1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "scrub/stats.h" 38 39 static DEFINE_MUTEX(xfs_uuid_table_mutex); 40 static int xfs_uuid_table_size; 41 static uuid_t *xfs_uuid_table; 42 43 void 44 xfs_uuid_table_free(void) 45 { 46 if (xfs_uuid_table_size == 0) 47 return; 48 kmem_free(xfs_uuid_table); 49 xfs_uuid_table = NULL; 50 xfs_uuid_table_size = 0; 51 } 52 53 /* 54 * See if the UUID is unique among mounted XFS filesystems. 55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 56 */ 57 STATIC int 58 xfs_uuid_mount( 59 struct xfs_mount *mp) 60 { 61 uuid_t *uuid = &mp->m_sb.sb_uuid; 62 int hole, i; 63 64 /* Publish UUID in struct super_block */ 65 uuid_copy(&mp->m_super->s_uuid, uuid); 66 67 if (xfs_has_nouuid(mp)) 68 return 0; 69 70 if (uuid_is_null(uuid)) { 71 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 72 return -EINVAL; 73 } 74 75 mutex_lock(&xfs_uuid_table_mutex); 76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 77 if (uuid_is_null(&xfs_uuid_table[i])) { 78 hole = i; 79 continue; 80 } 81 if (uuid_equal(uuid, &xfs_uuid_table[i])) 82 goto out_duplicate; 83 } 84 85 if (hole < 0) { 86 xfs_uuid_table = krealloc(xfs_uuid_table, 87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 88 GFP_KERNEL | __GFP_NOFAIL); 89 hole = xfs_uuid_table_size++; 90 } 91 xfs_uuid_table[hole] = *uuid; 92 mutex_unlock(&xfs_uuid_table_mutex); 93 94 return 0; 95 96 out_duplicate: 97 mutex_unlock(&xfs_uuid_table_mutex); 98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 99 return -EINVAL; 100 } 101 102 STATIC void 103 xfs_uuid_unmount( 104 struct xfs_mount *mp) 105 { 106 uuid_t *uuid = &mp->m_sb.sb_uuid; 107 int i; 108 109 if (xfs_has_nouuid(mp)) 110 return; 111 112 mutex_lock(&xfs_uuid_table_mutex); 113 for (i = 0; i < xfs_uuid_table_size; i++) { 114 if (uuid_is_null(&xfs_uuid_table[i])) 115 continue; 116 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 117 continue; 118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 119 break; 120 } 121 ASSERT(i < xfs_uuid_table_size); 122 mutex_unlock(&xfs_uuid_table_mutex); 123 } 124 125 /* 126 * Check size of device based on the (data/realtime) block count. 127 * Note: this check is used by the growfs code as well as mount. 128 */ 129 int 130 xfs_sb_validate_fsb_count( 131 xfs_sb_t *sbp, 132 uint64_t nblocks) 133 { 134 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 135 ASSERT(sbp->sb_blocklog >= BBSHIFT); 136 137 /* Limited by ULONG_MAX of page cache index */ 138 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 139 return -EFBIG; 140 return 0; 141 } 142 143 /* 144 * xfs_readsb 145 * 146 * Does the initial read of the superblock. 147 */ 148 int 149 xfs_readsb( 150 struct xfs_mount *mp, 151 int flags) 152 { 153 unsigned int sector_size; 154 struct xfs_buf *bp; 155 struct xfs_sb *sbp = &mp->m_sb; 156 int error; 157 int loud = !(flags & XFS_MFSI_QUIET); 158 const struct xfs_buf_ops *buf_ops; 159 160 ASSERT(mp->m_sb_bp == NULL); 161 ASSERT(mp->m_ddev_targp != NULL); 162 163 /* 164 * For the initial read, we must guess at the sector 165 * size based on the block device. It's enough to 166 * get the sb_sectsize out of the superblock and 167 * then reread with the proper length. 168 * We don't verify it yet, because it may not be complete. 169 */ 170 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 171 buf_ops = NULL; 172 173 /* 174 * Allocate a (locked) buffer to hold the superblock. This will be kept 175 * around at all times to optimize access to the superblock. Therefore, 176 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 177 * elevated. 178 */ 179 reread: 180 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 181 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 182 buf_ops); 183 if (error) { 184 if (loud) 185 xfs_warn(mp, "SB validate failed with error %d.", error); 186 /* bad CRC means corrupted metadata */ 187 if (error == -EFSBADCRC) 188 error = -EFSCORRUPTED; 189 return error; 190 } 191 192 /* 193 * Initialize the mount structure from the superblock. 194 */ 195 xfs_sb_from_disk(sbp, bp->b_addr); 196 197 /* 198 * If we haven't validated the superblock, do so now before we try 199 * to check the sector size and reread the superblock appropriately. 200 */ 201 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 202 if (loud) 203 xfs_warn(mp, "Invalid superblock magic number"); 204 error = -EINVAL; 205 goto release_buf; 206 } 207 208 /* 209 * We must be able to do sector-sized and sector-aligned IO. 210 */ 211 if (sector_size > sbp->sb_sectsize) { 212 if (loud) 213 xfs_warn(mp, "device supports %u byte sectors (not %u)", 214 sector_size, sbp->sb_sectsize); 215 error = -ENOSYS; 216 goto release_buf; 217 } 218 219 if (buf_ops == NULL) { 220 /* 221 * Re-read the superblock so the buffer is correctly sized, 222 * and properly verified. 223 */ 224 xfs_buf_relse(bp); 225 sector_size = sbp->sb_sectsize; 226 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 227 goto reread; 228 } 229 230 mp->m_features |= xfs_sb_version_to_features(sbp); 231 xfs_reinit_percpu_counters(mp); 232 233 /* no need to be quiet anymore, so reset the buf ops */ 234 bp->b_ops = &xfs_sb_buf_ops; 235 236 mp->m_sb_bp = bp; 237 xfs_buf_unlock(bp); 238 return 0; 239 240 release_buf: 241 xfs_buf_relse(bp); 242 return error; 243 } 244 245 /* 246 * If the sunit/swidth change would move the precomputed root inode value, we 247 * must reject the ondisk change because repair will stumble over that. 248 * However, we allow the mount to proceed because we never rejected this 249 * combination before. Returns true to update the sb, false otherwise. 250 */ 251 static inline int 252 xfs_check_new_dalign( 253 struct xfs_mount *mp, 254 int new_dalign, 255 bool *update_sb) 256 { 257 struct xfs_sb *sbp = &mp->m_sb; 258 xfs_ino_t calc_ino; 259 260 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 261 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 262 263 if (sbp->sb_rootino == calc_ino) { 264 *update_sb = true; 265 return 0; 266 } 267 268 xfs_warn(mp, 269 "Cannot change stripe alignment; would require moving root inode."); 270 271 /* 272 * XXX: Next time we add a new incompat feature, this should start 273 * returning -EINVAL to fail the mount. Until then, spit out a warning 274 * that we're ignoring the administrator's instructions. 275 */ 276 xfs_warn(mp, "Skipping superblock stripe alignment update."); 277 *update_sb = false; 278 return 0; 279 } 280 281 /* 282 * If we were provided with new sunit/swidth values as mount options, make sure 283 * that they pass basic alignment and superblock feature checks, and convert 284 * them into the same units (FSB) that everything else expects. This step 285 * /must/ be done before computing the inode geometry. 286 */ 287 STATIC int 288 xfs_validate_new_dalign( 289 struct xfs_mount *mp) 290 { 291 if (mp->m_dalign == 0) 292 return 0; 293 294 /* 295 * If stripe unit and stripe width are not multiples 296 * of the fs blocksize turn off alignment. 297 */ 298 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 299 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 300 xfs_warn(mp, 301 "alignment check failed: sunit/swidth vs. blocksize(%d)", 302 mp->m_sb.sb_blocksize); 303 return -EINVAL; 304 } 305 306 /* 307 * Convert the stripe unit and width to FSBs. 308 */ 309 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 310 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 311 xfs_warn(mp, 312 "alignment check failed: sunit/swidth vs. agsize(%d)", 313 mp->m_sb.sb_agblocks); 314 return -EINVAL; 315 } 316 317 if (!mp->m_dalign) { 318 xfs_warn(mp, 319 "alignment check failed: sunit(%d) less than bsize(%d)", 320 mp->m_dalign, mp->m_sb.sb_blocksize); 321 return -EINVAL; 322 } 323 324 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 325 326 if (!xfs_has_dalign(mp)) { 327 xfs_warn(mp, 328 "cannot change alignment: superblock does not support data alignment"); 329 return -EINVAL; 330 } 331 332 return 0; 333 } 334 335 /* Update alignment values based on mount options and sb values. */ 336 STATIC int 337 xfs_update_alignment( 338 struct xfs_mount *mp) 339 { 340 struct xfs_sb *sbp = &mp->m_sb; 341 342 if (mp->m_dalign) { 343 bool update_sb; 344 int error; 345 346 if (sbp->sb_unit == mp->m_dalign && 347 sbp->sb_width == mp->m_swidth) 348 return 0; 349 350 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 351 if (error || !update_sb) 352 return error; 353 354 sbp->sb_unit = mp->m_dalign; 355 sbp->sb_width = mp->m_swidth; 356 mp->m_update_sb = true; 357 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 358 mp->m_dalign = sbp->sb_unit; 359 mp->m_swidth = sbp->sb_width; 360 } 361 362 return 0; 363 } 364 365 /* 366 * precalculate the low space thresholds for dynamic speculative preallocation. 367 */ 368 void 369 xfs_set_low_space_thresholds( 370 struct xfs_mount *mp) 371 { 372 uint64_t dblocks = mp->m_sb.sb_dblocks; 373 uint64_t rtexts = mp->m_sb.sb_rextents; 374 int i; 375 376 do_div(dblocks, 100); 377 do_div(rtexts, 100); 378 379 for (i = 0; i < XFS_LOWSP_MAX; i++) { 380 mp->m_low_space[i] = dblocks * (i + 1); 381 mp->m_low_rtexts[i] = rtexts * (i + 1); 382 } 383 } 384 385 /* 386 * Check that the data (and log if separate) is an ok size. 387 */ 388 STATIC int 389 xfs_check_sizes( 390 struct xfs_mount *mp) 391 { 392 struct xfs_buf *bp; 393 xfs_daddr_t d; 394 int error; 395 396 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 397 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 398 xfs_warn(mp, "filesystem size mismatch detected"); 399 return -EFBIG; 400 } 401 error = xfs_buf_read_uncached(mp->m_ddev_targp, 402 d - XFS_FSS_TO_BB(mp, 1), 403 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 404 if (error) { 405 xfs_warn(mp, "last sector read failed"); 406 return error; 407 } 408 xfs_buf_relse(bp); 409 410 if (mp->m_logdev_targp == mp->m_ddev_targp) 411 return 0; 412 413 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 414 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 415 xfs_warn(mp, "log size mismatch detected"); 416 return -EFBIG; 417 } 418 error = xfs_buf_read_uncached(mp->m_logdev_targp, 419 d - XFS_FSB_TO_BB(mp, 1), 420 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 421 if (error) { 422 xfs_warn(mp, "log device read failed"); 423 return error; 424 } 425 xfs_buf_relse(bp); 426 return 0; 427 } 428 429 /* 430 * Clear the quotaflags in memory and in the superblock. 431 */ 432 int 433 xfs_mount_reset_sbqflags( 434 struct xfs_mount *mp) 435 { 436 mp->m_qflags = 0; 437 438 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 439 if (mp->m_sb.sb_qflags == 0) 440 return 0; 441 spin_lock(&mp->m_sb_lock); 442 mp->m_sb.sb_qflags = 0; 443 spin_unlock(&mp->m_sb_lock); 444 445 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 446 return 0; 447 448 return xfs_sync_sb(mp, false); 449 } 450 451 uint64_t 452 xfs_default_resblks(xfs_mount_t *mp) 453 { 454 uint64_t resblks; 455 456 /* 457 * We default to 5% or 8192 fsbs of space reserved, whichever is 458 * smaller. This is intended to cover concurrent allocation 459 * transactions when we initially hit enospc. These each require a 4 460 * block reservation. Hence by default we cover roughly 2000 concurrent 461 * allocation reservations. 462 */ 463 resblks = mp->m_sb.sb_dblocks; 464 do_div(resblks, 20); 465 resblks = min_t(uint64_t, resblks, 8192); 466 return resblks; 467 } 468 469 /* Ensure the summary counts are correct. */ 470 STATIC int 471 xfs_check_summary_counts( 472 struct xfs_mount *mp) 473 { 474 int error = 0; 475 476 /* 477 * The AG0 superblock verifier rejects in-progress filesystems, 478 * so we should never see the flag set this far into mounting. 479 */ 480 if (mp->m_sb.sb_inprogress) { 481 xfs_err(mp, "sb_inprogress set after log recovery??"); 482 WARN_ON(1); 483 return -EFSCORRUPTED; 484 } 485 486 /* 487 * Now the log is mounted, we know if it was an unclean shutdown or 488 * not. If it was, with the first phase of recovery has completed, we 489 * have consistent AG blocks on disk. We have not recovered EFIs yet, 490 * but they are recovered transactionally in the second recovery phase 491 * later. 492 * 493 * If the log was clean when we mounted, we can check the summary 494 * counters. If any of them are obviously incorrect, we can recompute 495 * them from the AGF headers in the next step. 496 */ 497 if (xfs_is_clean(mp) && 498 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 499 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 500 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 501 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 502 503 /* 504 * We can safely re-initialise incore superblock counters from the 505 * per-ag data. These may not be correct if the filesystem was not 506 * cleanly unmounted, so we waited for recovery to finish before doing 507 * this. 508 * 509 * If the filesystem was cleanly unmounted or the previous check did 510 * not flag anything weird, then we can trust the values in the 511 * superblock to be correct and we don't need to do anything here. 512 * Otherwise, recalculate the summary counters. 513 */ 514 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 515 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 516 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 517 if (error) 518 return error; 519 } 520 521 /* 522 * Older kernels misused sb_frextents to reflect both incore 523 * reservations made by running transactions and the actual count of 524 * free rt extents in the ondisk metadata. Transactions committed 525 * during runtime can therefore contain a superblock update that 526 * undercounts the number of free rt extents tracked in the rt bitmap. 527 * A clean unmount record will have the correct frextents value since 528 * there can be no other transactions running at that point. 529 * 530 * If we're mounting the rt volume after recovering the log, recompute 531 * frextents from the rtbitmap file to fix the inconsistency. 532 */ 533 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 534 error = xfs_rtalloc_reinit_frextents(mp); 535 if (error) 536 return error; 537 } 538 539 return 0; 540 } 541 542 static void 543 xfs_unmount_check( 544 struct xfs_mount *mp) 545 { 546 if (xfs_is_shutdown(mp)) 547 return; 548 549 if (percpu_counter_sum(&mp->m_ifree) > 550 percpu_counter_sum(&mp->m_icount)) { 551 xfs_alert(mp, "ifree/icount mismatch at unmount"); 552 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 553 } 554 } 555 556 /* 557 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 558 * internal inode structures can be sitting in the CIL and AIL at this point, 559 * so we need to unpin them, write them back and/or reclaim them before unmount 560 * can proceed. In other words, callers are required to have inactivated all 561 * inodes. 562 * 563 * An inode cluster that has been freed can have its buffer still pinned in 564 * memory because the transaction is still sitting in a iclog. The stale inodes 565 * on that buffer will be pinned to the buffer until the transaction hits the 566 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 567 * may never see the pinned buffer, so nothing will push out the iclog and 568 * unpin the buffer. 569 * 570 * Hence we need to force the log to unpin everything first. However, log 571 * forces don't wait for the discards they issue to complete, so we have to 572 * explicitly wait for them to complete here as well. 573 * 574 * Then we can tell the world we are unmounting so that error handling knows 575 * that the filesystem is going away and we should error out anything that we 576 * have been retrying in the background. This will prevent never-ending 577 * retries in AIL pushing from hanging the unmount. 578 * 579 * Finally, we can push the AIL to clean all the remaining dirty objects, then 580 * reclaim the remaining inodes that are still in memory at this point in time. 581 */ 582 static void 583 xfs_unmount_flush_inodes( 584 struct xfs_mount *mp) 585 { 586 xfs_log_force(mp, XFS_LOG_SYNC); 587 xfs_extent_busy_wait_all(mp); 588 flush_workqueue(xfs_discard_wq); 589 590 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 591 592 xfs_ail_push_all_sync(mp->m_ail); 593 xfs_inodegc_stop(mp); 594 cancel_delayed_work_sync(&mp->m_reclaim_work); 595 xfs_reclaim_inodes(mp); 596 xfs_health_unmount(mp); 597 } 598 599 static void 600 xfs_mount_setup_inode_geom( 601 struct xfs_mount *mp) 602 { 603 struct xfs_ino_geometry *igeo = M_IGEO(mp); 604 605 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 606 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 607 608 xfs_ialloc_setup_geometry(mp); 609 } 610 611 /* Compute maximum possible height for per-AG btree types for this fs. */ 612 static inline void 613 xfs_agbtree_compute_maxlevels( 614 struct xfs_mount *mp) 615 { 616 unsigned int levels; 617 618 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 619 levels = max(levels, mp->m_rmap_maxlevels); 620 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 621 } 622 623 /* 624 * This function does the following on an initial mount of a file system: 625 * - reads the superblock from disk and init the mount struct 626 * - if we're a 32-bit kernel, do a size check on the superblock 627 * so we don't mount terabyte filesystems 628 * - init mount struct realtime fields 629 * - allocate inode hash table for fs 630 * - init directory manager 631 * - perform recovery and init the log manager 632 */ 633 int 634 xfs_mountfs( 635 struct xfs_mount *mp) 636 { 637 struct xfs_sb *sbp = &(mp->m_sb); 638 struct xfs_inode *rip; 639 struct xfs_ino_geometry *igeo = M_IGEO(mp); 640 uint quotamount = 0; 641 uint quotaflags = 0; 642 int error = 0; 643 644 xfs_sb_mount_common(mp, sbp); 645 646 /* 647 * Check for a mismatched features2 values. Older kernels read & wrote 648 * into the wrong sb offset for sb_features2 on some platforms due to 649 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 650 * which made older superblock reading/writing routines swap it as a 651 * 64-bit value. 652 * 653 * For backwards compatibility, we make both slots equal. 654 * 655 * If we detect a mismatched field, we OR the set bits into the existing 656 * features2 field in case it has already been modified; we don't want 657 * to lose any features. We then update the bad location with the ORed 658 * value so that older kernels will see any features2 flags. The 659 * superblock writeback code ensures the new sb_features2 is copied to 660 * sb_bad_features2 before it is logged or written to disk. 661 */ 662 if (xfs_sb_has_mismatched_features2(sbp)) { 663 xfs_warn(mp, "correcting sb_features alignment problem"); 664 sbp->sb_features2 |= sbp->sb_bad_features2; 665 mp->m_update_sb = true; 666 } 667 668 669 /* always use v2 inodes by default now */ 670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 672 mp->m_features |= XFS_FEAT_NLINK; 673 mp->m_update_sb = true; 674 } 675 676 /* 677 * If we were given new sunit/swidth options, do some basic validation 678 * checks and convert the incore dalign and swidth values to the 679 * same units (FSB) that everything else uses. This /must/ happen 680 * before computing the inode geometry. 681 */ 682 error = xfs_validate_new_dalign(mp); 683 if (error) 684 goto out; 685 686 xfs_alloc_compute_maxlevels(mp); 687 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 688 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 689 xfs_mount_setup_inode_geom(mp); 690 xfs_rmapbt_compute_maxlevels(mp); 691 xfs_refcountbt_compute_maxlevels(mp); 692 693 xfs_agbtree_compute_maxlevels(mp); 694 695 /* 696 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 697 * is NOT aligned turn off m_dalign since allocator alignment is within 698 * an ag, therefore ag has to be aligned at stripe boundary. Note that 699 * we must compute the free space and rmap btree geometry before doing 700 * this. 701 */ 702 error = xfs_update_alignment(mp); 703 if (error) 704 goto out; 705 706 /* enable fail_at_unmount as default */ 707 mp->m_fail_unmount = true; 708 709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 710 NULL, mp->m_super->s_id); 711 if (error) 712 goto out; 713 714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 715 &mp->m_kobj, "stats"); 716 if (error) 717 goto out_remove_sysfs; 718 719 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 720 721 error = xfs_error_sysfs_init(mp); 722 if (error) 723 goto out_remove_scrub_stats; 724 725 error = xfs_errortag_init(mp); 726 if (error) 727 goto out_remove_error_sysfs; 728 729 error = xfs_uuid_mount(mp); 730 if (error) 731 goto out_remove_errortag; 732 733 /* 734 * Update the preferred write size based on the information from the 735 * on-disk superblock. 736 */ 737 mp->m_allocsize_log = 738 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 739 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 740 741 /* set the low space thresholds for dynamic preallocation */ 742 xfs_set_low_space_thresholds(mp); 743 744 /* 745 * If enabled, sparse inode chunk alignment is expected to match the 746 * cluster size. Full inode chunk alignment must match the chunk size, 747 * but that is checked on sb read verification... 748 */ 749 if (xfs_has_sparseinodes(mp) && 750 mp->m_sb.sb_spino_align != 751 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 752 xfs_warn(mp, 753 "Sparse inode block alignment (%u) must match cluster size (%llu).", 754 mp->m_sb.sb_spino_align, 755 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 756 error = -EINVAL; 757 goto out_remove_uuid; 758 } 759 760 /* 761 * Check that the data (and log if separate) is an ok size. 762 */ 763 error = xfs_check_sizes(mp); 764 if (error) 765 goto out_remove_uuid; 766 767 /* 768 * Initialize realtime fields in the mount structure 769 */ 770 error = xfs_rtmount_init(mp); 771 if (error) { 772 xfs_warn(mp, "RT mount failed"); 773 goto out_remove_uuid; 774 } 775 776 /* 777 * Copies the low order bits of the timestamp and the randomly 778 * set "sequence" number out of a UUID. 779 */ 780 mp->m_fixedfsid[0] = 781 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 782 get_unaligned_be16(&sbp->sb_uuid.b[4]); 783 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 784 785 error = xfs_da_mount(mp); 786 if (error) { 787 xfs_warn(mp, "Failed dir/attr init: %d", error); 788 goto out_remove_uuid; 789 } 790 791 /* 792 * Initialize the precomputed transaction reservations values. 793 */ 794 xfs_trans_init(mp); 795 796 /* 797 * Allocate and initialize the per-ag data. 798 */ 799 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, 800 &mp->m_maxagi); 801 if (error) { 802 xfs_warn(mp, "Failed per-ag init: %d", error); 803 goto out_free_dir; 804 } 805 806 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 807 xfs_warn(mp, "no log defined"); 808 error = -EFSCORRUPTED; 809 goto out_free_perag; 810 } 811 812 error = xfs_inodegc_register_shrinker(mp); 813 if (error) 814 goto out_fail_wait; 815 816 /* 817 * Log's mount-time initialization. The first part of recovery can place 818 * some items on the AIL, to be handled when recovery is finished or 819 * cancelled. 820 */ 821 error = xfs_log_mount(mp, mp->m_logdev_targp, 822 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 823 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 824 if (error) { 825 xfs_warn(mp, "log mount failed"); 826 goto out_inodegc_shrinker; 827 } 828 829 /* Enable background inode inactivation workers. */ 830 xfs_inodegc_start(mp); 831 xfs_blockgc_start(mp); 832 833 /* 834 * Now that we've recovered any pending superblock feature bit 835 * additions, we can finish setting up the attr2 behaviour for the 836 * mount. The noattr2 option overrides the superblock flag, so only 837 * check the superblock feature flag if the mount option is not set. 838 */ 839 if (xfs_has_noattr2(mp)) { 840 mp->m_features &= ~XFS_FEAT_ATTR2; 841 } else if (!xfs_has_attr2(mp) && 842 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 843 mp->m_features |= XFS_FEAT_ATTR2; 844 } 845 846 /* 847 * Get and sanity-check the root inode. 848 * Save the pointer to it in the mount structure. 849 */ 850 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 851 XFS_ILOCK_EXCL, &rip); 852 if (error) { 853 xfs_warn(mp, 854 "Failed to read root inode 0x%llx, error %d", 855 sbp->sb_rootino, -error); 856 goto out_log_dealloc; 857 } 858 859 ASSERT(rip != NULL); 860 861 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 862 xfs_warn(mp, "corrupted root inode %llu: not a directory", 863 (unsigned long long)rip->i_ino); 864 xfs_iunlock(rip, XFS_ILOCK_EXCL); 865 error = -EFSCORRUPTED; 866 goto out_rele_rip; 867 } 868 mp->m_rootip = rip; /* save it */ 869 870 xfs_iunlock(rip, XFS_ILOCK_EXCL); 871 872 /* 873 * Initialize realtime inode pointers in the mount structure 874 */ 875 error = xfs_rtmount_inodes(mp); 876 if (error) { 877 /* 878 * Free up the root inode. 879 */ 880 xfs_warn(mp, "failed to read RT inodes"); 881 goto out_rele_rip; 882 } 883 884 /* Make sure the summary counts are ok. */ 885 error = xfs_check_summary_counts(mp); 886 if (error) 887 goto out_rtunmount; 888 889 /* 890 * If this is a read-only mount defer the superblock updates until 891 * the next remount into writeable mode. Otherwise we would never 892 * perform the update e.g. for the root filesystem. 893 */ 894 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 895 error = xfs_sync_sb(mp, false); 896 if (error) { 897 xfs_warn(mp, "failed to write sb changes"); 898 goto out_rtunmount; 899 } 900 } 901 902 /* 903 * Initialise the XFS quota management subsystem for this mount 904 */ 905 if (XFS_IS_QUOTA_ON(mp)) { 906 error = xfs_qm_newmount(mp, "amount, "aflags); 907 if (error) 908 goto out_rtunmount; 909 } else { 910 /* 911 * If a file system had quotas running earlier, but decided to 912 * mount without -o uquota/pquota/gquota options, revoke the 913 * quotachecked license. 914 */ 915 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 916 xfs_notice(mp, "resetting quota flags"); 917 error = xfs_mount_reset_sbqflags(mp); 918 if (error) 919 goto out_rtunmount; 920 } 921 } 922 923 /* 924 * Finish recovering the file system. This part needed to be delayed 925 * until after the root and real-time bitmap inodes were consistently 926 * read in. Temporarily create per-AG space reservations for metadata 927 * btree shape changes because space freeing transactions (for inode 928 * inactivation) require the per-AG reservation in lieu of reserving 929 * blocks. 930 */ 931 error = xfs_fs_reserve_ag_blocks(mp); 932 if (error && error == -ENOSPC) 933 xfs_warn(mp, 934 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 935 error = xfs_log_mount_finish(mp); 936 xfs_fs_unreserve_ag_blocks(mp); 937 if (error) { 938 xfs_warn(mp, "log mount finish failed"); 939 goto out_rtunmount; 940 } 941 942 /* 943 * Now the log is fully replayed, we can transition to full read-only 944 * mode for read-only mounts. This will sync all the metadata and clean 945 * the log so that the recovery we just performed does not have to be 946 * replayed again on the next mount. 947 * 948 * We use the same quiesce mechanism as the rw->ro remount, as they are 949 * semantically identical operations. 950 */ 951 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 952 xfs_log_clean(mp); 953 954 /* 955 * Complete the quota initialisation, post-log-replay component. 956 */ 957 if (quotamount) { 958 ASSERT(mp->m_qflags == 0); 959 mp->m_qflags = quotaflags; 960 961 xfs_qm_mount_quotas(mp); 962 } 963 964 /* 965 * Now we are mounted, reserve a small amount of unused space for 966 * privileged transactions. This is needed so that transaction 967 * space required for critical operations can dip into this pool 968 * when at ENOSPC. This is needed for operations like create with 969 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 970 * are not allowed to use this reserved space. 971 * 972 * This may drive us straight to ENOSPC on mount, but that implies 973 * we were already there on the last unmount. Warn if this occurs. 974 */ 975 if (!xfs_is_readonly(mp)) { 976 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp)); 977 if (error) 978 xfs_warn(mp, 979 "Unable to allocate reserve blocks. Continuing without reserve pool."); 980 981 /* Reserve AG blocks for future btree expansion. */ 982 error = xfs_fs_reserve_ag_blocks(mp); 983 if (error && error != -ENOSPC) 984 goto out_agresv; 985 } 986 987 return 0; 988 989 out_agresv: 990 xfs_fs_unreserve_ag_blocks(mp); 991 xfs_qm_unmount_quotas(mp); 992 out_rtunmount: 993 xfs_rtunmount_inodes(mp); 994 out_rele_rip: 995 xfs_irele(rip); 996 /* Clean out dquots that might be in memory after quotacheck. */ 997 xfs_qm_unmount(mp); 998 999 /* 1000 * Inactivate all inodes that might still be in memory after a log 1001 * intent recovery failure so that reclaim can free them. Metadata 1002 * inodes and the root directory shouldn't need inactivation, but the 1003 * mount failed for some reason, so pull down all the state and flee. 1004 */ 1005 xfs_inodegc_flush(mp); 1006 1007 /* 1008 * Flush all inode reclamation work and flush the log. 1009 * We have to do this /after/ rtunmount and qm_unmount because those 1010 * two will have scheduled delayed reclaim for the rt/quota inodes. 1011 * 1012 * This is slightly different from the unmountfs call sequence 1013 * because we could be tearing down a partially set up mount. In 1014 * particular, if log_mount_finish fails we bail out without calling 1015 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1016 * quota inodes. 1017 */ 1018 xfs_unmount_flush_inodes(mp); 1019 out_log_dealloc: 1020 xfs_log_mount_cancel(mp); 1021 out_inodegc_shrinker: 1022 shrinker_free(mp->m_inodegc_shrinker); 1023 out_fail_wait: 1024 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1025 xfs_buftarg_drain(mp->m_logdev_targp); 1026 xfs_buftarg_drain(mp->m_ddev_targp); 1027 out_free_perag: 1028 xfs_free_perag(mp); 1029 out_free_dir: 1030 xfs_da_unmount(mp); 1031 out_remove_uuid: 1032 xfs_uuid_unmount(mp); 1033 out_remove_errortag: 1034 xfs_errortag_del(mp); 1035 out_remove_error_sysfs: 1036 xfs_error_sysfs_del(mp); 1037 out_remove_scrub_stats: 1038 xchk_stats_unregister(mp->m_scrub_stats); 1039 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1040 out_remove_sysfs: 1041 xfs_sysfs_del(&mp->m_kobj); 1042 out: 1043 return error; 1044 } 1045 1046 /* 1047 * This flushes out the inodes,dquots and the superblock, unmounts the 1048 * log and makes sure that incore structures are freed. 1049 */ 1050 void 1051 xfs_unmountfs( 1052 struct xfs_mount *mp) 1053 { 1054 int error; 1055 1056 /* 1057 * Perform all on-disk metadata updates required to inactivate inodes 1058 * that the VFS evicted earlier in the unmount process. Freeing inodes 1059 * and discarding CoW fork preallocations can cause shape changes to 1060 * the free inode and refcount btrees, respectively, so we must finish 1061 * this before we discard the metadata space reservations. Metadata 1062 * inodes and the root directory do not require inactivation. 1063 */ 1064 xfs_inodegc_flush(mp); 1065 1066 xfs_blockgc_stop(mp); 1067 xfs_fs_unreserve_ag_blocks(mp); 1068 xfs_qm_unmount_quotas(mp); 1069 xfs_rtunmount_inodes(mp); 1070 xfs_irele(mp->m_rootip); 1071 1072 xfs_unmount_flush_inodes(mp); 1073 1074 xfs_qm_unmount(mp); 1075 1076 /* 1077 * Unreserve any blocks we have so that when we unmount we don't account 1078 * the reserved free space as used. This is really only necessary for 1079 * lazy superblock counting because it trusts the incore superblock 1080 * counters to be absolutely correct on clean unmount. 1081 * 1082 * We don't bother correcting this elsewhere for lazy superblock 1083 * counting because on mount of an unclean filesystem we reconstruct the 1084 * correct counter value and this is irrelevant. 1085 * 1086 * For non-lazy counter filesystems, this doesn't matter at all because 1087 * we only every apply deltas to the superblock and hence the incore 1088 * value does not matter.... 1089 */ 1090 error = xfs_reserve_blocks(mp, 0); 1091 if (error) 1092 xfs_warn(mp, "Unable to free reserved block pool. " 1093 "Freespace may not be correct on next mount."); 1094 xfs_unmount_check(mp); 1095 1096 xfs_log_unmount(mp); 1097 xfs_da_unmount(mp); 1098 xfs_uuid_unmount(mp); 1099 1100 #if defined(DEBUG) 1101 xfs_errortag_clearall(mp); 1102 #endif 1103 shrinker_free(mp->m_inodegc_shrinker); 1104 xfs_free_perag(mp); 1105 1106 xfs_errortag_del(mp); 1107 xfs_error_sysfs_del(mp); 1108 xchk_stats_unregister(mp->m_scrub_stats); 1109 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1110 xfs_sysfs_del(&mp->m_kobj); 1111 } 1112 1113 /* 1114 * Determine whether modifications can proceed. The caller specifies the minimum 1115 * freeze level for which modifications should not be allowed. This allows 1116 * certain operations to proceed while the freeze sequence is in progress, if 1117 * necessary. 1118 */ 1119 bool 1120 xfs_fs_writable( 1121 struct xfs_mount *mp, 1122 int level) 1123 { 1124 ASSERT(level > SB_UNFROZEN); 1125 if ((mp->m_super->s_writers.frozen >= level) || 1126 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1127 return false; 1128 1129 return true; 1130 } 1131 1132 /* Adjust m_fdblocks or m_frextents. */ 1133 int 1134 xfs_mod_freecounter( 1135 struct xfs_mount *mp, 1136 struct percpu_counter *counter, 1137 int64_t delta, 1138 bool rsvd) 1139 { 1140 int64_t lcounter; 1141 long long res_used; 1142 uint64_t set_aside = 0; 1143 s32 batch; 1144 bool has_resv_pool; 1145 1146 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1147 has_resv_pool = (counter == &mp->m_fdblocks); 1148 if (rsvd) 1149 ASSERT(has_resv_pool); 1150 1151 if (delta > 0) { 1152 /* 1153 * If the reserve pool is depleted, put blocks back into it 1154 * first. Most of the time the pool is full. 1155 */ 1156 if (likely(!has_resv_pool || 1157 mp->m_resblks == mp->m_resblks_avail)) { 1158 percpu_counter_add(counter, delta); 1159 return 0; 1160 } 1161 1162 spin_lock(&mp->m_sb_lock); 1163 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1164 1165 if (res_used > delta) { 1166 mp->m_resblks_avail += delta; 1167 } else { 1168 delta -= res_used; 1169 mp->m_resblks_avail = mp->m_resblks; 1170 percpu_counter_add(counter, delta); 1171 } 1172 spin_unlock(&mp->m_sb_lock); 1173 return 0; 1174 } 1175 1176 /* 1177 * Taking blocks away, need to be more accurate the closer we 1178 * are to zero. 1179 * 1180 * If the counter has a value of less than 2 * max batch size, 1181 * then make everything serialise as we are real close to 1182 * ENOSPC. 1183 */ 1184 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1185 XFS_FDBLOCKS_BATCH) < 0) 1186 batch = 1; 1187 else 1188 batch = XFS_FDBLOCKS_BATCH; 1189 1190 /* 1191 * Set aside allocbt blocks because these blocks are tracked as free 1192 * space but not available for allocation. Technically this means that a 1193 * single reservation cannot consume all remaining free space, but the 1194 * ratio of allocbt blocks to usable free blocks should be rather small. 1195 * The tradeoff without this is that filesystems that maintain high 1196 * perag block reservations can over reserve physical block availability 1197 * and fail physical allocation, which leads to much more serious 1198 * problems (i.e. transaction abort, pagecache discards, etc.) than 1199 * slightly premature -ENOSPC. 1200 */ 1201 if (has_resv_pool) 1202 set_aside = xfs_fdblocks_unavailable(mp); 1203 percpu_counter_add_batch(counter, delta, batch); 1204 if (__percpu_counter_compare(counter, set_aside, 1205 XFS_FDBLOCKS_BATCH) >= 0) { 1206 /* we had space! */ 1207 return 0; 1208 } 1209 1210 /* 1211 * lock up the sb for dipping into reserves before releasing the space 1212 * that took us to ENOSPC. 1213 */ 1214 spin_lock(&mp->m_sb_lock); 1215 percpu_counter_add(counter, -delta); 1216 if (!has_resv_pool || !rsvd) 1217 goto fdblocks_enospc; 1218 1219 lcounter = (long long)mp->m_resblks_avail + delta; 1220 if (lcounter >= 0) { 1221 mp->m_resblks_avail = lcounter; 1222 spin_unlock(&mp->m_sb_lock); 1223 return 0; 1224 } 1225 xfs_warn_once(mp, 1226 "Reserve blocks depleted! Consider increasing reserve pool size."); 1227 1228 fdblocks_enospc: 1229 spin_unlock(&mp->m_sb_lock); 1230 return -ENOSPC; 1231 } 1232 1233 /* 1234 * Used to free the superblock along various error paths. 1235 */ 1236 void 1237 xfs_freesb( 1238 struct xfs_mount *mp) 1239 { 1240 struct xfs_buf *bp = mp->m_sb_bp; 1241 1242 xfs_buf_lock(bp); 1243 mp->m_sb_bp = NULL; 1244 xfs_buf_relse(bp); 1245 } 1246 1247 /* 1248 * If the underlying (data/log/rt) device is readonly, there are some 1249 * operations that cannot proceed. 1250 */ 1251 int 1252 xfs_dev_is_read_only( 1253 struct xfs_mount *mp, 1254 char *message) 1255 { 1256 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1257 xfs_readonly_buftarg(mp->m_logdev_targp) || 1258 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1259 xfs_notice(mp, "%s required on read-only device.", message); 1260 xfs_notice(mp, "write access unavailable, cannot proceed."); 1261 return -EROFS; 1262 } 1263 return 0; 1264 } 1265 1266 /* Force the summary counters to be recalculated at next mount. */ 1267 void 1268 xfs_force_summary_recalc( 1269 struct xfs_mount *mp) 1270 { 1271 if (!xfs_has_lazysbcount(mp)) 1272 return; 1273 1274 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1275 } 1276 1277 /* 1278 * Enable a log incompat feature flag in the primary superblock. The caller 1279 * cannot have any other transactions in progress. 1280 */ 1281 int 1282 xfs_add_incompat_log_feature( 1283 struct xfs_mount *mp, 1284 uint32_t feature) 1285 { 1286 struct xfs_dsb *dsb; 1287 int error; 1288 1289 ASSERT(hweight32(feature) == 1); 1290 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1291 1292 /* 1293 * Force the log to disk and kick the background AIL thread to reduce 1294 * the chances that the bwrite will stall waiting for the AIL to unpin 1295 * the primary superblock buffer. This isn't a data integrity 1296 * operation, so we don't need a synchronous push. 1297 */ 1298 error = xfs_log_force(mp, XFS_LOG_SYNC); 1299 if (error) 1300 return error; 1301 xfs_ail_push_all(mp->m_ail); 1302 1303 /* 1304 * Lock the primary superblock buffer to serialize all callers that 1305 * are trying to set feature bits. 1306 */ 1307 xfs_buf_lock(mp->m_sb_bp); 1308 xfs_buf_hold(mp->m_sb_bp); 1309 1310 if (xfs_is_shutdown(mp)) { 1311 error = -EIO; 1312 goto rele; 1313 } 1314 1315 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1316 goto rele; 1317 1318 /* 1319 * Write the primary superblock to disk immediately, because we need 1320 * the log_incompat bit to be set in the primary super now to protect 1321 * the log items that we're going to commit later. 1322 */ 1323 dsb = mp->m_sb_bp->b_addr; 1324 xfs_sb_to_disk(dsb, &mp->m_sb); 1325 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1326 error = xfs_bwrite(mp->m_sb_bp); 1327 if (error) 1328 goto shutdown; 1329 1330 /* 1331 * Add the feature bits to the incore superblock before we unlock the 1332 * buffer. 1333 */ 1334 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1335 xfs_buf_relse(mp->m_sb_bp); 1336 1337 /* Log the superblock to disk. */ 1338 return xfs_sync_sb(mp, false); 1339 shutdown: 1340 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1341 rele: 1342 xfs_buf_relse(mp->m_sb_bp); 1343 return error; 1344 } 1345 1346 /* 1347 * Clear all the log incompat flags from the superblock. 1348 * 1349 * The caller cannot be in a transaction, must ensure that the log does not 1350 * contain any log items protected by any log incompat bit, and must ensure 1351 * that there are no other threads that depend on the state of the log incompat 1352 * feature flags in the primary super. 1353 * 1354 * Returns true if the superblock is dirty. 1355 */ 1356 bool 1357 xfs_clear_incompat_log_features( 1358 struct xfs_mount *mp) 1359 { 1360 bool ret = false; 1361 1362 if (!xfs_has_crc(mp) || 1363 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1364 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1365 xfs_is_shutdown(mp)) 1366 return false; 1367 1368 /* 1369 * Update the incore superblock. We synchronize on the primary super 1370 * buffer lock to be consistent with the add function, though at least 1371 * in theory this shouldn't be necessary. 1372 */ 1373 xfs_buf_lock(mp->m_sb_bp); 1374 xfs_buf_hold(mp->m_sb_bp); 1375 1376 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1377 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1378 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1379 ret = true; 1380 } 1381 1382 xfs_buf_relse(mp->m_sb_bp); 1383 return ret; 1384 } 1385 1386 /* 1387 * Update the in-core delayed block counter. 1388 * 1389 * We prefer to update the counter without having to take a spinlock for every 1390 * counter update (i.e. batching). Each change to delayed allocation 1391 * reservations can change can easily exceed the default percpu counter 1392 * batching, so we use a larger batch factor here. 1393 * 1394 * Note that we don't currently have any callers requiring fast summation 1395 * (e.g. percpu_counter_read) so we can use a big batch value here. 1396 */ 1397 #define XFS_DELALLOC_BATCH (4096) 1398 void 1399 xfs_mod_delalloc( 1400 struct xfs_mount *mp, 1401 int64_t delta) 1402 { 1403 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1404 XFS_DELALLOC_BATCH); 1405 } 1406