1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_btree.h" 35 #include "xfs_ialloc.h" 36 #include "xfs_alloc.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_bmap.h" 39 #include "xfs_error.h" 40 #include "xfs_rw.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 47 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 56 int64_t, int); 57 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 58 59 #else 60 61 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 62 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 63 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 64 65 #endif 66 67 static const struct { 68 short offset; 69 short type; /* 0 = integer 70 * 1 = binary / string (no translation) 71 */ 72 } xfs_sb_info[] = { 73 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 74 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 75 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 76 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 77 { offsetof(xfs_sb_t, sb_rextents), 0 }, 78 { offsetof(xfs_sb_t, sb_uuid), 1 }, 79 { offsetof(xfs_sb_t, sb_logstart), 0 }, 80 { offsetof(xfs_sb_t, sb_rootino), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 82 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 83 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 84 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 85 { offsetof(xfs_sb_t, sb_agcount), 0 }, 86 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 87 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 88 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 89 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 90 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 92 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 93 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 94 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 95 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 96 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 97 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 98 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 99 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 100 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 101 { offsetof(xfs_sb_t, sb_icount), 0 }, 102 { offsetof(xfs_sb_t, sb_ifree), 0 }, 103 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 104 { offsetof(xfs_sb_t, sb_frextents), 0 }, 105 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 106 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 107 { offsetof(xfs_sb_t, sb_qflags), 0 }, 108 { offsetof(xfs_sb_t, sb_flags), 0 }, 109 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 110 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 111 { offsetof(xfs_sb_t, sb_unit), 0 }, 112 { offsetof(xfs_sb_t, sb_width), 0 }, 113 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 114 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 115 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 116 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 117 { offsetof(xfs_sb_t, sb_features2), 0 }, 118 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 119 { sizeof(xfs_sb_t), 0 } 120 }; 121 122 static DEFINE_MUTEX(xfs_uuid_table_mutex); 123 static int xfs_uuid_table_size; 124 static uuid_t *xfs_uuid_table; 125 126 /* 127 * See if the UUID is unique among mounted XFS filesystems. 128 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 129 */ 130 STATIC int 131 xfs_uuid_mount( 132 struct xfs_mount *mp) 133 { 134 uuid_t *uuid = &mp->m_sb.sb_uuid; 135 int hole, i; 136 137 if (mp->m_flags & XFS_MOUNT_NOUUID) 138 return 0; 139 140 if (uuid_is_nil(uuid)) { 141 cmn_err(CE_WARN, 142 "XFS: Filesystem %s has nil UUID - can't mount", 143 mp->m_fsname); 144 return XFS_ERROR(EINVAL); 145 } 146 147 mutex_lock(&xfs_uuid_table_mutex); 148 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 149 if (uuid_is_nil(&xfs_uuid_table[i])) { 150 hole = i; 151 continue; 152 } 153 if (uuid_equal(uuid, &xfs_uuid_table[i])) 154 goto out_duplicate; 155 } 156 157 if (hole < 0) { 158 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 159 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 160 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 161 KM_SLEEP); 162 hole = xfs_uuid_table_size++; 163 } 164 xfs_uuid_table[hole] = *uuid; 165 mutex_unlock(&xfs_uuid_table_mutex); 166 167 return 0; 168 169 out_duplicate: 170 mutex_unlock(&xfs_uuid_table_mutex); 171 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", 172 mp->m_fsname); 173 return XFS_ERROR(EINVAL); 174 } 175 176 STATIC void 177 xfs_uuid_unmount( 178 struct xfs_mount *mp) 179 { 180 uuid_t *uuid = &mp->m_sb.sb_uuid; 181 int i; 182 183 if (mp->m_flags & XFS_MOUNT_NOUUID) 184 return; 185 186 mutex_lock(&xfs_uuid_table_mutex); 187 for (i = 0; i < xfs_uuid_table_size; i++) { 188 if (uuid_is_nil(&xfs_uuid_table[i])) 189 continue; 190 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 191 continue; 192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 193 break; 194 } 195 ASSERT(i < xfs_uuid_table_size); 196 mutex_unlock(&xfs_uuid_table_mutex); 197 } 198 199 200 /* 201 * Reference counting access wrappers to the perag structures. 202 */ 203 struct xfs_perag * 204 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 205 { 206 struct xfs_perag *pag; 207 int ref = 0; 208 209 spin_lock(&mp->m_perag_lock); 210 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 211 if (pag) { 212 ASSERT(atomic_read(&pag->pag_ref) >= 0); 213 /* catch leaks in the positive direction during testing */ 214 ASSERT(atomic_read(&pag->pag_ref) < 1000); 215 ref = atomic_inc_return(&pag->pag_ref); 216 } 217 spin_unlock(&mp->m_perag_lock); 218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 219 return pag; 220 } 221 222 void 223 xfs_perag_put(struct xfs_perag *pag) 224 { 225 int ref; 226 227 ASSERT(atomic_read(&pag->pag_ref) > 0); 228 ref = atomic_dec_return(&pag->pag_ref); 229 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 230 } 231 232 /* 233 * Free up the resources associated with a mount structure. Assume that 234 * the structure was initially zeroed, so we can tell which fields got 235 * initialized. 236 */ 237 STATIC void 238 xfs_free_perag( 239 xfs_mount_t *mp) 240 { 241 xfs_agnumber_t agno; 242 struct xfs_perag *pag; 243 244 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 245 spin_lock(&mp->m_perag_lock); 246 pag = radix_tree_delete(&mp->m_perag_tree, agno); 247 ASSERT(pag); 248 ASSERT(atomic_read(&pag->pag_ref) == 0); 249 spin_unlock(&mp->m_perag_lock); 250 kmem_free(pag); 251 } 252 } 253 254 /* 255 * Check size of device based on the (data/realtime) block count. 256 * Note: this check is used by the growfs code as well as mount. 257 */ 258 int 259 xfs_sb_validate_fsb_count( 260 xfs_sb_t *sbp, 261 __uint64_t nblocks) 262 { 263 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 264 ASSERT(sbp->sb_blocklog >= BBSHIFT); 265 266 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 267 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 268 return EFBIG; 269 #else /* Limited by UINT_MAX of sectors */ 270 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 271 return EFBIG; 272 #endif 273 return 0; 274 } 275 276 /* 277 * Check the validity of the SB found. 278 */ 279 STATIC int 280 xfs_mount_validate_sb( 281 xfs_mount_t *mp, 282 xfs_sb_t *sbp, 283 int flags) 284 { 285 /* 286 * If the log device and data device have the 287 * same device number, the log is internal. 288 * Consequently, the sb_logstart should be non-zero. If 289 * we have a zero sb_logstart in this case, we may be trying to mount 290 * a volume filesystem in a non-volume manner. 291 */ 292 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 293 xfs_fs_mount_cmn_err(flags, "bad magic number"); 294 return XFS_ERROR(EWRONGFS); 295 } 296 297 if (!xfs_sb_good_version(sbp)) { 298 xfs_fs_mount_cmn_err(flags, "bad version"); 299 return XFS_ERROR(EWRONGFS); 300 } 301 302 if (unlikely( 303 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 304 xfs_fs_mount_cmn_err(flags, 305 "filesystem is marked as having an external log; " 306 "specify logdev on the\nmount command line."); 307 return XFS_ERROR(EINVAL); 308 } 309 310 if (unlikely( 311 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 312 xfs_fs_mount_cmn_err(flags, 313 "filesystem is marked as having an internal log; " 314 "do not specify logdev on\nthe mount command line."); 315 return XFS_ERROR(EINVAL); 316 } 317 318 /* 319 * More sanity checking. These were stolen directly from 320 * xfs_repair. 321 */ 322 if (unlikely( 323 sbp->sb_agcount <= 0 || 324 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 325 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 326 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 327 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 328 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 329 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 330 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 331 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 332 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 333 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 334 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 335 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 336 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 337 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 338 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 339 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 340 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 341 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 342 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 343 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 344 return XFS_ERROR(EFSCORRUPTED); 345 } 346 347 /* 348 * Sanity check AG count, size fields against data size field 349 */ 350 if (unlikely( 351 sbp->sb_dblocks == 0 || 352 sbp->sb_dblocks > 353 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 354 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 355 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 356 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 357 return XFS_ERROR(EFSCORRUPTED); 358 } 359 360 /* 361 * Until this is fixed only page-sized or smaller data blocks work. 362 */ 363 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 364 xfs_fs_mount_cmn_err(flags, 365 "file system with blocksize %d bytes", 366 sbp->sb_blocksize); 367 xfs_fs_mount_cmn_err(flags, 368 "only pagesize (%ld) or less will currently work.", 369 PAGE_SIZE); 370 return XFS_ERROR(ENOSYS); 371 } 372 373 /* 374 * Currently only very few inode sizes are supported. 375 */ 376 switch (sbp->sb_inodesize) { 377 case 256: 378 case 512: 379 case 1024: 380 case 2048: 381 break; 382 default: 383 xfs_fs_mount_cmn_err(flags, 384 "inode size of %d bytes not supported", 385 sbp->sb_inodesize); 386 return XFS_ERROR(ENOSYS); 387 } 388 389 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 390 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 391 xfs_fs_mount_cmn_err(flags, 392 "file system too large to be mounted on this system."); 393 return XFS_ERROR(EFBIG); 394 } 395 396 if (unlikely(sbp->sb_inprogress)) { 397 xfs_fs_mount_cmn_err(flags, "file system busy"); 398 return XFS_ERROR(EFSCORRUPTED); 399 } 400 401 /* 402 * Version 1 directory format has never worked on Linux. 403 */ 404 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 405 xfs_fs_mount_cmn_err(flags, 406 "file system using version 1 directory format"); 407 return XFS_ERROR(ENOSYS); 408 } 409 410 return 0; 411 } 412 413 int 414 xfs_initialize_perag( 415 xfs_mount_t *mp, 416 xfs_agnumber_t agcount, 417 xfs_agnumber_t *maxagi) 418 { 419 xfs_agnumber_t index, max_metadata; 420 xfs_agnumber_t first_initialised = 0; 421 xfs_perag_t *pag; 422 xfs_agino_t agino; 423 xfs_ino_t ino; 424 xfs_sb_t *sbp = &mp->m_sb; 425 int error = -ENOMEM; 426 427 /* 428 * Walk the current per-ag tree so we don't try to initialise AGs 429 * that already exist (growfs case). Allocate and insert all the 430 * AGs we don't find ready for initialisation. 431 */ 432 for (index = 0; index < agcount; index++) { 433 pag = xfs_perag_get(mp, index); 434 if (pag) { 435 xfs_perag_put(pag); 436 continue; 437 } 438 if (!first_initialised) 439 first_initialised = index; 440 441 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 442 if (!pag) 443 goto out_unwind; 444 pag->pag_agno = index; 445 pag->pag_mount = mp; 446 rwlock_init(&pag->pag_ici_lock); 447 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 448 449 if (radix_tree_preload(GFP_NOFS)) 450 goto out_unwind; 451 452 spin_lock(&mp->m_perag_lock); 453 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 454 BUG(); 455 spin_unlock(&mp->m_perag_lock); 456 radix_tree_preload_end(); 457 error = -EEXIST; 458 goto out_unwind; 459 } 460 spin_unlock(&mp->m_perag_lock); 461 radix_tree_preload_end(); 462 } 463 464 /* 465 * If we mount with the inode64 option, or no inode overflows 466 * the legacy 32-bit address space clear the inode32 option. 467 */ 468 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 469 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 470 471 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 472 mp->m_flags |= XFS_MOUNT_32BITINODES; 473 else 474 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 475 476 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 477 /* 478 * Calculate how much should be reserved for inodes to meet 479 * the max inode percentage. 480 */ 481 if (mp->m_maxicount) { 482 __uint64_t icount; 483 484 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 485 do_div(icount, 100); 486 icount += sbp->sb_agblocks - 1; 487 do_div(icount, sbp->sb_agblocks); 488 max_metadata = icount; 489 } else { 490 max_metadata = agcount; 491 } 492 493 for (index = 0; index < agcount; index++) { 494 ino = XFS_AGINO_TO_INO(mp, index, agino); 495 if (ino > XFS_MAXINUMBER_32) { 496 index++; 497 break; 498 } 499 500 pag = xfs_perag_get(mp, index); 501 pag->pagi_inodeok = 1; 502 if (index < max_metadata) 503 pag->pagf_metadata = 1; 504 xfs_perag_put(pag); 505 } 506 } else { 507 for (index = 0; index < agcount; index++) { 508 pag = xfs_perag_get(mp, index); 509 pag->pagi_inodeok = 1; 510 xfs_perag_put(pag); 511 } 512 } 513 514 if (maxagi) 515 *maxagi = index; 516 return 0; 517 518 out_unwind: 519 kmem_free(pag); 520 for (; index > first_initialised; index--) { 521 pag = radix_tree_delete(&mp->m_perag_tree, index); 522 kmem_free(pag); 523 } 524 return error; 525 } 526 527 void 528 xfs_sb_from_disk( 529 xfs_sb_t *to, 530 xfs_dsb_t *from) 531 { 532 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 533 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 534 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 535 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 536 to->sb_rextents = be64_to_cpu(from->sb_rextents); 537 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 538 to->sb_logstart = be64_to_cpu(from->sb_logstart); 539 to->sb_rootino = be64_to_cpu(from->sb_rootino); 540 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 541 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 542 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 543 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 544 to->sb_agcount = be32_to_cpu(from->sb_agcount); 545 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 546 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 547 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 548 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 549 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 550 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 551 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 552 to->sb_blocklog = from->sb_blocklog; 553 to->sb_sectlog = from->sb_sectlog; 554 to->sb_inodelog = from->sb_inodelog; 555 to->sb_inopblog = from->sb_inopblog; 556 to->sb_agblklog = from->sb_agblklog; 557 to->sb_rextslog = from->sb_rextslog; 558 to->sb_inprogress = from->sb_inprogress; 559 to->sb_imax_pct = from->sb_imax_pct; 560 to->sb_icount = be64_to_cpu(from->sb_icount); 561 to->sb_ifree = be64_to_cpu(from->sb_ifree); 562 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 563 to->sb_frextents = be64_to_cpu(from->sb_frextents); 564 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 565 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 566 to->sb_qflags = be16_to_cpu(from->sb_qflags); 567 to->sb_flags = from->sb_flags; 568 to->sb_shared_vn = from->sb_shared_vn; 569 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 570 to->sb_unit = be32_to_cpu(from->sb_unit); 571 to->sb_width = be32_to_cpu(from->sb_width); 572 to->sb_dirblklog = from->sb_dirblklog; 573 to->sb_logsectlog = from->sb_logsectlog; 574 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 575 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 576 to->sb_features2 = be32_to_cpu(from->sb_features2); 577 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 578 } 579 580 /* 581 * Copy in core superblock to ondisk one. 582 * 583 * The fields argument is mask of superblock fields to copy. 584 */ 585 void 586 xfs_sb_to_disk( 587 xfs_dsb_t *to, 588 xfs_sb_t *from, 589 __int64_t fields) 590 { 591 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 592 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 593 xfs_sb_field_t f; 594 int first; 595 int size; 596 597 ASSERT(fields); 598 if (!fields) 599 return; 600 601 while (fields) { 602 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 603 first = xfs_sb_info[f].offset; 604 size = xfs_sb_info[f + 1].offset - first; 605 606 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 607 608 if (size == 1 || xfs_sb_info[f].type == 1) { 609 memcpy(to_ptr + first, from_ptr + first, size); 610 } else { 611 switch (size) { 612 case 2: 613 *(__be16 *)(to_ptr + first) = 614 cpu_to_be16(*(__u16 *)(from_ptr + first)); 615 break; 616 case 4: 617 *(__be32 *)(to_ptr + first) = 618 cpu_to_be32(*(__u32 *)(from_ptr + first)); 619 break; 620 case 8: 621 *(__be64 *)(to_ptr + first) = 622 cpu_to_be64(*(__u64 *)(from_ptr + first)); 623 break; 624 default: 625 ASSERT(0); 626 } 627 } 628 629 fields &= ~(1LL << f); 630 } 631 } 632 633 /* 634 * xfs_readsb 635 * 636 * Does the initial read of the superblock. 637 */ 638 int 639 xfs_readsb(xfs_mount_t *mp, int flags) 640 { 641 unsigned int sector_size; 642 unsigned int extra_flags; 643 xfs_buf_t *bp; 644 int error; 645 646 ASSERT(mp->m_sb_bp == NULL); 647 ASSERT(mp->m_ddev_targp != NULL); 648 649 /* 650 * Allocate a (locked) buffer to hold the superblock. 651 * This will be kept around at all times to optimize 652 * access to the superblock. 653 */ 654 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 655 extra_flags = XBF_LOCK | XBF_FS_MANAGED | XBF_MAPPED; 656 657 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size), 658 extra_flags); 659 if (!bp || XFS_BUF_ISERROR(bp)) { 660 xfs_fs_mount_cmn_err(flags, "SB read failed"); 661 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 662 goto fail; 663 } 664 ASSERT(XFS_BUF_ISBUSY(bp)); 665 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 666 667 /* 668 * Initialize the mount structure from the superblock. 669 * But first do some basic consistency checking. 670 */ 671 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 672 673 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 674 if (error) { 675 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 676 goto fail; 677 } 678 679 /* 680 * We must be able to do sector-sized and sector-aligned IO. 681 */ 682 if (sector_size > mp->m_sb.sb_sectsize) { 683 xfs_fs_mount_cmn_err(flags, 684 "device supports only %u byte sectors (not %u)", 685 sector_size, mp->m_sb.sb_sectsize); 686 error = ENOSYS; 687 goto fail; 688 } 689 690 /* 691 * If device sector size is smaller than the superblock size, 692 * re-read the superblock so the buffer is correctly sized. 693 */ 694 if (sector_size < mp->m_sb.sb_sectsize) { 695 XFS_BUF_UNMANAGE(bp); 696 xfs_buf_relse(bp); 697 sector_size = mp->m_sb.sb_sectsize; 698 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, 699 BTOBB(sector_size), extra_flags); 700 if (!bp || XFS_BUF_ISERROR(bp)) { 701 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 702 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 703 goto fail; 704 } 705 ASSERT(XFS_BUF_ISBUSY(bp)); 706 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 707 } 708 709 /* Initialize per-cpu counters */ 710 xfs_icsb_reinit_counters(mp); 711 712 mp->m_sb_bp = bp; 713 xfs_buf_relse(bp); 714 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 715 return 0; 716 717 fail: 718 if (bp) { 719 XFS_BUF_UNMANAGE(bp); 720 xfs_buf_relse(bp); 721 } 722 return error; 723 } 724 725 726 /* 727 * xfs_mount_common 728 * 729 * Mount initialization code establishing various mount 730 * fields from the superblock associated with the given 731 * mount structure 732 */ 733 STATIC void 734 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 735 { 736 mp->m_agfrotor = mp->m_agirotor = 0; 737 spin_lock_init(&mp->m_agirotor_lock); 738 mp->m_maxagi = mp->m_sb.sb_agcount; 739 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 740 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 741 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 742 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 743 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 744 mp->m_blockmask = sbp->sb_blocksize - 1; 745 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 746 mp->m_blockwmask = mp->m_blockwsize - 1; 747 748 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 749 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 750 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 751 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 752 753 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 754 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 755 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 756 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 757 758 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 759 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 760 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 761 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 762 763 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 764 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 765 sbp->sb_inopblock); 766 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 767 } 768 769 /* 770 * xfs_initialize_perag_data 771 * 772 * Read in each per-ag structure so we can count up the number of 773 * allocated inodes, free inodes and used filesystem blocks as this 774 * information is no longer persistent in the superblock. Once we have 775 * this information, write it into the in-core superblock structure. 776 */ 777 STATIC int 778 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 779 { 780 xfs_agnumber_t index; 781 xfs_perag_t *pag; 782 xfs_sb_t *sbp = &mp->m_sb; 783 uint64_t ifree = 0; 784 uint64_t ialloc = 0; 785 uint64_t bfree = 0; 786 uint64_t bfreelst = 0; 787 uint64_t btree = 0; 788 int error; 789 790 for (index = 0; index < agcount; index++) { 791 /* 792 * read the agf, then the agi. This gets us 793 * all the information we need and populates the 794 * per-ag structures for us. 795 */ 796 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 797 if (error) 798 return error; 799 800 error = xfs_ialloc_pagi_init(mp, NULL, index); 801 if (error) 802 return error; 803 pag = xfs_perag_get(mp, index); 804 ifree += pag->pagi_freecount; 805 ialloc += pag->pagi_count; 806 bfree += pag->pagf_freeblks; 807 bfreelst += pag->pagf_flcount; 808 btree += pag->pagf_btreeblks; 809 xfs_perag_put(pag); 810 } 811 /* 812 * Overwrite incore superblock counters with just-read data 813 */ 814 spin_lock(&mp->m_sb_lock); 815 sbp->sb_ifree = ifree; 816 sbp->sb_icount = ialloc; 817 sbp->sb_fdblocks = bfree + bfreelst + btree; 818 spin_unlock(&mp->m_sb_lock); 819 820 /* Fixup the per-cpu counters as well. */ 821 xfs_icsb_reinit_counters(mp); 822 823 return 0; 824 } 825 826 /* 827 * Update alignment values based on mount options and sb values 828 */ 829 STATIC int 830 xfs_update_alignment(xfs_mount_t *mp) 831 { 832 xfs_sb_t *sbp = &(mp->m_sb); 833 834 if (mp->m_dalign) { 835 /* 836 * If stripe unit and stripe width are not multiples 837 * of the fs blocksize turn off alignment. 838 */ 839 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 840 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 841 if (mp->m_flags & XFS_MOUNT_RETERR) { 842 cmn_err(CE_WARN, 843 "XFS: alignment check 1 failed"); 844 return XFS_ERROR(EINVAL); 845 } 846 mp->m_dalign = mp->m_swidth = 0; 847 } else { 848 /* 849 * Convert the stripe unit and width to FSBs. 850 */ 851 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 852 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 853 if (mp->m_flags & XFS_MOUNT_RETERR) { 854 return XFS_ERROR(EINVAL); 855 } 856 xfs_fs_cmn_err(CE_WARN, mp, 857 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 858 mp->m_dalign, mp->m_swidth, 859 sbp->sb_agblocks); 860 861 mp->m_dalign = 0; 862 mp->m_swidth = 0; 863 } else if (mp->m_dalign) { 864 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 865 } else { 866 if (mp->m_flags & XFS_MOUNT_RETERR) { 867 xfs_fs_cmn_err(CE_WARN, mp, 868 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 869 mp->m_dalign, 870 mp->m_blockmask +1); 871 return XFS_ERROR(EINVAL); 872 } 873 mp->m_swidth = 0; 874 } 875 } 876 877 /* 878 * Update superblock with new values 879 * and log changes 880 */ 881 if (xfs_sb_version_hasdalign(sbp)) { 882 if (sbp->sb_unit != mp->m_dalign) { 883 sbp->sb_unit = mp->m_dalign; 884 mp->m_update_flags |= XFS_SB_UNIT; 885 } 886 if (sbp->sb_width != mp->m_swidth) { 887 sbp->sb_width = mp->m_swidth; 888 mp->m_update_flags |= XFS_SB_WIDTH; 889 } 890 } 891 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 892 xfs_sb_version_hasdalign(&mp->m_sb)) { 893 mp->m_dalign = sbp->sb_unit; 894 mp->m_swidth = sbp->sb_width; 895 } 896 897 return 0; 898 } 899 900 /* 901 * Set the maximum inode count for this filesystem 902 */ 903 STATIC void 904 xfs_set_maxicount(xfs_mount_t *mp) 905 { 906 xfs_sb_t *sbp = &(mp->m_sb); 907 __uint64_t icount; 908 909 if (sbp->sb_imax_pct) { 910 /* 911 * Make sure the maximum inode count is a multiple 912 * of the units we allocate inodes in. 913 */ 914 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 915 do_div(icount, 100); 916 do_div(icount, mp->m_ialloc_blks); 917 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 918 sbp->sb_inopblog; 919 } else { 920 mp->m_maxicount = 0; 921 } 922 } 923 924 /* 925 * Set the default minimum read and write sizes unless 926 * already specified in a mount option. 927 * We use smaller I/O sizes when the file system 928 * is being used for NFS service (wsync mount option). 929 */ 930 STATIC void 931 xfs_set_rw_sizes(xfs_mount_t *mp) 932 { 933 xfs_sb_t *sbp = &(mp->m_sb); 934 int readio_log, writeio_log; 935 936 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 937 if (mp->m_flags & XFS_MOUNT_WSYNC) { 938 readio_log = XFS_WSYNC_READIO_LOG; 939 writeio_log = XFS_WSYNC_WRITEIO_LOG; 940 } else { 941 readio_log = XFS_READIO_LOG_LARGE; 942 writeio_log = XFS_WRITEIO_LOG_LARGE; 943 } 944 } else { 945 readio_log = mp->m_readio_log; 946 writeio_log = mp->m_writeio_log; 947 } 948 949 if (sbp->sb_blocklog > readio_log) { 950 mp->m_readio_log = sbp->sb_blocklog; 951 } else { 952 mp->m_readio_log = readio_log; 953 } 954 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 955 if (sbp->sb_blocklog > writeio_log) { 956 mp->m_writeio_log = sbp->sb_blocklog; 957 } else { 958 mp->m_writeio_log = writeio_log; 959 } 960 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 961 } 962 963 /* 964 * Set whether we're using inode alignment. 965 */ 966 STATIC void 967 xfs_set_inoalignment(xfs_mount_t *mp) 968 { 969 if (xfs_sb_version_hasalign(&mp->m_sb) && 970 mp->m_sb.sb_inoalignmt >= 971 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 972 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 973 else 974 mp->m_inoalign_mask = 0; 975 /* 976 * If we are using stripe alignment, check whether 977 * the stripe unit is a multiple of the inode alignment 978 */ 979 if (mp->m_dalign && mp->m_inoalign_mask && 980 !(mp->m_dalign & mp->m_inoalign_mask)) 981 mp->m_sinoalign = mp->m_dalign; 982 else 983 mp->m_sinoalign = 0; 984 } 985 986 /* 987 * Check that the data (and log if separate) are an ok size. 988 */ 989 STATIC int 990 xfs_check_sizes(xfs_mount_t *mp) 991 { 992 xfs_buf_t *bp; 993 xfs_daddr_t d; 994 int error; 995 996 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 997 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 998 cmn_err(CE_WARN, "XFS: size check 1 failed"); 999 return XFS_ERROR(EFBIG); 1000 } 1001 error = xfs_read_buf(mp, mp->m_ddev_targp, 1002 d - XFS_FSS_TO_BB(mp, 1), 1003 XFS_FSS_TO_BB(mp, 1), 0, &bp); 1004 if (!error) { 1005 xfs_buf_relse(bp); 1006 } else { 1007 cmn_err(CE_WARN, "XFS: size check 2 failed"); 1008 if (error == ENOSPC) 1009 error = XFS_ERROR(EFBIG); 1010 return error; 1011 } 1012 1013 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1014 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1015 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1016 cmn_err(CE_WARN, "XFS: size check 3 failed"); 1017 return XFS_ERROR(EFBIG); 1018 } 1019 error = xfs_read_buf(mp, mp->m_logdev_targp, 1020 d - XFS_FSB_TO_BB(mp, 1), 1021 XFS_FSB_TO_BB(mp, 1), 0, &bp); 1022 if (!error) { 1023 xfs_buf_relse(bp); 1024 } else { 1025 cmn_err(CE_WARN, "XFS: size check 3 failed"); 1026 if (error == ENOSPC) 1027 error = XFS_ERROR(EFBIG); 1028 return error; 1029 } 1030 } 1031 return 0; 1032 } 1033 1034 /* 1035 * Clear the quotaflags in memory and in the superblock. 1036 */ 1037 int 1038 xfs_mount_reset_sbqflags( 1039 struct xfs_mount *mp) 1040 { 1041 int error; 1042 struct xfs_trans *tp; 1043 1044 mp->m_qflags = 0; 1045 1046 /* 1047 * It is OK to look at sb_qflags here in mount path, 1048 * without m_sb_lock. 1049 */ 1050 if (mp->m_sb.sb_qflags == 0) 1051 return 0; 1052 spin_lock(&mp->m_sb_lock); 1053 mp->m_sb.sb_qflags = 0; 1054 spin_unlock(&mp->m_sb_lock); 1055 1056 /* 1057 * If the fs is readonly, let the incore superblock run 1058 * with quotas off but don't flush the update out to disk 1059 */ 1060 if (mp->m_flags & XFS_MOUNT_RDONLY) 1061 return 0; 1062 1063 #ifdef QUOTADEBUG 1064 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); 1065 #endif 1066 1067 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1068 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1069 XFS_DEFAULT_LOG_COUNT); 1070 if (error) { 1071 xfs_trans_cancel(tp, 0); 1072 xfs_fs_cmn_err(CE_ALERT, mp, 1073 "xfs_mount_reset_sbqflags: Superblock update failed!"); 1074 return error; 1075 } 1076 1077 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1078 return xfs_trans_commit(tp, 0); 1079 } 1080 1081 __uint64_t 1082 xfs_default_resblks(xfs_mount_t *mp) 1083 { 1084 __uint64_t resblks; 1085 1086 /* 1087 * We default to 5% or 8192 fsbs of space reserved, whichever is 1088 * smaller. This is intended to cover concurrent allocation 1089 * transactions when we initially hit enospc. These each require a 4 1090 * block reservation. Hence by default we cover roughly 2000 concurrent 1091 * allocation reservations. 1092 */ 1093 resblks = mp->m_sb.sb_dblocks; 1094 do_div(resblks, 20); 1095 resblks = min_t(__uint64_t, resblks, 8192); 1096 return resblks; 1097 } 1098 1099 /* 1100 * This function does the following on an initial mount of a file system: 1101 * - reads the superblock from disk and init the mount struct 1102 * - if we're a 32-bit kernel, do a size check on the superblock 1103 * so we don't mount terabyte filesystems 1104 * - init mount struct realtime fields 1105 * - allocate inode hash table for fs 1106 * - init directory manager 1107 * - perform recovery and init the log manager 1108 */ 1109 int 1110 xfs_mountfs( 1111 xfs_mount_t *mp) 1112 { 1113 xfs_sb_t *sbp = &(mp->m_sb); 1114 xfs_inode_t *rip; 1115 __uint64_t resblks; 1116 uint quotamount = 0; 1117 uint quotaflags = 0; 1118 int error = 0; 1119 1120 xfs_mount_common(mp, sbp); 1121 1122 /* 1123 * Check for a mismatched features2 values. Older kernels 1124 * read & wrote into the wrong sb offset for sb_features2 1125 * on some platforms due to xfs_sb_t not being 64bit size aligned 1126 * when sb_features2 was added, which made older superblock 1127 * reading/writing routines swap it as a 64-bit value. 1128 * 1129 * For backwards compatibility, we make both slots equal. 1130 * 1131 * If we detect a mismatched field, we OR the set bits into the 1132 * existing features2 field in case it has already been modified; we 1133 * don't want to lose any features. We then update the bad location 1134 * with the ORed value so that older kernels will see any features2 1135 * flags, and mark the two fields as needing updates once the 1136 * transaction subsystem is online. 1137 */ 1138 if (xfs_sb_has_mismatched_features2(sbp)) { 1139 cmn_err(CE_WARN, 1140 "XFS: correcting sb_features alignment problem"); 1141 sbp->sb_features2 |= sbp->sb_bad_features2; 1142 sbp->sb_bad_features2 = sbp->sb_features2; 1143 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1144 1145 /* 1146 * Re-check for ATTR2 in case it was found in bad_features2 1147 * slot. 1148 */ 1149 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1150 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1151 mp->m_flags |= XFS_MOUNT_ATTR2; 1152 } 1153 1154 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1155 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1156 xfs_sb_version_removeattr2(&mp->m_sb); 1157 mp->m_update_flags |= XFS_SB_FEATURES2; 1158 1159 /* update sb_versionnum for the clearing of the morebits */ 1160 if (!sbp->sb_features2) 1161 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1162 } 1163 1164 /* 1165 * Check if sb_agblocks is aligned at stripe boundary 1166 * If sb_agblocks is NOT aligned turn off m_dalign since 1167 * allocator alignment is within an ag, therefore ag has 1168 * to be aligned at stripe boundary. 1169 */ 1170 error = xfs_update_alignment(mp); 1171 if (error) 1172 goto out; 1173 1174 xfs_alloc_compute_maxlevels(mp); 1175 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1176 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1177 xfs_ialloc_compute_maxlevels(mp); 1178 1179 xfs_set_maxicount(mp); 1180 1181 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1182 1183 error = xfs_uuid_mount(mp); 1184 if (error) 1185 goto out; 1186 1187 /* 1188 * Set the minimum read and write sizes 1189 */ 1190 xfs_set_rw_sizes(mp); 1191 1192 /* 1193 * Set the inode cluster size. 1194 * This may still be overridden by the file system 1195 * block size if it is larger than the chosen cluster size. 1196 */ 1197 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1198 1199 /* 1200 * Set inode alignment fields 1201 */ 1202 xfs_set_inoalignment(mp); 1203 1204 /* 1205 * Check that the data (and log if separate) are an ok size. 1206 */ 1207 error = xfs_check_sizes(mp); 1208 if (error) 1209 goto out_remove_uuid; 1210 1211 /* 1212 * Initialize realtime fields in the mount structure 1213 */ 1214 error = xfs_rtmount_init(mp); 1215 if (error) { 1216 cmn_err(CE_WARN, "XFS: RT mount failed"); 1217 goto out_remove_uuid; 1218 } 1219 1220 /* 1221 * Copies the low order bits of the timestamp and the randomly 1222 * set "sequence" number out of a UUID. 1223 */ 1224 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1225 1226 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1227 1228 xfs_dir_mount(mp); 1229 1230 /* 1231 * Initialize the attribute manager's entries. 1232 */ 1233 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1234 1235 /* 1236 * Initialize the precomputed transaction reservations values. 1237 */ 1238 xfs_trans_init(mp); 1239 1240 /* 1241 * Allocate and initialize the per-ag data. 1242 */ 1243 spin_lock_init(&mp->m_perag_lock); 1244 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1245 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1246 if (error) { 1247 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error); 1248 goto out_remove_uuid; 1249 } 1250 1251 if (!sbp->sb_logblocks) { 1252 cmn_err(CE_WARN, "XFS: no log defined"); 1253 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1254 error = XFS_ERROR(EFSCORRUPTED); 1255 goto out_free_perag; 1256 } 1257 1258 /* 1259 * log's mount-time initialization. Perform 1st part recovery if needed 1260 */ 1261 error = xfs_log_mount(mp, mp->m_logdev_targp, 1262 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1263 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1264 if (error) { 1265 cmn_err(CE_WARN, "XFS: log mount failed"); 1266 goto out_free_perag; 1267 } 1268 1269 /* 1270 * Now the log is mounted, we know if it was an unclean shutdown or 1271 * not. If it was, with the first phase of recovery has completed, we 1272 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1273 * but they are recovered transactionally in the second recovery phase 1274 * later. 1275 * 1276 * Hence we can safely re-initialise incore superblock counters from 1277 * the per-ag data. These may not be correct if the filesystem was not 1278 * cleanly unmounted, so we need to wait for recovery to finish before 1279 * doing this. 1280 * 1281 * If the filesystem was cleanly unmounted, then we can trust the 1282 * values in the superblock to be correct and we don't need to do 1283 * anything here. 1284 * 1285 * If we are currently making the filesystem, the initialisation will 1286 * fail as the perag data is in an undefined state. 1287 */ 1288 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1289 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1290 !mp->m_sb.sb_inprogress) { 1291 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1292 if (error) 1293 goto out_free_perag; 1294 } 1295 1296 /* 1297 * Get and sanity-check the root inode. 1298 * Save the pointer to it in the mount structure. 1299 */ 1300 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1301 if (error) { 1302 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1303 goto out_log_dealloc; 1304 } 1305 1306 ASSERT(rip != NULL); 1307 1308 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1309 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1310 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1311 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1312 (unsigned long long)rip->i_ino); 1313 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1314 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1315 mp); 1316 error = XFS_ERROR(EFSCORRUPTED); 1317 goto out_rele_rip; 1318 } 1319 mp->m_rootip = rip; /* save it */ 1320 1321 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1322 1323 /* 1324 * Initialize realtime inode pointers in the mount structure 1325 */ 1326 error = xfs_rtmount_inodes(mp); 1327 if (error) { 1328 /* 1329 * Free up the root inode. 1330 */ 1331 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1332 goto out_rele_rip; 1333 } 1334 1335 /* 1336 * If this is a read-only mount defer the superblock updates until 1337 * the next remount into writeable mode. Otherwise we would never 1338 * perform the update e.g. for the root filesystem. 1339 */ 1340 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1341 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1342 if (error) { 1343 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1344 goto out_rtunmount; 1345 } 1346 } 1347 1348 /* 1349 * Initialise the XFS quota management subsystem for this mount 1350 */ 1351 if (XFS_IS_QUOTA_RUNNING(mp)) { 1352 error = xfs_qm_newmount(mp, "amount, "aflags); 1353 if (error) 1354 goto out_rtunmount; 1355 } else { 1356 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1357 1358 /* 1359 * If a file system had quotas running earlier, but decided to 1360 * mount without -o uquota/pquota/gquota options, revoke the 1361 * quotachecked license. 1362 */ 1363 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1364 cmn_err(CE_NOTE, 1365 "XFS: resetting qflags for filesystem %s", 1366 mp->m_fsname); 1367 1368 error = xfs_mount_reset_sbqflags(mp); 1369 if (error) 1370 return error; 1371 } 1372 } 1373 1374 /* 1375 * Finish recovering the file system. This part needed to be 1376 * delayed until after the root and real-time bitmap inodes 1377 * were consistently read in. 1378 */ 1379 error = xfs_log_mount_finish(mp); 1380 if (error) { 1381 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1382 goto out_rtunmount; 1383 } 1384 1385 /* 1386 * Complete the quota initialisation, post-log-replay component. 1387 */ 1388 if (quotamount) { 1389 ASSERT(mp->m_qflags == 0); 1390 mp->m_qflags = quotaflags; 1391 1392 xfs_qm_mount_quotas(mp); 1393 } 1394 1395 /* 1396 * Now we are mounted, reserve a small amount of unused space for 1397 * privileged transactions. This is needed so that transaction 1398 * space required for critical operations can dip into this pool 1399 * when at ENOSPC. This is needed for operations like create with 1400 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1401 * are not allowed to use this reserved space. 1402 * 1403 * This may drive us straight to ENOSPC on mount, but that implies 1404 * we were already there on the last unmount. Warn if this occurs. 1405 */ 1406 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1407 resblks = xfs_default_resblks(mp); 1408 error = xfs_reserve_blocks(mp, &resblks, NULL); 1409 if (error) 1410 cmn_err(CE_WARN, "XFS: Unable to allocate reserve " 1411 "blocks. Continuing without a reserve pool."); 1412 } 1413 1414 return 0; 1415 1416 out_rtunmount: 1417 xfs_rtunmount_inodes(mp); 1418 out_rele_rip: 1419 IRELE(rip); 1420 out_log_dealloc: 1421 xfs_log_unmount(mp); 1422 out_free_perag: 1423 xfs_free_perag(mp); 1424 out_remove_uuid: 1425 xfs_uuid_unmount(mp); 1426 out: 1427 return error; 1428 } 1429 1430 /* 1431 * This flushes out the inodes,dquots and the superblock, unmounts the 1432 * log and makes sure that incore structures are freed. 1433 */ 1434 void 1435 xfs_unmountfs( 1436 struct xfs_mount *mp) 1437 { 1438 __uint64_t resblks; 1439 int error; 1440 1441 xfs_qm_unmount_quotas(mp); 1442 xfs_rtunmount_inodes(mp); 1443 IRELE(mp->m_rootip); 1444 1445 /* 1446 * We can potentially deadlock here if we have an inode cluster 1447 * that has been freed has its buffer still pinned in memory because 1448 * the transaction is still sitting in a iclog. The stale inodes 1449 * on that buffer will have their flush locks held until the 1450 * transaction hits the disk and the callbacks run. the inode 1451 * flush takes the flush lock unconditionally and with nothing to 1452 * push out the iclog we will never get that unlocked. hence we 1453 * need to force the log first. 1454 */ 1455 xfs_log_force(mp, XFS_LOG_SYNC); 1456 1457 /* 1458 * Do a delwri reclaim pass first so that as many dirty inodes are 1459 * queued up for IO as possible. Then flush the buffers before making 1460 * a synchronous path to catch all the remaining inodes are reclaimed. 1461 * This makes the reclaim process as quick as possible by avoiding 1462 * synchronous writeout and blocking on inodes already in the delwri 1463 * state as much as possible. 1464 */ 1465 xfs_reclaim_inodes(mp, 0); 1466 XFS_bflush(mp->m_ddev_targp); 1467 xfs_reclaim_inodes(mp, SYNC_WAIT); 1468 1469 xfs_qm_unmount(mp); 1470 1471 /* 1472 * Flush out the log synchronously so that we know for sure 1473 * that nothing is pinned. This is important because bflush() 1474 * will skip pinned buffers. 1475 */ 1476 xfs_log_force(mp, XFS_LOG_SYNC); 1477 1478 xfs_binval(mp->m_ddev_targp); 1479 if (mp->m_rtdev_targp) { 1480 xfs_binval(mp->m_rtdev_targp); 1481 } 1482 1483 /* 1484 * Unreserve any blocks we have so that when we unmount we don't account 1485 * the reserved free space as used. This is really only necessary for 1486 * lazy superblock counting because it trusts the incore superblock 1487 * counters to be absolutely correct on clean unmount. 1488 * 1489 * We don't bother correcting this elsewhere for lazy superblock 1490 * counting because on mount of an unclean filesystem we reconstruct the 1491 * correct counter value and this is irrelevant. 1492 * 1493 * For non-lazy counter filesystems, this doesn't matter at all because 1494 * we only every apply deltas to the superblock and hence the incore 1495 * value does not matter.... 1496 */ 1497 resblks = 0; 1498 error = xfs_reserve_blocks(mp, &resblks, NULL); 1499 if (error) 1500 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1501 "Freespace may not be correct on next mount."); 1502 1503 error = xfs_log_sbcount(mp, 1); 1504 if (error) 1505 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1506 "Freespace may not be correct on next mount."); 1507 xfs_unmountfs_writesb(mp); 1508 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1509 xfs_log_unmount_write(mp); 1510 xfs_log_unmount(mp); 1511 xfs_uuid_unmount(mp); 1512 1513 #if defined(DEBUG) 1514 xfs_errortag_clearall(mp, 0); 1515 #endif 1516 xfs_free_perag(mp); 1517 } 1518 1519 STATIC void 1520 xfs_unmountfs_wait(xfs_mount_t *mp) 1521 { 1522 if (mp->m_logdev_targp != mp->m_ddev_targp) 1523 xfs_wait_buftarg(mp->m_logdev_targp); 1524 if (mp->m_rtdev_targp) 1525 xfs_wait_buftarg(mp->m_rtdev_targp); 1526 xfs_wait_buftarg(mp->m_ddev_targp); 1527 } 1528 1529 int 1530 xfs_fs_writable(xfs_mount_t *mp) 1531 { 1532 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1533 (mp->m_flags & XFS_MOUNT_RDONLY)); 1534 } 1535 1536 /* 1537 * xfs_log_sbcount 1538 * 1539 * Called either periodically to keep the on disk superblock values 1540 * roughly up to date or from unmount to make sure the values are 1541 * correct on a clean unmount. 1542 * 1543 * Note this code can be called during the process of freezing, so 1544 * we may need to use the transaction allocator which does not not 1545 * block when the transaction subsystem is in its frozen state. 1546 */ 1547 int 1548 xfs_log_sbcount( 1549 xfs_mount_t *mp, 1550 uint sync) 1551 { 1552 xfs_trans_t *tp; 1553 int error; 1554 1555 if (!xfs_fs_writable(mp)) 1556 return 0; 1557 1558 xfs_icsb_sync_counters(mp, 0); 1559 1560 /* 1561 * we don't need to do this if we are updating the superblock 1562 * counters on every modification. 1563 */ 1564 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1565 return 0; 1566 1567 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1568 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1569 XFS_DEFAULT_LOG_COUNT); 1570 if (error) { 1571 xfs_trans_cancel(tp, 0); 1572 return error; 1573 } 1574 1575 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1576 if (sync) 1577 xfs_trans_set_sync(tp); 1578 error = xfs_trans_commit(tp, 0); 1579 return error; 1580 } 1581 1582 int 1583 xfs_unmountfs_writesb(xfs_mount_t *mp) 1584 { 1585 xfs_buf_t *sbp; 1586 int error = 0; 1587 1588 /* 1589 * skip superblock write if fs is read-only, or 1590 * if we are doing a forced umount. 1591 */ 1592 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1593 XFS_FORCED_SHUTDOWN(mp))) { 1594 1595 sbp = xfs_getsb(mp, 0); 1596 1597 XFS_BUF_UNDONE(sbp); 1598 XFS_BUF_UNREAD(sbp); 1599 XFS_BUF_UNDELAYWRITE(sbp); 1600 XFS_BUF_WRITE(sbp); 1601 XFS_BUF_UNASYNC(sbp); 1602 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1603 xfsbdstrat(mp, sbp); 1604 error = xfs_iowait(sbp); 1605 if (error) 1606 xfs_ioerror_alert("xfs_unmountfs_writesb", 1607 mp, sbp, XFS_BUF_ADDR(sbp)); 1608 xfs_buf_relse(sbp); 1609 } 1610 return error; 1611 } 1612 1613 /* 1614 * xfs_mod_sb() can be used to copy arbitrary changes to the 1615 * in-core superblock into the superblock buffer to be logged. 1616 * It does not provide the higher level of locking that is 1617 * needed to protect the in-core superblock from concurrent 1618 * access. 1619 */ 1620 void 1621 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1622 { 1623 xfs_buf_t *bp; 1624 int first; 1625 int last; 1626 xfs_mount_t *mp; 1627 xfs_sb_field_t f; 1628 1629 ASSERT(fields); 1630 if (!fields) 1631 return; 1632 mp = tp->t_mountp; 1633 bp = xfs_trans_getsb(tp, mp, 0); 1634 first = sizeof(xfs_sb_t); 1635 last = 0; 1636 1637 /* translate/copy */ 1638 1639 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1640 1641 /* find modified range */ 1642 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1643 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1644 last = xfs_sb_info[f + 1].offset - 1; 1645 1646 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1647 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1648 first = xfs_sb_info[f].offset; 1649 1650 xfs_trans_log_buf(tp, bp, first, last); 1651 } 1652 1653 1654 /* 1655 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1656 * a delta to a specified field in the in-core superblock. Simply 1657 * switch on the field indicated and apply the delta to that field. 1658 * Fields are not allowed to dip below zero, so if the delta would 1659 * do this do not apply it and return EINVAL. 1660 * 1661 * The m_sb_lock must be held when this routine is called. 1662 */ 1663 STATIC int 1664 xfs_mod_incore_sb_unlocked( 1665 xfs_mount_t *mp, 1666 xfs_sb_field_t field, 1667 int64_t delta, 1668 int rsvd) 1669 { 1670 int scounter; /* short counter for 32 bit fields */ 1671 long long lcounter; /* long counter for 64 bit fields */ 1672 long long res_used, rem; 1673 1674 /* 1675 * With the in-core superblock spin lock held, switch 1676 * on the indicated field. Apply the delta to the 1677 * proper field. If the fields value would dip below 1678 * 0, then do not apply the delta and return EINVAL. 1679 */ 1680 switch (field) { 1681 case XFS_SBS_ICOUNT: 1682 lcounter = (long long)mp->m_sb.sb_icount; 1683 lcounter += delta; 1684 if (lcounter < 0) { 1685 ASSERT(0); 1686 return XFS_ERROR(EINVAL); 1687 } 1688 mp->m_sb.sb_icount = lcounter; 1689 return 0; 1690 case XFS_SBS_IFREE: 1691 lcounter = (long long)mp->m_sb.sb_ifree; 1692 lcounter += delta; 1693 if (lcounter < 0) { 1694 ASSERT(0); 1695 return XFS_ERROR(EINVAL); 1696 } 1697 mp->m_sb.sb_ifree = lcounter; 1698 return 0; 1699 case XFS_SBS_FDBLOCKS: 1700 lcounter = (long long) 1701 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1702 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1703 1704 if (delta > 0) { /* Putting blocks back */ 1705 if (res_used > delta) { 1706 mp->m_resblks_avail += delta; 1707 } else { 1708 rem = delta - res_used; 1709 mp->m_resblks_avail = mp->m_resblks; 1710 lcounter += rem; 1711 } 1712 } else { /* Taking blocks away */ 1713 lcounter += delta; 1714 if (lcounter >= 0) { 1715 mp->m_sb.sb_fdblocks = lcounter + 1716 XFS_ALLOC_SET_ASIDE(mp); 1717 return 0; 1718 } 1719 1720 /* 1721 * We are out of blocks, use any available reserved 1722 * blocks if were allowed to. 1723 */ 1724 if (!rsvd) 1725 return XFS_ERROR(ENOSPC); 1726 1727 lcounter = (long long)mp->m_resblks_avail + delta; 1728 if (lcounter >= 0) { 1729 mp->m_resblks_avail = lcounter; 1730 return 0; 1731 } 1732 printk_once(KERN_WARNING 1733 "Filesystem \"%s\": reserve blocks depleted! " 1734 "Consider increasing reserve pool size.", 1735 mp->m_fsname); 1736 return XFS_ERROR(ENOSPC); 1737 } 1738 1739 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1740 return 0; 1741 case XFS_SBS_FREXTENTS: 1742 lcounter = (long long)mp->m_sb.sb_frextents; 1743 lcounter += delta; 1744 if (lcounter < 0) { 1745 return XFS_ERROR(ENOSPC); 1746 } 1747 mp->m_sb.sb_frextents = lcounter; 1748 return 0; 1749 case XFS_SBS_DBLOCKS: 1750 lcounter = (long long)mp->m_sb.sb_dblocks; 1751 lcounter += delta; 1752 if (lcounter < 0) { 1753 ASSERT(0); 1754 return XFS_ERROR(EINVAL); 1755 } 1756 mp->m_sb.sb_dblocks = lcounter; 1757 return 0; 1758 case XFS_SBS_AGCOUNT: 1759 scounter = mp->m_sb.sb_agcount; 1760 scounter += delta; 1761 if (scounter < 0) { 1762 ASSERT(0); 1763 return XFS_ERROR(EINVAL); 1764 } 1765 mp->m_sb.sb_agcount = scounter; 1766 return 0; 1767 case XFS_SBS_IMAX_PCT: 1768 scounter = mp->m_sb.sb_imax_pct; 1769 scounter += delta; 1770 if (scounter < 0) { 1771 ASSERT(0); 1772 return XFS_ERROR(EINVAL); 1773 } 1774 mp->m_sb.sb_imax_pct = scounter; 1775 return 0; 1776 case XFS_SBS_REXTSIZE: 1777 scounter = mp->m_sb.sb_rextsize; 1778 scounter += delta; 1779 if (scounter < 0) { 1780 ASSERT(0); 1781 return XFS_ERROR(EINVAL); 1782 } 1783 mp->m_sb.sb_rextsize = scounter; 1784 return 0; 1785 case XFS_SBS_RBMBLOCKS: 1786 scounter = mp->m_sb.sb_rbmblocks; 1787 scounter += delta; 1788 if (scounter < 0) { 1789 ASSERT(0); 1790 return XFS_ERROR(EINVAL); 1791 } 1792 mp->m_sb.sb_rbmblocks = scounter; 1793 return 0; 1794 case XFS_SBS_RBLOCKS: 1795 lcounter = (long long)mp->m_sb.sb_rblocks; 1796 lcounter += delta; 1797 if (lcounter < 0) { 1798 ASSERT(0); 1799 return XFS_ERROR(EINVAL); 1800 } 1801 mp->m_sb.sb_rblocks = lcounter; 1802 return 0; 1803 case XFS_SBS_REXTENTS: 1804 lcounter = (long long)mp->m_sb.sb_rextents; 1805 lcounter += delta; 1806 if (lcounter < 0) { 1807 ASSERT(0); 1808 return XFS_ERROR(EINVAL); 1809 } 1810 mp->m_sb.sb_rextents = lcounter; 1811 return 0; 1812 case XFS_SBS_REXTSLOG: 1813 scounter = mp->m_sb.sb_rextslog; 1814 scounter += delta; 1815 if (scounter < 0) { 1816 ASSERT(0); 1817 return XFS_ERROR(EINVAL); 1818 } 1819 mp->m_sb.sb_rextslog = scounter; 1820 return 0; 1821 default: 1822 ASSERT(0); 1823 return XFS_ERROR(EINVAL); 1824 } 1825 } 1826 1827 /* 1828 * xfs_mod_incore_sb() is used to change a field in the in-core 1829 * superblock structure by the specified delta. This modification 1830 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1831 * routine to do the work. 1832 */ 1833 int 1834 xfs_mod_incore_sb( 1835 xfs_mount_t *mp, 1836 xfs_sb_field_t field, 1837 int64_t delta, 1838 int rsvd) 1839 { 1840 int status; 1841 1842 /* check for per-cpu counters */ 1843 switch (field) { 1844 #ifdef HAVE_PERCPU_SB 1845 case XFS_SBS_ICOUNT: 1846 case XFS_SBS_IFREE: 1847 case XFS_SBS_FDBLOCKS: 1848 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1849 status = xfs_icsb_modify_counters(mp, field, 1850 delta, rsvd); 1851 break; 1852 } 1853 /* FALLTHROUGH */ 1854 #endif 1855 default: 1856 spin_lock(&mp->m_sb_lock); 1857 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1858 spin_unlock(&mp->m_sb_lock); 1859 break; 1860 } 1861 1862 return status; 1863 } 1864 1865 /* 1866 * xfs_mod_incore_sb_batch() is used to change more than one field 1867 * in the in-core superblock structure at a time. This modification 1868 * is protected by a lock internal to this module. The fields and 1869 * changes to those fields are specified in the array of xfs_mod_sb 1870 * structures passed in. 1871 * 1872 * Either all of the specified deltas will be applied or none of 1873 * them will. If any modified field dips below 0, then all modifications 1874 * will be backed out and EINVAL will be returned. 1875 */ 1876 int 1877 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1878 { 1879 int status=0; 1880 xfs_mod_sb_t *msbp; 1881 1882 /* 1883 * Loop through the array of mod structures and apply each 1884 * individually. If any fail, then back out all those 1885 * which have already been applied. Do all of this within 1886 * the scope of the m_sb_lock so that all of the changes will 1887 * be atomic. 1888 */ 1889 spin_lock(&mp->m_sb_lock); 1890 msbp = &msb[0]; 1891 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1892 /* 1893 * Apply the delta at index n. If it fails, break 1894 * from the loop so we'll fall into the undo loop 1895 * below. 1896 */ 1897 switch (msbp->msb_field) { 1898 #ifdef HAVE_PERCPU_SB 1899 case XFS_SBS_ICOUNT: 1900 case XFS_SBS_IFREE: 1901 case XFS_SBS_FDBLOCKS: 1902 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1903 spin_unlock(&mp->m_sb_lock); 1904 status = xfs_icsb_modify_counters(mp, 1905 msbp->msb_field, 1906 msbp->msb_delta, rsvd); 1907 spin_lock(&mp->m_sb_lock); 1908 break; 1909 } 1910 /* FALLTHROUGH */ 1911 #endif 1912 default: 1913 status = xfs_mod_incore_sb_unlocked(mp, 1914 msbp->msb_field, 1915 msbp->msb_delta, rsvd); 1916 break; 1917 } 1918 1919 if (status != 0) { 1920 break; 1921 } 1922 } 1923 1924 /* 1925 * If we didn't complete the loop above, then back out 1926 * any changes made to the superblock. If you add code 1927 * between the loop above and here, make sure that you 1928 * preserve the value of status. Loop back until 1929 * we step below the beginning of the array. Make sure 1930 * we don't touch anything back there. 1931 */ 1932 if (status != 0) { 1933 msbp--; 1934 while (msbp >= msb) { 1935 switch (msbp->msb_field) { 1936 #ifdef HAVE_PERCPU_SB 1937 case XFS_SBS_ICOUNT: 1938 case XFS_SBS_IFREE: 1939 case XFS_SBS_FDBLOCKS: 1940 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1941 spin_unlock(&mp->m_sb_lock); 1942 status = xfs_icsb_modify_counters(mp, 1943 msbp->msb_field, 1944 -(msbp->msb_delta), 1945 rsvd); 1946 spin_lock(&mp->m_sb_lock); 1947 break; 1948 } 1949 /* FALLTHROUGH */ 1950 #endif 1951 default: 1952 status = xfs_mod_incore_sb_unlocked(mp, 1953 msbp->msb_field, 1954 -(msbp->msb_delta), 1955 rsvd); 1956 break; 1957 } 1958 ASSERT(status == 0); 1959 msbp--; 1960 } 1961 } 1962 spin_unlock(&mp->m_sb_lock); 1963 return status; 1964 } 1965 1966 /* 1967 * xfs_getsb() is called to obtain the buffer for the superblock. 1968 * The buffer is returned locked and read in from disk. 1969 * The buffer should be released with a call to xfs_brelse(). 1970 * 1971 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1972 * the superblock buffer if it can be locked without sleeping. 1973 * If it can't then we'll return NULL. 1974 */ 1975 xfs_buf_t * 1976 xfs_getsb( 1977 xfs_mount_t *mp, 1978 int flags) 1979 { 1980 xfs_buf_t *bp; 1981 1982 ASSERT(mp->m_sb_bp != NULL); 1983 bp = mp->m_sb_bp; 1984 if (flags & XBF_TRYLOCK) { 1985 if (!XFS_BUF_CPSEMA(bp)) { 1986 return NULL; 1987 } 1988 } else { 1989 XFS_BUF_PSEMA(bp, PRIBIO); 1990 } 1991 XFS_BUF_HOLD(bp); 1992 ASSERT(XFS_BUF_ISDONE(bp)); 1993 return bp; 1994 } 1995 1996 /* 1997 * Used to free the superblock along various error paths. 1998 */ 1999 void 2000 xfs_freesb( 2001 xfs_mount_t *mp) 2002 { 2003 xfs_buf_t *bp; 2004 2005 /* 2006 * Use xfs_getsb() so that the buffer will be locked 2007 * when we call xfs_buf_relse(). 2008 */ 2009 bp = xfs_getsb(mp, 0); 2010 XFS_BUF_UNMANAGE(bp); 2011 xfs_buf_relse(bp); 2012 mp->m_sb_bp = NULL; 2013 } 2014 2015 /* 2016 * Used to log changes to the superblock unit and width fields which could 2017 * be altered by the mount options, as well as any potential sb_features2 2018 * fixup. Only the first superblock is updated. 2019 */ 2020 int 2021 xfs_mount_log_sb( 2022 xfs_mount_t *mp, 2023 __int64_t fields) 2024 { 2025 xfs_trans_t *tp; 2026 int error; 2027 2028 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 2029 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 2030 XFS_SB_VERSIONNUM)); 2031 2032 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 2033 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 2034 XFS_DEFAULT_LOG_COUNT); 2035 if (error) { 2036 xfs_trans_cancel(tp, 0); 2037 return error; 2038 } 2039 xfs_mod_sb(tp, fields); 2040 error = xfs_trans_commit(tp, 0); 2041 return error; 2042 } 2043 2044 /* 2045 * If the underlying (data/log/rt) device is readonly, there are some 2046 * operations that cannot proceed. 2047 */ 2048 int 2049 xfs_dev_is_read_only( 2050 struct xfs_mount *mp, 2051 char *message) 2052 { 2053 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 2054 xfs_readonly_buftarg(mp->m_logdev_targp) || 2055 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2056 cmn_err(CE_NOTE, 2057 "XFS: %s required on read-only device.", message); 2058 cmn_err(CE_NOTE, 2059 "XFS: write access unavailable, cannot proceed."); 2060 return EROFS; 2061 } 2062 return 0; 2063 } 2064 2065 #ifdef HAVE_PERCPU_SB 2066 /* 2067 * Per-cpu incore superblock counters 2068 * 2069 * Simple concept, difficult implementation 2070 * 2071 * Basically, replace the incore superblock counters with a distributed per cpu 2072 * counter for contended fields (e.g. free block count). 2073 * 2074 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2075 * hence needs to be accurately read when we are running low on space. Hence 2076 * there is a method to enable and disable the per-cpu counters based on how 2077 * much "stuff" is available in them. 2078 * 2079 * Basically, a counter is enabled if there is enough free resource to justify 2080 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2081 * ENOSPC), then we disable the counters to synchronise all callers and 2082 * re-distribute the available resources. 2083 * 2084 * If, once we redistributed the available resources, we still get a failure, 2085 * we disable the per-cpu counter and go through the slow path. 2086 * 2087 * The slow path is the current xfs_mod_incore_sb() function. This means that 2088 * when we disable a per-cpu counter, we need to drain its resources back to 2089 * the global superblock. We do this after disabling the counter to prevent 2090 * more threads from queueing up on the counter. 2091 * 2092 * Essentially, this means that we still need a lock in the fast path to enable 2093 * synchronisation between the global counters and the per-cpu counters. This 2094 * is not a problem because the lock will be local to a CPU almost all the time 2095 * and have little contention except when we get to ENOSPC conditions. 2096 * 2097 * Basically, this lock becomes a barrier that enables us to lock out the fast 2098 * path while we do things like enabling and disabling counters and 2099 * synchronising the counters. 2100 * 2101 * Locking rules: 2102 * 2103 * 1. m_sb_lock before picking up per-cpu locks 2104 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2105 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2106 * 4. modifying per-cpu counters requires holding per-cpu lock 2107 * 5. modifying global counters requires holding m_sb_lock 2108 * 6. enabling or disabling a counter requires holding the m_sb_lock 2109 * and _none_ of the per-cpu locks. 2110 * 2111 * Disabled counters are only ever re-enabled by a balance operation 2112 * that results in more free resources per CPU than a given threshold. 2113 * To ensure counters don't remain disabled, they are rebalanced when 2114 * the global resource goes above a higher threshold (i.e. some hysteresis 2115 * is present to prevent thrashing). 2116 */ 2117 2118 #ifdef CONFIG_HOTPLUG_CPU 2119 /* 2120 * hot-plug CPU notifier support. 2121 * 2122 * We need a notifier per filesystem as we need to be able to identify 2123 * the filesystem to balance the counters out. This is achieved by 2124 * having a notifier block embedded in the xfs_mount_t and doing pointer 2125 * magic to get the mount pointer from the notifier block address. 2126 */ 2127 STATIC int 2128 xfs_icsb_cpu_notify( 2129 struct notifier_block *nfb, 2130 unsigned long action, 2131 void *hcpu) 2132 { 2133 xfs_icsb_cnts_t *cntp; 2134 xfs_mount_t *mp; 2135 2136 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2137 cntp = (xfs_icsb_cnts_t *) 2138 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2139 switch (action) { 2140 case CPU_UP_PREPARE: 2141 case CPU_UP_PREPARE_FROZEN: 2142 /* Easy Case - initialize the area and locks, and 2143 * then rebalance when online does everything else for us. */ 2144 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2145 break; 2146 case CPU_ONLINE: 2147 case CPU_ONLINE_FROZEN: 2148 xfs_icsb_lock(mp); 2149 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2150 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2151 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2152 xfs_icsb_unlock(mp); 2153 break; 2154 case CPU_DEAD: 2155 case CPU_DEAD_FROZEN: 2156 /* Disable all the counters, then fold the dead cpu's 2157 * count into the total on the global superblock and 2158 * re-enable the counters. */ 2159 xfs_icsb_lock(mp); 2160 spin_lock(&mp->m_sb_lock); 2161 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2162 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2163 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2164 2165 mp->m_sb.sb_icount += cntp->icsb_icount; 2166 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2167 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2168 2169 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2170 2171 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2172 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2173 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2174 spin_unlock(&mp->m_sb_lock); 2175 xfs_icsb_unlock(mp); 2176 break; 2177 } 2178 2179 return NOTIFY_OK; 2180 } 2181 #endif /* CONFIG_HOTPLUG_CPU */ 2182 2183 int 2184 xfs_icsb_init_counters( 2185 xfs_mount_t *mp) 2186 { 2187 xfs_icsb_cnts_t *cntp; 2188 int i; 2189 2190 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2191 if (mp->m_sb_cnts == NULL) 2192 return -ENOMEM; 2193 2194 #ifdef CONFIG_HOTPLUG_CPU 2195 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2196 mp->m_icsb_notifier.priority = 0; 2197 register_hotcpu_notifier(&mp->m_icsb_notifier); 2198 #endif /* CONFIG_HOTPLUG_CPU */ 2199 2200 for_each_online_cpu(i) { 2201 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2202 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2203 } 2204 2205 mutex_init(&mp->m_icsb_mutex); 2206 2207 /* 2208 * start with all counters disabled so that the 2209 * initial balance kicks us off correctly 2210 */ 2211 mp->m_icsb_counters = -1; 2212 return 0; 2213 } 2214 2215 void 2216 xfs_icsb_reinit_counters( 2217 xfs_mount_t *mp) 2218 { 2219 xfs_icsb_lock(mp); 2220 /* 2221 * start with all counters disabled so that the 2222 * initial balance kicks us off correctly 2223 */ 2224 mp->m_icsb_counters = -1; 2225 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2226 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2227 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2228 xfs_icsb_unlock(mp); 2229 } 2230 2231 void 2232 xfs_icsb_destroy_counters( 2233 xfs_mount_t *mp) 2234 { 2235 if (mp->m_sb_cnts) { 2236 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2237 free_percpu(mp->m_sb_cnts); 2238 } 2239 mutex_destroy(&mp->m_icsb_mutex); 2240 } 2241 2242 STATIC void 2243 xfs_icsb_lock_cntr( 2244 xfs_icsb_cnts_t *icsbp) 2245 { 2246 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2247 ndelay(1000); 2248 } 2249 } 2250 2251 STATIC void 2252 xfs_icsb_unlock_cntr( 2253 xfs_icsb_cnts_t *icsbp) 2254 { 2255 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2256 } 2257 2258 2259 STATIC void 2260 xfs_icsb_lock_all_counters( 2261 xfs_mount_t *mp) 2262 { 2263 xfs_icsb_cnts_t *cntp; 2264 int i; 2265 2266 for_each_online_cpu(i) { 2267 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2268 xfs_icsb_lock_cntr(cntp); 2269 } 2270 } 2271 2272 STATIC void 2273 xfs_icsb_unlock_all_counters( 2274 xfs_mount_t *mp) 2275 { 2276 xfs_icsb_cnts_t *cntp; 2277 int i; 2278 2279 for_each_online_cpu(i) { 2280 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2281 xfs_icsb_unlock_cntr(cntp); 2282 } 2283 } 2284 2285 STATIC void 2286 xfs_icsb_count( 2287 xfs_mount_t *mp, 2288 xfs_icsb_cnts_t *cnt, 2289 int flags) 2290 { 2291 xfs_icsb_cnts_t *cntp; 2292 int i; 2293 2294 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2295 2296 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2297 xfs_icsb_lock_all_counters(mp); 2298 2299 for_each_online_cpu(i) { 2300 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2301 cnt->icsb_icount += cntp->icsb_icount; 2302 cnt->icsb_ifree += cntp->icsb_ifree; 2303 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2304 } 2305 2306 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2307 xfs_icsb_unlock_all_counters(mp); 2308 } 2309 2310 STATIC int 2311 xfs_icsb_counter_disabled( 2312 xfs_mount_t *mp, 2313 xfs_sb_field_t field) 2314 { 2315 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2316 return test_bit(field, &mp->m_icsb_counters); 2317 } 2318 2319 STATIC void 2320 xfs_icsb_disable_counter( 2321 xfs_mount_t *mp, 2322 xfs_sb_field_t field) 2323 { 2324 xfs_icsb_cnts_t cnt; 2325 2326 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2327 2328 /* 2329 * If we are already disabled, then there is nothing to do 2330 * here. We check before locking all the counters to avoid 2331 * the expensive lock operation when being called in the 2332 * slow path and the counter is already disabled. This is 2333 * safe because the only time we set or clear this state is under 2334 * the m_icsb_mutex. 2335 */ 2336 if (xfs_icsb_counter_disabled(mp, field)) 2337 return; 2338 2339 xfs_icsb_lock_all_counters(mp); 2340 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2341 /* drain back to superblock */ 2342 2343 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2344 switch(field) { 2345 case XFS_SBS_ICOUNT: 2346 mp->m_sb.sb_icount = cnt.icsb_icount; 2347 break; 2348 case XFS_SBS_IFREE: 2349 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2350 break; 2351 case XFS_SBS_FDBLOCKS: 2352 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2353 break; 2354 default: 2355 BUG(); 2356 } 2357 } 2358 2359 xfs_icsb_unlock_all_counters(mp); 2360 } 2361 2362 STATIC void 2363 xfs_icsb_enable_counter( 2364 xfs_mount_t *mp, 2365 xfs_sb_field_t field, 2366 uint64_t count, 2367 uint64_t resid) 2368 { 2369 xfs_icsb_cnts_t *cntp; 2370 int i; 2371 2372 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2373 2374 xfs_icsb_lock_all_counters(mp); 2375 for_each_online_cpu(i) { 2376 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2377 switch (field) { 2378 case XFS_SBS_ICOUNT: 2379 cntp->icsb_icount = count + resid; 2380 break; 2381 case XFS_SBS_IFREE: 2382 cntp->icsb_ifree = count + resid; 2383 break; 2384 case XFS_SBS_FDBLOCKS: 2385 cntp->icsb_fdblocks = count + resid; 2386 break; 2387 default: 2388 BUG(); 2389 break; 2390 } 2391 resid = 0; 2392 } 2393 clear_bit(field, &mp->m_icsb_counters); 2394 xfs_icsb_unlock_all_counters(mp); 2395 } 2396 2397 void 2398 xfs_icsb_sync_counters_locked( 2399 xfs_mount_t *mp, 2400 int flags) 2401 { 2402 xfs_icsb_cnts_t cnt; 2403 2404 xfs_icsb_count(mp, &cnt, flags); 2405 2406 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2407 mp->m_sb.sb_icount = cnt.icsb_icount; 2408 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2409 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2410 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2411 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2412 } 2413 2414 /* 2415 * Accurate update of per-cpu counters to incore superblock 2416 */ 2417 void 2418 xfs_icsb_sync_counters( 2419 xfs_mount_t *mp, 2420 int flags) 2421 { 2422 spin_lock(&mp->m_sb_lock); 2423 xfs_icsb_sync_counters_locked(mp, flags); 2424 spin_unlock(&mp->m_sb_lock); 2425 } 2426 2427 /* 2428 * Balance and enable/disable counters as necessary. 2429 * 2430 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2431 * chosen to be the same number as single on disk allocation chunk per CPU, and 2432 * free blocks is something far enough zero that we aren't going thrash when we 2433 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2434 * prevent looping endlessly when xfs_alloc_space asks for more than will 2435 * be distributed to a single CPU but each CPU has enough blocks to be 2436 * reenabled. 2437 * 2438 * Note that we can be called when counters are already disabled. 2439 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2440 * prevent locking every per-cpu counter needlessly. 2441 */ 2442 2443 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2444 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2445 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2446 STATIC void 2447 xfs_icsb_balance_counter_locked( 2448 xfs_mount_t *mp, 2449 xfs_sb_field_t field, 2450 int min_per_cpu) 2451 { 2452 uint64_t count, resid; 2453 int weight = num_online_cpus(); 2454 uint64_t min = (uint64_t)min_per_cpu; 2455 2456 /* disable counter and sync counter */ 2457 xfs_icsb_disable_counter(mp, field); 2458 2459 /* update counters - first CPU gets residual*/ 2460 switch (field) { 2461 case XFS_SBS_ICOUNT: 2462 count = mp->m_sb.sb_icount; 2463 resid = do_div(count, weight); 2464 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2465 return; 2466 break; 2467 case XFS_SBS_IFREE: 2468 count = mp->m_sb.sb_ifree; 2469 resid = do_div(count, weight); 2470 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2471 return; 2472 break; 2473 case XFS_SBS_FDBLOCKS: 2474 count = mp->m_sb.sb_fdblocks; 2475 resid = do_div(count, weight); 2476 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2477 return; 2478 break; 2479 default: 2480 BUG(); 2481 count = resid = 0; /* quiet, gcc */ 2482 break; 2483 } 2484 2485 xfs_icsb_enable_counter(mp, field, count, resid); 2486 } 2487 2488 STATIC void 2489 xfs_icsb_balance_counter( 2490 xfs_mount_t *mp, 2491 xfs_sb_field_t fields, 2492 int min_per_cpu) 2493 { 2494 spin_lock(&mp->m_sb_lock); 2495 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2496 spin_unlock(&mp->m_sb_lock); 2497 } 2498 2499 STATIC int 2500 xfs_icsb_modify_counters( 2501 xfs_mount_t *mp, 2502 xfs_sb_field_t field, 2503 int64_t delta, 2504 int rsvd) 2505 { 2506 xfs_icsb_cnts_t *icsbp; 2507 long long lcounter; /* long counter for 64 bit fields */ 2508 int ret = 0; 2509 2510 might_sleep(); 2511 again: 2512 preempt_disable(); 2513 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2514 2515 /* 2516 * if the counter is disabled, go to slow path 2517 */ 2518 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2519 goto slow_path; 2520 xfs_icsb_lock_cntr(icsbp); 2521 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2522 xfs_icsb_unlock_cntr(icsbp); 2523 goto slow_path; 2524 } 2525 2526 switch (field) { 2527 case XFS_SBS_ICOUNT: 2528 lcounter = icsbp->icsb_icount; 2529 lcounter += delta; 2530 if (unlikely(lcounter < 0)) 2531 goto balance_counter; 2532 icsbp->icsb_icount = lcounter; 2533 break; 2534 2535 case XFS_SBS_IFREE: 2536 lcounter = icsbp->icsb_ifree; 2537 lcounter += delta; 2538 if (unlikely(lcounter < 0)) 2539 goto balance_counter; 2540 icsbp->icsb_ifree = lcounter; 2541 break; 2542 2543 case XFS_SBS_FDBLOCKS: 2544 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2545 2546 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2547 lcounter += delta; 2548 if (unlikely(lcounter < 0)) 2549 goto balance_counter; 2550 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2551 break; 2552 default: 2553 BUG(); 2554 break; 2555 } 2556 xfs_icsb_unlock_cntr(icsbp); 2557 preempt_enable(); 2558 return 0; 2559 2560 slow_path: 2561 preempt_enable(); 2562 2563 /* 2564 * serialise with a mutex so we don't burn lots of cpu on 2565 * the superblock lock. We still need to hold the superblock 2566 * lock, however, when we modify the global structures. 2567 */ 2568 xfs_icsb_lock(mp); 2569 2570 /* 2571 * Now running atomically. 2572 * 2573 * If the counter is enabled, someone has beaten us to rebalancing. 2574 * Drop the lock and try again in the fast path.... 2575 */ 2576 if (!(xfs_icsb_counter_disabled(mp, field))) { 2577 xfs_icsb_unlock(mp); 2578 goto again; 2579 } 2580 2581 /* 2582 * The counter is currently disabled. Because we are 2583 * running atomically here, we know a rebalance cannot 2584 * be in progress. Hence we can go straight to operating 2585 * on the global superblock. We do not call xfs_mod_incore_sb() 2586 * here even though we need to get the m_sb_lock. Doing so 2587 * will cause us to re-enter this function and deadlock. 2588 * Hence we get the m_sb_lock ourselves and then call 2589 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2590 * directly on the global counters. 2591 */ 2592 spin_lock(&mp->m_sb_lock); 2593 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2594 spin_unlock(&mp->m_sb_lock); 2595 2596 /* 2597 * Now that we've modified the global superblock, we 2598 * may be able to re-enable the distributed counters 2599 * (e.g. lots of space just got freed). After that 2600 * we are done. 2601 */ 2602 if (ret != ENOSPC) 2603 xfs_icsb_balance_counter(mp, field, 0); 2604 xfs_icsb_unlock(mp); 2605 return ret; 2606 2607 balance_counter: 2608 xfs_icsb_unlock_cntr(icsbp); 2609 preempt_enable(); 2610 2611 /* 2612 * We may have multiple threads here if multiple per-cpu 2613 * counters run dry at the same time. This will mean we can 2614 * do more balances than strictly necessary but it is not 2615 * the common slowpath case. 2616 */ 2617 xfs_icsb_lock(mp); 2618 2619 /* 2620 * running atomically. 2621 * 2622 * This will leave the counter in the correct state for future 2623 * accesses. After the rebalance, we simply try again and our retry 2624 * will either succeed through the fast path or slow path without 2625 * another balance operation being required. 2626 */ 2627 xfs_icsb_balance_counter(mp, field, delta); 2628 xfs_icsb_unlock(mp); 2629 goto again; 2630 } 2631 2632 #endif 2633