xref: /linux/fs/xfs/xfs_mount.c (revision d19e470b6605c900db21fc7b34c66b6891a79983)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 
35 
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39 
40 void
41 xfs_uuid_table_free(void)
42 {
43 	if (xfs_uuid_table_size == 0)
44 		return;
45 	kmem_free(xfs_uuid_table);
46 	xfs_uuid_table = NULL;
47 	xfs_uuid_table_size = 0;
48 }
49 
50 /*
51  * See if the UUID is unique among mounted XFS filesystems.
52  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53  */
54 STATIC int
55 xfs_uuid_mount(
56 	struct xfs_mount	*mp)
57 {
58 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59 	int			hole, i;
60 
61 	/* Publish UUID in struct super_block */
62 	uuid_copy(&mp->m_super->s_uuid, uuid);
63 
64 	if (mp->m_flags & XFS_MOUNT_NOUUID)
65 		return 0;
66 
67 	if (uuid_is_null(uuid)) {
68 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 		return -EINVAL;
70 	}
71 
72 	mutex_lock(&xfs_uuid_table_mutex);
73 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 		if (uuid_is_null(&xfs_uuid_table[i])) {
75 			hole = i;
76 			continue;
77 		}
78 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 			goto out_duplicate;
80 	}
81 
82 	if (hole < 0) {
83 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 			0);
86 		hole = xfs_uuid_table_size++;
87 	}
88 	xfs_uuid_table[hole] = *uuid;
89 	mutex_unlock(&xfs_uuid_table_mutex);
90 
91 	return 0;
92 
93  out_duplicate:
94 	mutex_unlock(&xfs_uuid_table_mutex);
95 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 	return -EINVAL;
97 }
98 
99 STATIC void
100 xfs_uuid_unmount(
101 	struct xfs_mount	*mp)
102 {
103 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
104 	int			i;
105 
106 	if (mp->m_flags & XFS_MOUNT_NOUUID)
107 		return;
108 
109 	mutex_lock(&xfs_uuid_table_mutex);
110 	for (i = 0; i < xfs_uuid_table_size; i++) {
111 		if (uuid_is_null(&xfs_uuid_table[i]))
112 			continue;
113 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 			continue;
115 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 		break;
117 	}
118 	ASSERT(i < xfs_uuid_table_size);
119 	mutex_unlock(&xfs_uuid_table_mutex);
120 }
121 
122 
123 STATIC void
124 __xfs_free_perag(
125 	struct rcu_head	*head)
126 {
127 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128 
129 	ASSERT(atomic_read(&pag->pag_ref) == 0);
130 	kmem_free(pag);
131 }
132 
133 /*
134  * Free up the per-ag resources associated with the mount structure.
135  */
136 STATIC void
137 xfs_free_perag(
138 	xfs_mount_t	*mp)
139 {
140 	xfs_agnumber_t	agno;
141 	struct xfs_perag *pag;
142 
143 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 		spin_lock(&mp->m_perag_lock);
145 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 		spin_unlock(&mp->m_perag_lock);
147 		ASSERT(pag);
148 		ASSERT(atomic_read(&pag->pag_ref) == 0);
149 		xfs_iunlink_destroy(pag);
150 		xfs_buf_hash_destroy(pag);
151 		mutex_destroy(&pag->pag_ici_reclaim_lock);
152 		call_rcu(&pag->rcu_head, __xfs_free_perag);
153 	}
154 }
155 
156 /*
157  * Check size of device based on the (data/realtime) block count.
158  * Note: this check is used by the growfs code as well as mount.
159  */
160 int
161 xfs_sb_validate_fsb_count(
162 	xfs_sb_t	*sbp,
163 	uint64_t	nblocks)
164 {
165 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
167 
168 	/* Limited by ULONG_MAX of page cache index */
169 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 		return -EFBIG;
171 	return 0;
172 }
173 
174 int
175 xfs_initialize_perag(
176 	xfs_mount_t	*mp,
177 	xfs_agnumber_t	agcount,
178 	xfs_agnumber_t	*maxagi)
179 {
180 	xfs_agnumber_t	index;
181 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
182 	xfs_perag_t	*pag;
183 	int		error = -ENOMEM;
184 
185 	/*
186 	 * Walk the current per-ag tree so we don't try to initialise AGs
187 	 * that already exist (growfs case). Allocate and insert all the
188 	 * AGs we don't find ready for initialisation.
189 	 */
190 	for (index = 0; index < agcount; index++) {
191 		pag = xfs_perag_get(mp, index);
192 		if (pag) {
193 			xfs_perag_put(pag);
194 			continue;
195 		}
196 
197 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 		if (!pag)
199 			goto out_unwind_new_pags;
200 		pag->pag_agno = index;
201 		pag->pag_mount = mp;
202 		spin_lock_init(&pag->pag_ici_lock);
203 		mutex_init(&pag->pag_ici_reclaim_lock);
204 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 		if (xfs_buf_hash_init(pag))
206 			goto out_free_pag;
207 		init_waitqueue_head(&pag->pagb_wait);
208 		spin_lock_init(&pag->pagb_lock);
209 		pag->pagb_count = 0;
210 		pag->pagb_tree = RB_ROOT;
211 
212 		if (radix_tree_preload(GFP_NOFS))
213 			goto out_hash_destroy;
214 
215 		spin_lock(&mp->m_perag_lock);
216 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 			WARN_ON_ONCE(1);
218 			spin_unlock(&mp->m_perag_lock);
219 			radix_tree_preload_end();
220 			error = -EEXIST;
221 			goto out_hash_destroy;
222 		}
223 		spin_unlock(&mp->m_perag_lock);
224 		radix_tree_preload_end();
225 		/* first new pag is fully initialized */
226 		if (first_initialised == NULLAGNUMBER)
227 			first_initialised = index;
228 		error = xfs_iunlink_init(pag);
229 		if (error)
230 			goto out_hash_destroy;
231 		spin_lock_init(&pag->pag_state_lock);
232 	}
233 
234 	index = xfs_set_inode_alloc(mp, agcount);
235 
236 	if (maxagi)
237 		*maxagi = index;
238 
239 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 	return 0;
241 
242 out_hash_destroy:
243 	xfs_buf_hash_destroy(pag);
244 out_free_pag:
245 	mutex_destroy(&pag->pag_ici_reclaim_lock);
246 	kmem_free(pag);
247 out_unwind_new_pags:
248 	/* unwind any prior newly initialized pags */
249 	for (index = first_initialised; index < agcount; index++) {
250 		pag = radix_tree_delete(&mp->m_perag_tree, index);
251 		if (!pag)
252 			break;
253 		xfs_buf_hash_destroy(pag);
254 		xfs_iunlink_destroy(pag);
255 		mutex_destroy(&pag->pag_ici_reclaim_lock);
256 		kmem_free(pag);
257 	}
258 	return error;
259 }
260 
261 /*
262  * xfs_readsb
263  *
264  * Does the initial read of the superblock.
265  */
266 int
267 xfs_readsb(
268 	struct xfs_mount *mp,
269 	int		flags)
270 {
271 	unsigned int	sector_size;
272 	struct xfs_buf	*bp;
273 	struct xfs_sb	*sbp = &mp->m_sb;
274 	int		error;
275 	int		loud = !(flags & XFS_MFSI_QUIET);
276 	const struct xfs_buf_ops *buf_ops;
277 
278 	ASSERT(mp->m_sb_bp == NULL);
279 	ASSERT(mp->m_ddev_targp != NULL);
280 
281 	/*
282 	 * For the initial read, we must guess at the sector
283 	 * size based on the block device.  It's enough to
284 	 * get the sb_sectsize out of the superblock and
285 	 * then reread with the proper length.
286 	 * We don't verify it yet, because it may not be complete.
287 	 */
288 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 	buf_ops = NULL;
290 
291 	/*
292 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 	 * around at all times to optimize access to the superblock. Therefore,
294 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 	 * elevated.
296 	 */
297 reread:
298 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 				      buf_ops);
301 	if (error) {
302 		if (loud)
303 			xfs_warn(mp, "SB validate failed with error %d.", error);
304 		/* bad CRC means corrupted metadata */
305 		if (error == -EFSBADCRC)
306 			error = -EFSCORRUPTED;
307 		return error;
308 	}
309 
310 	/*
311 	 * Initialize the mount structure from the superblock.
312 	 */
313 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314 
315 	/*
316 	 * If we haven't validated the superblock, do so now before we try
317 	 * to check the sector size and reread the superblock appropriately.
318 	 */
319 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 		if (loud)
321 			xfs_warn(mp, "Invalid superblock magic number");
322 		error = -EINVAL;
323 		goto release_buf;
324 	}
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = -ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	if (buf_ops == NULL) {
338 		/*
339 		 * Re-read the superblock so the buffer is correctly sized,
340 		 * and properly verified.
341 		 */
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	xfs_reinit_percpu_counters(mp);
349 
350 	/* no need to be quiet anymore, so reset the buf ops */
351 	bp->b_ops = &xfs_sb_buf_ops;
352 
353 	mp->m_sb_bp = bp;
354 	xfs_buf_unlock(bp);
355 	return 0;
356 
357 release_buf:
358 	xfs_buf_relse(bp);
359 	return error;
360 }
361 
362 /*
363  * Update alignment values based on mount options and sb values
364  */
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
367 {
368 	xfs_sb_t	*sbp = &(mp->m_sb);
369 
370 	if (mp->m_dalign) {
371 		/*
372 		 * If stripe unit and stripe width are not multiples
373 		 * of the fs blocksize turn off alignment.
374 		 */
375 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 			xfs_warn(mp,
378 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
379 				sbp->sb_blocksize);
380 			return -EINVAL;
381 		} else {
382 			/*
383 			 * Convert the stripe unit and width to FSBs.
384 			 */
385 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 				xfs_warn(mp,
388 			"alignment check failed: sunit/swidth vs. agsize(%d)",
389 					 sbp->sb_agblocks);
390 				return -EINVAL;
391 			} else if (mp->m_dalign) {
392 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 			} else {
394 				xfs_warn(mp,
395 			"alignment check failed: sunit(%d) less than bsize(%d)",
396 					 mp->m_dalign, sbp->sb_blocksize);
397 				return -EINVAL;
398 			}
399 		}
400 
401 		/*
402 		 * Update superblock with new values
403 		 * and log changes
404 		 */
405 		if (xfs_sb_version_hasdalign(sbp)) {
406 			if (sbp->sb_unit != mp->m_dalign) {
407 				sbp->sb_unit = mp->m_dalign;
408 				mp->m_update_sb = true;
409 			}
410 			if (sbp->sb_width != mp->m_swidth) {
411 				sbp->sb_width = mp->m_swidth;
412 				mp->m_update_sb = true;
413 			}
414 		} else {
415 			xfs_warn(mp,
416 	"cannot change alignment: superblock does not support data alignment");
417 			return -EINVAL;
418 		}
419 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
421 			mp->m_dalign = sbp->sb_unit;
422 			mp->m_swidth = sbp->sb_width;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * precalculate the low space thresholds for dynamic speculative preallocation.
430  */
431 void
432 xfs_set_low_space_thresholds(
433 	struct xfs_mount	*mp)
434 {
435 	int i;
436 
437 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
438 		uint64_t space = mp->m_sb.sb_dblocks;
439 
440 		do_div(space, 100);
441 		mp->m_low_space[i] = space * (i + 1);
442 	}
443 }
444 
445 /*
446  * Check that the data (and log if separate) is an ok size.
447  */
448 STATIC int
449 xfs_check_sizes(
450 	struct xfs_mount *mp)
451 {
452 	struct xfs_buf	*bp;
453 	xfs_daddr_t	d;
454 	int		error;
455 
456 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
457 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
458 		xfs_warn(mp, "filesystem size mismatch detected");
459 		return -EFBIG;
460 	}
461 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
462 					d - XFS_FSS_TO_BB(mp, 1),
463 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
464 	if (error) {
465 		xfs_warn(mp, "last sector read failed");
466 		return error;
467 	}
468 	xfs_buf_relse(bp);
469 
470 	if (mp->m_logdev_targp == mp->m_ddev_targp)
471 		return 0;
472 
473 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
474 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
475 		xfs_warn(mp, "log size mismatch detected");
476 		return -EFBIG;
477 	}
478 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
479 					d - XFS_FSB_TO_BB(mp, 1),
480 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
481 	if (error) {
482 		xfs_warn(mp, "log device read failed");
483 		return error;
484 	}
485 	xfs_buf_relse(bp);
486 	return 0;
487 }
488 
489 /*
490  * Clear the quotaflags in memory and in the superblock.
491  */
492 int
493 xfs_mount_reset_sbqflags(
494 	struct xfs_mount	*mp)
495 {
496 	mp->m_qflags = 0;
497 
498 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
499 	if (mp->m_sb.sb_qflags == 0)
500 		return 0;
501 	spin_lock(&mp->m_sb_lock);
502 	mp->m_sb.sb_qflags = 0;
503 	spin_unlock(&mp->m_sb_lock);
504 
505 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
506 		return 0;
507 
508 	return xfs_sync_sb(mp, false);
509 }
510 
511 uint64_t
512 xfs_default_resblks(xfs_mount_t *mp)
513 {
514 	uint64_t resblks;
515 
516 	/*
517 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
518 	 * smaller.  This is intended to cover concurrent allocation
519 	 * transactions when we initially hit enospc. These each require a 4
520 	 * block reservation. Hence by default we cover roughly 2000 concurrent
521 	 * allocation reservations.
522 	 */
523 	resblks = mp->m_sb.sb_dblocks;
524 	do_div(resblks, 20);
525 	resblks = min_t(uint64_t, resblks, 8192);
526 	return resblks;
527 }
528 
529 /* Ensure the summary counts are correct. */
530 STATIC int
531 xfs_check_summary_counts(
532 	struct xfs_mount	*mp)
533 {
534 	/*
535 	 * The AG0 superblock verifier rejects in-progress filesystems,
536 	 * so we should never see the flag set this far into mounting.
537 	 */
538 	if (mp->m_sb.sb_inprogress) {
539 		xfs_err(mp, "sb_inprogress set after log recovery??");
540 		WARN_ON(1);
541 		return -EFSCORRUPTED;
542 	}
543 
544 	/*
545 	 * Now the log is mounted, we know if it was an unclean shutdown or
546 	 * not. If it was, with the first phase of recovery has completed, we
547 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
548 	 * but they are recovered transactionally in the second recovery phase
549 	 * later.
550 	 *
551 	 * If the log was clean when we mounted, we can check the summary
552 	 * counters.  If any of them are obviously incorrect, we can recompute
553 	 * them from the AGF headers in the next step.
554 	 */
555 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
556 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
557 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
558 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
559 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
560 
561 	/*
562 	 * We can safely re-initialise incore superblock counters from the
563 	 * per-ag data. These may not be correct if the filesystem was not
564 	 * cleanly unmounted, so we waited for recovery to finish before doing
565 	 * this.
566 	 *
567 	 * If the filesystem was cleanly unmounted or the previous check did
568 	 * not flag anything weird, then we can trust the values in the
569 	 * superblock to be correct and we don't need to do anything here.
570 	 * Otherwise, recalculate the summary counters.
571 	 */
572 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
573 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
574 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
575 		return 0;
576 
577 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
578 }
579 
580 /*
581  * This function does the following on an initial mount of a file system:
582  *	- reads the superblock from disk and init the mount struct
583  *	- if we're a 32-bit kernel, do a size check on the superblock
584  *		so we don't mount terabyte filesystems
585  *	- init mount struct realtime fields
586  *	- allocate inode hash table for fs
587  *	- init directory manager
588  *	- perform recovery and init the log manager
589  */
590 int
591 xfs_mountfs(
592 	struct xfs_mount	*mp)
593 {
594 	struct xfs_sb		*sbp = &(mp->m_sb);
595 	struct xfs_inode	*rip;
596 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
597 	uint64_t		resblks;
598 	uint			quotamount = 0;
599 	uint			quotaflags = 0;
600 	int			error = 0;
601 
602 	xfs_sb_mount_common(mp, sbp);
603 
604 	/*
605 	 * Check for a mismatched features2 values.  Older kernels read & wrote
606 	 * into the wrong sb offset for sb_features2 on some platforms due to
607 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
608 	 * which made older superblock reading/writing routines swap it as a
609 	 * 64-bit value.
610 	 *
611 	 * For backwards compatibility, we make both slots equal.
612 	 *
613 	 * If we detect a mismatched field, we OR the set bits into the existing
614 	 * features2 field in case it has already been modified; we don't want
615 	 * to lose any features.  We then update the bad location with the ORed
616 	 * value so that older kernels will see any features2 flags. The
617 	 * superblock writeback code ensures the new sb_features2 is copied to
618 	 * sb_bad_features2 before it is logged or written to disk.
619 	 */
620 	if (xfs_sb_has_mismatched_features2(sbp)) {
621 		xfs_warn(mp, "correcting sb_features alignment problem");
622 		sbp->sb_features2 |= sbp->sb_bad_features2;
623 		mp->m_update_sb = true;
624 
625 		/*
626 		 * Re-check for ATTR2 in case it was found in bad_features2
627 		 * slot.
628 		 */
629 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
630 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
631 			mp->m_flags |= XFS_MOUNT_ATTR2;
632 	}
633 
634 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
635 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
636 		xfs_sb_version_removeattr2(&mp->m_sb);
637 		mp->m_update_sb = true;
638 
639 		/* update sb_versionnum for the clearing of the morebits */
640 		if (!sbp->sb_features2)
641 			mp->m_update_sb = true;
642 	}
643 
644 	/* always use v2 inodes by default now */
645 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
646 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
647 		mp->m_update_sb = true;
648 	}
649 
650 	/*
651 	 * Check if sb_agblocks is aligned at stripe boundary
652 	 * If sb_agblocks is NOT aligned turn off m_dalign since
653 	 * allocator alignment is within an ag, therefore ag has
654 	 * to be aligned at stripe boundary.
655 	 */
656 	error = xfs_update_alignment(mp);
657 	if (error)
658 		goto out;
659 
660 	xfs_alloc_compute_maxlevels(mp);
661 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
662 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
663 	xfs_ialloc_setup_geometry(mp);
664 	xfs_rmapbt_compute_maxlevels(mp);
665 	xfs_refcountbt_compute_maxlevels(mp);
666 
667 	/* enable fail_at_unmount as default */
668 	mp->m_fail_unmount = true;
669 
670 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
671 			       NULL, mp->m_super->s_id);
672 	if (error)
673 		goto out;
674 
675 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
676 			       &mp->m_kobj, "stats");
677 	if (error)
678 		goto out_remove_sysfs;
679 
680 	error = xfs_error_sysfs_init(mp);
681 	if (error)
682 		goto out_del_stats;
683 
684 	error = xfs_errortag_init(mp);
685 	if (error)
686 		goto out_remove_error_sysfs;
687 
688 	error = xfs_uuid_mount(mp);
689 	if (error)
690 		goto out_remove_errortag;
691 
692 	/*
693 	 * Update the preferred write size based on the information from the
694 	 * on-disk superblock.
695 	 */
696 	mp->m_allocsize_log =
697 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
698 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
699 
700 	/* set the low space thresholds for dynamic preallocation */
701 	xfs_set_low_space_thresholds(mp);
702 
703 	/*
704 	 * If enabled, sparse inode chunk alignment is expected to match the
705 	 * cluster size. Full inode chunk alignment must match the chunk size,
706 	 * but that is checked on sb read verification...
707 	 */
708 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
709 	    mp->m_sb.sb_spino_align !=
710 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
711 		xfs_warn(mp,
712 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
713 			 mp->m_sb.sb_spino_align,
714 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
715 		error = -EINVAL;
716 		goto out_remove_uuid;
717 	}
718 
719 	/*
720 	 * Check that the data (and log if separate) is an ok size.
721 	 */
722 	error = xfs_check_sizes(mp);
723 	if (error)
724 		goto out_remove_uuid;
725 
726 	/*
727 	 * Initialize realtime fields in the mount structure
728 	 */
729 	error = xfs_rtmount_init(mp);
730 	if (error) {
731 		xfs_warn(mp, "RT mount failed");
732 		goto out_remove_uuid;
733 	}
734 
735 	/*
736 	 *  Copies the low order bits of the timestamp and the randomly
737 	 *  set "sequence" number out of a UUID.
738 	 */
739 	mp->m_fixedfsid[0] =
740 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
741 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
742 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
743 
744 	error = xfs_da_mount(mp);
745 	if (error) {
746 		xfs_warn(mp, "Failed dir/attr init: %d", error);
747 		goto out_remove_uuid;
748 	}
749 
750 	/*
751 	 * Initialize the precomputed transaction reservations values.
752 	 */
753 	xfs_trans_init(mp);
754 
755 	/*
756 	 * Allocate and initialize the per-ag data.
757 	 */
758 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
759 	if (error) {
760 		xfs_warn(mp, "Failed per-ag init: %d", error);
761 		goto out_free_dir;
762 	}
763 
764 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
765 		xfs_warn(mp, "no log defined");
766 		error = -EFSCORRUPTED;
767 		goto out_free_perag;
768 	}
769 
770 	/*
771 	 * Log's mount-time initialization. The first part of recovery can place
772 	 * some items on the AIL, to be handled when recovery is finished or
773 	 * cancelled.
774 	 */
775 	error = xfs_log_mount(mp, mp->m_logdev_targp,
776 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
777 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
778 	if (error) {
779 		xfs_warn(mp, "log mount failed");
780 		goto out_fail_wait;
781 	}
782 
783 	/* Make sure the summary counts are ok. */
784 	error = xfs_check_summary_counts(mp);
785 	if (error)
786 		goto out_log_dealloc;
787 
788 	/*
789 	 * Get and sanity-check the root inode.
790 	 * Save the pointer to it in the mount structure.
791 	 */
792 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
793 			 XFS_ILOCK_EXCL, &rip);
794 	if (error) {
795 		xfs_warn(mp,
796 			"Failed to read root inode 0x%llx, error %d",
797 			sbp->sb_rootino, -error);
798 		goto out_log_dealloc;
799 	}
800 
801 	ASSERT(rip != NULL);
802 
803 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
804 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
805 			(unsigned long long)rip->i_ino);
806 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
807 		error = -EFSCORRUPTED;
808 		goto out_rele_rip;
809 	}
810 	mp->m_rootip = rip;	/* save it */
811 
812 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
813 
814 	/*
815 	 * Initialize realtime inode pointers in the mount structure
816 	 */
817 	error = xfs_rtmount_inodes(mp);
818 	if (error) {
819 		/*
820 		 * Free up the root inode.
821 		 */
822 		xfs_warn(mp, "failed to read RT inodes");
823 		goto out_rele_rip;
824 	}
825 
826 	/*
827 	 * If this is a read-only mount defer the superblock updates until
828 	 * the next remount into writeable mode.  Otherwise we would never
829 	 * perform the update e.g. for the root filesystem.
830 	 */
831 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
832 		error = xfs_sync_sb(mp, false);
833 		if (error) {
834 			xfs_warn(mp, "failed to write sb changes");
835 			goto out_rtunmount;
836 		}
837 	}
838 
839 	/*
840 	 * Initialise the XFS quota management subsystem for this mount
841 	 */
842 	if (XFS_IS_QUOTA_RUNNING(mp)) {
843 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
844 		if (error)
845 			goto out_rtunmount;
846 	} else {
847 		ASSERT(!XFS_IS_QUOTA_ON(mp));
848 
849 		/*
850 		 * If a file system had quotas running earlier, but decided to
851 		 * mount without -o uquota/pquota/gquota options, revoke the
852 		 * quotachecked license.
853 		 */
854 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
855 			xfs_notice(mp, "resetting quota flags");
856 			error = xfs_mount_reset_sbqflags(mp);
857 			if (error)
858 				goto out_rtunmount;
859 		}
860 	}
861 
862 	/*
863 	 * Finish recovering the file system.  This part needed to be delayed
864 	 * until after the root and real-time bitmap inodes were consistently
865 	 * read in.
866 	 */
867 	error = xfs_log_mount_finish(mp);
868 	if (error) {
869 		xfs_warn(mp, "log mount finish failed");
870 		goto out_rtunmount;
871 	}
872 
873 	/*
874 	 * Now the log is fully replayed, we can transition to full read-only
875 	 * mode for read-only mounts. This will sync all the metadata and clean
876 	 * the log so that the recovery we just performed does not have to be
877 	 * replayed again on the next mount.
878 	 *
879 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
880 	 * semantically identical operations.
881 	 */
882 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
883 							XFS_MOUNT_RDONLY) {
884 		xfs_quiesce_attr(mp);
885 	}
886 
887 	/*
888 	 * Complete the quota initialisation, post-log-replay component.
889 	 */
890 	if (quotamount) {
891 		ASSERT(mp->m_qflags == 0);
892 		mp->m_qflags = quotaflags;
893 
894 		xfs_qm_mount_quotas(mp);
895 	}
896 
897 	/*
898 	 * Now we are mounted, reserve a small amount of unused space for
899 	 * privileged transactions. This is needed so that transaction
900 	 * space required for critical operations can dip into this pool
901 	 * when at ENOSPC. This is needed for operations like create with
902 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
903 	 * are not allowed to use this reserved space.
904 	 *
905 	 * This may drive us straight to ENOSPC on mount, but that implies
906 	 * we were already there on the last unmount. Warn if this occurs.
907 	 */
908 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
909 		resblks = xfs_default_resblks(mp);
910 		error = xfs_reserve_blocks(mp, &resblks, NULL);
911 		if (error)
912 			xfs_warn(mp,
913 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
914 
915 		/* Recover any CoW blocks that never got remapped. */
916 		error = xfs_reflink_recover_cow(mp);
917 		if (error) {
918 			xfs_err(mp,
919 	"Error %d recovering leftover CoW allocations.", error);
920 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
921 			goto out_quota;
922 		}
923 
924 		/* Reserve AG blocks for future btree expansion. */
925 		error = xfs_fs_reserve_ag_blocks(mp);
926 		if (error && error != -ENOSPC)
927 			goto out_agresv;
928 	}
929 
930 	return 0;
931 
932  out_agresv:
933 	xfs_fs_unreserve_ag_blocks(mp);
934  out_quota:
935 	xfs_qm_unmount_quotas(mp);
936  out_rtunmount:
937 	xfs_rtunmount_inodes(mp);
938  out_rele_rip:
939 	xfs_irele(rip);
940 	/* Clean out dquots that might be in memory after quotacheck. */
941 	xfs_qm_unmount(mp);
942 	/*
943 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
944 	 * We have to do this /after/ rtunmount and qm_unmount because those
945 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
946 	 *
947 	 * This is slightly different from the unmountfs call sequence
948 	 * because we could be tearing down a partially set up mount.  In
949 	 * particular, if log_mount_finish fails we bail out without calling
950 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
951 	 * quota inodes.
952 	 */
953 	cancel_delayed_work_sync(&mp->m_reclaim_work);
954 	xfs_reclaim_inodes(mp, SYNC_WAIT);
955 	xfs_health_unmount(mp);
956  out_log_dealloc:
957 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
958 	xfs_log_mount_cancel(mp);
959  out_fail_wait:
960 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
961 		xfs_wait_buftarg(mp->m_logdev_targp);
962 	xfs_wait_buftarg(mp->m_ddev_targp);
963  out_free_perag:
964 	xfs_free_perag(mp);
965  out_free_dir:
966 	xfs_da_unmount(mp);
967  out_remove_uuid:
968 	xfs_uuid_unmount(mp);
969  out_remove_errortag:
970 	xfs_errortag_del(mp);
971  out_remove_error_sysfs:
972 	xfs_error_sysfs_del(mp);
973  out_del_stats:
974 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
975  out_remove_sysfs:
976 	xfs_sysfs_del(&mp->m_kobj);
977  out:
978 	return error;
979 }
980 
981 /*
982  * This flushes out the inodes,dquots and the superblock, unmounts the
983  * log and makes sure that incore structures are freed.
984  */
985 void
986 xfs_unmountfs(
987 	struct xfs_mount	*mp)
988 {
989 	uint64_t		resblks;
990 	int			error;
991 
992 	xfs_stop_block_reaping(mp);
993 	xfs_fs_unreserve_ag_blocks(mp);
994 	xfs_qm_unmount_quotas(mp);
995 	xfs_rtunmount_inodes(mp);
996 	xfs_irele(mp->m_rootip);
997 
998 	/*
999 	 * We can potentially deadlock here if we have an inode cluster
1000 	 * that has been freed has its buffer still pinned in memory because
1001 	 * the transaction is still sitting in a iclog. The stale inodes
1002 	 * on that buffer will have their flush locks held until the
1003 	 * transaction hits the disk and the callbacks run. the inode
1004 	 * flush takes the flush lock unconditionally and with nothing to
1005 	 * push out the iclog we will never get that unlocked. hence we
1006 	 * need to force the log first.
1007 	 */
1008 	xfs_log_force(mp, XFS_LOG_SYNC);
1009 
1010 	/*
1011 	 * Wait for all busy extents to be freed, including completion of
1012 	 * any discard operation.
1013 	 */
1014 	xfs_extent_busy_wait_all(mp);
1015 	flush_workqueue(xfs_discard_wq);
1016 
1017 	/*
1018 	 * We now need to tell the world we are unmounting. This will allow
1019 	 * us to detect that the filesystem is going away and we should error
1020 	 * out anything that we have been retrying in the background. This will
1021 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1022 	 */
1023 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1024 
1025 	/*
1026 	 * Flush all pending changes from the AIL.
1027 	 */
1028 	xfs_ail_push_all_sync(mp->m_ail);
1029 
1030 	/*
1031 	 * And reclaim all inodes.  At this point there should be no dirty
1032 	 * inodes and none should be pinned or locked, but use synchronous
1033 	 * reclaim just to be sure. We can stop background inode reclaim
1034 	 * here as well if it is still running.
1035 	 */
1036 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1037 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1038 	xfs_health_unmount(mp);
1039 
1040 	xfs_qm_unmount(mp);
1041 
1042 	/*
1043 	 * Unreserve any blocks we have so that when we unmount we don't account
1044 	 * the reserved free space as used. This is really only necessary for
1045 	 * lazy superblock counting because it trusts the incore superblock
1046 	 * counters to be absolutely correct on clean unmount.
1047 	 *
1048 	 * We don't bother correcting this elsewhere for lazy superblock
1049 	 * counting because on mount of an unclean filesystem we reconstruct the
1050 	 * correct counter value and this is irrelevant.
1051 	 *
1052 	 * For non-lazy counter filesystems, this doesn't matter at all because
1053 	 * we only every apply deltas to the superblock and hence the incore
1054 	 * value does not matter....
1055 	 */
1056 	resblks = 0;
1057 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1058 	if (error)
1059 		xfs_warn(mp, "Unable to free reserved block pool. "
1060 				"Freespace may not be correct on next mount.");
1061 
1062 	error = xfs_log_sbcount(mp);
1063 	if (error)
1064 		xfs_warn(mp, "Unable to update superblock counters. "
1065 				"Freespace may not be correct on next mount.");
1066 
1067 
1068 	xfs_log_unmount(mp);
1069 	xfs_da_unmount(mp);
1070 	xfs_uuid_unmount(mp);
1071 
1072 #if defined(DEBUG)
1073 	xfs_errortag_clearall(mp);
1074 #endif
1075 	xfs_free_perag(mp);
1076 
1077 	xfs_errortag_del(mp);
1078 	xfs_error_sysfs_del(mp);
1079 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1080 	xfs_sysfs_del(&mp->m_kobj);
1081 }
1082 
1083 /*
1084  * Determine whether modifications can proceed. The caller specifies the minimum
1085  * freeze level for which modifications should not be allowed. This allows
1086  * certain operations to proceed while the freeze sequence is in progress, if
1087  * necessary.
1088  */
1089 bool
1090 xfs_fs_writable(
1091 	struct xfs_mount	*mp,
1092 	int			level)
1093 {
1094 	ASSERT(level > SB_UNFROZEN);
1095 	if ((mp->m_super->s_writers.frozen >= level) ||
1096 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1097 		return false;
1098 
1099 	return true;
1100 }
1101 
1102 /*
1103  * xfs_log_sbcount
1104  *
1105  * Sync the superblock counters to disk.
1106  *
1107  * Note this code can be called during the process of freezing, so we use the
1108  * transaction allocator that does not block when the transaction subsystem is
1109  * in its frozen state.
1110  */
1111 int
1112 xfs_log_sbcount(xfs_mount_t *mp)
1113 {
1114 	/* allow this to proceed during the freeze sequence... */
1115 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1116 		return 0;
1117 
1118 	/*
1119 	 * we don't need to do this if we are updating the superblock
1120 	 * counters on every modification.
1121 	 */
1122 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1123 		return 0;
1124 
1125 	return xfs_sync_sb(mp, true);
1126 }
1127 
1128 /*
1129  * Deltas for the inode count are +/-64, hence we use a large batch size
1130  * of 128 so we don't need to take the counter lock on every update.
1131  */
1132 #define XFS_ICOUNT_BATCH	128
1133 int
1134 xfs_mod_icount(
1135 	struct xfs_mount	*mp,
1136 	int64_t			delta)
1137 {
1138 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1139 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1140 		ASSERT(0);
1141 		percpu_counter_add(&mp->m_icount, -delta);
1142 		return -EINVAL;
1143 	}
1144 	return 0;
1145 }
1146 
1147 int
1148 xfs_mod_ifree(
1149 	struct xfs_mount	*mp,
1150 	int64_t			delta)
1151 {
1152 	percpu_counter_add(&mp->m_ifree, delta);
1153 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1154 		ASSERT(0);
1155 		percpu_counter_add(&mp->m_ifree, -delta);
1156 		return -EINVAL;
1157 	}
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Deltas for the block count can vary from 1 to very large, but lock contention
1163  * only occurs on frequent small block count updates such as in the delayed
1164  * allocation path for buffered writes (page a time updates). Hence we set
1165  * a large batch count (1024) to minimise global counter updates except when
1166  * we get near to ENOSPC and we have to be very accurate with our updates.
1167  */
1168 #define XFS_FDBLOCKS_BATCH	1024
1169 int
1170 xfs_mod_fdblocks(
1171 	struct xfs_mount	*mp,
1172 	int64_t			delta,
1173 	bool			rsvd)
1174 {
1175 	int64_t			lcounter;
1176 	long long		res_used;
1177 	s32			batch;
1178 
1179 	if (delta > 0) {
1180 		/*
1181 		 * If the reserve pool is depleted, put blocks back into it
1182 		 * first. Most of the time the pool is full.
1183 		 */
1184 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1185 			percpu_counter_add(&mp->m_fdblocks, delta);
1186 			return 0;
1187 		}
1188 
1189 		spin_lock(&mp->m_sb_lock);
1190 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1191 
1192 		if (res_used > delta) {
1193 			mp->m_resblks_avail += delta;
1194 		} else {
1195 			delta -= res_used;
1196 			mp->m_resblks_avail = mp->m_resblks;
1197 			percpu_counter_add(&mp->m_fdblocks, delta);
1198 		}
1199 		spin_unlock(&mp->m_sb_lock);
1200 		return 0;
1201 	}
1202 
1203 	/*
1204 	 * Taking blocks away, need to be more accurate the closer we
1205 	 * are to zero.
1206 	 *
1207 	 * If the counter has a value of less than 2 * max batch size,
1208 	 * then make everything serialise as we are real close to
1209 	 * ENOSPC.
1210 	 */
1211 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1212 				     XFS_FDBLOCKS_BATCH) < 0)
1213 		batch = 1;
1214 	else
1215 		batch = XFS_FDBLOCKS_BATCH;
1216 
1217 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1218 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1219 				     XFS_FDBLOCKS_BATCH) >= 0) {
1220 		/* we had space! */
1221 		return 0;
1222 	}
1223 
1224 	/*
1225 	 * lock up the sb for dipping into reserves before releasing the space
1226 	 * that took us to ENOSPC.
1227 	 */
1228 	spin_lock(&mp->m_sb_lock);
1229 	percpu_counter_add(&mp->m_fdblocks, -delta);
1230 	if (!rsvd)
1231 		goto fdblocks_enospc;
1232 
1233 	lcounter = (long long)mp->m_resblks_avail + delta;
1234 	if (lcounter >= 0) {
1235 		mp->m_resblks_avail = lcounter;
1236 		spin_unlock(&mp->m_sb_lock);
1237 		return 0;
1238 	}
1239 	printk_once(KERN_WARNING
1240 		"Filesystem \"%s\": reserve blocks depleted! "
1241 		"Consider increasing reserve pool size.",
1242 		mp->m_super->s_id);
1243 fdblocks_enospc:
1244 	spin_unlock(&mp->m_sb_lock);
1245 	return -ENOSPC;
1246 }
1247 
1248 int
1249 xfs_mod_frextents(
1250 	struct xfs_mount	*mp,
1251 	int64_t			delta)
1252 {
1253 	int64_t			lcounter;
1254 	int			ret = 0;
1255 
1256 	spin_lock(&mp->m_sb_lock);
1257 	lcounter = mp->m_sb.sb_frextents + delta;
1258 	if (lcounter < 0)
1259 		ret = -ENOSPC;
1260 	else
1261 		mp->m_sb.sb_frextents = lcounter;
1262 	spin_unlock(&mp->m_sb_lock);
1263 	return ret;
1264 }
1265 
1266 /*
1267  * xfs_getsb() is called to obtain the buffer for the superblock.
1268  * The buffer is returned locked and read in from disk.
1269  * The buffer should be released with a call to xfs_brelse().
1270  */
1271 struct xfs_buf *
1272 xfs_getsb(
1273 	struct xfs_mount	*mp)
1274 {
1275 	struct xfs_buf		*bp = mp->m_sb_bp;
1276 
1277 	xfs_buf_lock(bp);
1278 	xfs_buf_hold(bp);
1279 	ASSERT(bp->b_flags & XBF_DONE);
1280 	return bp;
1281 }
1282 
1283 /*
1284  * Used to free the superblock along various error paths.
1285  */
1286 void
1287 xfs_freesb(
1288 	struct xfs_mount	*mp)
1289 {
1290 	struct xfs_buf		*bp = mp->m_sb_bp;
1291 
1292 	xfs_buf_lock(bp);
1293 	mp->m_sb_bp = NULL;
1294 	xfs_buf_relse(bp);
1295 }
1296 
1297 /*
1298  * If the underlying (data/log/rt) device is readonly, there are some
1299  * operations that cannot proceed.
1300  */
1301 int
1302 xfs_dev_is_read_only(
1303 	struct xfs_mount	*mp,
1304 	char			*message)
1305 {
1306 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1307 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1308 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1309 		xfs_notice(mp, "%s required on read-only device.", message);
1310 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1311 		return -EROFS;
1312 	}
1313 	return 0;
1314 }
1315 
1316 /* Force the summary counters to be recalculated at next mount. */
1317 void
1318 xfs_force_summary_recalc(
1319 	struct xfs_mount	*mp)
1320 {
1321 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1322 		return;
1323 
1324 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1325 }
1326 
1327 /*
1328  * Update the in-core delayed block counter.
1329  *
1330  * We prefer to update the counter without having to take a spinlock for every
1331  * counter update (i.e. batching).  Each change to delayed allocation
1332  * reservations can change can easily exceed the default percpu counter
1333  * batching, so we use a larger batch factor here.
1334  *
1335  * Note that we don't currently have any callers requiring fast summation
1336  * (e.g. percpu_counter_read) so we can use a big batch value here.
1337  */
1338 #define XFS_DELALLOC_BATCH	(4096)
1339 void
1340 xfs_mod_delalloc(
1341 	struct xfs_mount	*mp,
1342 	int64_t			delta)
1343 {
1344 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1345 			XFS_DELALLOC_BATCH);
1346 }
1347