option.
852  * We use smaller I/O sizes when the file system
853  * is being used for NFS service (wsync mount option).
854  */
855 STATIC void
856 xfs_set_rw_sizes(xfs_mount_t *mp)
857 {
858 	xfs_sb_t	*sbp = &(mp->m_sb);
859 	int		readio_log, writeio_log;
860 
861 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
862 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
863 			readio_log = XFS_WSYNC_READIO_LOG;
864 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
865 		} else {
866 			readio_log = XFS_READIO_LOG_LARGE;
867 			writeio_log = XFS_WRITEIO_LOG_LARGE;
868 		}
869 	} else {
870 		readio_log = mp->m_readio_log;
871 		writeio_log = mp->m_writeio_log;
872 	}
873 
874 	if (sbp->sb_blocklog > readio_log) {
875 		mp->m_readio_log = sbp->sb_blocklog;
876 	} else {
877 		mp->m_readio_log = readio_log;
878 	}
879 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
880 	if (sbp->sb_blocklog > writeio_log) {
881 		mp->m_writeio_log = sbp->sb_blocklog;
882 	} else {
883 		mp->m_writeio_log = writeio_log;
884 	}
885 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
886 }
887 
888 /*
889  * Set whether we're using inode alignment.
890  */
891 STATIC void
892 xfs_set_inoalignment(xfs_mount_t *mp)
893 {
894 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
895 	    mp->m_sb.sb_inoalignmt >=
896 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
897 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
898 	else
899 		mp->m_inoalign_mask = 0;
900 	/*
901 	 * If we are using stripe alignment, check whether
902 	 * the stripe unit is a multiple of the inode alignment
903 	 */
904 	if (mp->m_dalign && mp->m_inoalign_mask &&
905 	    !(mp->m_dalign & mp->m_inoalign_mask))
906 		mp->m_sinoalign = mp->m_dalign;
907 	else
908 		mp->m_sinoalign = 0;
909 }
910 
911 /*
912  * Check that the data (and log if separate) are an ok size.
913  */
914 STATIC int
915 xfs_check_sizes(xfs_mount_t *mp)
916 {
917 	xfs_buf_t	*bp;
918 	xfs_daddr_t	d;
919 	int		error;
920 
921 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
922 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
923 		cmn_err(CE_WARN, "XFS: size check 1 failed");
924 		return XFS_ERROR(E2BIG);
925 	}
926 	error = xfs_read_buf(mp, mp->m_ddev_targp,
927 			     d - XFS_FSS_TO_BB(mp, 1),
928 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
929 	if (!error) {
930 		xfs_buf_relse(bp);
931 	} else {
932 		cmn_err(CE_WARN, "XFS: size check 2 failed");
933 		if (error == ENOSPC)
934 			error = XFS_ERROR(E2BIG);
935 		return error;
936 	}
937 
938 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
939 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
940 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
941 			cmn_err(CE_WARN, "XFS: size check 3 failed");
942 			return XFS_ERROR(E2BIG);
943 		}
944 		error = xfs_read_buf(mp, mp->m_logdev_targp,
945 				     d - XFS_FSB_TO_BB(mp, 1),
946 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
947 		if (!error) {
948 			xfs_buf_relse(bp);
949 		} else {
950 			cmn_err(CE_WARN, "XFS: size check 3 failed");
951 			if (error == ENOSPC)
952 				error = XFS_ERROR(E2BIG);
953 			return error;
954 		}
955 	}
956 	return 0;
957 }
958 
959 /*
960  * This function does the following on an initial mount of a file system:
961  *	- reads the superblock from disk and init the mount struct
962  *	- if we're a 32-bit kernel, do a size check on the superblock
963  *		so we don't mount terabyte filesystems
964  *	- init mount struct realtime fields
965  *	- allocate inode hash table for fs
966  *	- init directory manager
967  *	- perform recovery and init the log manager
968  */
969 int
970 xfs_mountfs(
971 	xfs_mount_t	*mp)
972 {
973 	xfs_sb_t	*sbp = &(mp->m_sb);
974 	xfs_inode_t	*rip;
975 	__uint64_t	resblks;
976 	uint		quotamount, quotaflags;
977 	int		error = 0;
978 
979 	xfs_mount_common(mp, sbp);
980 
981 	/*
982 	 * Check for a mismatched features2 values.  Older kernels
983 	 * read & wrote into the wrong sb offset for sb_features2
984 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
985 	 * when sb_features2 was added, which made older superblock
986 	 * reading/writing routines swap it as a 64-bit value.
987 	 *
988 	 * For backwards compatibility, we make both slots equal.
989 	 *
990 	 * If we detect a mismatched field, we OR the set bits into the
991 	 * existing features2 field in case it has already been modified; we
992 	 * don't want to lose any features.  We then update the bad location
993 	 * with the ORed value so that older kernels will see any features2
994 	 * flags, and mark the two fields as needing updates once the
995 	 * transaction subsystem is online.
996 	 */
997 	if (xfs_sb_has_mismatched_features2(sbp)) {
998 		cmn_err(CE_WARN,
999 			"XFS: correcting sb_features alignment problem");
1000 		sbp->sb_features2 |= sbp->sb_bad_features2;
1001 		sbp->sb_bad_features2 = sbp->sb_features2;
1002 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1003 
1004 		/*
1005 		 * Re-check for ATTR2 in case it was found in bad_features2
1006 		 * slot.
1007 		 */
1008 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1009 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1010 			mp->m_flags |= XFS_MOUNT_ATTR2;
1011 	}
1012 
1013 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1014 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1015 		xfs_sb_version_removeattr2(&mp->m_sb);
1016 		mp->m_update_flags |= XFS_SB_FEATURES2;
1017 
1018 		/* update sb_versionnum for the clearing of the morebits */
1019 		if (!sbp->sb_features2)
1020 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1021 	}
1022 
1023 	/*
1024 	 * Check if sb_agblocks is aligned at stripe boundary
1025 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1026 	 * allocator alignment is within an ag, therefore ag has
1027 	 * to be aligned at stripe boundary.
1028 	 */
1029 	error = xfs_update_alignment(mp);
1030 	if (error)
1031 		goto out;
1032 
1033 	xfs_alloc_compute_maxlevels(mp);
1034 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1035 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1036 	xfs_ialloc_compute_maxlevels(mp);
1037 
1038 	xfs_set_maxicount(mp);
1039 
1040 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1041 
1042 	error = xfs_uuid_mount(mp);
1043 	if (error)
1044 		goto out;
1045 
1046 	/*
1047 	 * Set the minimum read and write sizes
1048 	 */
1049 	xfs_set_rw_sizes(mp);
1050 
1051 	/*
1052 	 * Set the inode cluster size.
1053 	 * This may still be overridden by the file system
1054 	 * block size if it is larger than the chosen cluster size.
1055 	 */
1056 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1057 
1058 	/*
1059 	 * Set inode alignment fields
1060 	 */
1061 	xfs_set_inoalignment(mp);
1062 
1063 	/*
1064 	 * Check that the data (and log if separate) are an ok size.
1065 	 */
1066 	error = xfs_check_sizes(mp);
1067 	if (error)
1068 		goto out_remove_uuid;
1069 
1070 	/*
1071 	 * Initialize realtime fields in the mount structure
1072 	 */
1073 	error = xfs_rtmount_init(mp);
1074 	if (error) {
1075 		cmn_err(CE_WARN, "XFS: RT mount failed");
1076 		goto out_remove_uuid;
1077 	}
1078 
1079 	/*
1080 	 *  Copies the low order bits of the timestamp and the randomly
1081 	 *  set "sequence" number out of a UUID.
1082 	 */
1083 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1084 
1085 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1086 
1087 	xfs_dir_mount(mp);
1088 
1089 	/*
1090 	 * Initialize the attribute manager's entries.
1091 	 */
1092 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1093 
1094 	/*
1095 	 * Initialize the precomputed transaction reservations values.
1096 	 */
1097 	xfs_trans_init(mp);
1098 
1099 	/*
1100 	 * Allocate and initialize the per-ag data.
1101 	 */
1102 	init_rwsem(&mp->m_peraglock);
1103 	mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1104 				  KM_MAYFAIL);
1105 	if (!mp->m_perag)
1106 		goto out_remove_uuid;
1107 
1108 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1109 
1110 	if (!sbp->sb_logblocks) {
1111 		cmn_err(CE_WARN, "XFS: no log defined");
1112 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1113 		error = XFS_ERROR(EFSCORRUPTED);
1114 		goto out_free_perag;
1115 	}
1116 
1117 	/*
1118 	 * log's mount-time initialization. Perform 1st part recovery if needed
1119 	 */
1120 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1121 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1122 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1123 	if (error) {
1124 		cmn_err(CE_WARN, "XFS: log mount failed");
1125 		goto out_free_perag;
1126 	}
1127 
1128 	/*
1129 	 * Now the log is mounted, we know if it was an unclean shutdown or
1130 	 * not. If it was, with the first phase of recovery has completed, we
1131 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1132 	 * but they are recovered transactionally in the second recovery phase
1133 	 * later.
1134 	 *
1135 	 * Hence we can safely re-initialise incore superblock counters from
1136 	 * the per-ag data. These may not be correct if the filesystem was not
1137 	 * cleanly unmounted, so we need to wait for recovery to finish before
1138 	 * doing this.
1139 	 *
1140 	 * If the filesystem was cleanly unmounted, then we can trust the
1141 	 * values in the superblock to be correct and we don't need to do
1142 	 * anything here.
1143 	 *
1144 	 * If we are currently making the filesystem, the initialisation will
1145 	 * fail as the perag data is in an undefined state.
1146 	 */
1147 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1148 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1149 	     !mp->m_sb.sb_inprogress) {
1150 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1151 		if (error)
1152 			goto out_free_perag;
1153 	}
1154 
1155 	/*
1156 	 * Get and sanity-check the root inode.
1157 	 * Save the pointer to it in the mount structure.
1158 	 */
1159 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1160 	if (error) {
1161 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1162 		goto out_log_dealloc;
1163 	}
1164 
1165 	ASSERT(rip != NULL);
1166 
1167 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1168 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1169 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1170 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1171 			(unsigned long long)rip->i_ino);
1172 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1173 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1174 				 mp);
1175 		error = XFS_ERROR(EFSCORRUPTED);
1176 		goto out_rele_rip;
1177 	}
1178 	mp->m_rootip = rip;	/* save it */
1179 
1180 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1181 
1182 	/*
1183 	 * Initialize realtime inode pointers in the mount structure
1184 	 */
1185 	error = xfs_rtmount_inodes(mp);
1186 	if (error) {
1187 		/*
1188 		 * Free up the root inode.
1189 		 */
1190 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1191 		goto out_rele_rip;
1192 	}
1193 
1194 	/*
1195 	 * If this is a read-only mount defer the superblock updates until
1196 	 * the next remount into writeable mode.  Otherwise we would never
1197 	 * perform the update e.g. for the root filesystem.
1198 	 */
1199 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1200 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1201 		if (error) {
1202 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1203 			goto out_rtunmount;
1204 		}
1205 	}
1206 
1207 	/*
1208 	 * Initialise the XFS quota management subsystem for this mount
1209 	 */
1210 	error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1211 	if (error)
1212 		goto out_rtunmount;
1213 
1214 	/*
1215 	 * Finish recovering the file system.  This part needed to be
1216 	 * delayed until after the root and real-time bitmap inodes
1217 	 * were consistently read in.
1218 	 */
1219 	error = xfs_log_mount_finish(mp);
1220 	if (error) {
1221 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1222 		goto out_rtunmount;
1223 	}
1224 
1225 	/*
1226 	 * Complete the quota initialisation, post-log-replay component.
1227 	 */
1228 	error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1229 	if (error)
1230 		goto out_rtunmount;
1231 
1232 	/*
1233 	 * Now we are mounted, reserve a small amount of unused space for
1234 	 * privileged transactions. This is needed so that transaction
1235 	 * space required for critical operations can dip into this pool
1236 	 * when at ENOSPC. This is needed for operations like create with
1237 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1238 	 * are not allowed to use this reserved space.
1239 	 *
1240 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1241 	 * This may drive us straight to ENOSPC on mount, but that implies
1242 	 * we were already there on the last unmount. Warn if this occurs.
1243 	 */
1244 	resblks = mp->m_sb.sb_dblocks;
1245 	do_div(resblks, 20);
1246 	resblks = min_t(__uint64_t, resblks, 1024);
1247 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1248 	if (error)
1249 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1250 				"Continuing without a reserve pool.");
1251 
1252 	return 0;
1253 
1254  out_rtunmount:
1255 	xfs_rtunmount_inodes(mp);
1256  out_rele_rip:
1257 	IRELE(rip);
1258  out_log_dealloc:
1259 	xfs_log_unmount(mp);
1260  out_free_perag:
1261 	xfs_free_perag(mp);
1262  out_remove_uuid:
1263 	xfs_uuid_unmount(mp);
1264  out:
1265 	return error;
1266 }
1267 
1268 /*
1269  * This flushes out the inodes,dquots and the superblock, unmounts the
1270  * log and makes sure that incore structures are freed.
1271  */
1272 void
1273 xfs_unmountfs(
1274 	struct xfs_mount	*mp)
1275 {
1276 	__uint64_t		resblks;
1277 	int			error;
1278 
1279 	/*
1280 	 * Release dquot that rootinode, rbmino and rsumino might be holding,
1281 	 * and release the quota inodes.
1282 	 */
1283 	XFS_QM_UNMOUNT(mp);
1284 
1285 	xfs_rtunmount_inodes(mp);
1286 	IRELE(mp->m_rootip);
1287 
1288 	/*
1289 	 * We can potentially deadlock here if we have an inode cluster
1290 	 * that has been freed has its buffer still pinned in memory because
1291 	 * the transaction is still sitting in a iclog. The stale inodes
1292 	 * on that buffer will have their flush locks held until the
1293 	 * transaction hits the disk and the callbacks run. the inode
1294 	 * flush takes the flush lock unconditionally and with nothing to
1295 	 * push out the iclog we will never get that unlocked. hence we
1296 	 * need to force the log first.
1297 	 */
1298 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1299 	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC);
1300 
1301 	XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1302 
1303 	if (mp->m_quotainfo)
1304 		XFS_QM_DONE(mp);
1305 
1306 	/*
1307 	 * Flush out the log synchronously so that we know for sure
1308 	 * that nothing is pinned.  This is important because bflush()
1309 	 * will skip pinned buffers.
1310 	 */
1311 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1312 
1313 	xfs_binval(mp->m_ddev_targp);
1314 	if (mp->m_rtdev_targp) {
1315 		xfs_binval(mp->m_rtdev_targp);
1316 	}
1317 
1318 	/*
1319 	 * Unreserve any blocks we have so that when we unmount we don't account
1320 	 * the reserved free space as used. This is really only necessary for
1321 	 * lazy superblock counting because it trusts the incore superblock
1322 	 * counters to be absolutely correct on clean unmount.
1323 	 *
1324 	 * We don't bother correcting this elsewhere for lazy superblock
1325 	 * counting because on mount of an unclean filesystem we reconstruct the
1326 	 * correct counter value and this is irrelevant.
1327 	 *
1328 	 * For non-lazy counter filesystems, this doesn't matter at all because
1329 	 * we only every apply deltas to the superblock and hence the incore
1330 	 * value does not matter....
1331 	 */
1332 	resblks = 0;
1333 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1334 	if (error)
1335 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1336 				"Freespace may not be correct on next mount.");
1337 
1338 	error = xfs_log_sbcount(mp, 1);
1339 	if (error)
1340 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1341 				"Freespace may not be correct on next mount.");
1342 	xfs_unmountfs_writesb(mp);
1343 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1344 	xfs_log_unmount_write(mp);
1345 	xfs_log_unmount(mp);
1346 	xfs_uuid_unmount(mp);
1347 
1348 #if defined(DEBUG)
1349 	xfs_errortag_clearall(mp, 0);
1350 #endif
1351 	xfs_free_perag(mp);
1352 }
1353 
1354 STATIC void
1355 xfs_unmountfs_wait(xfs_mount_t *mp)
1356 {
1357 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1358 		xfs_wait_buftarg(mp->m_logdev_targp);
1359 	if (mp->m_rtdev_targp)
1360 		xfs_wait_buftarg(mp->m_rtdev_targp);
1361 	xfs_wait_buftarg(mp->m_ddev_targp);
1362 }
1363 
1364 int
1365 xfs_fs_writable(xfs_mount_t *mp)
1366 {
1367 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1368 		(mp->m_flags & XFS_MOUNT_RDONLY));
1369 }
1370 
1371 /*
1372  * xfs_log_sbcount
1373  *
1374  * Called either periodically to keep the on disk superblock values
1375  * roughly up to date or from unmount to make sure the values are
1376  * correct on a clean unmount.
1377  *
1378  * Note this code can be called during the process of freezing, so
1379  * we may need to use the transaction allocator which does not not
1380  * block when the transaction subsystem is in its frozen state.
1381  */
1382 int
1383 xfs_log_sbcount(
1384 	xfs_mount_t	*mp,
1385 	uint		sync)
1386 {
1387 	xfs_trans_t	*tp;
1388 	int		error;
1389 
1390 	if (!xfs_fs_writable(mp))
1391 		return 0;
1392 
1393 	xfs_icsb_sync_counters(mp, 0);
1394 
1395 	/*
1396 	 * we don't need to do this if we are updating the superblock
1397 	 * counters on every modification.
1398 	 */
1399 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1400 		return 0;
1401 
1402 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1403 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1404 					XFS_DEFAULT_LOG_COUNT);
1405 	if (error) {
1406 		xfs_trans_cancel(tp, 0);
1407 		return error;
1408 	}
1409 
1410 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1411 	if (sync)
1412 		xfs_trans_set_sync(tp);
1413 	error = xfs_trans_commit(tp, 0);
1414 	return error;
1415 }
1416 
1417 int
1418 xfs_unmountfs_writesb(xfs_mount_t *mp)
1419 {
1420 	xfs_buf_t	*sbp;
1421 	int		error = 0;
1422 
1423 	/*
1424 	 * skip superblock write if fs is read-only, or
1425 	 * if we are doing a forced umount.
1426 	 */
1427 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1428 		XFS_FORCED_SHUTDOWN(mp))) {
1429 
1430 		sbp = xfs_getsb(mp, 0);
1431 
1432 		XFS_BUF_UNDONE(sbp);
1433 		XFS_BUF_UNREAD(sbp);
1434 		XFS_BUF_UNDELAYWRITE(sbp);
1435 		XFS_BUF_WRITE(sbp);
1436 		XFS_BUF_UNASYNC(sbp);
1437 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1438 		xfsbdstrat(mp, sbp);
1439 		error = xfs_iowait(sbp);
1440 		if (error)
1441 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1442 					  mp, sbp, XFS_BUF_ADDR(sbp));
1443 		xfs_buf_relse(sbp);
1444 	}
1445 	return error;
1446 }
1447 
1448 /*
1449  * xfs_mod_sb() can be used to copy arbitrary changes to the
1450  * in-core superblock into the superblock buffer to be logged.
1451  * It does not provide the higher level of locking that is
1452  * needed to protect the in-core superblock from concurrent
1453  * access.
1454  */
1455 void
1456 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1457 {
1458 	xfs_buf_t	*bp;
1459 	int		first;
1460 	int		last;
1461 	xfs_mount_t	*mp;
1462 	xfs_sb_field_t	f;
1463 
1464 	ASSERT(fields);
1465 	if (!fields)
1466 		return;
1467 	mp = tp->t_mountp;
1468 	bp = xfs_trans_getsb(tp, mp, 0);
1469 	first = sizeof(xfs_sb_t);
1470 	last = 0;
1471 
1472 	/* translate/copy */
1473 
1474 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1475 
1476 	/* find modified range */
1477 
1478 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1479 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1480 	first = xfs_sb_info[f].offset;
1481 
1482 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1483 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1484 	last = xfs_sb_info[f + 1].offset - 1;
1485 
1486 	xfs_trans_log_buf(tp, bp, first, last);
1487 }
1488 
1489 
1490 /*
1491  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1492  * a delta to a specified field in the in-core superblock.  Simply
1493  * switch on the field indicated and apply the delta to that field.
1494  * Fields are not allowed to dip below zero, so if the delta would
1495  * do this do not apply it and return EINVAL.
1496  *
1497  * The m_sb_lock must be held when this routine is called.
1498  */
1499 int
1500 xfs_mod_incore_sb_unlocked(
1501 	xfs_mount_t	*mp,
1502 	xfs_sb_field_t	field,
1503 	int64_t		delta,
1504 	int		rsvd)
1505 {
1506 	int		scounter;	/* short counter for 32 bit fields */
1507 	long long	lcounter;	/* long counter for 64 bit fields */
1508 	long long	res_used, rem;
1509 
1510 	/*
1511 	 * With the in-core superblock spin lock held, switch
1512 	 * on the indicated field.  Apply the delta to the
1513 	 * proper field.  If the fields value would dip below
1514 	 * 0, then do not apply the delta and return EINVAL.
1515 	 */
1516 	switch (field) {
1517 	case XFS_SBS_ICOUNT:
1518 		lcounter = (long long)mp->m_sb.sb_icount;
1519 		lcounter += delta;
1520 		if (lcounter < 0) {
1521 			ASSERT(0);
1522 			return XFS_ERROR(EINVAL);
1523 		}
1524 		mp->m_sb.sb_icount = lcounter;
1525 		return 0;
1526 	case XFS_SBS_IFREE:
1527 		lcounter = (long long)mp->m_sb.sb_ifree;
1528 		lcounter += delta;
1529 		if (lcounter < 0) {
1530 			ASSERT(0);
1531 			return XFS_ERROR(EINVAL);
1532 		}
1533 		mp->m_sb.sb_ifree = lcounter;
1534 		return 0;
1535 	case XFS_SBS_FDBLOCKS:
1536 		lcounter = (long long)
1537 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1538 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1539 
1540 		if (delta > 0) {		/* Putting blocks back */
1541 			if (res_used > delta) {
1542 				mp->m_resblks_avail += delta;
1543 			} else {
1544 				rem = delta - res_used;
1545 				mp->m_resblks_avail = mp->m_resblks;
1546 				lcounter += rem;
1547 			}
1548 		} else {				/* Taking blocks away */
1549 
1550 			lcounter += delta;
1551 
1552 		/*
1553 		 * If were out of blocks, use any available reserved blocks if
1554 		 * were allowed to.
1555 		 */
1556 
1557 			if (lcounter < 0) {
1558 				if (rsvd) {
1559 					lcounter = (long long)mp->m_resblks_avail + delta;
1560 					if (lcounter < 0) {
1561 						return XFS_ERROR(ENOSPC);
1562 					}
1563 					mp->m_resblks_avail = lcounter;
1564 					return 0;
1565 				} else {	/* not reserved */
1566 					return XFS_ERROR(ENOSPC);
1567 				}
1568 			}
1569 		}
1570 
1571 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1572 		return 0;
1573 	case XFS_SBS_FREXTENTS:
1574 		lcounter = (long long)mp->m_sb.sb_frextents;
1575 		lcounter += delta;
1576 		if (lcounter < 0) {
1577 			return XFS_ERROR(ENOSPC);
1578 		}
1579 		mp->m_sb.sb_frextents = lcounter;
1580 		return 0;
1581 	case XFS_SBS_DBLOCKS:
1582 		lcounter = (long long)mp->m_sb.sb_dblocks;
1583 		lcounter += delta;
1584 		if (lcounter < 0) {
1585 			ASSERT(0);
1586 			return XFS_ERROR(EINVAL);
1587 		}
1588 		mp->m_sb.sb_dblocks = lcounter;
1589 		return 0;
1590 	case XFS_SBS_AGCOUNT:
1591 		scounter = mp->m_sb.sb_agcount;
1592 		scounter += delta;
1593 		if (scounter < 0) {
1594 			ASSERT(0);
1595 			return XFS_ERROR(EINVAL);
1596 		}
1597 		mp->m_sb.sb_agcount = scounter;
1598 		return 0;
1599 	case XFS_SBS_IMAX_PCT:
1600 		scounter = mp->m_sb.sb_imax_pct;
1601 		scounter += delta;
1602 		if (scounter < 0) {
1603 			ASSERT(0);
1604 			return XFS_ERROR(EINVAL);
1605 		}
1606 		mp->m_sb.sb_imax_pct = scounter;
1607 		return 0;
1608 	case XFS_SBS_REXTSIZE:
1609 		scounter = mp->m_sb.sb_rextsize;
1610 		scounter += delta;
1611 		if (scounter < 0) {
1612 			ASSERT(0);
1613 			return XFS_ERROR(EINVAL);
1614 		}
1615 		mp->m_sb.sb_rextsize = scounter;
1616 		return 0;
1617 	case XFS_SBS_RBMBLOCKS:
1618 		scounter = mp->m_sb.sb_rbmblocks;
1619 		scounter += delta;
1620 		if (scounter < 0) {
1621 			ASSERT(0);
1622 			return XFS_ERROR(EINVAL);
1623 		}
1624 		mp->m_sb.sb_rbmblocks = scounter;
1625 		return 0;
1626 	case XFS_SBS_RBLOCKS:
1627 		lcounter = (long long)mp->m_sb.sb_rblocks;
1628 		lcounter += delta;
1629 		if (lcounter < 0) {
1630 			ASSERT(0);
1631 			return XFS_ERROR(EINVAL);
1632 		}
1633 		mp->m_sb.sb_rblocks = lcounter;
1634 		return 0;
1635 	case XFS_SBS_REXTENTS:
1636 		lcounter = (long long)mp->m_sb.sb_rextents;
1637 		lcounter += delta;
1638 		if (lcounter < 0) {
1639 			ASSERT(0);
1640 			return XFS_ERROR(EINVAL);
1641 		}
1642 		mp->m_sb.sb_rextents = lcounter;
1643 		return 0;
1644 	case XFS_SBS_REXTSLOG:
1645 		scounter = mp->m_sb.sb_rextslog;
1646 		scounter += delta;
1647 		if (scounter < 0) {
1648 			ASSERT(0);
1649 			return XFS_ERROR(EINVAL);
1650 		}
1651 		mp->m_sb.sb_rextslog = scounter;
1652 		return 0;
1653 	default:
1654 		ASSERT(0);
1655 		return XFS_ERROR(EINVAL);
1656 	}
1657 }
1658 
1659 /*
1660  * xfs_mod_incore_sb() is used to change a field in the in-core
1661  * superblock structure by the specified delta.  This modification
1662  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1663  * routine to do the work.
1664  */
1665 int
1666 xfs_mod_incore_sb(
1667 	xfs_mount_t	*mp,
1668 	xfs_sb_field_t	field,
1669 	int64_t		delta,
1670 	int		rsvd)
1671 {
1672 	int	status;
1673 
1674 	/* check for per-cpu counters */
1675 	switch (field) {
1676 #ifdef HAVE_PERCPU_SB
1677 	case XFS_SBS_ICOUNT:
1678 	case XFS_SBS_IFREE:
1679 	case XFS_SBS_FDBLOCKS:
1680 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1681 			status = xfs_icsb_modify_counters(mp, field,
1682 							delta, rsvd);
1683 			break;
1684 		}
1685 		/* FALLTHROUGH */
1686 #endif
1687 	default:
1688 		spin_lock(&mp->m_sb_lock);
1689 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1690 		spin_unlock(&mp->m_sb_lock);
1691 		break;
1692 	}
1693 
1694 	return status;
1695 }
1696 
1697 /*
1698  * xfs_mod_incore_sb_batch() is used to change more than one field
1699  * in the in-core superblock structure at a time.  This modification
1700  * is protected by a lock internal to this module.  The fields and
1701  * changes to those fields are specified in the array of xfs_mod_sb
1702  * structures passed in.
1703  *
1704  * Either all of the specified deltas will be applied or none of
1705  * them will.  If any modified field dips below 0, then all modifications
1706  * will be backed out and EINVAL will be returned.
1707  */
1708 int
1709 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1710 {
1711 	int		status=0;
1712 	xfs_mod_sb_t	*msbp;
1713 
1714 	/*
1715 	 * Loop through the array of mod structures and apply each
1716 	 * individually.  If any fail, then back out all those
1717 	 * which have already been applied.  Do all of this within
1718 	 * the scope of the m_sb_lock so that all of the changes will
1719 	 * be atomic.
1720 	 */
1721 	spin_lock(&mp->m_sb_lock);
1722 	msbp = &msb[0];
1723 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1724 		/*
1725 		 * Apply the delta at index n.  If it fails, break
1726 		 * from the loop so we'll fall into the undo loop
1727 		 * below.
1728 		 */
1729 		switch (msbp->msb_field) {
1730 #ifdef HAVE_PERCPU_SB
1731 		case XFS_SBS_ICOUNT:
1732 		case XFS_SBS_IFREE:
1733 		case XFS_SBS_FDBLOCKS:
1734 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1735 				spin_unlock(&mp->m_sb_lock);
1736 				status = xfs_icsb_modify_counters(mp,
1737 							msbp->msb_field,
1738 							msbp->msb_delta, rsvd);
1739 				spin_lock(&mp->m_sb_lock);
1740 				break;
1741 			}
1742 			/* FALLTHROUGH */
1743 #endif
1744 		default:
1745 			status = xfs_mod_incore_sb_unlocked(mp,
1746 						msbp->msb_field,
1747 						msbp->msb_delta, rsvd);
1748 			break;
1749 		}
1750 
1751 		if (status != 0) {
1752 			break;
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * If we didn't complete the loop above, then back out
1758 	 * any changes made to the superblock.  If you add code
1759 	 * between the loop above and here, make sure that you
1760 	 * preserve the value of status. Loop back until
1761 	 * we step below the beginning of the array.  Make sure
1762 	 * we don't touch anything back there.
1763 	 */
1764 	if (status != 0) {
1765 		msbp--;
1766 		while (msbp >= msb) {
1767 			switch (msbp->msb_field) {
1768 #ifdef HAVE_PERCPU_SB
1769 			case XFS_SBS_ICOUNT:
1770 			case XFS_SBS_IFREE:
1771 			case XFS_SBS_FDBLOCKS:
1772 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1773 					spin_unlock(&mp->m_sb_lock);
1774 					status = xfs_icsb_modify_counters(mp,
1775 							msbp->msb_field,
1776 							-(msbp->msb_delta),
1777 							rsvd);
1778 					spin_lock(&mp->m_sb_lock);
1779 					break;
1780 				}
1781 				/* FALLTHROUGH */
1782 #endif
1783 			default:
1784 				status = xfs_mod_incore_sb_unlocked(mp,
1785 							msbp->msb_field,
1786 							-(msbp->msb_delta),
1787 							rsvd);
1788 				break;
1789 			}
1790 			ASSERT(status == 0);
1791 			msbp--;
1792 		}
1793 	}
1794 	spin_unlock(&mp->m_sb_lock);
1795 	return status;
1796 }
1797 
1798 /*
1799  * xfs_getsb() is called to obtain the buffer for the superblock.
1800  * The buffer is returned locked and read in from disk.
1801  * The buffer should be released with a call to xfs_brelse().
1802  *
1803  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1804  * the superblock buffer if it can be locked without sleeping.
1805  * If it can't then we'll return NULL.
1806  */
1807 xfs_buf_t *
1808 xfs_getsb(
1809 	xfs_mount_t	*mp,
1810 	int		flags)
1811 {
1812 	xfs_buf_t	*bp;
1813 
1814 	ASSERT(mp->m_sb_bp != NULL);
1815 	bp = mp->m_sb_bp;
1816 	if (flags & XFS_BUF_TRYLOCK) {
1817 		if (!XFS_BUF_CPSEMA(bp)) {
1818 			return NULL;
1819 		}
1820 	} else {
1821 		XFS_BUF_PSEMA(bp, PRIBIO);
1822 	}
1823 	XFS_BUF_HOLD(bp);
1824 	ASSERT(XFS_BUF_ISDONE(bp));
1825 	return bp;
1826 }
1827 
1828 /*
1829  * Used to free the superblock along various error paths.
1830  */
1831 void
1832 xfs_freesb(
1833 	xfs_mount_t	*mp)
1834 {
1835 	xfs_buf_t	*bp;
1836 
1837 	/*
1838 	 * Use xfs_getsb() so that the buffer will be locked
1839 	 * when we call xfs_buf_relse().
1840 	 */
1841 	bp = xfs_getsb(mp, 0);
1842 	XFS_BUF_UNMANAGE(bp);
1843 	xfs_buf_relse(bp);
1844 	mp->m_sb_bp = NULL;
1845 }
1846 
1847 /*
1848  * Used to log changes to the superblock unit and width fields which could
1849  * be altered by the mount options, as well as any potential sb_features2
1850  * fixup. Only the first superblock is updated.
1851  */
1852 int
1853 xfs_mount_log_sb(
1854 	xfs_mount_t	*mp,
1855 	__int64_t	fields)
1856 {
1857 	xfs_trans_t	*tp;
1858 	int		error;
1859 
1860 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1861 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1862 			 XFS_SB_VERSIONNUM));
1863 
1864 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1865 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1866 				XFS_DEFAULT_LOG_COUNT);
1867 	if (error) {
1868 		xfs_trans_cancel(tp, 0);
1869 		return error;
1870 	}
1871 	xfs_mod_sb(tp, fields);
1872 	error = xfs_trans_commit(tp, 0);
1873 	return error;
1874 }
1875 
1876 
1877 #ifdef HAVE_PERCPU_SB
1878 /*
1879  * Per-cpu incore superblock counters
1880  *
1881  * Simple concept, difficult implementation
1882  *
1883  * Basically, replace the incore superblock counters with a distributed per cpu
1884  * counter for contended fields (e.g.  free block count).
1885  *
1886  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1887  * hence needs to be accurately read when we are running low on space. Hence
1888  * there is a method to enable and disable the per-cpu counters based on how
1889  * much "stuff" is available in them.
1890  *
1891  * Basically, a counter is enabled if there is enough free resource to justify
1892  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1893  * ENOSPC), then we disable the counters to synchronise all callers and
1894  * re-distribute the available resources.
1895  *
1896  * If, once we redistributed the available resources, we still get a failure,
1897  * we disable the per-cpu counter and go through the slow path.
1898  *
1899  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1900  * when we disable a per-cpu counter, we need to drain its resources back to
1901  * the global superblock. We do this after disabling the counter to prevent
1902  * more threads from queueing up on the counter.
1903  *
1904  * Essentially, this means that we still need a lock in the fast path to enable
1905  * synchronisation between the global counters and the per-cpu counters. This
1906  * is not a problem because the lock will be local to a CPU almost all the time
1907  * and have little contention except when we get to ENOSPC conditions.
1908  *
1909  * Basically, this lock becomes a barrier that enables us to lock out the fast
1910  * path while we do things like enabling and disabling counters and
1911  * synchronising the counters.
1912  *
1913  * Locking rules:
1914  *
1915  * 	1. m_sb_lock before picking up per-cpu locks
1916  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1917  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1918  * 	4. modifying per-cpu counters requires holding per-cpu lock
1919  * 	5. modifying global counters requires holding m_sb_lock
1920  *	6. enabling or disabling a counter requires holding the m_sb_lock
1921  *	   and _none_ of the per-cpu locks.
1922  *
1923  * Disabled counters are only ever re-enabled by a balance operation
1924  * that results in more free resources per CPU than a given threshold.
1925  * To ensure counters don't remain disabled, they are rebalanced when
1926  * the global resource goes above a higher threshold (i.e. some hysteresis
1927  * is present to prevent thrashing).
1928  */
1929 
1930 #ifdef CONFIG_HOTPLUG_CPU
1931 /*
1932  * hot-plug CPU notifier support.
1933  *
1934  * We need a notifier per filesystem as we need to be able to identify
1935  * the filesystem to balance the counters out. This is achieved by
1936  * having a notifier block embedded in the xfs_mount_t and doing pointer
1937  * magic to get the mount pointer from the notifier block address.
1938  */
1939 STATIC int
1940 xfs_icsb_cpu_notify(
1941 	struct notifier_block *nfb,
1942 	unsigned long action,
1943 	void *hcpu)
1944 {
1945 	xfs_icsb_cnts_t *cntp;
1946 	xfs_mount_t	*mp;
1947 
1948 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1949 	cntp = (xfs_icsb_cnts_t *)
1950 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1951 	switch (action) {
1952 	case CPU_UP_PREPARE:
1953 	case CPU_UP_PREPARE_FROZEN:
1954 		/* Easy Case - initialize the area and locks, and
1955 		 * then rebalance when online does everything else for us. */
1956 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1957 		break;
1958 	case CPU_ONLINE:
1959 	case CPU_ONLINE_FROZEN:
1960 		xfs_icsb_lock(mp);
1961 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1962 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1963 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1964 		xfs_icsb_unlock(mp);
1965 		break;
1966 	case CPU_DEAD:
1967 	case CPU_DEAD_FROZEN:
1968 		/* Disable all the counters, then fold the dead cpu's
1969 		 * count into the total on the global superblock and
1970 		 * re-enable the counters. */
1971 		xfs_icsb_lock(mp);
1972 		spin_lock(&mp->m_sb_lock);
1973 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1974 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1975 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1976 
1977 		mp->m_sb.sb_icount += cntp->icsb_icount;
1978 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1979 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1980 
1981 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1982 
1983 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1984 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1985 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1986 		spin_unlock(&mp->m_sb_lock);
1987 		xfs_icsb_unlock(mp);
1988 		break;
1989 	}
1990 
1991 	return NOTIFY_OK;
1992 }
1993 #endif /* CONFIG_HOTPLUG_CPU */
1994 
1995 int
1996 xfs_icsb_init_counters(
1997 	xfs_mount_t	*mp)
1998 {
1999 	xfs_icsb_cnts_t *cntp;
2000 	int		i;
2001 
2002 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2003 	if (mp->m_sb_cnts == NULL)
2004 		return -ENOMEM;
2005 
2006 #ifdef CONFIG_HOTPLUG_CPU
2007 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2008 	mp->m_icsb_notifier.priority = 0;
2009 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2010 #endif /* CONFIG_HOTPLUG_CPU */
2011 
2012 	for_each_online_cpu(i) {
2013 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2014 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2015 	}
2016 
2017 	mutex_init(&mp->m_icsb_mutex);
2018 
2019 	/*
2020 	 * start with all counters disabled so that the
2021 	 * initial balance kicks us off correctly
2022 	 */
2023 	mp->m_icsb_counters = -1;
2024 	return 0;
2025 }
2026 
2027 void
2028 xfs_icsb_reinit_counters(
2029 	xfs_mount_t	*mp)
2030 {
2031 	xfs_icsb_lock(mp);
2032 	/*
2033 	 * start with all counters disabled so that the
2034 	 * initial balance kicks us off correctly
2035 	 */
2036 	mp->m_icsb_counters = -1;
2037 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2038 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2039 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2040 	xfs_icsb_unlock(mp);
2041 }
2042 
2043 void
2044 xfs_icsb_destroy_counters(
2045 	xfs_mount_t	*mp)
2046 {
2047 	if (mp->m_sb_cnts) {
2048 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2049 		free_percpu(mp->m_sb_cnts);
2050 	}
2051 	mutex_destroy(&mp->m_icsb_mutex);
2052 }
2053 
2054 STATIC_INLINE void
2055 xfs_icsb_lock_cntr(
2056 	xfs_icsb_cnts_t	*icsbp)
2057 {
2058 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2059 		ndelay(1000);
2060 	}
2061 }
2062 
2063 STATIC_INLINE void
2064 xfs_icsb_unlock_cntr(
2065 	xfs_icsb_cnts_t	*icsbp)
2066 {
2067 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2068 }
2069 
2070 
2071 STATIC_INLINE void
2072 xfs_icsb_lock_all_counters(
2073 	xfs_mount_t	*mp)
2074 {
2075 	xfs_icsb_cnts_t *cntp;
2076 	int		i;
2077 
2078 	for_each_online_cpu(i) {
2079 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2080 		xfs_icsb_lock_cntr(cntp);
2081 	}
2082 }
2083 
2084 STATIC_INLINE void
2085 xfs_icsb_unlock_all_counters(
2086 	xfs_mount_t	*mp)
2087 {
2088 	xfs_icsb_cnts_t *cntp;
2089 	int		i;
2090 
2091 	for_each_online_cpu(i) {
2092 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2093 		xfs_icsb_unlock_cntr(cntp);
2094 	}
2095 }
2096 
2097 STATIC void
2098 xfs_icsb_count(
2099 	xfs_mount_t	*mp,
2100 	xfs_icsb_cnts_t	*cnt,
2101 	int		flags)
2102 {
2103 	xfs_icsb_cnts_t *cntp;
2104 	int		i;
2105 
2106 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2107 
2108 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2109 		xfs_icsb_lock_all_counters(mp);
2110 
2111 	for_each_online_cpu(i) {
2112 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2113 		cnt->icsb_icount += cntp->icsb_icount;
2114 		cnt->icsb_ifree += cntp->icsb_ifree;
2115 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2116 	}
2117 
2118 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2119 		xfs_icsb_unlock_all_counters(mp);
2120 }
2121 
2122 STATIC int
2123 xfs_icsb_counter_disabled(
2124 	xfs_mount_t	*mp,
2125 	xfs_sb_field_t	field)
2126 {
2127 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2128 	return test_bit(field, &mp->m_icsb_counters);
2129 }
2130 
2131 STATIC void
2132 xfs_icsb_disable_counter(
2133 	xfs_mount_t	*mp,
2134 	xfs_sb_field_t	field)
2135 {
2136 	xfs_icsb_cnts_t	cnt;
2137 
2138 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2139 
2140 	/*
2141 	 * If we are already disabled, then there is nothing to do
2142 	 * here. We check before locking all the counters to avoid
2143 	 * the expensive lock operation when being called in the
2144 	 * slow path and the counter is already disabled. This is
2145 	 * safe because the only time we set or clear this state is under
2146 	 * the m_icsb_mutex.
2147 	 */
2148 	if (xfs_icsb_counter_disabled(mp, field))
2149 		return;
2150 
2151 	xfs_icsb_lock_all_counters(mp);
2152 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2153 		/* drain back to superblock */
2154 
2155 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2156 		switch(field) {
2157 		case XFS_SBS_ICOUNT:
2158 			mp->m_sb.sb_icount = cnt.icsb_icount;
2159 			break;
2160 		case XFS_SBS_IFREE:
2161 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2162 			break;
2163 		case XFS_SBS_FDBLOCKS:
2164 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2165 			break;
2166 		default:
2167 			BUG();
2168 		}
2169 	}
2170 
2171 	xfs_icsb_unlock_all_counters(mp);
2172 }
2173 
2174 STATIC void
2175 xfs_icsb_enable_counter(
2176 	xfs_mount_t	*mp,
2177 	xfs_sb_field_t	field,
2178 	uint64_t	count,
2179 	uint64_t	resid)
2180 {
2181 	xfs_icsb_cnts_t	*cntp;
2182 	int		i;
2183 
2184 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2185 
2186 	xfs_icsb_lock_all_counters(mp);
2187 	for_each_online_cpu(i) {
2188 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2189 		switch (field) {
2190 		case XFS_SBS_ICOUNT:
2191 			cntp->icsb_icount = count + resid;
2192 			break;
2193 		case XFS_SBS_IFREE:
2194 			cntp->icsb_ifree = count + resid;
2195 			break;
2196 		case XFS_SBS_FDBLOCKS:
2197 			cntp->icsb_fdblocks = count + resid;
2198 			break;
2199 		default:
2200 			BUG();
2201 			break;
2202 		}
2203 		resid = 0;
2204 	}
2205 	clear_bit(field, &mp->m_icsb_counters);
2206 	xfs_icsb_unlock_all_counters(mp);
2207 }
2208 
2209 void
2210 xfs_icsb_sync_counters_locked(
2211 	xfs_mount_t	*mp,
2212 	int		flags)
2213 {
2214 	xfs_icsb_cnts_t	cnt;
2215 
2216 	xfs_icsb_count(mp, &cnt, flags);
2217 
2218 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2219 		mp->m_sb.sb_icount = cnt.icsb_icount;
2220 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2221 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2222 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2223 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2224 }
2225 
2226 /*
2227  * Accurate update of per-cpu counters to incore superblock
2228  */
2229 void
2230 xfs_icsb_sync_counters(
2231 	xfs_mount_t	*mp,
2232 	int		flags)
2233 {
2234 	spin_lock(&mp->m_sb_lock);
2235 	xfs_icsb_sync_counters_locked(mp, flags);
2236 	spin_unlock(&mp->m_sb_lock);
2237 }
2238 
2239 /*
2240  * Balance and enable/disable counters as necessary.
2241  *
2242  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2243  * chosen to be the same number as single on disk allocation chunk per CPU, and
2244  * free blocks is something far enough zero that we aren't going thrash when we
2245  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2246  * prevent looping endlessly when xfs_alloc_space asks for more than will
2247  * be distributed to a single CPU but each CPU has enough blocks to be
2248  * reenabled.
2249  *
2250  * Note that we can be called when counters are already disabled.
2251  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2252  * prevent locking every per-cpu counter needlessly.
2253  */
2254 
2255 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2256 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2257 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2258 STATIC void
2259 xfs_icsb_balance_counter_locked(
2260 	xfs_mount_t	*mp,
2261 	xfs_sb_field_t  field,
2262 	int		min_per_cpu)
2263 {
2264 	uint64_t	count, resid;
2265 	int		weight = num_online_cpus();
2266 	uint64_t	min = (uint64_t)min_per_cpu;
2267 
2268 	/* disable counter and sync counter */
2269 	xfs_icsb_disable_counter(mp, field);
2270 
2271 	/* update counters  - first CPU gets residual*/
2272 	switch (field) {
2273 	case XFS_SBS_ICOUNT:
2274 		count = mp->m_sb.sb_icount;
2275 		resid = do_div(count, weight);
2276 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2277 			return;
2278 		break;
2279 	case XFS_SBS_IFREE:
2280 		count = mp->m_sb.sb_ifree;
2281 		resid = do_div(count, weight);
2282 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2283 			return;
2284 		break;
2285 	case XFS_SBS_FDBLOCKS:
2286 		count = mp->m_sb.sb_fdblocks;
2287 		resid = do_div(count, weight);
2288 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2289 			return;
2290 		break;
2291 	default:
2292 		BUG();
2293 		count = resid = 0;	/* quiet, gcc */
2294 		break;
2295 	}
2296 
2297 	xfs_icsb_enable_counter(mp, field, count, resid);
2298 }
2299 
2300 STATIC void
2301 xfs_icsb_balance_counter(
2302 	xfs_mount_t	*mp,
2303 	xfs_sb_field_t  fields,
2304 	int		min_per_cpu)
2305 {
2306 	spin_lock(&mp->m_sb_lock);
2307 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2308 	spin_unlock(&mp->m_sb_lock);
2309 }
2310 
2311 STATIC int
2312 xfs_icsb_modify_counters(
2313 	xfs_mount_t	*mp,
2314 	xfs_sb_field_t	field,
2315 	int64_t		delta,
2316 	int		rsvd)
2317 {
2318 	xfs_icsb_cnts_t	*icsbp;
2319 	long long	lcounter;	/* long counter for 64 bit fields */
2320 	int		cpu, ret = 0;
2321 
2322 	might_sleep();
2323 again:
2324 	cpu = get_cpu();
2325 	icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2326 
2327 	/*
2328 	 * if the counter is disabled, go to slow path
2329 	 */
2330 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2331 		goto slow_path;
2332 	xfs_icsb_lock_cntr(icsbp);
2333 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2334 		xfs_icsb_unlock_cntr(icsbp);
2335 		goto slow_path;
2336 	}
2337 
2338 	switch (field) {
2339 	case XFS_SBS_ICOUNT:
2340 		lcounter = icsbp->icsb_icount;
2341 		lcounter += delta;
2342 		if (unlikely(lcounter < 0))
2343 			goto balance_counter;
2344 		icsbp->icsb_icount = lcounter;
2345 		break;
2346 
2347 	case XFS_SBS_IFREE:
2348 		lcounter = icsbp->icsb_ifree;
2349 		lcounter += delta;
2350 		if (unlikely(lcounter < 0))
2351 			goto balance_counter;
2352 		icsbp->icsb_ifree = lcounter;
2353 		break;
2354 
2355 	case XFS_SBS_FDBLOCKS:
2356 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2357 
2358 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2359 		lcounter += delta;
2360 		if (unlikely(lcounter < 0))
2361 			goto balance_counter;
2362 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2363 		break;
2364 	default:
2365 		BUG();
2366 		break;
2367 	}
2368 	xfs_icsb_unlock_cntr(icsbp);
2369 	put_cpu();
2370 	return 0;
2371 
2372 slow_path:
2373 	put_cpu();
2374 
2375 	/*
2376 	 * serialise with a mutex so we don't burn lots of cpu on
2377 	 * the superblock lock. We still need to hold the superblock
2378 	 * lock, however, when we modify the global structures.
2379 	 */
2380 	xfs_icsb_lock(mp);
2381 
2382 	/*
2383 	 * Now running atomically.
2384 	 *
2385 	 * If the counter is enabled, someone has beaten us to rebalancing.
2386 	 * Drop the lock and try again in the fast path....
2387 	 */
2388 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2389 		xfs_icsb_unlock(mp);
2390 		goto again;
2391 	}
2392 
2393 	/*
2394 	 * The counter is currently disabled. Because we are
2395 	 * running atomically here, we know a rebalance cannot
2396 	 * be in progress. Hence we can go straight to operating
2397 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2398 	 * here even though we need to get the m_sb_lock. Doing so
2399 	 * will cause us to re-enter this function and deadlock.
2400 	 * Hence we get the m_sb_lock ourselves and then call
2401 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2402 	 * directly on the global counters.
2403 	 */
2404 	spin_lock(&mp->m_sb_lock);
2405 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2406 	spin_unlock(&mp->m_sb_lock);
2407 
2408 	/*
2409 	 * Now that we've modified the global superblock, we
2410 	 * may be able to re-enable the distributed counters
2411 	 * (e.g. lots of space just got freed). After that
2412 	 * we are done.
2413 	 */
2414 	if (ret != ENOSPC)
2415 		xfs_icsb_balance_counter(mp, field, 0);
2416 	xfs_icsb_unlock(mp);
2417 	return ret;
2418 
2419 balance_counter:
2420 	xfs_icsb_unlock_cntr(icsbp);
2421 	put_cpu();
2422 
2423 	/*
2424 	 * We may have multiple threads here if multiple per-cpu
2425 	 * counters run dry at the same time. This will mean we can
2426 	 * do more balances than strictly necessary but it is not
2427 	 * the common slowpath case.
2428 	 */
2429 	xfs_icsb_lock(mp);
2430 
2431 	/*
2432 	 * running atomically.
2433 	 *
2434 	 * This will leave the counter in the correct state for future
2435 	 * accesses. After the rebalance, we simply try again and our retry
2436 	 * will either succeed through the fast path or slow path without
2437 	 * another balance operation being required.
2438 	 */
2439 	xfs_icsb_balance_counter(mp, field, delta);
2440 	xfs_icsb_unlock(mp);
2441 	goto again;
2442 }
2443 
2444 #endif
2445