xref: /linux/fs/xfs/xfs_mount.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 #include "xfs_ag.h"
36 
37 static DEFINE_MUTEX(xfs_uuid_table_mutex);
38 static int xfs_uuid_table_size;
39 static uuid_t *xfs_uuid_table;
40 
41 void
42 xfs_uuid_table_free(void)
43 {
44 	if (xfs_uuid_table_size == 0)
45 		return;
46 	kmem_free(xfs_uuid_table);
47 	xfs_uuid_table = NULL;
48 	xfs_uuid_table_size = 0;
49 }
50 
51 /*
52  * See if the UUID is unique among mounted XFS filesystems.
53  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54  */
55 STATIC int
56 xfs_uuid_mount(
57 	struct xfs_mount	*mp)
58 {
59 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
60 	int			hole, i;
61 
62 	/* Publish UUID in struct super_block */
63 	uuid_copy(&mp->m_super->s_uuid, uuid);
64 
65 	if (mp->m_flags & XFS_MOUNT_NOUUID)
66 		return 0;
67 
68 	if (uuid_is_null(uuid)) {
69 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
70 		return -EINVAL;
71 	}
72 
73 	mutex_lock(&xfs_uuid_table_mutex);
74 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 		if (uuid_is_null(&xfs_uuid_table[i])) {
76 			hole = i;
77 			continue;
78 		}
79 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 			goto out_duplicate;
81 	}
82 
83 	if (hole < 0) {
84 		xfs_uuid_table = krealloc(xfs_uuid_table,
85 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 			GFP_KERNEL | __GFP_NOFAIL);
87 		hole = xfs_uuid_table_size++;
88 	}
89 	xfs_uuid_table[hole] = *uuid;
90 	mutex_unlock(&xfs_uuid_table_mutex);
91 
92 	return 0;
93 
94  out_duplicate:
95 	mutex_unlock(&xfs_uuid_table_mutex);
96 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
97 	return -EINVAL;
98 }
99 
100 STATIC void
101 xfs_uuid_unmount(
102 	struct xfs_mount	*mp)
103 {
104 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
105 	int			i;
106 
107 	if (mp->m_flags & XFS_MOUNT_NOUUID)
108 		return;
109 
110 	mutex_lock(&xfs_uuid_table_mutex);
111 	for (i = 0; i < xfs_uuid_table_size; i++) {
112 		if (uuid_is_null(&xfs_uuid_table[i]))
113 			continue;
114 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 			continue;
116 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 		break;
118 	}
119 	ASSERT(i < xfs_uuid_table_size);
120 	mutex_unlock(&xfs_uuid_table_mutex);
121 }
122 
123 /*
124  * Check size of device based on the (data/realtime) block count.
125  * Note: this check is used by the growfs code as well as mount.
126  */
127 int
128 xfs_sb_validate_fsb_count(
129 	xfs_sb_t	*sbp,
130 	uint64_t	nblocks)
131 {
132 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
134 
135 	/* Limited by ULONG_MAX of page cache index */
136 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
137 		return -EFBIG;
138 	return 0;
139 }
140 
141 /*
142  * xfs_readsb
143  *
144  * Does the initial read of the superblock.
145  */
146 int
147 xfs_readsb(
148 	struct xfs_mount *mp,
149 	int		flags)
150 {
151 	unsigned int	sector_size;
152 	struct xfs_buf	*bp;
153 	struct xfs_sb	*sbp = &mp->m_sb;
154 	int		error;
155 	int		loud = !(flags & XFS_MFSI_QUIET);
156 	const struct xfs_buf_ops *buf_ops;
157 
158 	ASSERT(mp->m_sb_bp == NULL);
159 	ASSERT(mp->m_ddev_targp != NULL);
160 
161 	/*
162 	 * For the initial read, we must guess at the sector
163 	 * size based on the block device.  It's enough to
164 	 * get the sb_sectsize out of the superblock and
165 	 * then reread with the proper length.
166 	 * We don't verify it yet, because it may not be complete.
167 	 */
168 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 	buf_ops = NULL;
170 
171 	/*
172 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 	 * around at all times to optimize access to the superblock. Therefore,
174 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 	 * elevated.
176 	 */
177 reread:
178 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
179 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 				      buf_ops);
181 	if (error) {
182 		if (loud)
183 			xfs_warn(mp, "SB validate failed with error %d.", error);
184 		/* bad CRC means corrupted metadata */
185 		if (error == -EFSBADCRC)
186 			error = -EFSCORRUPTED;
187 		return error;
188 	}
189 
190 	/*
191 	 * Initialize the mount structure from the superblock.
192 	 */
193 	xfs_sb_from_disk(sbp, bp->b_addr);
194 
195 	/*
196 	 * If we haven't validated the superblock, do so now before we try
197 	 * to check the sector size and reread the superblock appropriately.
198 	 */
199 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 		if (loud)
201 			xfs_warn(mp, "Invalid superblock magic number");
202 		error = -EINVAL;
203 		goto release_buf;
204 	}
205 
206 	/*
207 	 * We must be able to do sector-sized and sector-aligned IO.
208 	 */
209 	if (sector_size > sbp->sb_sectsize) {
210 		if (loud)
211 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
212 				sector_size, sbp->sb_sectsize);
213 		error = -ENOSYS;
214 		goto release_buf;
215 	}
216 
217 	if (buf_ops == NULL) {
218 		/*
219 		 * Re-read the superblock so the buffer is correctly sized,
220 		 * and properly verified.
221 		 */
222 		xfs_buf_relse(bp);
223 		sector_size = sbp->sb_sectsize;
224 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
225 		goto reread;
226 	}
227 
228 	xfs_reinit_percpu_counters(mp);
229 
230 	/* no need to be quiet anymore, so reset the buf ops */
231 	bp->b_ops = &xfs_sb_buf_ops;
232 
233 	mp->m_sb_bp = bp;
234 	xfs_buf_unlock(bp);
235 	return 0;
236 
237 release_buf:
238 	xfs_buf_relse(bp);
239 	return error;
240 }
241 
242 /*
243  * If the sunit/swidth change would move the precomputed root inode value, we
244  * must reject the ondisk change because repair will stumble over that.
245  * However, we allow the mount to proceed because we never rejected this
246  * combination before.  Returns true to update the sb, false otherwise.
247  */
248 static inline int
249 xfs_check_new_dalign(
250 	struct xfs_mount	*mp,
251 	int			new_dalign,
252 	bool			*update_sb)
253 {
254 	struct xfs_sb		*sbp = &mp->m_sb;
255 	xfs_ino_t		calc_ino;
256 
257 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
258 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
259 
260 	if (sbp->sb_rootino == calc_ino) {
261 		*update_sb = true;
262 		return 0;
263 	}
264 
265 	xfs_warn(mp,
266 "Cannot change stripe alignment; would require moving root inode.");
267 
268 	/*
269 	 * XXX: Next time we add a new incompat feature, this should start
270 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
271 	 * that we're ignoring the administrator's instructions.
272 	 */
273 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
274 	*update_sb = false;
275 	return 0;
276 }
277 
278 /*
279  * If we were provided with new sunit/swidth values as mount options, make sure
280  * that they pass basic alignment and superblock feature checks, and convert
281  * them into the same units (FSB) that everything else expects.  This step
282  * /must/ be done before computing the inode geometry.
283  */
284 STATIC int
285 xfs_validate_new_dalign(
286 	struct xfs_mount	*mp)
287 {
288 	if (mp->m_dalign == 0)
289 		return 0;
290 
291 	/*
292 	 * If stripe unit and stripe width are not multiples
293 	 * of the fs blocksize turn off alignment.
294 	 */
295 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
296 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
297 		xfs_warn(mp,
298 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
299 			mp->m_sb.sb_blocksize);
300 		return -EINVAL;
301 	} else {
302 		/*
303 		 * Convert the stripe unit and width to FSBs.
304 		 */
305 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
306 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
307 			xfs_warn(mp,
308 		"alignment check failed: sunit/swidth vs. agsize(%d)",
309 				 mp->m_sb.sb_agblocks);
310 			return -EINVAL;
311 		} else if (mp->m_dalign) {
312 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
313 		} else {
314 			xfs_warn(mp,
315 		"alignment check failed: sunit(%d) less than bsize(%d)",
316 				 mp->m_dalign, mp->m_sb.sb_blocksize);
317 			return -EINVAL;
318 		}
319 	}
320 
321 	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
322 		xfs_warn(mp,
323 "cannot change alignment: superblock does not support data alignment");
324 		return -EINVAL;
325 	}
326 
327 	return 0;
328 }
329 
330 /* Update alignment values based on mount options and sb values. */
331 STATIC int
332 xfs_update_alignment(
333 	struct xfs_mount	*mp)
334 {
335 	struct xfs_sb		*sbp = &mp->m_sb;
336 
337 	if (mp->m_dalign) {
338 		bool		update_sb;
339 		int		error;
340 
341 		if (sbp->sb_unit == mp->m_dalign &&
342 		    sbp->sb_width == mp->m_swidth)
343 			return 0;
344 
345 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
346 		if (error || !update_sb)
347 			return error;
348 
349 		sbp->sb_unit = mp->m_dalign;
350 		sbp->sb_width = mp->m_swidth;
351 		mp->m_update_sb = true;
352 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
353 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
354 		mp->m_dalign = sbp->sb_unit;
355 		mp->m_swidth = sbp->sb_width;
356 	}
357 
358 	return 0;
359 }
360 
361 /*
362  * precalculate the low space thresholds for dynamic speculative preallocation.
363  */
364 void
365 xfs_set_low_space_thresholds(
366 	struct xfs_mount	*mp)
367 {
368 	int i;
369 
370 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
371 		uint64_t space = mp->m_sb.sb_dblocks;
372 
373 		do_div(space, 100);
374 		mp->m_low_space[i] = space * (i + 1);
375 	}
376 }
377 
378 /*
379  * Check that the data (and log if separate) is an ok size.
380  */
381 STATIC int
382 xfs_check_sizes(
383 	struct xfs_mount *mp)
384 {
385 	struct xfs_buf	*bp;
386 	xfs_daddr_t	d;
387 	int		error;
388 
389 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
390 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
391 		xfs_warn(mp, "filesystem size mismatch detected");
392 		return -EFBIG;
393 	}
394 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
395 					d - XFS_FSS_TO_BB(mp, 1),
396 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
397 	if (error) {
398 		xfs_warn(mp, "last sector read failed");
399 		return error;
400 	}
401 	xfs_buf_relse(bp);
402 
403 	if (mp->m_logdev_targp == mp->m_ddev_targp)
404 		return 0;
405 
406 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
407 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
408 		xfs_warn(mp, "log size mismatch detected");
409 		return -EFBIG;
410 	}
411 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
412 					d - XFS_FSB_TO_BB(mp, 1),
413 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
414 	if (error) {
415 		xfs_warn(mp, "log device read failed");
416 		return error;
417 	}
418 	xfs_buf_relse(bp);
419 	return 0;
420 }
421 
422 /*
423  * Clear the quotaflags in memory and in the superblock.
424  */
425 int
426 xfs_mount_reset_sbqflags(
427 	struct xfs_mount	*mp)
428 {
429 	mp->m_qflags = 0;
430 
431 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
432 	if (mp->m_sb.sb_qflags == 0)
433 		return 0;
434 	spin_lock(&mp->m_sb_lock);
435 	mp->m_sb.sb_qflags = 0;
436 	spin_unlock(&mp->m_sb_lock);
437 
438 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
439 		return 0;
440 
441 	return xfs_sync_sb(mp, false);
442 }
443 
444 uint64_t
445 xfs_default_resblks(xfs_mount_t *mp)
446 {
447 	uint64_t resblks;
448 
449 	/*
450 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
451 	 * smaller.  This is intended to cover concurrent allocation
452 	 * transactions when we initially hit enospc. These each require a 4
453 	 * block reservation. Hence by default we cover roughly 2000 concurrent
454 	 * allocation reservations.
455 	 */
456 	resblks = mp->m_sb.sb_dblocks;
457 	do_div(resblks, 20);
458 	resblks = min_t(uint64_t, resblks, 8192);
459 	return resblks;
460 }
461 
462 /* Ensure the summary counts are correct. */
463 STATIC int
464 xfs_check_summary_counts(
465 	struct xfs_mount	*mp)
466 {
467 	/*
468 	 * The AG0 superblock verifier rejects in-progress filesystems,
469 	 * so we should never see the flag set this far into mounting.
470 	 */
471 	if (mp->m_sb.sb_inprogress) {
472 		xfs_err(mp, "sb_inprogress set after log recovery??");
473 		WARN_ON(1);
474 		return -EFSCORRUPTED;
475 	}
476 
477 	/*
478 	 * Now the log is mounted, we know if it was an unclean shutdown or
479 	 * not. If it was, with the first phase of recovery has completed, we
480 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
481 	 * but they are recovered transactionally in the second recovery phase
482 	 * later.
483 	 *
484 	 * If the log was clean when we mounted, we can check the summary
485 	 * counters.  If any of them are obviously incorrect, we can recompute
486 	 * them from the AGF headers in the next step.
487 	 */
488 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
489 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
490 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
491 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
492 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
493 
494 	/*
495 	 * We can safely re-initialise incore superblock counters from the
496 	 * per-ag data. These may not be correct if the filesystem was not
497 	 * cleanly unmounted, so we waited for recovery to finish before doing
498 	 * this.
499 	 *
500 	 * If the filesystem was cleanly unmounted or the previous check did
501 	 * not flag anything weird, then we can trust the values in the
502 	 * superblock to be correct and we don't need to do anything here.
503 	 * Otherwise, recalculate the summary counters.
504 	 */
505 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
506 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
507 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
508 		return 0;
509 
510 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
511 }
512 
513 /*
514  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
515  * internal inode structures can be sitting in the CIL and AIL at this point,
516  * so we need to unpin them, write them back and/or reclaim them before unmount
517  * can proceed.
518  *
519  * An inode cluster that has been freed can have its buffer still pinned in
520  * memory because the transaction is still sitting in a iclog. The stale inodes
521  * on that buffer will be pinned to the buffer until the transaction hits the
522  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
523  * may never see the pinned buffer, so nothing will push out the iclog and
524  * unpin the buffer.
525  *
526  * Hence we need to force the log to unpin everything first. However, log
527  * forces don't wait for the discards they issue to complete, so we have to
528  * explicitly wait for them to complete here as well.
529  *
530  * Then we can tell the world we are unmounting so that error handling knows
531  * that the filesystem is going away and we should error out anything that we
532  * have been retrying in the background.  This will prevent never-ending
533  * retries in AIL pushing from hanging the unmount.
534  *
535  * Finally, we can push the AIL to clean all the remaining dirty objects, then
536  * reclaim the remaining inodes that are still in memory at this point in time.
537  */
538 static void
539 xfs_unmount_flush_inodes(
540 	struct xfs_mount	*mp)
541 {
542 	xfs_log_force(mp, XFS_LOG_SYNC);
543 	xfs_extent_busy_wait_all(mp);
544 	flush_workqueue(xfs_discard_wq);
545 
546 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
547 
548 	xfs_ail_push_all_sync(mp->m_ail);
549 	cancel_delayed_work_sync(&mp->m_reclaim_work);
550 	xfs_reclaim_inodes(mp);
551 	xfs_health_unmount(mp);
552 }
553 
554 static void
555 xfs_mount_setup_inode_geom(
556 	struct xfs_mount	*mp)
557 {
558 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
559 
560 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
561 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
562 
563 	xfs_ialloc_setup_geometry(mp);
564 }
565 
566 /*
567  * This function does the following on an initial mount of a file system:
568  *	- reads the superblock from disk and init the mount struct
569  *	- if we're a 32-bit kernel, do a size check on the superblock
570  *		so we don't mount terabyte filesystems
571  *	- init mount struct realtime fields
572  *	- allocate inode hash table for fs
573  *	- init directory manager
574  *	- perform recovery and init the log manager
575  */
576 int
577 xfs_mountfs(
578 	struct xfs_mount	*mp)
579 {
580 	struct xfs_sb		*sbp = &(mp->m_sb);
581 	struct xfs_inode	*rip;
582 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
583 	uint64_t		resblks;
584 	uint			quotamount = 0;
585 	uint			quotaflags = 0;
586 	int			error = 0;
587 
588 	xfs_sb_mount_common(mp, sbp);
589 
590 	/*
591 	 * Check for a mismatched features2 values.  Older kernels read & wrote
592 	 * into the wrong sb offset for sb_features2 on some platforms due to
593 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
594 	 * which made older superblock reading/writing routines swap it as a
595 	 * 64-bit value.
596 	 *
597 	 * For backwards compatibility, we make both slots equal.
598 	 *
599 	 * If we detect a mismatched field, we OR the set bits into the existing
600 	 * features2 field in case it has already been modified; we don't want
601 	 * to lose any features.  We then update the bad location with the ORed
602 	 * value so that older kernels will see any features2 flags. The
603 	 * superblock writeback code ensures the new sb_features2 is copied to
604 	 * sb_bad_features2 before it is logged or written to disk.
605 	 */
606 	if (xfs_sb_has_mismatched_features2(sbp)) {
607 		xfs_warn(mp, "correcting sb_features alignment problem");
608 		sbp->sb_features2 |= sbp->sb_bad_features2;
609 		mp->m_update_sb = true;
610 
611 		/*
612 		 * Re-check for ATTR2 in case it was found in bad_features2
613 		 * slot.
614 		 */
615 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
616 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
617 			mp->m_flags |= XFS_MOUNT_ATTR2;
618 	}
619 
620 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
621 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
622 		xfs_sb_version_removeattr2(&mp->m_sb);
623 		mp->m_update_sb = true;
624 
625 		/* update sb_versionnum for the clearing of the morebits */
626 		if (!sbp->sb_features2)
627 			mp->m_update_sb = true;
628 	}
629 
630 	/* always use v2 inodes by default now */
631 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
632 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
633 		mp->m_update_sb = true;
634 	}
635 
636 	/*
637 	 * If we were given new sunit/swidth options, do some basic validation
638 	 * checks and convert the incore dalign and swidth values to the
639 	 * same units (FSB) that everything else uses.  This /must/ happen
640 	 * before computing the inode geometry.
641 	 */
642 	error = xfs_validate_new_dalign(mp);
643 	if (error)
644 		goto out;
645 
646 	xfs_alloc_compute_maxlevels(mp);
647 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
648 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
649 	xfs_mount_setup_inode_geom(mp);
650 	xfs_rmapbt_compute_maxlevels(mp);
651 	xfs_refcountbt_compute_maxlevels(mp);
652 
653 	/*
654 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
655 	 * is NOT aligned turn off m_dalign since allocator alignment is within
656 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
657 	 * we must compute the free space and rmap btree geometry before doing
658 	 * this.
659 	 */
660 	error = xfs_update_alignment(mp);
661 	if (error)
662 		goto out;
663 
664 	/* enable fail_at_unmount as default */
665 	mp->m_fail_unmount = true;
666 
667 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
668 			       NULL, mp->m_super->s_id);
669 	if (error)
670 		goto out;
671 
672 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
673 			       &mp->m_kobj, "stats");
674 	if (error)
675 		goto out_remove_sysfs;
676 
677 	error = xfs_error_sysfs_init(mp);
678 	if (error)
679 		goto out_del_stats;
680 
681 	error = xfs_errortag_init(mp);
682 	if (error)
683 		goto out_remove_error_sysfs;
684 
685 	error = xfs_uuid_mount(mp);
686 	if (error)
687 		goto out_remove_errortag;
688 
689 	/*
690 	 * Update the preferred write size based on the information from the
691 	 * on-disk superblock.
692 	 */
693 	mp->m_allocsize_log =
694 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
695 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
696 
697 	/* set the low space thresholds for dynamic preallocation */
698 	xfs_set_low_space_thresholds(mp);
699 
700 	/*
701 	 * If enabled, sparse inode chunk alignment is expected to match the
702 	 * cluster size. Full inode chunk alignment must match the chunk size,
703 	 * but that is checked on sb read verification...
704 	 */
705 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
706 	    mp->m_sb.sb_spino_align !=
707 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
708 		xfs_warn(mp,
709 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
710 			 mp->m_sb.sb_spino_align,
711 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
712 		error = -EINVAL;
713 		goto out_remove_uuid;
714 	}
715 
716 	/*
717 	 * Check that the data (and log if separate) is an ok size.
718 	 */
719 	error = xfs_check_sizes(mp);
720 	if (error)
721 		goto out_remove_uuid;
722 
723 	/*
724 	 * Initialize realtime fields in the mount structure
725 	 */
726 	error = xfs_rtmount_init(mp);
727 	if (error) {
728 		xfs_warn(mp, "RT mount failed");
729 		goto out_remove_uuid;
730 	}
731 
732 	/*
733 	 *  Copies the low order bits of the timestamp and the randomly
734 	 *  set "sequence" number out of a UUID.
735 	 */
736 	mp->m_fixedfsid[0] =
737 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
738 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
739 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
740 
741 	error = xfs_da_mount(mp);
742 	if (error) {
743 		xfs_warn(mp, "Failed dir/attr init: %d", error);
744 		goto out_remove_uuid;
745 	}
746 
747 	/*
748 	 * Initialize the precomputed transaction reservations values.
749 	 */
750 	xfs_trans_init(mp);
751 
752 	/*
753 	 * Allocate and initialize the per-ag data.
754 	 */
755 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
756 	if (error) {
757 		xfs_warn(mp, "Failed per-ag init: %d", error);
758 		goto out_free_dir;
759 	}
760 
761 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
762 		xfs_warn(mp, "no log defined");
763 		error = -EFSCORRUPTED;
764 		goto out_free_perag;
765 	}
766 
767 	/*
768 	 * Log's mount-time initialization. The first part of recovery can place
769 	 * some items on the AIL, to be handled when recovery is finished or
770 	 * cancelled.
771 	 */
772 	error = xfs_log_mount(mp, mp->m_logdev_targp,
773 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
774 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
775 	if (error) {
776 		xfs_warn(mp, "log mount failed");
777 		goto out_fail_wait;
778 	}
779 
780 	/* Make sure the summary counts are ok. */
781 	error = xfs_check_summary_counts(mp);
782 	if (error)
783 		goto out_log_dealloc;
784 
785 	/*
786 	 * Get and sanity-check the root inode.
787 	 * Save the pointer to it in the mount structure.
788 	 */
789 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
790 			 XFS_ILOCK_EXCL, &rip);
791 	if (error) {
792 		xfs_warn(mp,
793 			"Failed to read root inode 0x%llx, error %d",
794 			sbp->sb_rootino, -error);
795 		goto out_log_dealloc;
796 	}
797 
798 	ASSERT(rip != NULL);
799 
800 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
801 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
802 			(unsigned long long)rip->i_ino);
803 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
804 		error = -EFSCORRUPTED;
805 		goto out_rele_rip;
806 	}
807 	mp->m_rootip = rip;	/* save it */
808 
809 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
810 
811 	/*
812 	 * Initialize realtime inode pointers in the mount structure
813 	 */
814 	error = xfs_rtmount_inodes(mp);
815 	if (error) {
816 		/*
817 		 * Free up the root inode.
818 		 */
819 		xfs_warn(mp, "failed to read RT inodes");
820 		goto out_rele_rip;
821 	}
822 
823 	/*
824 	 * If this is a read-only mount defer the superblock updates until
825 	 * the next remount into writeable mode.  Otherwise we would never
826 	 * perform the update e.g. for the root filesystem.
827 	 */
828 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
829 		error = xfs_sync_sb(mp, false);
830 		if (error) {
831 			xfs_warn(mp, "failed to write sb changes");
832 			goto out_rtunmount;
833 		}
834 	}
835 
836 	/*
837 	 * Initialise the XFS quota management subsystem for this mount
838 	 */
839 	if (XFS_IS_QUOTA_RUNNING(mp)) {
840 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
841 		if (error)
842 			goto out_rtunmount;
843 	} else {
844 		ASSERT(!XFS_IS_QUOTA_ON(mp));
845 
846 		/*
847 		 * If a file system had quotas running earlier, but decided to
848 		 * mount without -o uquota/pquota/gquota options, revoke the
849 		 * quotachecked license.
850 		 */
851 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
852 			xfs_notice(mp, "resetting quota flags");
853 			error = xfs_mount_reset_sbqflags(mp);
854 			if (error)
855 				goto out_rtunmount;
856 		}
857 	}
858 
859 	/*
860 	 * Finish recovering the file system.  This part needed to be delayed
861 	 * until after the root and real-time bitmap inodes were consistently
862 	 * read in.  Temporarily create per-AG space reservations for metadata
863 	 * btree shape changes because space freeing transactions (for inode
864 	 * inactivation) require the per-AG reservation in lieu of reserving
865 	 * blocks.
866 	 */
867 	error = xfs_fs_reserve_ag_blocks(mp);
868 	if (error && error == -ENOSPC)
869 		xfs_warn(mp,
870 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
871 	error = xfs_log_mount_finish(mp);
872 	xfs_fs_unreserve_ag_blocks(mp);
873 	if (error) {
874 		xfs_warn(mp, "log mount finish failed");
875 		goto out_rtunmount;
876 	}
877 
878 	/*
879 	 * Now the log is fully replayed, we can transition to full read-only
880 	 * mode for read-only mounts. This will sync all the metadata and clean
881 	 * the log so that the recovery we just performed does not have to be
882 	 * replayed again on the next mount.
883 	 *
884 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
885 	 * semantically identical operations.
886 	 */
887 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
888 							XFS_MOUNT_RDONLY) {
889 		xfs_log_clean(mp);
890 	}
891 
892 	/*
893 	 * Complete the quota initialisation, post-log-replay component.
894 	 */
895 	if (quotamount) {
896 		ASSERT(mp->m_qflags == 0);
897 		mp->m_qflags = quotaflags;
898 
899 		xfs_qm_mount_quotas(mp);
900 	}
901 
902 	/*
903 	 * Now we are mounted, reserve a small amount of unused space for
904 	 * privileged transactions. This is needed so that transaction
905 	 * space required for critical operations can dip into this pool
906 	 * when at ENOSPC. This is needed for operations like create with
907 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
908 	 * are not allowed to use this reserved space.
909 	 *
910 	 * This may drive us straight to ENOSPC on mount, but that implies
911 	 * we were already there on the last unmount. Warn if this occurs.
912 	 */
913 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
914 		resblks = xfs_default_resblks(mp);
915 		error = xfs_reserve_blocks(mp, &resblks, NULL);
916 		if (error)
917 			xfs_warn(mp,
918 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
919 
920 		/* Recover any CoW blocks that never got remapped. */
921 		error = xfs_reflink_recover_cow(mp);
922 		if (error) {
923 			xfs_err(mp,
924 	"Error %d recovering leftover CoW allocations.", error);
925 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
926 			goto out_quota;
927 		}
928 
929 		/* Reserve AG blocks for future btree expansion. */
930 		error = xfs_fs_reserve_ag_blocks(mp);
931 		if (error && error != -ENOSPC)
932 			goto out_agresv;
933 	}
934 
935 	return 0;
936 
937  out_agresv:
938 	xfs_fs_unreserve_ag_blocks(mp);
939  out_quota:
940 	xfs_qm_unmount_quotas(mp);
941  out_rtunmount:
942 	xfs_rtunmount_inodes(mp);
943  out_rele_rip:
944 	xfs_irele(rip);
945 	/* Clean out dquots that might be in memory after quotacheck. */
946 	xfs_qm_unmount(mp);
947 	/*
948 	 * Flush all inode reclamation work and flush the log.
949 	 * We have to do this /after/ rtunmount and qm_unmount because those
950 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
951 	 *
952 	 * This is slightly different from the unmountfs call sequence
953 	 * because we could be tearing down a partially set up mount.  In
954 	 * particular, if log_mount_finish fails we bail out without calling
955 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
956 	 * quota inodes.
957 	 */
958 	xfs_unmount_flush_inodes(mp);
959  out_log_dealloc:
960 	xfs_log_mount_cancel(mp);
961  out_fail_wait:
962 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
963 		xfs_buftarg_drain(mp->m_logdev_targp);
964 	xfs_buftarg_drain(mp->m_ddev_targp);
965  out_free_perag:
966 	xfs_free_perag(mp);
967  out_free_dir:
968 	xfs_da_unmount(mp);
969  out_remove_uuid:
970 	xfs_uuid_unmount(mp);
971  out_remove_errortag:
972 	xfs_errortag_del(mp);
973  out_remove_error_sysfs:
974 	xfs_error_sysfs_del(mp);
975  out_del_stats:
976 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
977  out_remove_sysfs:
978 	xfs_sysfs_del(&mp->m_kobj);
979  out:
980 	return error;
981 }
982 
983 /*
984  * This flushes out the inodes,dquots and the superblock, unmounts the
985  * log and makes sure that incore structures are freed.
986  */
987 void
988 xfs_unmountfs(
989 	struct xfs_mount	*mp)
990 {
991 	uint64_t		resblks;
992 	int			error;
993 
994 	xfs_blockgc_stop(mp);
995 	xfs_fs_unreserve_ag_blocks(mp);
996 	xfs_qm_unmount_quotas(mp);
997 	xfs_rtunmount_inodes(mp);
998 	xfs_irele(mp->m_rootip);
999 
1000 	xfs_unmount_flush_inodes(mp);
1001 
1002 	xfs_qm_unmount(mp);
1003 
1004 	/*
1005 	 * Unreserve any blocks we have so that when we unmount we don't account
1006 	 * the reserved free space as used. This is really only necessary for
1007 	 * lazy superblock counting because it trusts the incore superblock
1008 	 * counters to be absolutely correct on clean unmount.
1009 	 *
1010 	 * We don't bother correcting this elsewhere for lazy superblock
1011 	 * counting because on mount of an unclean filesystem we reconstruct the
1012 	 * correct counter value and this is irrelevant.
1013 	 *
1014 	 * For non-lazy counter filesystems, this doesn't matter at all because
1015 	 * we only every apply deltas to the superblock and hence the incore
1016 	 * value does not matter....
1017 	 */
1018 	resblks = 0;
1019 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1020 	if (error)
1021 		xfs_warn(mp, "Unable to free reserved block pool. "
1022 				"Freespace may not be correct on next mount.");
1023 
1024 	xfs_log_unmount(mp);
1025 	xfs_da_unmount(mp);
1026 	xfs_uuid_unmount(mp);
1027 
1028 #if defined(DEBUG)
1029 	xfs_errortag_clearall(mp);
1030 #endif
1031 	xfs_free_perag(mp);
1032 
1033 	xfs_errortag_del(mp);
1034 	xfs_error_sysfs_del(mp);
1035 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1036 	xfs_sysfs_del(&mp->m_kobj);
1037 }
1038 
1039 /*
1040  * Determine whether modifications can proceed. The caller specifies the minimum
1041  * freeze level for which modifications should not be allowed. This allows
1042  * certain operations to proceed while the freeze sequence is in progress, if
1043  * necessary.
1044  */
1045 bool
1046 xfs_fs_writable(
1047 	struct xfs_mount	*mp,
1048 	int			level)
1049 {
1050 	ASSERT(level > SB_UNFROZEN);
1051 	if ((mp->m_super->s_writers.frozen >= level) ||
1052 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1053 		return false;
1054 
1055 	return true;
1056 }
1057 
1058 /*
1059  * Deltas for the block count can vary from 1 to very large, but lock contention
1060  * only occurs on frequent small block count updates such as in the delayed
1061  * allocation path for buffered writes (page a time updates). Hence we set
1062  * a large batch count (1024) to minimise global counter updates except when
1063  * we get near to ENOSPC and we have to be very accurate with our updates.
1064  */
1065 #define XFS_FDBLOCKS_BATCH	1024
1066 int
1067 xfs_mod_fdblocks(
1068 	struct xfs_mount	*mp,
1069 	int64_t			delta,
1070 	bool			rsvd)
1071 {
1072 	int64_t			lcounter;
1073 	long long		res_used;
1074 	s32			batch;
1075 	uint64_t		set_aside;
1076 
1077 	if (delta > 0) {
1078 		/*
1079 		 * If the reserve pool is depleted, put blocks back into it
1080 		 * first. Most of the time the pool is full.
1081 		 */
1082 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1083 			percpu_counter_add(&mp->m_fdblocks, delta);
1084 			return 0;
1085 		}
1086 
1087 		spin_lock(&mp->m_sb_lock);
1088 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1089 
1090 		if (res_used > delta) {
1091 			mp->m_resblks_avail += delta;
1092 		} else {
1093 			delta -= res_used;
1094 			mp->m_resblks_avail = mp->m_resblks;
1095 			percpu_counter_add(&mp->m_fdblocks, delta);
1096 		}
1097 		spin_unlock(&mp->m_sb_lock);
1098 		return 0;
1099 	}
1100 
1101 	/*
1102 	 * Taking blocks away, need to be more accurate the closer we
1103 	 * are to zero.
1104 	 *
1105 	 * If the counter has a value of less than 2 * max batch size,
1106 	 * then make everything serialise as we are real close to
1107 	 * ENOSPC.
1108 	 */
1109 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1110 				     XFS_FDBLOCKS_BATCH) < 0)
1111 		batch = 1;
1112 	else
1113 		batch = XFS_FDBLOCKS_BATCH;
1114 
1115 	/*
1116 	 * Set aside allocbt blocks because these blocks are tracked as free
1117 	 * space but not available for allocation. Technically this means that a
1118 	 * single reservation cannot consume all remaining free space, but the
1119 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1120 	 * The tradeoff without this is that filesystems that maintain high
1121 	 * perag block reservations can over reserve physical block availability
1122 	 * and fail physical allocation, which leads to much more serious
1123 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1124 	 * slightly premature -ENOSPC.
1125 	 */
1126 	set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1127 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1128 	if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1129 				     XFS_FDBLOCKS_BATCH) >= 0) {
1130 		/* we had space! */
1131 		return 0;
1132 	}
1133 
1134 	/*
1135 	 * lock up the sb for dipping into reserves before releasing the space
1136 	 * that took us to ENOSPC.
1137 	 */
1138 	spin_lock(&mp->m_sb_lock);
1139 	percpu_counter_add(&mp->m_fdblocks, -delta);
1140 	if (!rsvd)
1141 		goto fdblocks_enospc;
1142 
1143 	lcounter = (long long)mp->m_resblks_avail + delta;
1144 	if (lcounter >= 0) {
1145 		mp->m_resblks_avail = lcounter;
1146 		spin_unlock(&mp->m_sb_lock);
1147 		return 0;
1148 	}
1149 	xfs_warn_once(mp,
1150 "Reserve blocks depleted! Consider increasing reserve pool size.");
1151 
1152 fdblocks_enospc:
1153 	spin_unlock(&mp->m_sb_lock);
1154 	return -ENOSPC;
1155 }
1156 
1157 int
1158 xfs_mod_frextents(
1159 	struct xfs_mount	*mp,
1160 	int64_t			delta)
1161 {
1162 	int64_t			lcounter;
1163 	int			ret = 0;
1164 
1165 	spin_lock(&mp->m_sb_lock);
1166 	lcounter = mp->m_sb.sb_frextents + delta;
1167 	if (lcounter < 0)
1168 		ret = -ENOSPC;
1169 	else
1170 		mp->m_sb.sb_frextents = lcounter;
1171 	spin_unlock(&mp->m_sb_lock);
1172 	return ret;
1173 }
1174 
1175 /*
1176  * Used to free the superblock along various error paths.
1177  */
1178 void
1179 xfs_freesb(
1180 	struct xfs_mount	*mp)
1181 {
1182 	struct xfs_buf		*bp = mp->m_sb_bp;
1183 
1184 	xfs_buf_lock(bp);
1185 	mp->m_sb_bp = NULL;
1186 	xfs_buf_relse(bp);
1187 }
1188 
1189 /*
1190  * If the underlying (data/log/rt) device is readonly, there are some
1191  * operations that cannot proceed.
1192  */
1193 int
1194 xfs_dev_is_read_only(
1195 	struct xfs_mount	*mp,
1196 	char			*message)
1197 {
1198 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1199 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1200 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1201 		xfs_notice(mp, "%s required on read-only device.", message);
1202 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1203 		return -EROFS;
1204 	}
1205 	return 0;
1206 }
1207 
1208 /* Force the summary counters to be recalculated at next mount. */
1209 void
1210 xfs_force_summary_recalc(
1211 	struct xfs_mount	*mp)
1212 {
1213 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1214 		return;
1215 
1216 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1217 }
1218 
1219 /*
1220  * Update the in-core delayed block counter.
1221  *
1222  * We prefer to update the counter without having to take a spinlock for every
1223  * counter update (i.e. batching).  Each change to delayed allocation
1224  * reservations can change can easily exceed the default percpu counter
1225  * batching, so we use a larger batch factor here.
1226  *
1227  * Note that we don't currently have any callers requiring fast summation
1228  * (e.g. percpu_counter_read) so we can use a big batch value here.
1229  */
1230 #define XFS_DELALLOC_BATCH	(4096)
1231 void
1232 xfs_mod_delalloc(
1233 	struct xfs_mount	*mp,
1234 	int64_t			delta)
1235 {
1236 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1237 			XFS_DELALLOC_BATCH);
1238 }
1239