xref: /linux/fs/xfs/xfs_mount.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 
46 
47 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
48 
49 
50 #ifdef HAVE_PERCPU_SB
51 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
56 						int64_t, int);
57 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
58 
59 #else
60 
61 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
62 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
63 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
64 
65 #endif
66 
67 static const struct {
68 	short offset;
69 	short type;	/* 0 = integer
70 			 * 1 = binary / string (no translation)
71 			 */
72 } xfs_sb_info[] = {
73     { offsetof(xfs_sb_t, sb_magicnum),   0 },
74     { offsetof(xfs_sb_t, sb_blocksize),  0 },
75     { offsetof(xfs_sb_t, sb_dblocks),    0 },
76     { offsetof(xfs_sb_t, sb_rblocks),    0 },
77     { offsetof(xfs_sb_t, sb_rextents),   0 },
78     { offsetof(xfs_sb_t, sb_uuid),       1 },
79     { offsetof(xfs_sb_t, sb_logstart),   0 },
80     { offsetof(xfs_sb_t, sb_rootino),    0 },
81     { offsetof(xfs_sb_t, sb_rbmino),     0 },
82     { offsetof(xfs_sb_t, sb_rsumino),    0 },
83     { offsetof(xfs_sb_t, sb_rextsize),   0 },
84     { offsetof(xfs_sb_t, sb_agblocks),   0 },
85     { offsetof(xfs_sb_t, sb_agcount),    0 },
86     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
87     { offsetof(xfs_sb_t, sb_logblocks),  0 },
88     { offsetof(xfs_sb_t, sb_versionnum), 0 },
89     { offsetof(xfs_sb_t, sb_sectsize),   0 },
90     { offsetof(xfs_sb_t, sb_inodesize),  0 },
91     { offsetof(xfs_sb_t, sb_inopblock),  0 },
92     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
93     { offsetof(xfs_sb_t, sb_blocklog),   0 },
94     { offsetof(xfs_sb_t, sb_sectlog),    0 },
95     { offsetof(xfs_sb_t, sb_inodelog),   0 },
96     { offsetof(xfs_sb_t, sb_inopblog),   0 },
97     { offsetof(xfs_sb_t, sb_agblklog),   0 },
98     { offsetof(xfs_sb_t, sb_rextslog),   0 },
99     { offsetof(xfs_sb_t, sb_inprogress), 0 },
100     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
101     { offsetof(xfs_sb_t, sb_icount),     0 },
102     { offsetof(xfs_sb_t, sb_ifree),      0 },
103     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
104     { offsetof(xfs_sb_t, sb_frextents),  0 },
105     { offsetof(xfs_sb_t, sb_uquotino),   0 },
106     { offsetof(xfs_sb_t, sb_gquotino),   0 },
107     { offsetof(xfs_sb_t, sb_qflags),     0 },
108     { offsetof(xfs_sb_t, sb_flags),      0 },
109     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
110     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
111     { offsetof(xfs_sb_t, sb_unit),	 0 },
112     { offsetof(xfs_sb_t, sb_width),	 0 },
113     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
114     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
115     { offsetof(xfs_sb_t, sb_logsectsize),0 },
116     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
117     { offsetof(xfs_sb_t, sb_features2),	 0 },
118     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
119     { sizeof(xfs_sb_t),			 0 }
120 };
121 
122 static DEFINE_MUTEX(xfs_uuid_table_mutex);
123 static int xfs_uuid_table_size;
124 static uuid_t *xfs_uuid_table;
125 
126 /*
127  * See if the UUID is unique among mounted XFS filesystems.
128  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
129  */
130 STATIC int
131 xfs_uuid_mount(
132 	struct xfs_mount	*mp)
133 {
134 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
135 	int			hole, i;
136 
137 	if (mp->m_flags & XFS_MOUNT_NOUUID)
138 		return 0;
139 
140 	if (uuid_is_nil(uuid)) {
141 		cmn_err(CE_WARN,
142 			"XFS: Filesystem %s has nil UUID - can't mount",
143 			mp->m_fsname);
144 		return XFS_ERROR(EINVAL);
145 	}
146 
147 	mutex_lock(&xfs_uuid_table_mutex);
148 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
149 		if (uuid_is_nil(&xfs_uuid_table[i])) {
150 			hole = i;
151 			continue;
152 		}
153 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
154 			goto out_duplicate;
155 	}
156 
157 	if (hole < 0) {
158 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
159 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
160 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
161 			KM_SLEEP);
162 		hole = xfs_uuid_table_size++;
163 	}
164 	xfs_uuid_table[hole] = *uuid;
165 	mutex_unlock(&xfs_uuid_table_mutex);
166 
167 	return 0;
168 
169  out_duplicate:
170 	mutex_unlock(&xfs_uuid_table_mutex);
171 	cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
172 			 mp->m_fsname);
173 	return XFS_ERROR(EINVAL);
174 }
175 
176 STATIC void
177 xfs_uuid_unmount(
178 	struct xfs_mount	*mp)
179 {
180 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
181 	int			i;
182 
183 	if (mp->m_flags & XFS_MOUNT_NOUUID)
184 		return;
185 
186 	mutex_lock(&xfs_uuid_table_mutex);
187 	for (i = 0; i < xfs_uuid_table_size; i++) {
188 		if (uuid_is_nil(&xfs_uuid_table[i]))
189 			continue;
190 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 			continue;
192 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 		break;
194 	}
195 	ASSERT(i < xfs_uuid_table_size);
196 	mutex_unlock(&xfs_uuid_table_mutex);
197 }
198 
199 
200 /*
201  * Reference counting access wrappers to the perag structures.
202  */
203 struct xfs_perag *
204 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
205 {
206 	struct xfs_perag	*pag;
207 	int			ref = 0;
208 
209 	spin_lock(&mp->m_perag_lock);
210 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
211 	if (pag) {
212 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
213 		/* catch leaks in the positive direction during testing */
214 		ASSERT(atomic_read(&pag->pag_ref) < 1000);
215 		ref = atomic_inc_return(&pag->pag_ref);
216 	}
217 	spin_unlock(&mp->m_perag_lock);
218 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 	return pag;
220 }
221 
222 void
223 xfs_perag_put(struct xfs_perag *pag)
224 {
225 	int	ref;
226 
227 	ASSERT(atomic_read(&pag->pag_ref) > 0);
228 	ref = atomic_dec_return(&pag->pag_ref);
229 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
230 }
231 
232 /*
233  * Free up the resources associated with a mount structure.  Assume that
234  * the structure was initially zeroed, so we can tell which fields got
235  * initialized.
236  */
237 STATIC void
238 xfs_free_perag(
239 	xfs_mount_t	*mp)
240 {
241 	xfs_agnumber_t	agno;
242 	struct xfs_perag *pag;
243 
244 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
245 		spin_lock(&mp->m_perag_lock);
246 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
247 		ASSERT(pag);
248 		ASSERT(atomic_read(&pag->pag_ref) == 0);
249 		spin_unlock(&mp->m_perag_lock);
250 		kmem_free(pag);
251 	}
252 }
253 
254 /*
255  * Check size of device based on the (data/realtime) block count.
256  * Note: this check is used by the growfs code as well as mount.
257  */
258 int
259 xfs_sb_validate_fsb_count(
260 	xfs_sb_t	*sbp,
261 	__uint64_t	nblocks)
262 {
263 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
264 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
265 
266 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
267 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
268 		return EFBIG;
269 #else                  /* Limited by UINT_MAX of sectors */
270 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
271 		return EFBIG;
272 #endif
273 	return 0;
274 }
275 
276 /*
277  * Check the validity of the SB found.
278  */
279 STATIC int
280 xfs_mount_validate_sb(
281 	xfs_mount_t	*mp,
282 	xfs_sb_t	*sbp,
283 	int		flags)
284 {
285 	/*
286 	 * If the log device and data device have the
287 	 * same device number, the log is internal.
288 	 * Consequently, the sb_logstart should be non-zero.  If
289 	 * we have a zero sb_logstart in this case, we may be trying to mount
290 	 * a volume filesystem in a non-volume manner.
291 	 */
292 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
293 		xfs_fs_mount_cmn_err(flags, "bad magic number");
294 		return XFS_ERROR(EWRONGFS);
295 	}
296 
297 	if (!xfs_sb_good_version(sbp)) {
298 		xfs_fs_mount_cmn_err(flags, "bad version");
299 		return XFS_ERROR(EWRONGFS);
300 	}
301 
302 	if (unlikely(
303 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
304 		xfs_fs_mount_cmn_err(flags,
305 			"filesystem is marked as having an external log; "
306 			"specify logdev on the\nmount command line.");
307 		return XFS_ERROR(EINVAL);
308 	}
309 
310 	if (unlikely(
311 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
312 		xfs_fs_mount_cmn_err(flags,
313 			"filesystem is marked as having an internal log; "
314 			"do not specify logdev on\nthe mount command line.");
315 		return XFS_ERROR(EINVAL);
316 	}
317 
318 	/*
319 	 * More sanity checking. These were stolen directly from
320 	 * xfs_repair.
321 	 */
322 	if (unlikely(
323 	    sbp->sb_agcount <= 0					||
324 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
325 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
326 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
327 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
328 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
329 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
330 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
331 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
332 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
333 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
334 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
335 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
336 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
337 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
338 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
339 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
340 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
341 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
342 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
343 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
344 		return XFS_ERROR(EFSCORRUPTED);
345 	}
346 
347 	/*
348 	 * Sanity check AG count, size fields against data size field
349 	 */
350 	if (unlikely(
351 	    sbp->sb_dblocks == 0 ||
352 	    sbp->sb_dblocks >
353 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
354 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
355 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
356 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
357 		return XFS_ERROR(EFSCORRUPTED);
358 	}
359 
360 	/*
361 	 * Until this is fixed only page-sized or smaller data blocks work.
362 	 */
363 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
364 		xfs_fs_mount_cmn_err(flags,
365 			"file system with blocksize %d bytes",
366 			sbp->sb_blocksize);
367 		xfs_fs_mount_cmn_err(flags,
368 			"only pagesize (%ld) or less will currently work.",
369 			PAGE_SIZE);
370 		return XFS_ERROR(ENOSYS);
371 	}
372 
373 	/*
374 	 * Currently only very few inode sizes are supported.
375 	 */
376 	switch (sbp->sb_inodesize) {
377 	case 256:
378 	case 512:
379 	case 1024:
380 	case 2048:
381 		break;
382 	default:
383 		xfs_fs_mount_cmn_err(flags,
384 			"inode size of %d bytes not supported",
385 			sbp->sb_inodesize);
386 		return XFS_ERROR(ENOSYS);
387 	}
388 
389 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
390 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
391 		xfs_fs_mount_cmn_err(flags,
392 			"file system too large to be mounted on this system.");
393 		return XFS_ERROR(EFBIG);
394 	}
395 
396 	if (unlikely(sbp->sb_inprogress)) {
397 		xfs_fs_mount_cmn_err(flags, "file system busy");
398 		return XFS_ERROR(EFSCORRUPTED);
399 	}
400 
401 	/*
402 	 * Version 1 directory format has never worked on Linux.
403 	 */
404 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
405 		xfs_fs_mount_cmn_err(flags,
406 			"file system using version 1 directory format");
407 		return XFS_ERROR(ENOSYS);
408 	}
409 
410 	return 0;
411 }
412 
413 int
414 xfs_initialize_perag(
415 	xfs_mount_t	*mp,
416 	xfs_agnumber_t	agcount,
417 	xfs_agnumber_t	*maxagi)
418 {
419 	xfs_agnumber_t	index, max_metadata;
420 	xfs_agnumber_t	first_initialised = 0;
421 	xfs_perag_t	*pag;
422 	xfs_agino_t	agino;
423 	xfs_ino_t	ino;
424 	xfs_sb_t	*sbp = &mp->m_sb;
425 	int		error = -ENOMEM;
426 
427 	/*
428 	 * Walk the current per-ag tree so we don't try to initialise AGs
429 	 * that already exist (growfs case). Allocate and insert all the
430 	 * AGs we don't find ready for initialisation.
431 	 */
432 	for (index = 0; index < agcount; index++) {
433 		pag = xfs_perag_get(mp, index);
434 		if (pag) {
435 			xfs_perag_put(pag);
436 			continue;
437 		}
438 		if (!first_initialised)
439 			first_initialised = index;
440 
441 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
442 		if (!pag)
443 			goto out_unwind;
444 		pag->pag_agno = index;
445 		pag->pag_mount = mp;
446 		rwlock_init(&pag->pag_ici_lock);
447 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
448 
449 		if (radix_tree_preload(GFP_NOFS))
450 			goto out_unwind;
451 
452 		spin_lock(&mp->m_perag_lock);
453 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
454 			BUG();
455 			spin_unlock(&mp->m_perag_lock);
456 			radix_tree_preload_end();
457 			error = -EEXIST;
458 			goto out_unwind;
459 		}
460 		spin_unlock(&mp->m_perag_lock);
461 		radix_tree_preload_end();
462 	}
463 
464 	/*
465 	 * If we mount with the inode64 option, or no inode overflows
466 	 * the legacy 32-bit address space clear the inode32 option.
467 	 */
468 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
469 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
470 
471 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
472 		mp->m_flags |= XFS_MOUNT_32BITINODES;
473 	else
474 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
475 
476 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
477 		/*
478 		 * Calculate how much should be reserved for inodes to meet
479 		 * the max inode percentage.
480 		 */
481 		if (mp->m_maxicount) {
482 			__uint64_t	icount;
483 
484 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
485 			do_div(icount, 100);
486 			icount += sbp->sb_agblocks - 1;
487 			do_div(icount, sbp->sb_agblocks);
488 			max_metadata = icount;
489 		} else {
490 			max_metadata = agcount;
491 		}
492 
493 		for (index = 0; index < agcount; index++) {
494 			ino = XFS_AGINO_TO_INO(mp, index, agino);
495 			if (ino > XFS_MAXINUMBER_32) {
496 				index++;
497 				break;
498 			}
499 
500 			pag = xfs_perag_get(mp, index);
501 			pag->pagi_inodeok = 1;
502 			if (index < max_metadata)
503 				pag->pagf_metadata = 1;
504 			xfs_perag_put(pag);
505 		}
506 	} else {
507 		for (index = 0; index < agcount; index++) {
508 			pag = xfs_perag_get(mp, index);
509 			pag->pagi_inodeok = 1;
510 			xfs_perag_put(pag);
511 		}
512 	}
513 
514 	if (maxagi)
515 		*maxagi = index;
516 	return 0;
517 
518 out_unwind:
519 	kmem_free(pag);
520 	for (; index > first_initialised; index--) {
521 		pag = radix_tree_delete(&mp->m_perag_tree, index);
522 		kmem_free(pag);
523 	}
524 	return error;
525 }
526 
527 void
528 xfs_sb_from_disk(
529 	xfs_sb_t	*to,
530 	xfs_dsb_t	*from)
531 {
532 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
533 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
534 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
535 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
536 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
537 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
538 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
539 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
540 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
541 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
542 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
543 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
544 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
545 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
546 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
547 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
548 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
549 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
550 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
551 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
552 	to->sb_blocklog = from->sb_blocklog;
553 	to->sb_sectlog = from->sb_sectlog;
554 	to->sb_inodelog = from->sb_inodelog;
555 	to->sb_inopblog = from->sb_inopblog;
556 	to->sb_agblklog = from->sb_agblklog;
557 	to->sb_rextslog = from->sb_rextslog;
558 	to->sb_inprogress = from->sb_inprogress;
559 	to->sb_imax_pct = from->sb_imax_pct;
560 	to->sb_icount = be64_to_cpu(from->sb_icount);
561 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
562 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
563 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
564 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
565 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
566 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
567 	to->sb_flags = from->sb_flags;
568 	to->sb_shared_vn = from->sb_shared_vn;
569 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
570 	to->sb_unit = be32_to_cpu(from->sb_unit);
571 	to->sb_width = be32_to_cpu(from->sb_width);
572 	to->sb_dirblklog = from->sb_dirblklog;
573 	to->sb_logsectlog = from->sb_logsectlog;
574 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
575 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
576 	to->sb_features2 = be32_to_cpu(from->sb_features2);
577 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
578 }
579 
580 /*
581  * Copy in core superblock to ondisk one.
582  *
583  * The fields argument is mask of superblock fields to copy.
584  */
585 void
586 xfs_sb_to_disk(
587 	xfs_dsb_t	*to,
588 	xfs_sb_t	*from,
589 	__int64_t	fields)
590 {
591 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
592 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
593 	xfs_sb_field_t	f;
594 	int		first;
595 	int		size;
596 
597 	ASSERT(fields);
598 	if (!fields)
599 		return;
600 
601 	while (fields) {
602 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
603 		first = xfs_sb_info[f].offset;
604 		size = xfs_sb_info[f + 1].offset - first;
605 
606 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
607 
608 		if (size == 1 || xfs_sb_info[f].type == 1) {
609 			memcpy(to_ptr + first, from_ptr + first, size);
610 		} else {
611 			switch (size) {
612 			case 2:
613 				*(__be16 *)(to_ptr + first) =
614 					cpu_to_be16(*(__u16 *)(from_ptr + first));
615 				break;
616 			case 4:
617 				*(__be32 *)(to_ptr + first) =
618 					cpu_to_be32(*(__u32 *)(from_ptr + first));
619 				break;
620 			case 8:
621 				*(__be64 *)(to_ptr + first) =
622 					cpu_to_be64(*(__u64 *)(from_ptr + first));
623 				break;
624 			default:
625 				ASSERT(0);
626 			}
627 		}
628 
629 		fields &= ~(1LL << f);
630 	}
631 }
632 
633 /*
634  * xfs_readsb
635  *
636  * Does the initial read of the superblock.
637  */
638 int
639 xfs_readsb(xfs_mount_t *mp, int flags)
640 {
641 	unsigned int	sector_size;
642 	unsigned int	extra_flags;
643 	xfs_buf_t	*bp;
644 	int		error;
645 
646 	ASSERT(mp->m_sb_bp == NULL);
647 	ASSERT(mp->m_ddev_targp != NULL);
648 
649 	/*
650 	 * Allocate a (locked) buffer to hold the superblock.
651 	 * This will be kept around at all times to optimize
652 	 * access to the superblock.
653 	 */
654 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
655 	extra_flags = XBF_LOCK | XBF_FS_MANAGED | XBF_MAPPED;
656 
657 	bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
658 			  extra_flags);
659 	if (!bp || XFS_BUF_ISERROR(bp)) {
660 		xfs_fs_mount_cmn_err(flags, "SB read failed");
661 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
662 		goto fail;
663 	}
664 	ASSERT(XFS_BUF_ISBUSY(bp));
665 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
666 
667 	/*
668 	 * Initialize the mount structure from the superblock.
669 	 * But first do some basic consistency checking.
670 	 */
671 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
672 
673 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
674 	if (error) {
675 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
676 		goto fail;
677 	}
678 
679 	/*
680 	 * We must be able to do sector-sized and sector-aligned IO.
681 	 */
682 	if (sector_size > mp->m_sb.sb_sectsize) {
683 		xfs_fs_mount_cmn_err(flags,
684 			"device supports only %u byte sectors (not %u)",
685 			sector_size, mp->m_sb.sb_sectsize);
686 		error = ENOSYS;
687 		goto fail;
688 	}
689 
690 	/*
691 	 * If device sector size is smaller than the superblock size,
692 	 * re-read the superblock so the buffer is correctly sized.
693 	 */
694 	if (sector_size < mp->m_sb.sb_sectsize) {
695 		XFS_BUF_UNMANAGE(bp);
696 		xfs_buf_relse(bp);
697 		sector_size = mp->m_sb.sb_sectsize;
698 		bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
699 				  BTOBB(sector_size), extra_flags);
700 		if (!bp || XFS_BUF_ISERROR(bp)) {
701 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
702 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
703 			goto fail;
704 		}
705 		ASSERT(XFS_BUF_ISBUSY(bp));
706 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
707 	}
708 
709 	/* Initialize per-cpu counters */
710 	xfs_icsb_reinit_counters(mp);
711 
712 	mp->m_sb_bp = bp;
713 	xfs_buf_relse(bp);
714 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
715 	return 0;
716 
717  fail:
718 	if (bp) {
719 		XFS_BUF_UNMANAGE(bp);
720 		xfs_buf_relse(bp);
721 	}
722 	return error;
723 }
724 
725 
726 /*
727  * xfs_mount_common
728  *
729  * Mount initialization code establishing various mount
730  * fields from the superblock associated with the given
731  * mount structure
732  */
733 STATIC void
734 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
735 {
736 	mp->m_agfrotor = mp->m_agirotor = 0;
737 	spin_lock_init(&mp->m_agirotor_lock);
738 	mp->m_maxagi = mp->m_sb.sb_agcount;
739 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
740 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
741 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
742 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
743 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
744 	mp->m_blockmask = sbp->sb_blocksize - 1;
745 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
746 	mp->m_blockwmask = mp->m_blockwsize - 1;
747 
748 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
749 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
750 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
751 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
752 
753 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
754 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
755 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
756 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
757 
758 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
759 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
760 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
761 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
762 
763 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
764 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
765 					sbp->sb_inopblock);
766 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
767 }
768 
769 /*
770  * xfs_initialize_perag_data
771  *
772  * Read in each per-ag structure so we can count up the number of
773  * allocated inodes, free inodes and used filesystem blocks as this
774  * information is no longer persistent in the superblock. Once we have
775  * this information, write it into the in-core superblock structure.
776  */
777 STATIC int
778 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
779 {
780 	xfs_agnumber_t	index;
781 	xfs_perag_t	*pag;
782 	xfs_sb_t	*sbp = &mp->m_sb;
783 	uint64_t	ifree = 0;
784 	uint64_t	ialloc = 0;
785 	uint64_t	bfree = 0;
786 	uint64_t	bfreelst = 0;
787 	uint64_t	btree = 0;
788 	int		error;
789 
790 	for (index = 0; index < agcount; index++) {
791 		/*
792 		 * read the agf, then the agi. This gets us
793 		 * all the information we need and populates the
794 		 * per-ag structures for us.
795 		 */
796 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
797 		if (error)
798 			return error;
799 
800 		error = xfs_ialloc_pagi_init(mp, NULL, index);
801 		if (error)
802 			return error;
803 		pag = xfs_perag_get(mp, index);
804 		ifree += pag->pagi_freecount;
805 		ialloc += pag->pagi_count;
806 		bfree += pag->pagf_freeblks;
807 		bfreelst += pag->pagf_flcount;
808 		btree += pag->pagf_btreeblks;
809 		xfs_perag_put(pag);
810 	}
811 	/*
812 	 * Overwrite incore superblock counters with just-read data
813 	 */
814 	spin_lock(&mp->m_sb_lock);
815 	sbp->sb_ifree = ifree;
816 	sbp->sb_icount = ialloc;
817 	sbp->sb_fdblocks = bfree + bfreelst + btree;
818 	spin_unlock(&mp->m_sb_lock);
819 
820 	/* Fixup the per-cpu counters as well. */
821 	xfs_icsb_reinit_counters(mp);
822 
823 	return 0;
824 }
825 
826 /*
827  * Update alignment values based on mount options and sb values
828  */
829 STATIC int
830 xfs_update_alignment(xfs_mount_t *mp)
831 {
832 	xfs_sb_t	*sbp = &(mp->m_sb);
833 
834 	if (mp->m_dalign) {
835 		/*
836 		 * If stripe unit and stripe width are not multiples
837 		 * of the fs blocksize turn off alignment.
838 		 */
839 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
840 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
841 			if (mp->m_flags & XFS_MOUNT_RETERR) {
842 				cmn_err(CE_WARN,
843 					"XFS: alignment check 1 failed");
844 				return XFS_ERROR(EINVAL);
845 			}
846 			mp->m_dalign = mp->m_swidth = 0;
847 		} else {
848 			/*
849 			 * Convert the stripe unit and width to FSBs.
850 			 */
851 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
852 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
853 				if (mp->m_flags & XFS_MOUNT_RETERR) {
854 					return XFS_ERROR(EINVAL);
855 				}
856 				xfs_fs_cmn_err(CE_WARN, mp,
857 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
858 					mp->m_dalign, mp->m_swidth,
859 					sbp->sb_agblocks);
860 
861 				mp->m_dalign = 0;
862 				mp->m_swidth = 0;
863 			} else if (mp->m_dalign) {
864 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
865 			} else {
866 				if (mp->m_flags & XFS_MOUNT_RETERR) {
867 					xfs_fs_cmn_err(CE_WARN, mp,
868 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
869                                         	mp->m_dalign,
870 						mp->m_blockmask +1);
871 					return XFS_ERROR(EINVAL);
872 				}
873 				mp->m_swidth = 0;
874 			}
875 		}
876 
877 		/*
878 		 * Update superblock with new values
879 		 * and log changes
880 		 */
881 		if (xfs_sb_version_hasdalign(sbp)) {
882 			if (sbp->sb_unit != mp->m_dalign) {
883 				sbp->sb_unit = mp->m_dalign;
884 				mp->m_update_flags |= XFS_SB_UNIT;
885 			}
886 			if (sbp->sb_width != mp->m_swidth) {
887 				sbp->sb_width = mp->m_swidth;
888 				mp->m_update_flags |= XFS_SB_WIDTH;
889 			}
890 		}
891 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
892 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
893 			mp->m_dalign = sbp->sb_unit;
894 			mp->m_swidth = sbp->sb_width;
895 	}
896 
897 	return 0;
898 }
899 
900 /*
901  * Set the maximum inode count for this filesystem
902  */
903 STATIC void
904 xfs_set_maxicount(xfs_mount_t *mp)
905 {
906 	xfs_sb_t	*sbp = &(mp->m_sb);
907 	__uint64_t	icount;
908 
909 	if (sbp->sb_imax_pct) {
910 		/*
911 		 * Make sure the maximum inode count is a multiple
912 		 * of the units we allocate inodes in.
913 		 */
914 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
915 		do_div(icount, 100);
916 		do_div(icount, mp->m_ialloc_blks);
917 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
918 				   sbp->sb_inopblog;
919 	} else {
920 		mp->m_maxicount = 0;
921 	}
922 }
923 
924 /*
925  * Set the default minimum read and write sizes unless
926  * already specified in a mount option.
927  * We use smaller I/O sizes when the file system
928  * is being used for NFS service (wsync mount option).
929  */
930 STATIC void
931 xfs_set_rw_sizes(xfs_mount_t *mp)
932 {
933 	xfs_sb_t	*sbp = &(mp->m_sb);
934 	int		readio_log, writeio_log;
935 
936 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
937 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
938 			readio_log = XFS_WSYNC_READIO_LOG;
939 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
940 		} else {
941 			readio_log = XFS_READIO_LOG_LARGE;
942 			writeio_log = XFS_WRITEIO_LOG_LARGE;
943 		}
944 	} else {
945 		readio_log = mp->m_readio_log;
946 		writeio_log = mp->m_writeio_log;
947 	}
948 
949 	if (sbp->sb_blocklog > readio_log) {
950 		mp->m_readio_log = sbp->sb_blocklog;
951 	} else {
952 		mp->m_readio_log = readio_log;
953 	}
954 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
955 	if (sbp->sb_blocklog > writeio_log) {
956 		mp->m_writeio_log = sbp->sb_blocklog;
957 	} else {
958 		mp->m_writeio_log = writeio_log;
959 	}
960 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
961 }
962 
963 /*
964  * Set whether we're using inode alignment.
965  */
966 STATIC void
967 xfs_set_inoalignment(xfs_mount_t *mp)
968 {
969 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
970 	    mp->m_sb.sb_inoalignmt >=
971 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
972 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
973 	else
974 		mp->m_inoalign_mask = 0;
975 	/*
976 	 * If we are using stripe alignment, check whether
977 	 * the stripe unit is a multiple of the inode alignment
978 	 */
979 	if (mp->m_dalign && mp->m_inoalign_mask &&
980 	    !(mp->m_dalign & mp->m_inoalign_mask))
981 		mp->m_sinoalign = mp->m_dalign;
982 	else
983 		mp->m_sinoalign = 0;
984 }
985 
986 /*
987  * Check that the data (and log if separate) are an ok size.
988  */
989 STATIC int
990 xfs_check_sizes(xfs_mount_t *mp)
991 {
992 	xfs_buf_t	*bp;
993 	xfs_daddr_t	d;
994 	int		error;
995 
996 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
997 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
998 		cmn_err(CE_WARN, "XFS: size check 1 failed");
999 		return XFS_ERROR(EFBIG);
1000 	}
1001 	error = xfs_read_buf(mp, mp->m_ddev_targp,
1002 			     d - XFS_FSS_TO_BB(mp, 1),
1003 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
1004 	if (!error) {
1005 		xfs_buf_relse(bp);
1006 	} else {
1007 		cmn_err(CE_WARN, "XFS: size check 2 failed");
1008 		if (error == ENOSPC)
1009 			error = XFS_ERROR(EFBIG);
1010 		return error;
1011 	}
1012 
1013 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1014 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1015 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1016 			cmn_err(CE_WARN, "XFS: size check 3 failed");
1017 			return XFS_ERROR(EFBIG);
1018 		}
1019 		error = xfs_read_buf(mp, mp->m_logdev_targp,
1020 				     d - XFS_FSB_TO_BB(mp, 1),
1021 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
1022 		if (!error) {
1023 			xfs_buf_relse(bp);
1024 		} else {
1025 			cmn_err(CE_WARN, "XFS: size check 3 failed");
1026 			if (error == ENOSPC)
1027 				error = XFS_ERROR(EFBIG);
1028 			return error;
1029 		}
1030 	}
1031 	return 0;
1032 }
1033 
1034 /*
1035  * Clear the quotaflags in memory and in the superblock.
1036  */
1037 int
1038 xfs_mount_reset_sbqflags(
1039 	struct xfs_mount	*mp)
1040 {
1041 	int			error;
1042 	struct xfs_trans	*tp;
1043 
1044 	mp->m_qflags = 0;
1045 
1046 	/*
1047 	 * It is OK to look at sb_qflags here in mount path,
1048 	 * without m_sb_lock.
1049 	 */
1050 	if (mp->m_sb.sb_qflags == 0)
1051 		return 0;
1052 	spin_lock(&mp->m_sb_lock);
1053 	mp->m_sb.sb_qflags = 0;
1054 	spin_unlock(&mp->m_sb_lock);
1055 
1056 	/*
1057 	 * If the fs is readonly, let the incore superblock run
1058 	 * with quotas off but don't flush the update out to disk
1059 	 */
1060 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1061 		return 0;
1062 
1063 #ifdef QUOTADEBUG
1064 	xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1065 #endif
1066 
1067 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1068 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1069 				      XFS_DEFAULT_LOG_COUNT);
1070 	if (error) {
1071 		xfs_trans_cancel(tp, 0);
1072 		xfs_fs_cmn_err(CE_ALERT, mp,
1073 			"xfs_mount_reset_sbqflags: Superblock update failed!");
1074 		return error;
1075 	}
1076 
1077 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1078 	return xfs_trans_commit(tp, 0);
1079 }
1080 
1081 __uint64_t
1082 xfs_default_resblks(xfs_mount_t *mp)
1083 {
1084 	__uint64_t resblks;
1085 
1086 	/*
1087 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1088 	 * smaller.  This is intended to cover concurrent allocation
1089 	 * transactions when we initially hit enospc. These each require a 4
1090 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1091 	 * allocation reservations.
1092 	 */
1093 	resblks = mp->m_sb.sb_dblocks;
1094 	do_div(resblks, 20);
1095 	resblks = min_t(__uint64_t, resblks, 8192);
1096 	return resblks;
1097 }
1098 
1099 /*
1100  * This function does the following on an initial mount of a file system:
1101  *	- reads the superblock from disk and init the mount struct
1102  *	- if we're a 32-bit kernel, do a size check on the superblock
1103  *		so we don't mount terabyte filesystems
1104  *	- init mount struct realtime fields
1105  *	- allocate inode hash table for fs
1106  *	- init directory manager
1107  *	- perform recovery and init the log manager
1108  */
1109 int
1110 xfs_mountfs(
1111 	xfs_mount_t	*mp)
1112 {
1113 	xfs_sb_t	*sbp = &(mp->m_sb);
1114 	xfs_inode_t	*rip;
1115 	__uint64_t	resblks;
1116 	uint		quotamount = 0;
1117 	uint		quotaflags = 0;
1118 	int		error = 0;
1119 
1120 	xfs_mount_common(mp, sbp);
1121 
1122 	/*
1123 	 * Check for a mismatched features2 values.  Older kernels
1124 	 * read & wrote into the wrong sb offset for sb_features2
1125 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1126 	 * when sb_features2 was added, which made older superblock
1127 	 * reading/writing routines swap it as a 64-bit value.
1128 	 *
1129 	 * For backwards compatibility, we make both slots equal.
1130 	 *
1131 	 * If we detect a mismatched field, we OR the set bits into the
1132 	 * existing features2 field in case it has already been modified; we
1133 	 * don't want to lose any features.  We then update the bad location
1134 	 * with the ORed value so that older kernels will see any features2
1135 	 * flags, and mark the two fields as needing updates once the
1136 	 * transaction subsystem is online.
1137 	 */
1138 	if (xfs_sb_has_mismatched_features2(sbp)) {
1139 		cmn_err(CE_WARN,
1140 			"XFS: correcting sb_features alignment problem");
1141 		sbp->sb_features2 |= sbp->sb_bad_features2;
1142 		sbp->sb_bad_features2 = sbp->sb_features2;
1143 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1144 
1145 		/*
1146 		 * Re-check for ATTR2 in case it was found in bad_features2
1147 		 * slot.
1148 		 */
1149 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1150 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1151 			mp->m_flags |= XFS_MOUNT_ATTR2;
1152 	}
1153 
1154 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1155 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1156 		xfs_sb_version_removeattr2(&mp->m_sb);
1157 		mp->m_update_flags |= XFS_SB_FEATURES2;
1158 
1159 		/* update sb_versionnum for the clearing of the morebits */
1160 		if (!sbp->sb_features2)
1161 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1162 	}
1163 
1164 	/*
1165 	 * Check if sb_agblocks is aligned at stripe boundary
1166 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1167 	 * allocator alignment is within an ag, therefore ag has
1168 	 * to be aligned at stripe boundary.
1169 	 */
1170 	error = xfs_update_alignment(mp);
1171 	if (error)
1172 		goto out;
1173 
1174 	xfs_alloc_compute_maxlevels(mp);
1175 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1176 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1177 	xfs_ialloc_compute_maxlevels(mp);
1178 
1179 	xfs_set_maxicount(mp);
1180 
1181 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1182 
1183 	error = xfs_uuid_mount(mp);
1184 	if (error)
1185 		goto out;
1186 
1187 	/*
1188 	 * Set the minimum read and write sizes
1189 	 */
1190 	xfs_set_rw_sizes(mp);
1191 
1192 	/*
1193 	 * Set the inode cluster size.
1194 	 * This may still be overridden by the file system
1195 	 * block size if it is larger than the chosen cluster size.
1196 	 */
1197 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1198 
1199 	/*
1200 	 * Set inode alignment fields
1201 	 */
1202 	xfs_set_inoalignment(mp);
1203 
1204 	/*
1205 	 * Check that the data (and log if separate) are an ok size.
1206 	 */
1207 	error = xfs_check_sizes(mp);
1208 	if (error)
1209 		goto out_remove_uuid;
1210 
1211 	/*
1212 	 * Initialize realtime fields in the mount structure
1213 	 */
1214 	error = xfs_rtmount_init(mp);
1215 	if (error) {
1216 		cmn_err(CE_WARN, "XFS: RT mount failed");
1217 		goto out_remove_uuid;
1218 	}
1219 
1220 	/*
1221 	 *  Copies the low order bits of the timestamp and the randomly
1222 	 *  set "sequence" number out of a UUID.
1223 	 */
1224 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1225 
1226 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1227 
1228 	xfs_dir_mount(mp);
1229 
1230 	/*
1231 	 * Initialize the attribute manager's entries.
1232 	 */
1233 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1234 
1235 	/*
1236 	 * Initialize the precomputed transaction reservations values.
1237 	 */
1238 	xfs_trans_init(mp);
1239 
1240 	/*
1241 	 * Allocate and initialize the per-ag data.
1242 	 */
1243 	spin_lock_init(&mp->m_perag_lock);
1244 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1245 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1246 	if (error) {
1247 		cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
1248 		goto out_remove_uuid;
1249 	}
1250 
1251 	if (!sbp->sb_logblocks) {
1252 		cmn_err(CE_WARN, "XFS: no log defined");
1253 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1254 		error = XFS_ERROR(EFSCORRUPTED);
1255 		goto out_free_perag;
1256 	}
1257 
1258 	/*
1259 	 * log's mount-time initialization. Perform 1st part recovery if needed
1260 	 */
1261 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1262 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1263 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1264 	if (error) {
1265 		cmn_err(CE_WARN, "XFS: log mount failed");
1266 		goto out_free_perag;
1267 	}
1268 
1269 	/*
1270 	 * Now the log is mounted, we know if it was an unclean shutdown or
1271 	 * not. If it was, with the first phase of recovery has completed, we
1272 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1273 	 * but they are recovered transactionally in the second recovery phase
1274 	 * later.
1275 	 *
1276 	 * Hence we can safely re-initialise incore superblock counters from
1277 	 * the per-ag data. These may not be correct if the filesystem was not
1278 	 * cleanly unmounted, so we need to wait for recovery to finish before
1279 	 * doing this.
1280 	 *
1281 	 * If the filesystem was cleanly unmounted, then we can trust the
1282 	 * values in the superblock to be correct and we don't need to do
1283 	 * anything here.
1284 	 *
1285 	 * If we are currently making the filesystem, the initialisation will
1286 	 * fail as the perag data is in an undefined state.
1287 	 */
1288 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1289 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1290 	     !mp->m_sb.sb_inprogress) {
1291 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1292 		if (error)
1293 			goto out_free_perag;
1294 	}
1295 
1296 	/*
1297 	 * Get and sanity-check the root inode.
1298 	 * Save the pointer to it in the mount structure.
1299 	 */
1300 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1301 	if (error) {
1302 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1303 		goto out_log_dealloc;
1304 	}
1305 
1306 	ASSERT(rip != NULL);
1307 
1308 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1309 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1310 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1311 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1312 			(unsigned long long)rip->i_ino);
1313 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1314 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1315 				 mp);
1316 		error = XFS_ERROR(EFSCORRUPTED);
1317 		goto out_rele_rip;
1318 	}
1319 	mp->m_rootip = rip;	/* save it */
1320 
1321 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1322 
1323 	/*
1324 	 * Initialize realtime inode pointers in the mount structure
1325 	 */
1326 	error = xfs_rtmount_inodes(mp);
1327 	if (error) {
1328 		/*
1329 		 * Free up the root inode.
1330 		 */
1331 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1332 		goto out_rele_rip;
1333 	}
1334 
1335 	/*
1336 	 * If this is a read-only mount defer the superblock updates until
1337 	 * the next remount into writeable mode.  Otherwise we would never
1338 	 * perform the update e.g. for the root filesystem.
1339 	 */
1340 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1341 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1342 		if (error) {
1343 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1344 			goto out_rtunmount;
1345 		}
1346 	}
1347 
1348 	/*
1349 	 * Initialise the XFS quota management subsystem for this mount
1350 	 */
1351 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1352 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1353 		if (error)
1354 			goto out_rtunmount;
1355 	} else {
1356 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1357 
1358 		/*
1359 		 * If a file system had quotas running earlier, but decided to
1360 		 * mount without -o uquota/pquota/gquota options, revoke the
1361 		 * quotachecked license.
1362 		 */
1363 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1364 			cmn_err(CE_NOTE,
1365 				"XFS: resetting qflags for filesystem %s",
1366 				mp->m_fsname);
1367 
1368 			error = xfs_mount_reset_sbqflags(mp);
1369 			if (error)
1370 				return error;
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * Finish recovering the file system.  This part needed to be
1376 	 * delayed until after the root and real-time bitmap inodes
1377 	 * were consistently read in.
1378 	 */
1379 	error = xfs_log_mount_finish(mp);
1380 	if (error) {
1381 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1382 		goto out_rtunmount;
1383 	}
1384 
1385 	/*
1386 	 * Complete the quota initialisation, post-log-replay component.
1387 	 */
1388 	if (quotamount) {
1389 		ASSERT(mp->m_qflags == 0);
1390 		mp->m_qflags = quotaflags;
1391 
1392 		xfs_qm_mount_quotas(mp);
1393 	}
1394 
1395 	/*
1396 	 * Now we are mounted, reserve a small amount of unused space for
1397 	 * privileged transactions. This is needed so that transaction
1398 	 * space required for critical operations can dip into this pool
1399 	 * when at ENOSPC. This is needed for operations like create with
1400 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1401 	 * are not allowed to use this reserved space.
1402 	 *
1403 	 * This may drive us straight to ENOSPC on mount, but that implies
1404 	 * we were already there on the last unmount. Warn if this occurs.
1405 	 */
1406 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1407 		resblks = xfs_default_resblks(mp);
1408 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1409 		if (error)
1410 			cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1411 				"blocks. Continuing without a reserve pool.");
1412 	}
1413 
1414 	return 0;
1415 
1416  out_rtunmount:
1417 	xfs_rtunmount_inodes(mp);
1418  out_rele_rip:
1419 	IRELE(rip);
1420  out_log_dealloc:
1421 	xfs_log_unmount(mp);
1422  out_free_perag:
1423 	xfs_free_perag(mp);
1424  out_remove_uuid:
1425 	xfs_uuid_unmount(mp);
1426  out:
1427 	return error;
1428 }
1429 
1430 /*
1431  * This flushes out the inodes,dquots and the superblock, unmounts the
1432  * log and makes sure that incore structures are freed.
1433  */
1434 void
1435 xfs_unmountfs(
1436 	struct xfs_mount	*mp)
1437 {
1438 	__uint64_t		resblks;
1439 	int			error;
1440 
1441 	xfs_qm_unmount_quotas(mp);
1442 	xfs_rtunmount_inodes(mp);
1443 	IRELE(mp->m_rootip);
1444 
1445 	/*
1446 	 * We can potentially deadlock here if we have an inode cluster
1447 	 * that has been freed has its buffer still pinned in memory because
1448 	 * the transaction is still sitting in a iclog. The stale inodes
1449 	 * on that buffer will have their flush locks held until the
1450 	 * transaction hits the disk and the callbacks run. the inode
1451 	 * flush takes the flush lock unconditionally and with nothing to
1452 	 * push out the iclog we will never get that unlocked. hence we
1453 	 * need to force the log first.
1454 	 */
1455 	xfs_log_force(mp, XFS_LOG_SYNC);
1456 
1457 	/*
1458 	 * Do a delwri reclaim pass first so that as many dirty inodes are
1459 	 * queued up for IO as possible. Then flush the buffers before making
1460 	 * a synchronous path to catch all the remaining inodes are reclaimed.
1461 	 * This makes the reclaim process as quick as possible by avoiding
1462 	 * synchronous writeout and blocking on inodes already in the delwri
1463 	 * state as much as possible.
1464 	 */
1465 	xfs_reclaim_inodes(mp, 0);
1466 	XFS_bflush(mp->m_ddev_targp);
1467 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1468 
1469 	xfs_qm_unmount(mp);
1470 
1471 	/*
1472 	 * Flush out the log synchronously so that we know for sure
1473 	 * that nothing is pinned.  This is important because bflush()
1474 	 * will skip pinned buffers.
1475 	 */
1476 	xfs_log_force(mp, XFS_LOG_SYNC);
1477 
1478 	xfs_binval(mp->m_ddev_targp);
1479 	if (mp->m_rtdev_targp) {
1480 		xfs_binval(mp->m_rtdev_targp);
1481 	}
1482 
1483 	/*
1484 	 * Unreserve any blocks we have so that when we unmount we don't account
1485 	 * the reserved free space as used. This is really only necessary for
1486 	 * lazy superblock counting because it trusts the incore superblock
1487 	 * counters to be absolutely correct on clean unmount.
1488 	 *
1489 	 * We don't bother correcting this elsewhere for lazy superblock
1490 	 * counting because on mount of an unclean filesystem we reconstruct the
1491 	 * correct counter value and this is irrelevant.
1492 	 *
1493 	 * For non-lazy counter filesystems, this doesn't matter at all because
1494 	 * we only every apply deltas to the superblock and hence the incore
1495 	 * value does not matter....
1496 	 */
1497 	resblks = 0;
1498 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1499 	if (error)
1500 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1501 				"Freespace may not be correct on next mount.");
1502 
1503 	error = xfs_log_sbcount(mp, 1);
1504 	if (error)
1505 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1506 				"Freespace may not be correct on next mount.");
1507 	xfs_unmountfs_writesb(mp);
1508 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1509 	xfs_log_unmount_write(mp);
1510 	xfs_log_unmount(mp);
1511 	xfs_uuid_unmount(mp);
1512 
1513 #if defined(DEBUG)
1514 	xfs_errortag_clearall(mp, 0);
1515 #endif
1516 	xfs_free_perag(mp);
1517 }
1518 
1519 STATIC void
1520 xfs_unmountfs_wait(xfs_mount_t *mp)
1521 {
1522 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1523 		xfs_wait_buftarg(mp->m_logdev_targp);
1524 	if (mp->m_rtdev_targp)
1525 		xfs_wait_buftarg(mp->m_rtdev_targp);
1526 	xfs_wait_buftarg(mp->m_ddev_targp);
1527 }
1528 
1529 int
1530 xfs_fs_writable(xfs_mount_t *mp)
1531 {
1532 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1533 		(mp->m_flags & XFS_MOUNT_RDONLY));
1534 }
1535 
1536 /*
1537  * xfs_log_sbcount
1538  *
1539  * Called either periodically to keep the on disk superblock values
1540  * roughly up to date or from unmount to make sure the values are
1541  * correct on a clean unmount.
1542  *
1543  * Note this code can be called during the process of freezing, so
1544  * we may need to use the transaction allocator which does not not
1545  * block when the transaction subsystem is in its frozen state.
1546  */
1547 int
1548 xfs_log_sbcount(
1549 	xfs_mount_t	*mp,
1550 	uint		sync)
1551 {
1552 	xfs_trans_t	*tp;
1553 	int		error;
1554 
1555 	if (!xfs_fs_writable(mp))
1556 		return 0;
1557 
1558 	xfs_icsb_sync_counters(mp, 0);
1559 
1560 	/*
1561 	 * we don't need to do this if we are updating the superblock
1562 	 * counters on every modification.
1563 	 */
1564 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1565 		return 0;
1566 
1567 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1568 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1569 					XFS_DEFAULT_LOG_COUNT);
1570 	if (error) {
1571 		xfs_trans_cancel(tp, 0);
1572 		return error;
1573 	}
1574 
1575 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1576 	if (sync)
1577 		xfs_trans_set_sync(tp);
1578 	error = xfs_trans_commit(tp, 0);
1579 	return error;
1580 }
1581 
1582 int
1583 xfs_unmountfs_writesb(xfs_mount_t *mp)
1584 {
1585 	xfs_buf_t	*sbp;
1586 	int		error = 0;
1587 
1588 	/*
1589 	 * skip superblock write if fs is read-only, or
1590 	 * if we are doing a forced umount.
1591 	 */
1592 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1593 		XFS_FORCED_SHUTDOWN(mp))) {
1594 
1595 		sbp = xfs_getsb(mp, 0);
1596 
1597 		XFS_BUF_UNDONE(sbp);
1598 		XFS_BUF_UNREAD(sbp);
1599 		XFS_BUF_UNDELAYWRITE(sbp);
1600 		XFS_BUF_WRITE(sbp);
1601 		XFS_BUF_UNASYNC(sbp);
1602 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1603 		xfsbdstrat(mp, sbp);
1604 		error = xfs_iowait(sbp);
1605 		if (error)
1606 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1607 					  mp, sbp, XFS_BUF_ADDR(sbp));
1608 		xfs_buf_relse(sbp);
1609 	}
1610 	return error;
1611 }
1612 
1613 /*
1614  * xfs_mod_sb() can be used to copy arbitrary changes to the
1615  * in-core superblock into the superblock buffer to be logged.
1616  * It does not provide the higher level of locking that is
1617  * needed to protect the in-core superblock from concurrent
1618  * access.
1619  */
1620 void
1621 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1622 {
1623 	xfs_buf_t	*bp;
1624 	int		first;
1625 	int		last;
1626 	xfs_mount_t	*mp;
1627 	xfs_sb_field_t	f;
1628 
1629 	ASSERT(fields);
1630 	if (!fields)
1631 		return;
1632 	mp = tp->t_mountp;
1633 	bp = xfs_trans_getsb(tp, mp, 0);
1634 	first = sizeof(xfs_sb_t);
1635 	last = 0;
1636 
1637 	/* translate/copy */
1638 
1639 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1640 
1641 	/* find modified range */
1642 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1643 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1644 	last = xfs_sb_info[f + 1].offset - 1;
1645 
1646 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1647 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1648 	first = xfs_sb_info[f].offset;
1649 
1650 	xfs_trans_log_buf(tp, bp, first, last);
1651 }
1652 
1653 
1654 /*
1655  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1656  * a delta to a specified field in the in-core superblock.  Simply
1657  * switch on the field indicated and apply the delta to that field.
1658  * Fields are not allowed to dip below zero, so if the delta would
1659  * do this do not apply it and return EINVAL.
1660  *
1661  * The m_sb_lock must be held when this routine is called.
1662  */
1663 STATIC int
1664 xfs_mod_incore_sb_unlocked(
1665 	xfs_mount_t	*mp,
1666 	xfs_sb_field_t	field,
1667 	int64_t		delta,
1668 	int		rsvd)
1669 {
1670 	int		scounter;	/* short counter for 32 bit fields */
1671 	long long	lcounter;	/* long counter for 64 bit fields */
1672 	long long	res_used, rem;
1673 
1674 	/*
1675 	 * With the in-core superblock spin lock held, switch
1676 	 * on the indicated field.  Apply the delta to the
1677 	 * proper field.  If the fields value would dip below
1678 	 * 0, then do not apply the delta and return EINVAL.
1679 	 */
1680 	switch (field) {
1681 	case XFS_SBS_ICOUNT:
1682 		lcounter = (long long)mp->m_sb.sb_icount;
1683 		lcounter += delta;
1684 		if (lcounter < 0) {
1685 			ASSERT(0);
1686 			return XFS_ERROR(EINVAL);
1687 		}
1688 		mp->m_sb.sb_icount = lcounter;
1689 		return 0;
1690 	case XFS_SBS_IFREE:
1691 		lcounter = (long long)mp->m_sb.sb_ifree;
1692 		lcounter += delta;
1693 		if (lcounter < 0) {
1694 			ASSERT(0);
1695 			return XFS_ERROR(EINVAL);
1696 		}
1697 		mp->m_sb.sb_ifree = lcounter;
1698 		return 0;
1699 	case XFS_SBS_FDBLOCKS:
1700 		lcounter = (long long)
1701 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1702 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1703 
1704 		if (delta > 0) {		/* Putting blocks back */
1705 			if (res_used > delta) {
1706 				mp->m_resblks_avail += delta;
1707 			} else {
1708 				rem = delta - res_used;
1709 				mp->m_resblks_avail = mp->m_resblks;
1710 				lcounter += rem;
1711 			}
1712 		} else {				/* Taking blocks away */
1713 			lcounter += delta;
1714 			if (lcounter >= 0) {
1715 				mp->m_sb.sb_fdblocks = lcounter +
1716 							XFS_ALLOC_SET_ASIDE(mp);
1717 				return 0;
1718 			}
1719 
1720 			/*
1721 			 * We are out of blocks, use any available reserved
1722 			 * blocks if were allowed to.
1723 			 */
1724 			if (!rsvd)
1725 				return XFS_ERROR(ENOSPC);
1726 
1727 			lcounter = (long long)mp->m_resblks_avail + delta;
1728 			if (lcounter >= 0) {
1729 				mp->m_resblks_avail = lcounter;
1730 				return 0;
1731 			}
1732 			printk_once(KERN_WARNING
1733 				"Filesystem \"%s\": reserve blocks depleted! "
1734 				"Consider increasing reserve pool size.",
1735 				mp->m_fsname);
1736 			return XFS_ERROR(ENOSPC);
1737 		}
1738 
1739 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1740 		return 0;
1741 	case XFS_SBS_FREXTENTS:
1742 		lcounter = (long long)mp->m_sb.sb_frextents;
1743 		lcounter += delta;
1744 		if (lcounter < 0) {
1745 			return XFS_ERROR(ENOSPC);
1746 		}
1747 		mp->m_sb.sb_frextents = lcounter;
1748 		return 0;
1749 	case XFS_SBS_DBLOCKS:
1750 		lcounter = (long long)mp->m_sb.sb_dblocks;
1751 		lcounter += delta;
1752 		if (lcounter < 0) {
1753 			ASSERT(0);
1754 			return XFS_ERROR(EINVAL);
1755 		}
1756 		mp->m_sb.sb_dblocks = lcounter;
1757 		return 0;
1758 	case XFS_SBS_AGCOUNT:
1759 		scounter = mp->m_sb.sb_agcount;
1760 		scounter += delta;
1761 		if (scounter < 0) {
1762 			ASSERT(0);
1763 			return XFS_ERROR(EINVAL);
1764 		}
1765 		mp->m_sb.sb_agcount = scounter;
1766 		return 0;
1767 	case XFS_SBS_IMAX_PCT:
1768 		scounter = mp->m_sb.sb_imax_pct;
1769 		scounter += delta;
1770 		if (scounter < 0) {
1771 			ASSERT(0);
1772 			return XFS_ERROR(EINVAL);
1773 		}
1774 		mp->m_sb.sb_imax_pct = scounter;
1775 		return 0;
1776 	case XFS_SBS_REXTSIZE:
1777 		scounter = mp->m_sb.sb_rextsize;
1778 		scounter += delta;
1779 		if (scounter < 0) {
1780 			ASSERT(0);
1781 			return XFS_ERROR(EINVAL);
1782 		}
1783 		mp->m_sb.sb_rextsize = scounter;
1784 		return 0;
1785 	case XFS_SBS_RBMBLOCKS:
1786 		scounter = mp->m_sb.sb_rbmblocks;
1787 		scounter += delta;
1788 		if (scounter < 0) {
1789 			ASSERT(0);
1790 			return XFS_ERROR(EINVAL);
1791 		}
1792 		mp->m_sb.sb_rbmblocks = scounter;
1793 		return 0;
1794 	case XFS_SBS_RBLOCKS:
1795 		lcounter = (long long)mp->m_sb.sb_rblocks;
1796 		lcounter += delta;
1797 		if (lcounter < 0) {
1798 			ASSERT(0);
1799 			return XFS_ERROR(EINVAL);
1800 		}
1801 		mp->m_sb.sb_rblocks = lcounter;
1802 		return 0;
1803 	case XFS_SBS_REXTENTS:
1804 		lcounter = (long long)mp->m_sb.sb_rextents;
1805 		lcounter += delta;
1806 		if (lcounter < 0) {
1807 			ASSERT(0);
1808 			return XFS_ERROR(EINVAL);
1809 		}
1810 		mp->m_sb.sb_rextents = lcounter;
1811 		return 0;
1812 	case XFS_SBS_REXTSLOG:
1813 		scounter = mp->m_sb.sb_rextslog;
1814 		scounter += delta;
1815 		if (scounter < 0) {
1816 			ASSERT(0);
1817 			return XFS_ERROR(EINVAL);
1818 		}
1819 		mp->m_sb.sb_rextslog = scounter;
1820 		return 0;
1821 	default:
1822 		ASSERT(0);
1823 		return XFS_ERROR(EINVAL);
1824 	}
1825 }
1826 
1827 /*
1828  * xfs_mod_incore_sb() is used to change a field in the in-core
1829  * superblock structure by the specified delta.  This modification
1830  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1831  * routine to do the work.
1832  */
1833 int
1834 xfs_mod_incore_sb(
1835 	xfs_mount_t	*mp,
1836 	xfs_sb_field_t	field,
1837 	int64_t		delta,
1838 	int		rsvd)
1839 {
1840 	int	status;
1841 
1842 	/* check for per-cpu counters */
1843 	switch (field) {
1844 #ifdef HAVE_PERCPU_SB
1845 	case XFS_SBS_ICOUNT:
1846 	case XFS_SBS_IFREE:
1847 	case XFS_SBS_FDBLOCKS:
1848 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1849 			status = xfs_icsb_modify_counters(mp, field,
1850 							delta, rsvd);
1851 			break;
1852 		}
1853 		/* FALLTHROUGH */
1854 #endif
1855 	default:
1856 		spin_lock(&mp->m_sb_lock);
1857 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1858 		spin_unlock(&mp->m_sb_lock);
1859 		break;
1860 	}
1861 
1862 	return status;
1863 }
1864 
1865 /*
1866  * xfs_mod_incore_sb_batch() is used to change more than one field
1867  * in the in-core superblock structure at a time.  This modification
1868  * is protected by a lock internal to this module.  The fields and
1869  * changes to those fields are specified in the array of xfs_mod_sb
1870  * structures passed in.
1871  *
1872  * Either all of the specified deltas will be applied or none of
1873  * them will.  If any modified field dips below 0, then all modifications
1874  * will be backed out and EINVAL will be returned.
1875  */
1876 int
1877 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1878 {
1879 	int		status=0;
1880 	xfs_mod_sb_t	*msbp;
1881 
1882 	/*
1883 	 * Loop through the array of mod structures and apply each
1884 	 * individually.  If any fail, then back out all those
1885 	 * which have already been applied.  Do all of this within
1886 	 * the scope of the m_sb_lock so that all of the changes will
1887 	 * be atomic.
1888 	 */
1889 	spin_lock(&mp->m_sb_lock);
1890 	msbp = &msb[0];
1891 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1892 		/*
1893 		 * Apply the delta at index n.  If it fails, break
1894 		 * from the loop so we'll fall into the undo loop
1895 		 * below.
1896 		 */
1897 		switch (msbp->msb_field) {
1898 #ifdef HAVE_PERCPU_SB
1899 		case XFS_SBS_ICOUNT:
1900 		case XFS_SBS_IFREE:
1901 		case XFS_SBS_FDBLOCKS:
1902 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1903 				spin_unlock(&mp->m_sb_lock);
1904 				status = xfs_icsb_modify_counters(mp,
1905 							msbp->msb_field,
1906 							msbp->msb_delta, rsvd);
1907 				spin_lock(&mp->m_sb_lock);
1908 				break;
1909 			}
1910 			/* FALLTHROUGH */
1911 #endif
1912 		default:
1913 			status = xfs_mod_incore_sb_unlocked(mp,
1914 						msbp->msb_field,
1915 						msbp->msb_delta, rsvd);
1916 			break;
1917 		}
1918 
1919 		if (status != 0) {
1920 			break;
1921 		}
1922 	}
1923 
1924 	/*
1925 	 * If we didn't complete the loop above, then back out
1926 	 * any changes made to the superblock.  If you add code
1927 	 * between the loop above and here, make sure that you
1928 	 * preserve the value of status. Loop back until
1929 	 * we step below the beginning of the array.  Make sure
1930 	 * we don't touch anything back there.
1931 	 */
1932 	if (status != 0) {
1933 		msbp--;
1934 		while (msbp >= msb) {
1935 			switch (msbp->msb_field) {
1936 #ifdef HAVE_PERCPU_SB
1937 			case XFS_SBS_ICOUNT:
1938 			case XFS_SBS_IFREE:
1939 			case XFS_SBS_FDBLOCKS:
1940 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1941 					spin_unlock(&mp->m_sb_lock);
1942 					status = xfs_icsb_modify_counters(mp,
1943 							msbp->msb_field,
1944 							-(msbp->msb_delta),
1945 							rsvd);
1946 					spin_lock(&mp->m_sb_lock);
1947 					break;
1948 				}
1949 				/* FALLTHROUGH */
1950 #endif
1951 			default:
1952 				status = xfs_mod_incore_sb_unlocked(mp,
1953 							msbp->msb_field,
1954 							-(msbp->msb_delta),
1955 							rsvd);
1956 				break;
1957 			}
1958 			ASSERT(status == 0);
1959 			msbp--;
1960 		}
1961 	}
1962 	spin_unlock(&mp->m_sb_lock);
1963 	return status;
1964 }
1965 
1966 /*
1967  * xfs_getsb() is called to obtain the buffer for the superblock.
1968  * The buffer is returned locked and read in from disk.
1969  * The buffer should be released with a call to xfs_brelse().
1970  *
1971  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1972  * the superblock buffer if it can be locked without sleeping.
1973  * If it can't then we'll return NULL.
1974  */
1975 xfs_buf_t *
1976 xfs_getsb(
1977 	xfs_mount_t	*mp,
1978 	int		flags)
1979 {
1980 	xfs_buf_t	*bp;
1981 
1982 	ASSERT(mp->m_sb_bp != NULL);
1983 	bp = mp->m_sb_bp;
1984 	if (flags & XBF_TRYLOCK) {
1985 		if (!XFS_BUF_CPSEMA(bp)) {
1986 			return NULL;
1987 		}
1988 	} else {
1989 		XFS_BUF_PSEMA(bp, PRIBIO);
1990 	}
1991 	XFS_BUF_HOLD(bp);
1992 	ASSERT(XFS_BUF_ISDONE(bp));
1993 	return bp;
1994 }
1995 
1996 /*
1997  * Used to free the superblock along various error paths.
1998  */
1999 void
2000 xfs_freesb(
2001 	xfs_mount_t	*mp)
2002 {
2003 	xfs_buf_t	*bp;
2004 
2005 	/*
2006 	 * Use xfs_getsb() so that the buffer will be locked
2007 	 * when we call xfs_buf_relse().
2008 	 */
2009 	bp = xfs_getsb(mp, 0);
2010 	XFS_BUF_UNMANAGE(bp);
2011 	xfs_buf_relse(bp);
2012 	mp->m_sb_bp = NULL;
2013 }
2014 
2015 /*
2016  * Used to log changes to the superblock unit and width fields which could
2017  * be altered by the mount options, as well as any potential sb_features2
2018  * fixup. Only the first superblock is updated.
2019  */
2020 int
2021 xfs_mount_log_sb(
2022 	xfs_mount_t	*mp,
2023 	__int64_t	fields)
2024 {
2025 	xfs_trans_t	*tp;
2026 	int		error;
2027 
2028 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2029 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2030 			 XFS_SB_VERSIONNUM));
2031 
2032 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2033 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2034 				XFS_DEFAULT_LOG_COUNT);
2035 	if (error) {
2036 		xfs_trans_cancel(tp, 0);
2037 		return error;
2038 	}
2039 	xfs_mod_sb(tp, fields);
2040 	error = xfs_trans_commit(tp, 0);
2041 	return error;
2042 }
2043 
2044 /*
2045  * If the underlying (data/log/rt) device is readonly, there are some
2046  * operations that cannot proceed.
2047  */
2048 int
2049 xfs_dev_is_read_only(
2050 	struct xfs_mount	*mp,
2051 	char			*message)
2052 {
2053 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2054 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2055 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2056 		cmn_err(CE_NOTE,
2057 			"XFS: %s required on read-only device.", message);
2058 		cmn_err(CE_NOTE,
2059 			"XFS: write access unavailable, cannot proceed.");
2060 		return EROFS;
2061 	}
2062 	return 0;
2063 }
2064 
2065 #ifdef HAVE_PERCPU_SB
2066 /*
2067  * Per-cpu incore superblock counters
2068  *
2069  * Simple concept, difficult implementation
2070  *
2071  * Basically, replace the incore superblock counters with a distributed per cpu
2072  * counter for contended fields (e.g.  free block count).
2073  *
2074  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2075  * hence needs to be accurately read when we are running low on space. Hence
2076  * there is a method to enable and disable the per-cpu counters based on how
2077  * much "stuff" is available in them.
2078  *
2079  * Basically, a counter is enabled if there is enough free resource to justify
2080  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2081  * ENOSPC), then we disable the counters to synchronise all callers and
2082  * re-distribute the available resources.
2083  *
2084  * If, once we redistributed the available resources, we still get a failure,
2085  * we disable the per-cpu counter and go through the slow path.
2086  *
2087  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2088  * when we disable a per-cpu counter, we need to drain its resources back to
2089  * the global superblock. We do this after disabling the counter to prevent
2090  * more threads from queueing up on the counter.
2091  *
2092  * Essentially, this means that we still need a lock in the fast path to enable
2093  * synchronisation between the global counters and the per-cpu counters. This
2094  * is not a problem because the lock will be local to a CPU almost all the time
2095  * and have little contention except when we get to ENOSPC conditions.
2096  *
2097  * Basically, this lock becomes a barrier that enables us to lock out the fast
2098  * path while we do things like enabling and disabling counters and
2099  * synchronising the counters.
2100  *
2101  * Locking rules:
2102  *
2103  * 	1. m_sb_lock before picking up per-cpu locks
2104  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2105  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2106  * 	4. modifying per-cpu counters requires holding per-cpu lock
2107  * 	5. modifying global counters requires holding m_sb_lock
2108  *	6. enabling or disabling a counter requires holding the m_sb_lock
2109  *	   and _none_ of the per-cpu locks.
2110  *
2111  * Disabled counters are only ever re-enabled by a balance operation
2112  * that results in more free resources per CPU than a given threshold.
2113  * To ensure counters don't remain disabled, they are rebalanced when
2114  * the global resource goes above a higher threshold (i.e. some hysteresis
2115  * is present to prevent thrashing).
2116  */
2117 
2118 #ifdef CONFIG_HOTPLUG_CPU
2119 /*
2120  * hot-plug CPU notifier support.
2121  *
2122  * We need a notifier per filesystem as we need to be able to identify
2123  * the filesystem to balance the counters out. This is achieved by
2124  * having a notifier block embedded in the xfs_mount_t and doing pointer
2125  * magic to get the mount pointer from the notifier block address.
2126  */
2127 STATIC int
2128 xfs_icsb_cpu_notify(
2129 	struct notifier_block *nfb,
2130 	unsigned long action,
2131 	void *hcpu)
2132 {
2133 	xfs_icsb_cnts_t *cntp;
2134 	xfs_mount_t	*mp;
2135 
2136 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2137 	cntp = (xfs_icsb_cnts_t *)
2138 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2139 	switch (action) {
2140 	case CPU_UP_PREPARE:
2141 	case CPU_UP_PREPARE_FROZEN:
2142 		/* Easy Case - initialize the area and locks, and
2143 		 * then rebalance when online does everything else for us. */
2144 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2145 		break;
2146 	case CPU_ONLINE:
2147 	case CPU_ONLINE_FROZEN:
2148 		xfs_icsb_lock(mp);
2149 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2150 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2151 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2152 		xfs_icsb_unlock(mp);
2153 		break;
2154 	case CPU_DEAD:
2155 	case CPU_DEAD_FROZEN:
2156 		/* Disable all the counters, then fold the dead cpu's
2157 		 * count into the total on the global superblock and
2158 		 * re-enable the counters. */
2159 		xfs_icsb_lock(mp);
2160 		spin_lock(&mp->m_sb_lock);
2161 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2162 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2163 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2164 
2165 		mp->m_sb.sb_icount += cntp->icsb_icount;
2166 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2167 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2168 
2169 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2170 
2171 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2172 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2173 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2174 		spin_unlock(&mp->m_sb_lock);
2175 		xfs_icsb_unlock(mp);
2176 		break;
2177 	}
2178 
2179 	return NOTIFY_OK;
2180 }
2181 #endif /* CONFIG_HOTPLUG_CPU */
2182 
2183 int
2184 xfs_icsb_init_counters(
2185 	xfs_mount_t	*mp)
2186 {
2187 	xfs_icsb_cnts_t *cntp;
2188 	int		i;
2189 
2190 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2191 	if (mp->m_sb_cnts == NULL)
2192 		return -ENOMEM;
2193 
2194 #ifdef CONFIG_HOTPLUG_CPU
2195 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2196 	mp->m_icsb_notifier.priority = 0;
2197 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2198 #endif /* CONFIG_HOTPLUG_CPU */
2199 
2200 	for_each_online_cpu(i) {
2201 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2202 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2203 	}
2204 
2205 	mutex_init(&mp->m_icsb_mutex);
2206 
2207 	/*
2208 	 * start with all counters disabled so that the
2209 	 * initial balance kicks us off correctly
2210 	 */
2211 	mp->m_icsb_counters = -1;
2212 	return 0;
2213 }
2214 
2215 void
2216 xfs_icsb_reinit_counters(
2217 	xfs_mount_t	*mp)
2218 {
2219 	xfs_icsb_lock(mp);
2220 	/*
2221 	 * start with all counters disabled so that the
2222 	 * initial balance kicks us off correctly
2223 	 */
2224 	mp->m_icsb_counters = -1;
2225 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2226 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2227 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2228 	xfs_icsb_unlock(mp);
2229 }
2230 
2231 void
2232 xfs_icsb_destroy_counters(
2233 	xfs_mount_t	*mp)
2234 {
2235 	if (mp->m_sb_cnts) {
2236 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2237 		free_percpu(mp->m_sb_cnts);
2238 	}
2239 	mutex_destroy(&mp->m_icsb_mutex);
2240 }
2241 
2242 STATIC void
2243 xfs_icsb_lock_cntr(
2244 	xfs_icsb_cnts_t	*icsbp)
2245 {
2246 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2247 		ndelay(1000);
2248 	}
2249 }
2250 
2251 STATIC void
2252 xfs_icsb_unlock_cntr(
2253 	xfs_icsb_cnts_t	*icsbp)
2254 {
2255 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2256 }
2257 
2258 
2259 STATIC void
2260 xfs_icsb_lock_all_counters(
2261 	xfs_mount_t	*mp)
2262 {
2263 	xfs_icsb_cnts_t *cntp;
2264 	int		i;
2265 
2266 	for_each_online_cpu(i) {
2267 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2268 		xfs_icsb_lock_cntr(cntp);
2269 	}
2270 }
2271 
2272 STATIC void
2273 xfs_icsb_unlock_all_counters(
2274 	xfs_mount_t	*mp)
2275 {
2276 	xfs_icsb_cnts_t *cntp;
2277 	int		i;
2278 
2279 	for_each_online_cpu(i) {
2280 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2281 		xfs_icsb_unlock_cntr(cntp);
2282 	}
2283 }
2284 
2285 STATIC void
2286 xfs_icsb_count(
2287 	xfs_mount_t	*mp,
2288 	xfs_icsb_cnts_t	*cnt,
2289 	int		flags)
2290 {
2291 	xfs_icsb_cnts_t *cntp;
2292 	int		i;
2293 
2294 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2295 
2296 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2297 		xfs_icsb_lock_all_counters(mp);
2298 
2299 	for_each_online_cpu(i) {
2300 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2301 		cnt->icsb_icount += cntp->icsb_icount;
2302 		cnt->icsb_ifree += cntp->icsb_ifree;
2303 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2304 	}
2305 
2306 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2307 		xfs_icsb_unlock_all_counters(mp);
2308 }
2309 
2310 STATIC int
2311 xfs_icsb_counter_disabled(
2312 	xfs_mount_t	*mp,
2313 	xfs_sb_field_t	field)
2314 {
2315 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2316 	return test_bit(field, &mp->m_icsb_counters);
2317 }
2318 
2319 STATIC void
2320 xfs_icsb_disable_counter(
2321 	xfs_mount_t	*mp,
2322 	xfs_sb_field_t	field)
2323 {
2324 	xfs_icsb_cnts_t	cnt;
2325 
2326 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2327 
2328 	/*
2329 	 * If we are already disabled, then there is nothing to do
2330 	 * here. We check before locking all the counters to avoid
2331 	 * the expensive lock operation when being called in the
2332 	 * slow path and the counter is already disabled. This is
2333 	 * safe because the only time we set or clear this state is under
2334 	 * the m_icsb_mutex.
2335 	 */
2336 	if (xfs_icsb_counter_disabled(mp, field))
2337 		return;
2338 
2339 	xfs_icsb_lock_all_counters(mp);
2340 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2341 		/* drain back to superblock */
2342 
2343 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2344 		switch(field) {
2345 		case XFS_SBS_ICOUNT:
2346 			mp->m_sb.sb_icount = cnt.icsb_icount;
2347 			break;
2348 		case XFS_SBS_IFREE:
2349 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2350 			break;
2351 		case XFS_SBS_FDBLOCKS:
2352 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2353 			break;
2354 		default:
2355 			BUG();
2356 		}
2357 	}
2358 
2359 	xfs_icsb_unlock_all_counters(mp);
2360 }
2361 
2362 STATIC void
2363 xfs_icsb_enable_counter(
2364 	xfs_mount_t	*mp,
2365 	xfs_sb_field_t	field,
2366 	uint64_t	count,
2367 	uint64_t	resid)
2368 {
2369 	xfs_icsb_cnts_t	*cntp;
2370 	int		i;
2371 
2372 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2373 
2374 	xfs_icsb_lock_all_counters(mp);
2375 	for_each_online_cpu(i) {
2376 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2377 		switch (field) {
2378 		case XFS_SBS_ICOUNT:
2379 			cntp->icsb_icount = count + resid;
2380 			break;
2381 		case XFS_SBS_IFREE:
2382 			cntp->icsb_ifree = count + resid;
2383 			break;
2384 		case XFS_SBS_FDBLOCKS:
2385 			cntp->icsb_fdblocks = count + resid;
2386 			break;
2387 		default:
2388 			BUG();
2389 			break;
2390 		}
2391 		resid = 0;
2392 	}
2393 	clear_bit(field, &mp->m_icsb_counters);
2394 	xfs_icsb_unlock_all_counters(mp);
2395 }
2396 
2397 void
2398 xfs_icsb_sync_counters_locked(
2399 	xfs_mount_t	*mp,
2400 	int		flags)
2401 {
2402 	xfs_icsb_cnts_t	cnt;
2403 
2404 	xfs_icsb_count(mp, &cnt, flags);
2405 
2406 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2407 		mp->m_sb.sb_icount = cnt.icsb_icount;
2408 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2409 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2410 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2411 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2412 }
2413 
2414 /*
2415  * Accurate update of per-cpu counters to incore superblock
2416  */
2417 void
2418 xfs_icsb_sync_counters(
2419 	xfs_mount_t	*mp,
2420 	int		flags)
2421 {
2422 	spin_lock(&mp->m_sb_lock);
2423 	xfs_icsb_sync_counters_locked(mp, flags);
2424 	spin_unlock(&mp->m_sb_lock);
2425 }
2426 
2427 /*
2428  * Balance and enable/disable counters as necessary.
2429  *
2430  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2431  * chosen to be the same number as single on disk allocation chunk per CPU, and
2432  * free blocks is something far enough zero that we aren't going thrash when we
2433  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2434  * prevent looping endlessly when xfs_alloc_space asks for more than will
2435  * be distributed to a single CPU but each CPU has enough blocks to be
2436  * reenabled.
2437  *
2438  * Note that we can be called when counters are already disabled.
2439  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2440  * prevent locking every per-cpu counter needlessly.
2441  */
2442 
2443 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2444 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2445 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2446 STATIC void
2447 xfs_icsb_balance_counter_locked(
2448 	xfs_mount_t	*mp,
2449 	xfs_sb_field_t  field,
2450 	int		min_per_cpu)
2451 {
2452 	uint64_t	count, resid;
2453 	int		weight = num_online_cpus();
2454 	uint64_t	min = (uint64_t)min_per_cpu;
2455 
2456 	/* disable counter and sync counter */
2457 	xfs_icsb_disable_counter(mp, field);
2458 
2459 	/* update counters  - first CPU gets residual*/
2460 	switch (field) {
2461 	case XFS_SBS_ICOUNT:
2462 		count = mp->m_sb.sb_icount;
2463 		resid = do_div(count, weight);
2464 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2465 			return;
2466 		break;
2467 	case XFS_SBS_IFREE:
2468 		count = mp->m_sb.sb_ifree;
2469 		resid = do_div(count, weight);
2470 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2471 			return;
2472 		break;
2473 	case XFS_SBS_FDBLOCKS:
2474 		count = mp->m_sb.sb_fdblocks;
2475 		resid = do_div(count, weight);
2476 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2477 			return;
2478 		break;
2479 	default:
2480 		BUG();
2481 		count = resid = 0;	/* quiet, gcc */
2482 		break;
2483 	}
2484 
2485 	xfs_icsb_enable_counter(mp, field, count, resid);
2486 }
2487 
2488 STATIC void
2489 xfs_icsb_balance_counter(
2490 	xfs_mount_t	*mp,
2491 	xfs_sb_field_t  fields,
2492 	int		min_per_cpu)
2493 {
2494 	spin_lock(&mp->m_sb_lock);
2495 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2496 	spin_unlock(&mp->m_sb_lock);
2497 }
2498 
2499 STATIC int
2500 xfs_icsb_modify_counters(
2501 	xfs_mount_t	*mp,
2502 	xfs_sb_field_t	field,
2503 	int64_t		delta,
2504 	int		rsvd)
2505 {
2506 	xfs_icsb_cnts_t	*icsbp;
2507 	long long	lcounter;	/* long counter for 64 bit fields */
2508 	int		ret = 0;
2509 
2510 	might_sleep();
2511 again:
2512 	preempt_disable();
2513 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2514 
2515 	/*
2516 	 * if the counter is disabled, go to slow path
2517 	 */
2518 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2519 		goto slow_path;
2520 	xfs_icsb_lock_cntr(icsbp);
2521 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2522 		xfs_icsb_unlock_cntr(icsbp);
2523 		goto slow_path;
2524 	}
2525 
2526 	switch (field) {
2527 	case XFS_SBS_ICOUNT:
2528 		lcounter = icsbp->icsb_icount;
2529 		lcounter += delta;
2530 		if (unlikely(lcounter < 0))
2531 			goto balance_counter;
2532 		icsbp->icsb_icount = lcounter;
2533 		break;
2534 
2535 	case XFS_SBS_IFREE:
2536 		lcounter = icsbp->icsb_ifree;
2537 		lcounter += delta;
2538 		if (unlikely(lcounter < 0))
2539 			goto balance_counter;
2540 		icsbp->icsb_ifree = lcounter;
2541 		break;
2542 
2543 	case XFS_SBS_FDBLOCKS:
2544 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2545 
2546 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2547 		lcounter += delta;
2548 		if (unlikely(lcounter < 0))
2549 			goto balance_counter;
2550 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2551 		break;
2552 	default:
2553 		BUG();
2554 		break;
2555 	}
2556 	xfs_icsb_unlock_cntr(icsbp);
2557 	preempt_enable();
2558 	return 0;
2559 
2560 slow_path:
2561 	preempt_enable();
2562 
2563 	/*
2564 	 * serialise with a mutex so we don't burn lots of cpu on
2565 	 * the superblock lock. We still need to hold the superblock
2566 	 * lock, however, when we modify the global structures.
2567 	 */
2568 	xfs_icsb_lock(mp);
2569 
2570 	/*
2571 	 * Now running atomically.
2572 	 *
2573 	 * If the counter is enabled, someone has beaten us to rebalancing.
2574 	 * Drop the lock and try again in the fast path....
2575 	 */
2576 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2577 		xfs_icsb_unlock(mp);
2578 		goto again;
2579 	}
2580 
2581 	/*
2582 	 * The counter is currently disabled. Because we are
2583 	 * running atomically here, we know a rebalance cannot
2584 	 * be in progress. Hence we can go straight to operating
2585 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2586 	 * here even though we need to get the m_sb_lock. Doing so
2587 	 * will cause us to re-enter this function and deadlock.
2588 	 * Hence we get the m_sb_lock ourselves and then call
2589 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2590 	 * directly on the global counters.
2591 	 */
2592 	spin_lock(&mp->m_sb_lock);
2593 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2594 	spin_unlock(&mp->m_sb_lock);
2595 
2596 	/*
2597 	 * Now that we've modified the global superblock, we
2598 	 * may be able to re-enable the distributed counters
2599 	 * (e.g. lots of space just got freed). After that
2600 	 * we are done.
2601 	 */
2602 	if (ret != ENOSPC)
2603 		xfs_icsb_balance_counter(mp, field, 0);
2604 	xfs_icsb_unlock(mp);
2605 	return ret;
2606 
2607 balance_counter:
2608 	xfs_icsb_unlock_cntr(icsbp);
2609 	preempt_enable();
2610 
2611 	/*
2612 	 * We may have multiple threads here if multiple per-cpu
2613 	 * counters run dry at the same time. This will mean we can
2614 	 * do more balances than strictly necessary but it is not
2615 	 * the common slowpath case.
2616 	 */
2617 	xfs_icsb_lock(mp);
2618 
2619 	/*
2620 	 * running atomically.
2621 	 *
2622 	 * This will leave the counter in the correct state for future
2623 	 * accesses. After the rebalance, we simply try again and our retry
2624 	 * will either succeed through the fast path or slow path without
2625 	 * another balance operation being required.
2626 	 */
2627 	xfs_icsb_balance_counter(mp, field, delta);
2628 	xfs_icsb_unlock(mp);
2629 	goto again;
2630 }
2631 
2632 #endif
2633