1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 38 static DEFINE_MUTEX(xfs_uuid_table_mutex); 39 static int xfs_uuid_table_size; 40 static uuid_t *xfs_uuid_table; 41 42 void 43 xfs_uuid_table_free(void) 44 { 45 if (xfs_uuid_table_size == 0) 46 return; 47 kmem_free(xfs_uuid_table); 48 xfs_uuid_table = NULL; 49 xfs_uuid_table_size = 0; 50 } 51 52 /* 53 * See if the UUID is unique among mounted XFS filesystems. 54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 55 */ 56 STATIC int 57 xfs_uuid_mount( 58 struct xfs_mount *mp) 59 { 60 uuid_t *uuid = &mp->m_sb.sb_uuid; 61 int hole, i; 62 63 /* Publish UUID in struct super_block */ 64 uuid_copy(&mp->m_super->s_uuid, uuid); 65 66 if (xfs_has_nouuid(mp)) 67 return 0; 68 69 if (uuid_is_null(uuid)) { 70 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 71 return -EINVAL; 72 } 73 74 mutex_lock(&xfs_uuid_table_mutex); 75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 76 if (uuid_is_null(&xfs_uuid_table[i])) { 77 hole = i; 78 continue; 79 } 80 if (uuid_equal(uuid, &xfs_uuid_table[i])) 81 goto out_duplicate; 82 } 83 84 if (hole < 0) { 85 xfs_uuid_table = krealloc(xfs_uuid_table, 86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 87 GFP_KERNEL | __GFP_NOFAIL); 88 hole = xfs_uuid_table_size++; 89 } 90 xfs_uuid_table[hole] = *uuid; 91 mutex_unlock(&xfs_uuid_table_mutex); 92 93 return 0; 94 95 out_duplicate: 96 mutex_unlock(&xfs_uuid_table_mutex); 97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 98 return -EINVAL; 99 } 100 101 STATIC void 102 xfs_uuid_unmount( 103 struct xfs_mount *mp) 104 { 105 uuid_t *uuid = &mp->m_sb.sb_uuid; 106 int i; 107 108 if (xfs_has_nouuid(mp)) 109 return; 110 111 mutex_lock(&xfs_uuid_table_mutex); 112 for (i = 0; i < xfs_uuid_table_size; i++) { 113 if (uuid_is_null(&xfs_uuid_table[i])) 114 continue; 115 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 116 continue; 117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 118 break; 119 } 120 ASSERT(i < xfs_uuid_table_size); 121 mutex_unlock(&xfs_uuid_table_mutex); 122 } 123 124 /* 125 * Check size of device based on the (data/realtime) block count. 126 * Note: this check is used by the growfs code as well as mount. 127 */ 128 int 129 xfs_sb_validate_fsb_count( 130 xfs_sb_t *sbp, 131 uint64_t nblocks) 132 { 133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 134 ASSERT(sbp->sb_blocklog >= BBSHIFT); 135 136 /* Limited by ULONG_MAX of page cache index */ 137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 138 return -EFBIG; 139 return 0; 140 } 141 142 /* 143 * xfs_readsb 144 * 145 * Does the initial read of the superblock. 146 */ 147 int 148 xfs_readsb( 149 struct xfs_mount *mp, 150 int flags) 151 { 152 unsigned int sector_size; 153 struct xfs_buf *bp; 154 struct xfs_sb *sbp = &mp->m_sb; 155 int error; 156 int loud = !(flags & XFS_MFSI_QUIET); 157 const struct xfs_buf_ops *buf_ops; 158 159 ASSERT(mp->m_sb_bp == NULL); 160 ASSERT(mp->m_ddev_targp != NULL); 161 162 /* 163 * For the initial read, we must guess at the sector 164 * size based on the block device. It's enough to 165 * get the sb_sectsize out of the superblock and 166 * then reread with the proper length. 167 * We don't verify it yet, because it may not be complete. 168 */ 169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 170 buf_ops = NULL; 171 172 /* 173 * Allocate a (locked) buffer to hold the superblock. This will be kept 174 * around at all times to optimize access to the superblock. Therefore, 175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 176 * elevated. 177 */ 178 reread: 179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 180 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 181 buf_ops); 182 if (error) { 183 if (loud) 184 xfs_warn(mp, "SB validate failed with error %d.", error); 185 /* bad CRC means corrupted metadata */ 186 if (error == -EFSBADCRC) 187 error = -EFSCORRUPTED; 188 return error; 189 } 190 191 /* 192 * Initialize the mount structure from the superblock. 193 */ 194 xfs_sb_from_disk(sbp, bp->b_addr); 195 196 /* 197 * If we haven't validated the superblock, do so now before we try 198 * to check the sector size and reread the superblock appropriately. 199 */ 200 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 201 if (loud) 202 xfs_warn(mp, "Invalid superblock magic number"); 203 error = -EINVAL; 204 goto release_buf; 205 } 206 207 /* 208 * We must be able to do sector-sized and sector-aligned IO. 209 */ 210 if (sector_size > sbp->sb_sectsize) { 211 if (loud) 212 xfs_warn(mp, "device supports %u byte sectors (not %u)", 213 sector_size, sbp->sb_sectsize); 214 error = -ENOSYS; 215 goto release_buf; 216 } 217 218 if (buf_ops == NULL) { 219 /* 220 * Re-read the superblock so the buffer is correctly sized, 221 * and properly verified. 222 */ 223 xfs_buf_relse(bp); 224 sector_size = sbp->sb_sectsize; 225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 226 goto reread; 227 } 228 229 mp->m_features |= xfs_sb_version_to_features(sbp); 230 xfs_reinit_percpu_counters(mp); 231 232 /* no need to be quiet anymore, so reset the buf ops */ 233 bp->b_ops = &xfs_sb_buf_ops; 234 235 mp->m_sb_bp = bp; 236 xfs_buf_unlock(bp); 237 return 0; 238 239 release_buf: 240 xfs_buf_relse(bp); 241 return error; 242 } 243 244 /* 245 * If the sunit/swidth change would move the precomputed root inode value, we 246 * must reject the ondisk change because repair will stumble over that. 247 * However, we allow the mount to proceed because we never rejected this 248 * combination before. Returns true to update the sb, false otherwise. 249 */ 250 static inline int 251 xfs_check_new_dalign( 252 struct xfs_mount *mp, 253 int new_dalign, 254 bool *update_sb) 255 { 256 struct xfs_sb *sbp = &mp->m_sb; 257 xfs_ino_t calc_ino; 258 259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 261 262 if (sbp->sb_rootino == calc_ino) { 263 *update_sb = true; 264 return 0; 265 } 266 267 xfs_warn(mp, 268 "Cannot change stripe alignment; would require moving root inode."); 269 270 /* 271 * XXX: Next time we add a new incompat feature, this should start 272 * returning -EINVAL to fail the mount. Until then, spit out a warning 273 * that we're ignoring the administrator's instructions. 274 */ 275 xfs_warn(mp, "Skipping superblock stripe alignment update."); 276 *update_sb = false; 277 return 0; 278 } 279 280 /* 281 * If we were provided with new sunit/swidth values as mount options, make sure 282 * that they pass basic alignment and superblock feature checks, and convert 283 * them into the same units (FSB) that everything else expects. This step 284 * /must/ be done before computing the inode geometry. 285 */ 286 STATIC int 287 xfs_validate_new_dalign( 288 struct xfs_mount *mp) 289 { 290 if (mp->m_dalign == 0) 291 return 0; 292 293 /* 294 * If stripe unit and stripe width are not multiples 295 * of the fs blocksize turn off alignment. 296 */ 297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 299 xfs_warn(mp, 300 "alignment check failed: sunit/swidth vs. blocksize(%d)", 301 mp->m_sb.sb_blocksize); 302 return -EINVAL; 303 } 304 305 /* 306 * Convert the stripe unit and width to FSBs. 307 */ 308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 310 xfs_warn(mp, 311 "alignment check failed: sunit/swidth vs. agsize(%d)", 312 mp->m_sb.sb_agblocks); 313 return -EINVAL; 314 } 315 316 if (!mp->m_dalign) { 317 xfs_warn(mp, 318 "alignment check failed: sunit(%d) less than bsize(%d)", 319 mp->m_dalign, mp->m_sb.sb_blocksize); 320 return -EINVAL; 321 } 322 323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 324 325 if (!xfs_has_dalign(mp)) { 326 xfs_warn(mp, 327 "cannot change alignment: superblock does not support data alignment"); 328 return -EINVAL; 329 } 330 331 return 0; 332 } 333 334 /* Update alignment values based on mount options and sb values. */ 335 STATIC int 336 xfs_update_alignment( 337 struct xfs_mount *mp) 338 { 339 struct xfs_sb *sbp = &mp->m_sb; 340 341 if (mp->m_dalign) { 342 bool update_sb; 343 int error; 344 345 if (sbp->sb_unit == mp->m_dalign && 346 sbp->sb_width == mp->m_swidth) 347 return 0; 348 349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 350 if (error || !update_sb) 351 return error; 352 353 sbp->sb_unit = mp->m_dalign; 354 sbp->sb_width = mp->m_swidth; 355 mp->m_update_sb = true; 356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 357 mp->m_dalign = sbp->sb_unit; 358 mp->m_swidth = sbp->sb_width; 359 } 360 361 return 0; 362 } 363 364 /* 365 * precalculate the low space thresholds for dynamic speculative preallocation. 366 */ 367 void 368 xfs_set_low_space_thresholds( 369 struct xfs_mount *mp) 370 { 371 uint64_t dblocks = mp->m_sb.sb_dblocks; 372 uint64_t rtexts = mp->m_sb.sb_rextents; 373 int i; 374 375 do_div(dblocks, 100); 376 do_div(rtexts, 100); 377 378 for (i = 0; i < XFS_LOWSP_MAX; i++) { 379 mp->m_low_space[i] = dblocks * (i + 1); 380 mp->m_low_rtexts[i] = rtexts * (i + 1); 381 } 382 } 383 384 /* 385 * Check that the data (and log if separate) is an ok size. 386 */ 387 STATIC int 388 xfs_check_sizes( 389 struct xfs_mount *mp) 390 { 391 struct xfs_buf *bp; 392 xfs_daddr_t d; 393 int error; 394 395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 397 xfs_warn(mp, "filesystem size mismatch detected"); 398 return -EFBIG; 399 } 400 error = xfs_buf_read_uncached(mp->m_ddev_targp, 401 d - XFS_FSS_TO_BB(mp, 1), 402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 403 if (error) { 404 xfs_warn(mp, "last sector read failed"); 405 return error; 406 } 407 xfs_buf_relse(bp); 408 409 if (mp->m_logdev_targp == mp->m_ddev_targp) 410 return 0; 411 412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 414 xfs_warn(mp, "log size mismatch detected"); 415 return -EFBIG; 416 } 417 error = xfs_buf_read_uncached(mp->m_logdev_targp, 418 d - XFS_FSB_TO_BB(mp, 1), 419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 420 if (error) { 421 xfs_warn(mp, "log device read failed"); 422 return error; 423 } 424 xfs_buf_relse(bp); 425 return 0; 426 } 427 428 /* 429 * Clear the quotaflags in memory and in the superblock. 430 */ 431 int 432 xfs_mount_reset_sbqflags( 433 struct xfs_mount *mp) 434 { 435 mp->m_qflags = 0; 436 437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 438 if (mp->m_sb.sb_qflags == 0) 439 return 0; 440 spin_lock(&mp->m_sb_lock); 441 mp->m_sb.sb_qflags = 0; 442 spin_unlock(&mp->m_sb_lock); 443 444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 445 return 0; 446 447 return xfs_sync_sb(mp, false); 448 } 449 450 uint64_t 451 xfs_default_resblks(xfs_mount_t *mp) 452 { 453 uint64_t resblks; 454 455 /* 456 * We default to 5% or 8192 fsbs of space reserved, whichever is 457 * smaller. This is intended to cover concurrent allocation 458 * transactions when we initially hit enospc. These each require a 4 459 * block reservation. Hence by default we cover roughly 2000 concurrent 460 * allocation reservations. 461 */ 462 resblks = mp->m_sb.sb_dblocks; 463 do_div(resblks, 20); 464 resblks = min_t(uint64_t, resblks, 8192); 465 return resblks; 466 } 467 468 /* Ensure the summary counts are correct. */ 469 STATIC int 470 xfs_check_summary_counts( 471 struct xfs_mount *mp) 472 { 473 int error = 0; 474 475 /* 476 * The AG0 superblock verifier rejects in-progress filesystems, 477 * so we should never see the flag set this far into mounting. 478 */ 479 if (mp->m_sb.sb_inprogress) { 480 xfs_err(mp, "sb_inprogress set after log recovery??"); 481 WARN_ON(1); 482 return -EFSCORRUPTED; 483 } 484 485 /* 486 * Now the log is mounted, we know if it was an unclean shutdown or 487 * not. If it was, with the first phase of recovery has completed, we 488 * have consistent AG blocks on disk. We have not recovered EFIs yet, 489 * but they are recovered transactionally in the second recovery phase 490 * later. 491 * 492 * If the log was clean when we mounted, we can check the summary 493 * counters. If any of them are obviously incorrect, we can recompute 494 * them from the AGF headers in the next step. 495 */ 496 if (xfs_is_clean(mp) && 497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 501 502 /* 503 * We can safely re-initialise incore superblock counters from the 504 * per-ag data. These may not be correct if the filesystem was not 505 * cleanly unmounted, so we waited for recovery to finish before doing 506 * this. 507 * 508 * If the filesystem was cleanly unmounted or the previous check did 509 * not flag anything weird, then we can trust the values in the 510 * superblock to be correct and we don't need to do anything here. 511 * Otherwise, recalculate the summary counters. 512 */ 513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 516 if (error) 517 return error; 518 } 519 520 /* 521 * Older kernels misused sb_frextents to reflect both incore 522 * reservations made by running transactions and the actual count of 523 * free rt extents in the ondisk metadata. Transactions committed 524 * during runtime can therefore contain a superblock update that 525 * undercounts the number of free rt extents tracked in the rt bitmap. 526 * A clean unmount record will have the correct frextents value since 527 * there can be no other transactions running at that point. 528 * 529 * If we're mounting the rt volume after recovering the log, recompute 530 * frextents from the rtbitmap file to fix the inconsistency. 531 */ 532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 533 error = xfs_rtalloc_reinit_frextents(mp); 534 if (error) 535 return error; 536 } 537 538 return 0; 539 } 540 541 /* 542 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 543 * internal inode structures can be sitting in the CIL and AIL at this point, 544 * so we need to unpin them, write them back and/or reclaim them before unmount 545 * can proceed. In other words, callers are required to have inactivated all 546 * inodes. 547 * 548 * An inode cluster that has been freed can have its buffer still pinned in 549 * memory because the transaction is still sitting in a iclog. The stale inodes 550 * on that buffer will be pinned to the buffer until the transaction hits the 551 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 552 * may never see the pinned buffer, so nothing will push out the iclog and 553 * unpin the buffer. 554 * 555 * Hence we need to force the log to unpin everything first. However, log 556 * forces don't wait for the discards they issue to complete, so we have to 557 * explicitly wait for them to complete here as well. 558 * 559 * Then we can tell the world we are unmounting so that error handling knows 560 * that the filesystem is going away and we should error out anything that we 561 * have been retrying in the background. This will prevent never-ending 562 * retries in AIL pushing from hanging the unmount. 563 * 564 * Finally, we can push the AIL to clean all the remaining dirty objects, then 565 * reclaim the remaining inodes that are still in memory at this point in time. 566 */ 567 static void 568 xfs_unmount_flush_inodes( 569 struct xfs_mount *mp) 570 { 571 xfs_log_force(mp, XFS_LOG_SYNC); 572 xfs_extent_busy_wait_all(mp); 573 flush_workqueue(xfs_discard_wq); 574 575 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 576 577 xfs_ail_push_all_sync(mp->m_ail); 578 xfs_inodegc_stop(mp); 579 cancel_delayed_work_sync(&mp->m_reclaim_work); 580 xfs_reclaim_inodes(mp); 581 xfs_health_unmount(mp); 582 } 583 584 static void 585 xfs_mount_setup_inode_geom( 586 struct xfs_mount *mp) 587 { 588 struct xfs_ino_geometry *igeo = M_IGEO(mp); 589 590 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 591 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 592 593 xfs_ialloc_setup_geometry(mp); 594 } 595 596 /* Compute maximum possible height for per-AG btree types for this fs. */ 597 static inline void 598 xfs_agbtree_compute_maxlevels( 599 struct xfs_mount *mp) 600 { 601 unsigned int levels; 602 603 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 604 levels = max(levels, mp->m_rmap_maxlevels); 605 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 606 } 607 608 /* 609 * This function does the following on an initial mount of a file system: 610 * - reads the superblock from disk and init the mount struct 611 * - if we're a 32-bit kernel, do a size check on the superblock 612 * so we don't mount terabyte filesystems 613 * - init mount struct realtime fields 614 * - allocate inode hash table for fs 615 * - init directory manager 616 * - perform recovery and init the log manager 617 */ 618 int 619 xfs_mountfs( 620 struct xfs_mount *mp) 621 { 622 struct xfs_sb *sbp = &(mp->m_sb); 623 struct xfs_inode *rip; 624 struct xfs_ino_geometry *igeo = M_IGEO(mp); 625 uint64_t resblks; 626 uint quotamount = 0; 627 uint quotaflags = 0; 628 int error = 0; 629 630 xfs_sb_mount_common(mp, sbp); 631 632 /* 633 * Check for a mismatched features2 values. Older kernels read & wrote 634 * into the wrong sb offset for sb_features2 on some platforms due to 635 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 636 * which made older superblock reading/writing routines swap it as a 637 * 64-bit value. 638 * 639 * For backwards compatibility, we make both slots equal. 640 * 641 * If we detect a mismatched field, we OR the set bits into the existing 642 * features2 field in case it has already been modified; we don't want 643 * to lose any features. We then update the bad location with the ORed 644 * value so that older kernels will see any features2 flags. The 645 * superblock writeback code ensures the new sb_features2 is copied to 646 * sb_bad_features2 before it is logged or written to disk. 647 */ 648 if (xfs_sb_has_mismatched_features2(sbp)) { 649 xfs_warn(mp, "correcting sb_features alignment problem"); 650 sbp->sb_features2 |= sbp->sb_bad_features2; 651 mp->m_update_sb = true; 652 } 653 654 655 /* always use v2 inodes by default now */ 656 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 657 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 658 mp->m_features |= XFS_FEAT_NLINK; 659 mp->m_update_sb = true; 660 } 661 662 /* 663 * If we were given new sunit/swidth options, do some basic validation 664 * checks and convert the incore dalign and swidth values to the 665 * same units (FSB) that everything else uses. This /must/ happen 666 * before computing the inode geometry. 667 */ 668 error = xfs_validate_new_dalign(mp); 669 if (error) 670 goto out; 671 672 xfs_alloc_compute_maxlevels(mp); 673 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 674 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 675 xfs_mount_setup_inode_geom(mp); 676 xfs_rmapbt_compute_maxlevels(mp); 677 xfs_refcountbt_compute_maxlevels(mp); 678 679 xfs_agbtree_compute_maxlevels(mp); 680 681 /* 682 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 683 * is NOT aligned turn off m_dalign since allocator alignment is within 684 * an ag, therefore ag has to be aligned at stripe boundary. Note that 685 * we must compute the free space and rmap btree geometry before doing 686 * this. 687 */ 688 error = xfs_update_alignment(mp); 689 if (error) 690 goto out; 691 692 /* enable fail_at_unmount as default */ 693 mp->m_fail_unmount = true; 694 695 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 696 NULL, mp->m_super->s_id); 697 if (error) 698 goto out; 699 700 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 701 &mp->m_kobj, "stats"); 702 if (error) 703 goto out_remove_sysfs; 704 705 error = xfs_error_sysfs_init(mp); 706 if (error) 707 goto out_del_stats; 708 709 error = xfs_errortag_init(mp); 710 if (error) 711 goto out_remove_error_sysfs; 712 713 error = xfs_uuid_mount(mp); 714 if (error) 715 goto out_remove_errortag; 716 717 /* 718 * Update the preferred write size based on the information from the 719 * on-disk superblock. 720 */ 721 mp->m_allocsize_log = 722 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 723 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 724 725 /* set the low space thresholds for dynamic preallocation */ 726 xfs_set_low_space_thresholds(mp); 727 728 /* 729 * If enabled, sparse inode chunk alignment is expected to match the 730 * cluster size. Full inode chunk alignment must match the chunk size, 731 * but that is checked on sb read verification... 732 */ 733 if (xfs_has_sparseinodes(mp) && 734 mp->m_sb.sb_spino_align != 735 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 736 xfs_warn(mp, 737 "Sparse inode block alignment (%u) must match cluster size (%llu).", 738 mp->m_sb.sb_spino_align, 739 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 740 error = -EINVAL; 741 goto out_remove_uuid; 742 } 743 744 /* 745 * Check that the data (and log if separate) is an ok size. 746 */ 747 error = xfs_check_sizes(mp); 748 if (error) 749 goto out_remove_uuid; 750 751 /* 752 * Initialize realtime fields in the mount structure 753 */ 754 error = xfs_rtmount_init(mp); 755 if (error) { 756 xfs_warn(mp, "RT mount failed"); 757 goto out_remove_uuid; 758 } 759 760 /* 761 * Copies the low order bits of the timestamp and the randomly 762 * set "sequence" number out of a UUID. 763 */ 764 mp->m_fixedfsid[0] = 765 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 766 get_unaligned_be16(&sbp->sb_uuid.b[4]); 767 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 768 769 error = xfs_da_mount(mp); 770 if (error) { 771 xfs_warn(mp, "Failed dir/attr init: %d", error); 772 goto out_remove_uuid; 773 } 774 775 /* 776 * Initialize the precomputed transaction reservations values. 777 */ 778 xfs_trans_init(mp); 779 780 /* 781 * Allocate and initialize the per-ag data. 782 */ 783 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, 784 &mp->m_maxagi); 785 if (error) { 786 xfs_warn(mp, "Failed per-ag init: %d", error); 787 goto out_free_dir; 788 } 789 790 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 791 xfs_warn(mp, "no log defined"); 792 error = -EFSCORRUPTED; 793 goto out_free_perag; 794 } 795 796 error = xfs_inodegc_register_shrinker(mp); 797 if (error) 798 goto out_fail_wait; 799 800 /* 801 * Log's mount-time initialization. The first part of recovery can place 802 * some items on the AIL, to be handled when recovery is finished or 803 * cancelled. 804 */ 805 error = xfs_log_mount(mp, mp->m_logdev_targp, 806 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 807 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 808 if (error) { 809 xfs_warn(mp, "log mount failed"); 810 goto out_inodegc_shrinker; 811 } 812 813 /* Enable background inode inactivation workers. */ 814 xfs_inodegc_start(mp); 815 xfs_blockgc_start(mp); 816 817 /* 818 * Now that we've recovered any pending superblock feature bit 819 * additions, we can finish setting up the attr2 behaviour for the 820 * mount. The noattr2 option overrides the superblock flag, so only 821 * check the superblock feature flag if the mount option is not set. 822 */ 823 if (xfs_has_noattr2(mp)) { 824 mp->m_features &= ~XFS_FEAT_ATTR2; 825 } else if (!xfs_has_attr2(mp) && 826 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 827 mp->m_features |= XFS_FEAT_ATTR2; 828 } 829 830 /* 831 * Get and sanity-check the root inode. 832 * Save the pointer to it in the mount structure. 833 */ 834 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 835 XFS_ILOCK_EXCL, &rip); 836 if (error) { 837 xfs_warn(mp, 838 "Failed to read root inode 0x%llx, error %d", 839 sbp->sb_rootino, -error); 840 goto out_log_dealloc; 841 } 842 843 ASSERT(rip != NULL); 844 845 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 846 xfs_warn(mp, "corrupted root inode %llu: not a directory", 847 (unsigned long long)rip->i_ino); 848 xfs_iunlock(rip, XFS_ILOCK_EXCL); 849 error = -EFSCORRUPTED; 850 goto out_rele_rip; 851 } 852 mp->m_rootip = rip; /* save it */ 853 854 xfs_iunlock(rip, XFS_ILOCK_EXCL); 855 856 /* 857 * Initialize realtime inode pointers in the mount structure 858 */ 859 error = xfs_rtmount_inodes(mp); 860 if (error) { 861 /* 862 * Free up the root inode. 863 */ 864 xfs_warn(mp, "failed to read RT inodes"); 865 goto out_rele_rip; 866 } 867 868 /* Make sure the summary counts are ok. */ 869 error = xfs_check_summary_counts(mp); 870 if (error) 871 goto out_rtunmount; 872 873 /* 874 * If this is a read-only mount defer the superblock updates until 875 * the next remount into writeable mode. Otherwise we would never 876 * perform the update e.g. for the root filesystem. 877 */ 878 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 879 error = xfs_sync_sb(mp, false); 880 if (error) { 881 xfs_warn(mp, "failed to write sb changes"); 882 goto out_rtunmount; 883 } 884 } 885 886 /* 887 * Initialise the XFS quota management subsystem for this mount 888 */ 889 if (XFS_IS_QUOTA_ON(mp)) { 890 error = xfs_qm_newmount(mp, "amount, "aflags); 891 if (error) 892 goto out_rtunmount; 893 } else { 894 /* 895 * If a file system had quotas running earlier, but decided to 896 * mount without -o uquota/pquota/gquota options, revoke the 897 * quotachecked license. 898 */ 899 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 900 xfs_notice(mp, "resetting quota flags"); 901 error = xfs_mount_reset_sbqflags(mp); 902 if (error) 903 goto out_rtunmount; 904 } 905 } 906 907 /* 908 * Finish recovering the file system. This part needed to be delayed 909 * until after the root and real-time bitmap inodes were consistently 910 * read in. Temporarily create per-AG space reservations for metadata 911 * btree shape changes because space freeing transactions (for inode 912 * inactivation) require the per-AG reservation in lieu of reserving 913 * blocks. 914 */ 915 error = xfs_fs_reserve_ag_blocks(mp); 916 if (error && error == -ENOSPC) 917 xfs_warn(mp, 918 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 919 error = xfs_log_mount_finish(mp); 920 xfs_fs_unreserve_ag_blocks(mp); 921 if (error) { 922 xfs_warn(mp, "log mount finish failed"); 923 goto out_rtunmount; 924 } 925 926 /* 927 * Now the log is fully replayed, we can transition to full read-only 928 * mode for read-only mounts. This will sync all the metadata and clean 929 * the log so that the recovery we just performed does not have to be 930 * replayed again on the next mount. 931 * 932 * We use the same quiesce mechanism as the rw->ro remount, as they are 933 * semantically identical operations. 934 */ 935 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 936 xfs_log_clean(mp); 937 938 /* 939 * Complete the quota initialisation, post-log-replay component. 940 */ 941 if (quotamount) { 942 ASSERT(mp->m_qflags == 0); 943 mp->m_qflags = quotaflags; 944 945 xfs_qm_mount_quotas(mp); 946 } 947 948 /* 949 * Now we are mounted, reserve a small amount of unused space for 950 * privileged transactions. This is needed so that transaction 951 * space required for critical operations can dip into this pool 952 * when at ENOSPC. This is needed for operations like create with 953 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 954 * are not allowed to use this reserved space. 955 * 956 * This may drive us straight to ENOSPC on mount, but that implies 957 * we were already there on the last unmount. Warn if this occurs. 958 */ 959 if (!xfs_is_readonly(mp)) { 960 resblks = xfs_default_resblks(mp); 961 error = xfs_reserve_blocks(mp, &resblks, NULL); 962 if (error) 963 xfs_warn(mp, 964 "Unable to allocate reserve blocks. Continuing without reserve pool."); 965 966 /* Reserve AG blocks for future btree expansion. */ 967 error = xfs_fs_reserve_ag_blocks(mp); 968 if (error && error != -ENOSPC) 969 goto out_agresv; 970 } 971 972 return 0; 973 974 out_agresv: 975 xfs_fs_unreserve_ag_blocks(mp); 976 xfs_qm_unmount_quotas(mp); 977 out_rtunmount: 978 xfs_rtunmount_inodes(mp); 979 out_rele_rip: 980 xfs_irele(rip); 981 /* Clean out dquots that might be in memory after quotacheck. */ 982 xfs_qm_unmount(mp); 983 984 /* 985 * Inactivate all inodes that might still be in memory after a log 986 * intent recovery failure so that reclaim can free them. Metadata 987 * inodes and the root directory shouldn't need inactivation, but the 988 * mount failed for some reason, so pull down all the state and flee. 989 */ 990 xfs_inodegc_flush(mp); 991 992 /* 993 * Flush all inode reclamation work and flush the log. 994 * We have to do this /after/ rtunmount and qm_unmount because those 995 * two will have scheduled delayed reclaim for the rt/quota inodes. 996 * 997 * This is slightly different from the unmountfs call sequence 998 * because we could be tearing down a partially set up mount. In 999 * particular, if log_mount_finish fails we bail out without calling 1000 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1001 * quota inodes. 1002 */ 1003 xfs_unmount_flush_inodes(mp); 1004 out_log_dealloc: 1005 xfs_log_mount_cancel(mp); 1006 out_inodegc_shrinker: 1007 unregister_shrinker(&mp->m_inodegc_shrinker); 1008 out_fail_wait: 1009 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1010 xfs_buftarg_drain(mp->m_logdev_targp); 1011 xfs_buftarg_drain(mp->m_ddev_targp); 1012 out_free_perag: 1013 xfs_free_perag(mp); 1014 out_free_dir: 1015 xfs_da_unmount(mp); 1016 out_remove_uuid: 1017 xfs_uuid_unmount(mp); 1018 out_remove_errortag: 1019 xfs_errortag_del(mp); 1020 out_remove_error_sysfs: 1021 xfs_error_sysfs_del(mp); 1022 out_del_stats: 1023 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1024 out_remove_sysfs: 1025 xfs_sysfs_del(&mp->m_kobj); 1026 out: 1027 return error; 1028 } 1029 1030 /* 1031 * This flushes out the inodes,dquots and the superblock, unmounts the 1032 * log and makes sure that incore structures are freed. 1033 */ 1034 void 1035 xfs_unmountfs( 1036 struct xfs_mount *mp) 1037 { 1038 uint64_t resblks; 1039 int error; 1040 1041 /* 1042 * Perform all on-disk metadata updates required to inactivate inodes 1043 * that the VFS evicted earlier in the unmount process. Freeing inodes 1044 * and discarding CoW fork preallocations can cause shape changes to 1045 * the free inode and refcount btrees, respectively, so we must finish 1046 * this before we discard the metadata space reservations. Metadata 1047 * inodes and the root directory do not require inactivation. 1048 */ 1049 xfs_inodegc_flush(mp); 1050 1051 xfs_blockgc_stop(mp); 1052 xfs_fs_unreserve_ag_blocks(mp); 1053 xfs_qm_unmount_quotas(mp); 1054 xfs_rtunmount_inodes(mp); 1055 xfs_irele(mp->m_rootip); 1056 1057 xfs_unmount_flush_inodes(mp); 1058 1059 xfs_qm_unmount(mp); 1060 1061 /* 1062 * Unreserve any blocks we have so that when we unmount we don't account 1063 * the reserved free space as used. This is really only necessary for 1064 * lazy superblock counting because it trusts the incore superblock 1065 * counters to be absolutely correct on clean unmount. 1066 * 1067 * We don't bother correcting this elsewhere for lazy superblock 1068 * counting because on mount of an unclean filesystem we reconstruct the 1069 * correct counter value and this is irrelevant. 1070 * 1071 * For non-lazy counter filesystems, this doesn't matter at all because 1072 * we only every apply deltas to the superblock and hence the incore 1073 * value does not matter.... 1074 */ 1075 resblks = 0; 1076 error = xfs_reserve_blocks(mp, &resblks, NULL); 1077 if (error) 1078 xfs_warn(mp, "Unable to free reserved block pool. " 1079 "Freespace may not be correct on next mount."); 1080 1081 xfs_log_unmount(mp); 1082 xfs_da_unmount(mp); 1083 xfs_uuid_unmount(mp); 1084 1085 #if defined(DEBUG) 1086 xfs_errortag_clearall(mp); 1087 #endif 1088 unregister_shrinker(&mp->m_inodegc_shrinker); 1089 xfs_free_perag(mp); 1090 1091 xfs_errortag_del(mp); 1092 xfs_error_sysfs_del(mp); 1093 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1094 xfs_sysfs_del(&mp->m_kobj); 1095 } 1096 1097 /* 1098 * Determine whether modifications can proceed. The caller specifies the minimum 1099 * freeze level for which modifications should not be allowed. This allows 1100 * certain operations to proceed while the freeze sequence is in progress, if 1101 * necessary. 1102 */ 1103 bool 1104 xfs_fs_writable( 1105 struct xfs_mount *mp, 1106 int level) 1107 { 1108 ASSERT(level > SB_UNFROZEN); 1109 if ((mp->m_super->s_writers.frozen >= level) || 1110 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1111 return false; 1112 1113 return true; 1114 } 1115 1116 /* Adjust m_fdblocks or m_frextents. */ 1117 int 1118 xfs_mod_freecounter( 1119 struct xfs_mount *mp, 1120 struct percpu_counter *counter, 1121 int64_t delta, 1122 bool rsvd) 1123 { 1124 int64_t lcounter; 1125 long long res_used; 1126 uint64_t set_aside = 0; 1127 s32 batch; 1128 bool has_resv_pool; 1129 1130 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1131 has_resv_pool = (counter == &mp->m_fdblocks); 1132 if (rsvd) 1133 ASSERT(has_resv_pool); 1134 1135 if (delta > 0) { 1136 /* 1137 * If the reserve pool is depleted, put blocks back into it 1138 * first. Most of the time the pool is full. 1139 */ 1140 if (likely(!has_resv_pool || 1141 mp->m_resblks == mp->m_resblks_avail)) { 1142 percpu_counter_add(counter, delta); 1143 return 0; 1144 } 1145 1146 spin_lock(&mp->m_sb_lock); 1147 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1148 1149 if (res_used > delta) { 1150 mp->m_resblks_avail += delta; 1151 } else { 1152 delta -= res_used; 1153 mp->m_resblks_avail = mp->m_resblks; 1154 percpu_counter_add(counter, delta); 1155 } 1156 spin_unlock(&mp->m_sb_lock); 1157 return 0; 1158 } 1159 1160 /* 1161 * Taking blocks away, need to be more accurate the closer we 1162 * are to zero. 1163 * 1164 * If the counter has a value of less than 2 * max batch size, 1165 * then make everything serialise as we are real close to 1166 * ENOSPC. 1167 */ 1168 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1169 XFS_FDBLOCKS_BATCH) < 0) 1170 batch = 1; 1171 else 1172 batch = XFS_FDBLOCKS_BATCH; 1173 1174 /* 1175 * Set aside allocbt blocks because these blocks are tracked as free 1176 * space but not available for allocation. Technically this means that a 1177 * single reservation cannot consume all remaining free space, but the 1178 * ratio of allocbt blocks to usable free blocks should be rather small. 1179 * The tradeoff without this is that filesystems that maintain high 1180 * perag block reservations can over reserve physical block availability 1181 * and fail physical allocation, which leads to much more serious 1182 * problems (i.e. transaction abort, pagecache discards, etc.) than 1183 * slightly premature -ENOSPC. 1184 */ 1185 if (has_resv_pool) 1186 set_aside = xfs_fdblocks_unavailable(mp); 1187 percpu_counter_add_batch(counter, delta, batch); 1188 if (__percpu_counter_compare(counter, set_aside, 1189 XFS_FDBLOCKS_BATCH) >= 0) { 1190 /* we had space! */ 1191 return 0; 1192 } 1193 1194 /* 1195 * lock up the sb for dipping into reserves before releasing the space 1196 * that took us to ENOSPC. 1197 */ 1198 spin_lock(&mp->m_sb_lock); 1199 percpu_counter_add(counter, -delta); 1200 if (!has_resv_pool || !rsvd) 1201 goto fdblocks_enospc; 1202 1203 lcounter = (long long)mp->m_resblks_avail + delta; 1204 if (lcounter >= 0) { 1205 mp->m_resblks_avail = lcounter; 1206 spin_unlock(&mp->m_sb_lock); 1207 return 0; 1208 } 1209 xfs_warn_once(mp, 1210 "Reserve blocks depleted! Consider increasing reserve pool size."); 1211 1212 fdblocks_enospc: 1213 spin_unlock(&mp->m_sb_lock); 1214 return -ENOSPC; 1215 } 1216 1217 /* 1218 * Used to free the superblock along various error paths. 1219 */ 1220 void 1221 xfs_freesb( 1222 struct xfs_mount *mp) 1223 { 1224 struct xfs_buf *bp = mp->m_sb_bp; 1225 1226 xfs_buf_lock(bp); 1227 mp->m_sb_bp = NULL; 1228 xfs_buf_relse(bp); 1229 } 1230 1231 /* 1232 * If the underlying (data/log/rt) device is readonly, there are some 1233 * operations that cannot proceed. 1234 */ 1235 int 1236 xfs_dev_is_read_only( 1237 struct xfs_mount *mp, 1238 char *message) 1239 { 1240 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1241 xfs_readonly_buftarg(mp->m_logdev_targp) || 1242 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1243 xfs_notice(mp, "%s required on read-only device.", message); 1244 xfs_notice(mp, "write access unavailable, cannot proceed."); 1245 return -EROFS; 1246 } 1247 return 0; 1248 } 1249 1250 /* Force the summary counters to be recalculated at next mount. */ 1251 void 1252 xfs_force_summary_recalc( 1253 struct xfs_mount *mp) 1254 { 1255 if (!xfs_has_lazysbcount(mp)) 1256 return; 1257 1258 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1259 } 1260 1261 /* 1262 * Enable a log incompat feature flag in the primary superblock. The caller 1263 * cannot have any other transactions in progress. 1264 */ 1265 int 1266 xfs_add_incompat_log_feature( 1267 struct xfs_mount *mp, 1268 uint32_t feature) 1269 { 1270 struct xfs_dsb *dsb; 1271 int error; 1272 1273 ASSERT(hweight32(feature) == 1); 1274 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1275 1276 /* 1277 * Force the log to disk and kick the background AIL thread to reduce 1278 * the chances that the bwrite will stall waiting for the AIL to unpin 1279 * the primary superblock buffer. This isn't a data integrity 1280 * operation, so we don't need a synchronous push. 1281 */ 1282 error = xfs_log_force(mp, XFS_LOG_SYNC); 1283 if (error) 1284 return error; 1285 xfs_ail_push_all(mp->m_ail); 1286 1287 /* 1288 * Lock the primary superblock buffer to serialize all callers that 1289 * are trying to set feature bits. 1290 */ 1291 xfs_buf_lock(mp->m_sb_bp); 1292 xfs_buf_hold(mp->m_sb_bp); 1293 1294 if (xfs_is_shutdown(mp)) { 1295 error = -EIO; 1296 goto rele; 1297 } 1298 1299 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1300 goto rele; 1301 1302 /* 1303 * Write the primary superblock to disk immediately, because we need 1304 * the log_incompat bit to be set in the primary super now to protect 1305 * the log items that we're going to commit later. 1306 */ 1307 dsb = mp->m_sb_bp->b_addr; 1308 xfs_sb_to_disk(dsb, &mp->m_sb); 1309 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1310 error = xfs_bwrite(mp->m_sb_bp); 1311 if (error) 1312 goto shutdown; 1313 1314 /* 1315 * Add the feature bits to the incore superblock before we unlock the 1316 * buffer. 1317 */ 1318 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1319 xfs_buf_relse(mp->m_sb_bp); 1320 1321 /* Log the superblock to disk. */ 1322 return xfs_sync_sb(mp, false); 1323 shutdown: 1324 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1325 rele: 1326 xfs_buf_relse(mp->m_sb_bp); 1327 return error; 1328 } 1329 1330 /* 1331 * Clear all the log incompat flags from the superblock. 1332 * 1333 * The caller cannot be in a transaction, must ensure that the log does not 1334 * contain any log items protected by any log incompat bit, and must ensure 1335 * that there are no other threads that depend on the state of the log incompat 1336 * feature flags in the primary super. 1337 * 1338 * Returns true if the superblock is dirty. 1339 */ 1340 bool 1341 xfs_clear_incompat_log_features( 1342 struct xfs_mount *mp) 1343 { 1344 bool ret = false; 1345 1346 if (!xfs_has_crc(mp) || 1347 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1348 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1349 xfs_is_shutdown(mp)) 1350 return false; 1351 1352 /* 1353 * Update the incore superblock. We synchronize on the primary super 1354 * buffer lock to be consistent with the add function, though at least 1355 * in theory this shouldn't be necessary. 1356 */ 1357 xfs_buf_lock(mp->m_sb_bp); 1358 xfs_buf_hold(mp->m_sb_bp); 1359 1360 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1361 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1362 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1363 ret = true; 1364 } 1365 1366 xfs_buf_relse(mp->m_sb_bp); 1367 return ret; 1368 } 1369 1370 /* 1371 * Update the in-core delayed block counter. 1372 * 1373 * We prefer to update the counter without having to take a spinlock for every 1374 * counter update (i.e. batching). Each change to delayed allocation 1375 * reservations can change can easily exceed the default percpu counter 1376 * batching, so we use a larger batch factor here. 1377 * 1378 * Note that we don't currently have any callers requiring fast summation 1379 * (e.g. percpu_counter_read) so we can use a big batch value here. 1380 */ 1381 #define XFS_DELALLOC_BATCH (4096) 1382 void 1383 xfs_mod_delalloc( 1384 struct xfs_mount *mp, 1385 int64_t delta) 1386 { 1387 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1388 XFS_DELALLOC_BATCH); 1389 } 1390