xref: /linux/fs/xfs/xfs_mount.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_dir2.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_alloc.h"
22 #include "xfs_rtalloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_log.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_fsops.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_refcount_btree.h"
35 #include "xfs_reflink.h"
36 #include "xfs_extent_busy.h"
37 
38 
39 static DEFINE_MUTEX(xfs_uuid_table_mutex);
40 static int xfs_uuid_table_size;
41 static uuid_t *xfs_uuid_table;
42 
43 void
44 xfs_uuid_table_free(void)
45 {
46 	if (xfs_uuid_table_size == 0)
47 		return;
48 	kmem_free(xfs_uuid_table);
49 	xfs_uuid_table = NULL;
50 	xfs_uuid_table_size = 0;
51 }
52 
53 /*
54  * See if the UUID is unique among mounted XFS filesystems.
55  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
56  */
57 STATIC int
58 xfs_uuid_mount(
59 	struct xfs_mount	*mp)
60 {
61 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
62 	int			hole, i;
63 
64 	/* Publish UUID in struct super_block */
65 	uuid_copy(&mp->m_super->s_uuid, uuid);
66 
67 	if (mp->m_flags & XFS_MOUNT_NOUUID)
68 		return 0;
69 
70 	if (uuid_is_null(uuid)) {
71 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
72 		return -EINVAL;
73 	}
74 
75 	mutex_lock(&xfs_uuid_table_mutex);
76 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
77 		if (uuid_is_null(&xfs_uuid_table[i])) {
78 			hole = i;
79 			continue;
80 		}
81 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
82 			goto out_duplicate;
83 	}
84 
85 	if (hole < 0) {
86 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
87 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
88 			KM_SLEEP);
89 		hole = xfs_uuid_table_size++;
90 	}
91 	xfs_uuid_table[hole] = *uuid;
92 	mutex_unlock(&xfs_uuid_table_mutex);
93 
94 	return 0;
95 
96  out_duplicate:
97 	mutex_unlock(&xfs_uuid_table_mutex);
98 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
99 	return -EINVAL;
100 }
101 
102 STATIC void
103 xfs_uuid_unmount(
104 	struct xfs_mount	*mp)
105 {
106 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
107 	int			i;
108 
109 	if (mp->m_flags & XFS_MOUNT_NOUUID)
110 		return;
111 
112 	mutex_lock(&xfs_uuid_table_mutex);
113 	for (i = 0; i < xfs_uuid_table_size; i++) {
114 		if (uuid_is_null(&xfs_uuid_table[i]))
115 			continue;
116 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
117 			continue;
118 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119 		break;
120 	}
121 	ASSERT(i < xfs_uuid_table_size);
122 	mutex_unlock(&xfs_uuid_table_mutex);
123 }
124 
125 
126 STATIC void
127 __xfs_free_perag(
128 	struct rcu_head	*head)
129 {
130 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
131 
132 	ASSERT(atomic_read(&pag->pag_ref) == 0);
133 	kmem_free(pag);
134 }
135 
136 /*
137  * Free up the per-ag resources associated with the mount structure.
138  */
139 STATIC void
140 xfs_free_perag(
141 	xfs_mount_t	*mp)
142 {
143 	xfs_agnumber_t	agno;
144 	struct xfs_perag *pag;
145 
146 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
147 		spin_lock(&mp->m_perag_lock);
148 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
149 		spin_unlock(&mp->m_perag_lock);
150 		ASSERT(pag);
151 		ASSERT(atomic_read(&pag->pag_ref) == 0);
152 		xfs_buf_hash_destroy(pag);
153 		mutex_destroy(&pag->pag_ici_reclaim_lock);
154 		call_rcu(&pag->rcu_head, __xfs_free_perag);
155 	}
156 }
157 
158 /*
159  * Check size of device based on the (data/realtime) block count.
160  * Note: this check is used by the growfs code as well as mount.
161  */
162 int
163 xfs_sb_validate_fsb_count(
164 	xfs_sb_t	*sbp,
165 	uint64_t	nblocks)
166 {
167 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
168 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
169 
170 	/* Limited by ULONG_MAX of page cache index */
171 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
172 		return -EFBIG;
173 	return 0;
174 }
175 
176 int
177 xfs_initialize_perag(
178 	xfs_mount_t	*mp,
179 	xfs_agnumber_t	agcount,
180 	xfs_agnumber_t	*maxagi)
181 {
182 	xfs_agnumber_t	index;
183 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
184 	xfs_perag_t	*pag;
185 	int		error = -ENOMEM;
186 
187 	/*
188 	 * Walk the current per-ag tree so we don't try to initialise AGs
189 	 * that already exist (growfs case). Allocate and insert all the
190 	 * AGs we don't find ready for initialisation.
191 	 */
192 	for (index = 0; index < agcount; index++) {
193 		pag = xfs_perag_get(mp, index);
194 		if (pag) {
195 			xfs_perag_put(pag);
196 			continue;
197 		}
198 
199 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
200 		if (!pag)
201 			goto out_unwind_new_pags;
202 		pag->pag_agno = index;
203 		pag->pag_mount = mp;
204 		spin_lock_init(&pag->pag_ici_lock);
205 		mutex_init(&pag->pag_ici_reclaim_lock);
206 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
207 		if (xfs_buf_hash_init(pag))
208 			goto out_free_pag;
209 		init_waitqueue_head(&pag->pagb_wait);
210 		spin_lock_init(&pag->pagb_lock);
211 		pag->pagb_count = 0;
212 		pag->pagb_tree = RB_ROOT;
213 
214 		if (radix_tree_preload(GFP_NOFS))
215 			goto out_hash_destroy;
216 
217 		spin_lock(&mp->m_perag_lock);
218 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
219 			BUG();
220 			spin_unlock(&mp->m_perag_lock);
221 			radix_tree_preload_end();
222 			error = -EEXIST;
223 			goto out_hash_destroy;
224 		}
225 		spin_unlock(&mp->m_perag_lock);
226 		radix_tree_preload_end();
227 		/* first new pag is fully initialized */
228 		if (first_initialised == NULLAGNUMBER)
229 			first_initialised = index;
230 	}
231 
232 	index = xfs_set_inode_alloc(mp, agcount);
233 
234 	if (maxagi)
235 		*maxagi = index;
236 
237 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
238 	return 0;
239 
240 out_hash_destroy:
241 	xfs_buf_hash_destroy(pag);
242 out_free_pag:
243 	mutex_destroy(&pag->pag_ici_reclaim_lock);
244 	kmem_free(pag);
245 out_unwind_new_pags:
246 	/* unwind any prior newly initialized pags */
247 	for (index = first_initialised; index < agcount; index++) {
248 		pag = radix_tree_delete(&mp->m_perag_tree, index);
249 		if (!pag)
250 			break;
251 		xfs_buf_hash_destroy(pag);
252 		mutex_destroy(&pag->pag_ici_reclaim_lock);
253 		kmem_free(pag);
254 	}
255 	return error;
256 }
257 
258 /*
259  * xfs_readsb
260  *
261  * Does the initial read of the superblock.
262  */
263 int
264 xfs_readsb(
265 	struct xfs_mount *mp,
266 	int		flags)
267 {
268 	unsigned int	sector_size;
269 	struct xfs_buf	*bp;
270 	struct xfs_sb	*sbp = &mp->m_sb;
271 	int		error;
272 	int		loud = !(flags & XFS_MFSI_QUIET);
273 	const struct xfs_buf_ops *buf_ops;
274 
275 	ASSERT(mp->m_sb_bp == NULL);
276 	ASSERT(mp->m_ddev_targp != NULL);
277 
278 	/*
279 	 * For the initial read, we must guess at the sector
280 	 * size based on the block device.  It's enough to
281 	 * get the sb_sectsize out of the superblock and
282 	 * then reread with the proper length.
283 	 * We don't verify it yet, because it may not be complete.
284 	 */
285 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
286 	buf_ops = NULL;
287 
288 	/*
289 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
290 	 * around at all times to optimize access to the superblock. Therefore,
291 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
292 	 * elevated.
293 	 */
294 reread:
295 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
296 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
297 				      buf_ops);
298 	if (error) {
299 		if (loud)
300 			xfs_warn(mp, "SB validate failed with error %d.", error);
301 		/* bad CRC means corrupted metadata */
302 		if (error == -EFSBADCRC)
303 			error = -EFSCORRUPTED;
304 		return error;
305 	}
306 
307 	/*
308 	 * Initialize the mount structure from the superblock.
309 	 */
310 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
311 
312 	/*
313 	 * If we haven't validated the superblock, do so now before we try
314 	 * to check the sector size and reread the superblock appropriately.
315 	 */
316 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
317 		if (loud)
318 			xfs_warn(mp, "Invalid superblock magic number");
319 		error = -EINVAL;
320 		goto release_buf;
321 	}
322 
323 	/*
324 	 * We must be able to do sector-sized and sector-aligned IO.
325 	 */
326 	if (sector_size > sbp->sb_sectsize) {
327 		if (loud)
328 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
329 				sector_size, sbp->sb_sectsize);
330 		error = -ENOSYS;
331 		goto release_buf;
332 	}
333 
334 	if (buf_ops == NULL) {
335 		/*
336 		 * Re-read the superblock so the buffer is correctly sized,
337 		 * and properly verified.
338 		 */
339 		xfs_buf_relse(bp);
340 		sector_size = sbp->sb_sectsize;
341 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
342 		goto reread;
343 	}
344 
345 	xfs_reinit_percpu_counters(mp);
346 
347 	/* no need to be quiet anymore, so reset the buf ops */
348 	bp->b_ops = &xfs_sb_buf_ops;
349 
350 	mp->m_sb_bp = bp;
351 	xfs_buf_unlock(bp);
352 	return 0;
353 
354 release_buf:
355 	xfs_buf_relse(bp);
356 	return error;
357 }
358 
359 /*
360  * Update alignment values based on mount options and sb values
361  */
362 STATIC int
363 xfs_update_alignment(xfs_mount_t *mp)
364 {
365 	xfs_sb_t	*sbp = &(mp->m_sb);
366 
367 	if (mp->m_dalign) {
368 		/*
369 		 * If stripe unit and stripe width are not multiples
370 		 * of the fs blocksize turn off alignment.
371 		 */
372 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
373 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
374 			xfs_warn(mp,
375 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
376 				sbp->sb_blocksize);
377 			return -EINVAL;
378 		} else {
379 			/*
380 			 * Convert the stripe unit and width to FSBs.
381 			 */
382 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
383 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
384 				xfs_warn(mp,
385 			"alignment check failed: sunit/swidth vs. agsize(%d)",
386 					 sbp->sb_agblocks);
387 				return -EINVAL;
388 			} else if (mp->m_dalign) {
389 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
390 			} else {
391 				xfs_warn(mp,
392 			"alignment check failed: sunit(%d) less than bsize(%d)",
393 					 mp->m_dalign, sbp->sb_blocksize);
394 				return -EINVAL;
395 			}
396 		}
397 
398 		/*
399 		 * Update superblock with new values
400 		 * and log changes
401 		 */
402 		if (xfs_sb_version_hasdalign(sbp)) {
403 			if (sbp->sb_unit != mp->m_dalign) {
404 				sbp->sb_unit = mp->m_dalign;
405 				mp->m_update_sb = true;
406 			}
407 			if (sbp->sb_width != mp->m_swidth) {
408 				sbp->sb_width = mp->m_swidth;
409 				mp->m_update_sb = true;
410 			}
411 		} else {
412 			xfs_warn(mp,
413 	"cannot change alignment: superblock does not support data alignment");
414 			return -EINVAL;
415 		}
416 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
417 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
418 			mp->m_dalign = sbp->sb_unit;
419 			mp->m_swidth = sbp->sb_width;
420 	}
421 
422 	return 0;
423 }
424 
425 /*
426  * Set the maximum inode count for this filesystem
427  */
428 STATIC void
429 xfs_set_maxicount(xfs_mount_t *mp)
430 {
431 	xfs_sb_t	*sbp = &(mp->m_sb);
432 	uint64_t	icount;
433 
434 	if (sbp->sb_imax_pct) {
435 		/*
436 		 * Make sure the maximum inode count is a multiple
437 		 * of the units we allocate inodes in.
438 		 */
439 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
440 		do_div(icount, 100);
441 		do_div(icount, mp->m_ialloc_blks);
442 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
443 				   sbp->sb_inopblog;
444 	} else {
445 		mp->m_maxicount = 0;
446 	}
447 }
448 
449 /*
450  * Set the default minimum read and write sizes unless
451  * already specified in a mount option.
452  * We use smaller I/O sizes when the file system
453  * is being used for NFS service (wsync mount option).
454  */
455 STATIC void
456 xfs_set_rw_sizes(xfs_mount_t *mp)
457 {
458 	xfs_sb_t	*sbp = &(mp->m_sb);
459 	int		readio_log, writeio_log;
460 
461 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
462 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
463 			readio_log = XFS_WSYNC_READIO_LOG;
464 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
465 		} else {
466 			readio_log = XFS_READIO_LOG_LARGE;
467 			writeio_log = XFS_WRITEIO_LOG_LARGE;
468 		}
469 	} else {
470 		readio_log = mp->m_readio_log;
471 		writeio_log = mp->m_writeio_log;
472 	}
473 
474 	if (sbp->sb_blocklog > readio_log) {
475 		mp->m_readio_log = sbp->sb_blocklog;
476 	} else {
477 		mp->m_readio_log = readio_log;
478 	}
479 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
480 	if (sbp->sb_blocklog > writeio_log) {
481 		mp->m_writeio_log = sbp->sb_blocklog;
482 	} else {
483 		mp->m_writeio_log = writeio_log;
484 	}
485 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
486 }
487 
488 /*
489  * precalculate the low space thresholds for dynamic speculative preallocation.
490  */
491 void
492 xfs_set_low_space_thresholds(
493 	struct xfs_mount	*mp)
494 {
495 	int i;
496 
497 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
498 		uint64_t space = mp->m_sb.sb_dblocks;
499 
500 		do_div(space, 100);
501 		mp->m_low_space[i] = space * (i + 1);
502 	}
503 }
504 
505 
506 /*
507  * Set whether we're using inode alignment.
508  */
509 STATIC void
510 xfs_set_inoalignment(xfs_mount_t *mp)
511 {
512 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
513 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
514 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
515 	else
516 		mp->m_inoalign_mask = 0;
517 	/*
518 	 * If we are using stripe alignment, check whether
519 	 * the stripe unit is a multiple of the inode alignment
520 	 */
521 	if (mp->m_dalign && mp->m_inoalign_mask &&
522 	    !(mp->m_dalign & mp->m_inoalign_mask))
523 		mp->m_sinoalign = mp->m_dalign;
524 	else
525 		mp->m_sinoalign = 0;
526 }
527 
528 /*
529  * Check that the data (and log if separate) is an ok size.
530  */
531 STATIC int
532 xfs_check_sizes(
533 	struct xfs_mount *mp)
534 {
535 	struct xfs_buf	*bp;
536 	xfs_daddr_t	d;
537 	int		error;
538 
539 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
540 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
541 		xfs_warn(mp, "filesystem size mismatch detected");
542 		return -EFBIG;
543 	}
544 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
545 					d - XFS_FSS_TO_BB(mp, 1),
546 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
547 	if (error) {
548 		xfs_warn(mp, "last sector read failed");
549 		return error;
550 	}
551 	xfs_buf_relse(bp);
552 
553 	if (mp->m_logdev_targp == mp->m_ddev_targp)
554 		return 0;
555 
556 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
557 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
558 		xfs_warn(mp, "log size mismatch detected");
559 		return -EFBIG;
560 	}
561 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
562 					d - XFS_FSB_TO_BB(mp, 1),
563 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
564 	if (error) {
565 		xfs_warn(mp, "log device read failed");
566 		return error;
567 	}
568 	xfs_buf_relse(bp);
569 	return 0;
570 }
571 
572 /*
573  * Clear the quotaflags in memory and in the superblock.
574  */
575 int
576 xfs_mount_reset_sbqflags(
577 	struct xfs_mount	*mp)
578 {
579 	mp->m_qflags = 0;
580 
581 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
582 	if (mp->m_sb.sb_qflags == 0)
583 		return 0;
584 	spin_lock(&mp->m_sb_lock);
585 	mp->m_sb.sb_qflags = 0;
586 	spin_unlock(&mp->m_sb_lock);
587 
588 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
589 		return 0;
590 
591 	return xfs_sync_sb(mp, false);
592 }
593 
594 uint64_t
595 xfs_default_resblks(xfs_mount_t *mp)
596 {
597 	uint64_t resblks;
598 
599 	/*
600 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
601 	 * smaller.  This is intended to cover concurrent allocation
602 	 * transactions when we initially hit enospc. These each require a 4
603 	 * block reservation. Hence by default we cover roughly 2000 concurrent
604 	 * allocation reservations.
605 	 */
606 	resblks = mp->m_sb.sb_dblocks;
607 	do_div(resblks, 20);
608 	resblks = min_t(uint64_t, resblks, 8192);
609 	return resblks;
610 }
611 
612 /* Ensure the summary counts are correct. */
613 STATIC int
614 xfs_check_summary_counts(
615 	struct xfs_mount	*mp)
616 {
617 	/*
618 	 * The AG0 superblock verifier rejects in-progress filesystems,
619 	 * so we should never see the flag set this far into mounting.
620 	 */
621 	if (mp->m_sb.sb_inprogress) {
622 		xfs_err(mp, "sb_inprogress set after log recovery??");
623 		WARN_ON(1);
624 		return -EFSCORRUPTED;
625 	}
626 
627 	/*
628 	 * Now the log is mounted, we know if it was an unclean shutdown or
629 	 * not. If it was, with the first phase of recovery has completed, we
630 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
631 	 * but they are recovered transactionally in the second recovery phase
632 	 * later.
633 	 *
634 	 * If the log was clean when we mounted, we can check the summary
635 	 * counters.  If any of them are obviously incorrect, we can recompute
636 	 * them from the AGF headers in the next step.
637 	 */
638 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
639 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
640 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
641 		mp->m_flags |= XFS_MOUNT_BAD_SUMMARY;
642 
643 	/*
644 	 * We can safely re-initialise incore superblock counters from the
645 	 * per-ag data. These may not be correct if the filesystem was not
646 	 * cleanly unmounted, so we waited for recovery to finish before doing
647 	 * this.
648 	 *
649 	 * If the filesystem was cleanly unmounted or the previous check did
650 	 * not flag anything weird, then we can trust the values in the
651 	 * superblock to be correct and we don't need to do anything here.
652 	 * Otherwise, recalculate the summary counters.
653 	 */
654 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
655 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
656 	    !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY))
657 		return 0;
658 
659 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
660 }
661 
662 /*
663  * This function does the following on an initial mount of a file system:
664  *	- reads the superblock from disk and init the mount struct
665  *	- if we're a 32-bit kernel, do a size check on the superblock
666  *		so we don't mount terabyte filesystems
667  *	- init mount struct realtime fields
668  *	- allocate inode hash table for fs
669  *	- init directory manager
670  *	- perform recovery and init the log manager
671  */
672 int
673 xfs_mountfs(
674 	struct xfs_mount	*mp)
675 {
676 	struct xfs_sb		*sbp = &(mp->m_sb);
677 	struct xfs_inode	*rip;
678 	uint64_t		resblks;
679 	uint			quotamount = 0;
680 	uint			quotaflags = 0;
681 	int			error = 0;
682 
683 	xfs_sb_mount_common(mp, sbp);
684 
685 	/*
686 	 * Check for a mismatched features2 values.  Older kernels read & wrote
687 	 * into the wrong sb offset for sb_features2 on some platforms due to
688 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
689 	 * which made older superblock reading/writing routines swap it as a
690 	 * 64-bit value.
691 	 *
692 	 * For backwards compatibility, we make both slots equal.
693 	 *
694 	 * If we detect a mismatched field, we OR the set bits into the existing
695 	 * features2 field in case it has already been modified; we don't want
696 	 * to lose any features.  We then update the bad location with the ORed
697 	 * value so that older kernels will see any features2 flags. The
698 	 * superblock writeback code ensures the new sb_features2 is copied to
699 	 * sb_bad_features2 before it is logged or written to disk.
700 	 */
701 	if (xfs_sb_has_mismatched_features2(sbp)) {
702 		xfs_warn(mp, "correcting sb_features alignment problem");
703 		sbp->sb_features2 |= sbp->sb_bad_features2;
704 		mp->m_update_sb = true;
705 
706 		/*
707 		 * Re-check for ATTR2 in case it was found in bad_features2
708 		 * slot.
709 		 */
710 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
711 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
712 			mp->m_flags |= XFS_MOUNT_ATTR2;
713 	}
714 
715 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
716 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
717 		xfs_sb_version_removeattr2(&mp->m_sb);
718 		mp->m_update_sb = true;
719 
720 		/* update sb_versionnum for the clearing of the morebits */
721 		if (!sbp->sb_features2)
722 			mp->m_update_sb = true;
723 	}
724 
725 	/* always use v2 inodes by default now */
726 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
727 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
728 		mp->m_update_sb = true;
729 	}
730 
731 	/*
732 	 * Check if sb_agblocks is aligned at stripe boundary
733 	 * If sb_agblocks is NOT aligned turn off m_dalign since
734 	 * allocator alignment is within an ag, therefore ag has
735 	 * to be aligned at stripe boundary.
736 	 */
737 	error = xfs_update_alignment(mp);
738 	if (error)
739 		goto out;
740 
741 	xfs_alloc_compute_maxlevels(mp);
742 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
743 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
744 	xfs_ialloc_compute_maxlevels(mp);
745 	xfs_rmapbt_compute_maxlevels(mp);
746 	xfs_refcountbt_compute_maxlevels(mp);
747 
748 	xfs_set_maxicount(mp);
749 
750 	/* enable fail_at_unmount as default */
751 	mp->m_fail_unmount = true;
752 
753 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
754 	if (error)
755 		goto out;
756 
757 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
758 			       &mp->m_kobj, "stats");
759 	if (error)
760 		goto out_remove_sysfs;
761 
762 	error = xfs_error_sysfs_init(mp);
763 	if (error)
764 		goto out_del_stats;
765 
766 	error = xfs_errortag_init(mp);
767 	if (error)
768 		goto out_remove_error_sysfs;
769 
770 	error = xfs_uuid_mount(mp);
771 	if (error)
772 		goto out_remove_errortag;
773 
774 	/*
775 	 * Set the minimum read and write sizes
776 	 */
777 	xfs_set_rw_sizes(mp);
778 
779 	/* set the low space thresholds for dynamic preallocation */
780 	xfs_set_low_space_thresholds(mp);
781 
782 	/*
783 	 * Set the inode cluster size.
784 	 * This may still be overridden by the file system
785 	 * block size if it is larger than the chosen cluster size.
786 	 *
787 	 * For v5 filesystems, scale the cluster size with the inode size to
788 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
789 	 * has set the inode alignment value appropriately for larger cluster
790 	 * sizes.
791 	 */
792 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
793 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
794 		int	new_size = mp->m_inode_cluster_size;
795 
796 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
797 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
798 			mp->m_inode_cluster_size = new_size;
799 	}
800 
801 	/*
802 	 * If enabled, sparse inode chunk alignment is expected to match the
803 	 * cluster size. Full inode chunk alignment must match the chunk size,
804 	 * but that is checked on sb read verification...
805 	 */
806 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
807 	    mp->m_sb.sb_spino_align !=
808 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
809 		xfs_warn(mp,
810 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
811 			 mp->m_sb.sb_spino_align,
812 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
813 		error = -EINVAL;
814 		goto out_remove_uuid;
815 	}
816 
817 	/*
818 	 * Set inode alignment fields
819 	 */
820 	xfs_set_inoalignment(mp);
821 
822 	/*
823 	 * Check that the data (and log if separate) is an ok size.
824 	 */
825 	error = xfs_check_sizes(mp);
826 	if (error)
827 		goto out_remove_uuid;
828 
829 	/*
830 	 * Initialize realtime fields in the mount structure
831 	 */
832 	error = xfs_rtmount_init(mp);
833 	if (error) {
834 		xfs_warn(mp, "RT mount failed");
835 		goto out_remove_uuid;
836 	}
837 
838 	/*
839 	 *  Copies the low order bits of the timestamp and the randomly
840 	 *  set "sequence" number out of a UUID.
841 	 */
842 	mp->m_fixedfsid[0] =
843 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
844 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
845 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
846 
847 	error = xfs_da_mount(mp);
848 	if (error) {
849 		xfs_warn(mp, "Failed dir/attr init: %d", error);
850 		goto out_remove_uuid;
851 	}
852 
853 	/*
854 	 * Initialize the precomputed transaction reservations values.
855 	 */
856 	xfs_trans_init(mp);
857 
858 	/*
859 	 * Allocate and initialize the per-ag data.
860 	 */
861 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
862 	if (error) {
863 		xfs_warn(mp, "Failed per-ag init: %d", error);
864 		goto out_free_dir;
865 	}
866 
867 	if (!sbp->sb_logblocks) {
868 		xfs_warn(mp, "no log defined");
869 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
870 		error = -EFSCORRUPTED;
871 		goto out_free_perag;
872 	}
873 
874 	/*
875 	 * Log's mount-time initialization. The first part of recovery can place
876 	 * some items on the AIL, to be handled when recovery is finished or
877 	 * cancelled.
878 	 */
879 	error = xfs_log_mount(mp, mp->m_logdev_targp,
880 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
881 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
882 	if (error) {
883 		xfs_warn(mp, "log mount failed");
884 		goto out_fail_wait;
885 	}
886 
887 	/* Make sure the summary counts are ok. */
888 	error = xfs_check_summary_counts(mp);
889 	if (error)
890 		goto out_log_dealloc;
891 
892 	/*
893 	 * Get and sanity-check the root inode.
894 	 * Save the pointer to it in the mount structure.
895 	 */
896 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
897 			 XFS_ILOCK_EXCL, &rip);
898 	if (error) {
899 		xfs_warn(mp,
900 			"Failed to read root inode 0x%llx, error %d",
901 			sbp->sb_rootino, -error);
902 		goto out_log_dealloc;
903 	}
904 
905 	ASSERT(rip != NULL);
906 
907 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
908 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
909 			(unsigned long long)rip->i_ino);
910 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
911 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
912 				 mp);
913 		error = -EFSCORRUPTED;
914 		goto out_rele_rip;
915 	}
916 	mp->m_rootip = rip;	/* save it */
917 
918 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
919 
920 	/*
921 	 * Initialize realtime inode pointers in the mount structure
922 	 */
923 	error = xfs_rtmount_inodes(mp);
924 	if (error) {
925 		/*
926 		 * Free up the root inode.
927 		 */
928 		xfs_warn(mp, "failed to read RT inodes");
929 		goto out_rele_rip;
930 	}
931 
932 	/*
933 	 * If this is a read-only mount defer the superblock updates until
934 	 * the next remount into writeable mode.  Otherwise we would never
935 	 * perform the update e.g. for the root filesystem.
936 	 */
937 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
938 		error = xfs_sync_sb(mp, false);
939 		if (error) {
940 			xfs_warn(mp, "failed to write sb changes");
941 			goto out_rtunmount;
942 		}
943 	}
944 
945 	/*
946 	 * Initialise the XFS quota management subsystem for this mount
947 	 */
948 	if (XFS_IS_QUOTA_RUNNING(mp)) {
949 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
950 		if (error)
951 			goto out_rtunmount;
952 	} else {
953 		ASSERT(!XFS_IS_QUOTA_ON(mp));
954 
955 		/*
956 		 * If a file system had quotas running earlier, but decided to
957 		 * mount without -o uquota/pquota/gquota options, revoke the
958 		 * quotachecked license.
959 		 */
960 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
961 			xfs_notice(mp, "resetting quota flags");
962 			error = xfs_mount_reset_sbqflags(mp);
963 			if (error)
964 				goto out_rtunmount;
965 		}
966 	}
967 
968 	/*
969 	 * Finish recovering the file system.  This part needed to be delayed
970 	 * until after the root and real-time bitmap inodes were consistently
971 	 * read in.
972 	 */
973 	error = xfs_log_mount_finish(mp);
974 	if (error) {
975 		xfs_warn(mp, "log mount finish failed");
976 		goto out_rtunmount;
977 	}
978 
979 	/*
980 	 * Now the log is fully replayed, we can transition to full read-only
981 	 * mode for read-only mounts. This will sync all the metadata and clean
982 	 * the log so that the recovery we just performed does not have to be
983 	 * replayed again on the next mount.
984 	 *
985 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
986 	 * semantically identical operations.
987 	 */
988 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
989 							XFS_MOUNT_RDONLY) {
990 		xfs_quiesce_attr(mp);
991 	}
992 
993 	/*
994 	 * Complete the quota initialisation, post-log-replay component.
995 	 */
996 	if (quotamount) {
997 		ASSERT(mp->m_qflags == 0);
998 		mp->m_qflags = quotaflags;
999 
1000 		xfs_qm_mount_quotas(mp);
1001 	}
1002 
1003 	/*
1004 	 * Now we are mounted, reserve a small amount of unused space for
1005 	 * privileged transactions. This is needed so that transaction
1006 	 * space required for critical operations can dip into this pool
1007 	 * when at ENOSPC. This is needed for operations like create with
1008 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1009 	 * are not allowed to use this reserved space.
1010 	 *
1011 	 * This may drive us straight to ENOSPC on mount, but that implies
1012 	 * we were already there on the last unmount. Warn if this occurs.
1013 	 */
1014 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1015 		resblks = xfs_default_resblks(mp);
1016 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1017 		if (error)
1018 			xfs_warn(mp,
1019 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1020 
1021 		/* Recover any CoW blocks that never got remapped. */
1022 		error = xfs_reflink_recover_cow(mp);
1023 		if (error) {
1024 			xfs_err(mp,
1025 	"Error %d recovering leftover CoW allocations.", error);
1026 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1027 			goto out_quota;
1028 		}
1029 
1030 		/* Reserve AG blocks for future btree expansion. */
1031 		error = xfs_fs_reserve_ag_blocks(mp);
1032 		if (error && error != -ENOSPC)
1033 			goto out_agresv;
1034 	}
1035 
1036 	return 0;
1037 
1038  out_agresv:
1039 	xfs_fs_unreserve_ag_blocks(mp);
1040  out_quota:
1041 	xfs_qm_unmount_quotas(mp);
1042  out_rtunmount:
1043 	xfs_rtunmount_inodes(mp);
1044  out_rele_rip:
1045 	xfs_irele(rip);
1046 	/* Clean out dquots that might be in memory after quotacheck. */
1047 	xfs_qm_unmount(mp);
1048 	/*
1049 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1050 	 * We have to do this /after/ rtunmount and qm_unmount because those
1051 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1052 	 *
1053 	 * This is slightly different from the unmountfs call sequence
1054 	 * because we could be tearing down a partially set up mount.  In
1055 	 * particular, if log_mount_finish fails we bail out without calling
1056 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1057 	 * quota inodes.
1058 	 */
1059 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1060 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1061  out_log_dealloc:
1062 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1063 	xfs_log_mount_cancel(mp);
1064  out_fail_wait:
1065 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1066 		xfs_wait_buftarg(mp->m_logdev_targp);
1067 	xfs_wait_buftarg(mp->m_ddev_targp);
1068  out_free_perag:
1069 	xfs_free_perag(mp);
1070  out_free_dir:
1071 	xfs_da_unmount(mp);
1072  out_remove_uuid:
1073 	xfs_uuid_unmount(mp);
1074  out_remove_errortag:
1075 	xfs_errortag_del(mp);
1076  out_remove_error_sysfs:
1077 	xfs_error_sysfs_del(mp);
1078  out_del_stats:
1079 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1080  out_remove_sysfs:
1081 	xfs_sysfs_del(&mp->m_kobj);
1082  out:
1083 	return error;
1084 }
1085 
1086 /*
1087  * This flushes out the inodes,dquots and the superblock, unmounts the
1088  * log and makes sure that incore structures are freed.
1089  */
1090 void
1091 xfs_unmountfs(
1092 	struct xfs_mount	*mp)
1093 {
1094 	uint64_t		resblks;
1095 	int			error;
1096 
1097 	xfs_icache_disable_reclaim(mp);
1098 	xfs_fs_unreserve_ag_blocks(mp);
1099 	xfs_qm_unmount_quotas(mp);
1100 	xfs_rtunmount_inodes(mp);
1101 	xfs_irele(mp->m_rootip);
1102 
1103 	/*
1104 	 * We can potentially deadlock here if we have an inode cluster
1105 	 * that has been freed has its buffer still pinned in memory because
1106 	 * the transaction is still sitting in a iclog. The stale inodes
1107 	 * on that buffer will have their flush locks held until the
1108 	 * transaction hits the disk and the callbacks run. the inode
1109 	 * flush takes the flush lock unconditionally and with nothing to
1110 	 * push out the iclog we will never get that unlocked. hence we
1111 	 * need to force the log first.
1112 	 */
1113 	xfs_log_force(mp, XFS_LOG_SYNC);
1114 
1115 	/*
1116 	 * Wait for all busy extents to be freed, including completion of
1117 	 * any discard operation.
1118 	 */
1119 	xfs_extent_busy_wait_all(mp);
1120 	flush_workqueue(xfs_discard_wq);
1121 
1122 	/*
1123 	 * We now need to tell the world we are unmounting. This will allow
1124 	 * us to detect that the filesystem is going away and we should error
1125 	 * out anything that we have been retrying in the background. This will
1126 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1127 	 */
1128 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1129 
1130 	/*
1131 	 * Flush all pending changes from the AIL.
1132 	 */
1133 	xfs_ail_push_all_sync(mp->m_ail);
1134 
1135 	/*
1136 	 * And reclaim all inodes.  At this point there should be no dirty
1137 	 * inodes and none should be pinned or locked, but use synchronous
1138 	 * reclaim just to be sure. We can stop background inode reclaim
1139 	 * here as well if it is still running.
1140 	 */
1141 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1142 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1143 
1144 	xfs_qm_unmount(mp);
1145 
1146 	/*
1147 	 * Unreserve any blocks we have so that when we unmount we don't account
1148 	 * the reserved free space as used. This is really only necessary for
1149 	 * lazy superblock counting because it trusts the incore superblock
1150 	 * counters to be absolutely correct on clean unmount.
1151 	 *
1152 	 * We don't bother correcting this elsewhere for lazy superblock
1153 	 * counting because on mount of an unclean filesystem we reconstruct the
1154 	 * correct counter value and this is irrelevant.
1155 	 *
1156 	 * For non-lazy counter filesystems, this doesn't matter at all because
1157 	 * we only every apply deltas to the superblock and hence the incore
1158 	 * value does not matter....
1159 	 */
1160 	resblks = 0;
1161 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1162 	if (error)
1163 		xfs_warn(mp, "Unable to free reserved block pool. "
1164 				"Freespace may not be correct on next mount.");
1165 
1166 	error = xfs_log_sbcount(mp);
1167 	if (error)
1168 		xfs_warn(mp, "Unable to update superblock counters. "
1169 				"Freespace may not be correct on next mount.");
1170 
1171 
1172 	xfs_log_unmount(mp);
1173 	xfs_da_unmount(mp);
1174 	xfs_uuid_unmount(mp);
1175 
1176 #if defined(DEBUG)
1177 	xfs_errortag_clearall(mp);
1178 #endif
1179 	xfs_free_perag(mp);
1180 
1181 	xfs_errortag_del(mp);
1182 	xfs_error_sysfs_del(mp);
1183 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1184 	xfs_sysfs_del(&mp->m_kobj);
1185 }
1186 
1187 /*
1188  * Determine whether modifications can proceed. The caller specifies the minimum
1189  * freeze level for which modifications should not be allowed. This allows
1190  * certain operations to proceed while the freeze sequence is in progress, if
1191  * necessary.
1192  */
1193 bool
1194 xfs_fs_writable(
1195 	struct xfs_mount	*mp,
1196 	int			level)
1197 {
1198 	ASSERT(level > SB_UNFROZEN);
1199 	if ((mp->m_super->s_writers.frozen >= level) ||
1200 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1201 		return false;
1202 
1203 	return true;
1204 }
1205 
1206 /*
1207  * xfs_log_sbcount
1208  *
1209  * Sync the superblock counters to disk.
1210  *
1211  * Note this code can be called during the process of freezing, so we use the
1212  * transaction allocator that does not block when the transaction subsystem is
1213  * in its frozen state.
1214  */
1215 int
1216 xfs_log_sbcount(xfs_mount_t *mp)
1217 {
1218 	/* allow this to proceed during the freeze sequence... */
1219 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1220 		return 0;
1221 
1222 	/*
1223 	 * we don't need to do this if we are updating the superblock
1224 	 * counters on every modification.
1225 	 */
1226 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1227 		return 0;
1228 
1229 	return xfs_sync_sb(mp, true);
1230 }
1231 
1232 /*
1233  * Deltas for the inode count are +/-64, hence we use a large batch size
1234  * of 128 so we don't need to take the counter lock on every update.
1235  */
1236 #define XFS_ICOUNT_BATCH	128
1237 int
1238 xfs_mod_icount(
1239 	struct xfs_mount	*mp,
1240 	int64_t			delta)
1241 {
1242 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1243 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1244 		ASSERT(0);
1245 		percpu_counter_add(&mp->m_icount, -delta);
1246 		return -EINVAL;
1247 	}
1248 	return 0;
1249 }
1250 
1251 int
1252 xfs_mod_ifree(
1253 	struct xfs_mount	*mp,
1254 	int64_t			delta)
1255 {
1256 	percpu_counter_add(&mp->m_ifree, delta);
1257 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1258 		ASSERT(0);
1259 		percpu_counter_add(&mp->m_ifree, -delta);
1260 		return -EINVAL;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Deltas for the block count can vary from 1 to very large, but lock contention
1267  * only occurs on frequent small block count updates such as in the delayed
1268  * allocation path for buffered writes (page a time updates). Hence we set
1269  * a large batch count (1024) to minimise global counter updates except when
1270  * we get near to ENOSPC and we have to be very accurate with our updates.
1271  */
1272 #define XFS_FDBLOCKS_BATCH	1024
1273 int
1274 xfs_mod_fdblocks(
1275 	struct xfs_mount	*mp,
1276 	int64_t			delta,
1277 	bool			rsvd)
1278 {
1279 	int64_t			lcounter;
1280 	long long		res_used;
1281 	s32			batch;
1282 
1283 	if (delta > 0) {
1284 		/*
1285 		 * If the reserve pool is depleted, put blocks back into it
1286 		 * first. Most of the time the pool is full.
1287 		 */
1288 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1289 			percpu_counter_add(&mp->m_fdblocks, delta);
1290 			return 0;
1291 		}
1292 
1293 		spin_lock(&mp->m_sb_lock);
1294 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1295 
1296 		if (res_used > delta) {
1297 			mp->m_resblks_avail += delta;
1298 		} else {
1299 			delta -= res_used;
1300 			mp->m_resblks_avail = mp->m_resblks;
1301 			percpu_counter_add(&mp->m_fdblocks, delta);
1302 		}
1303 		spin_unlock(&mp->m_sb_lock);
1304 		return 0;
1305 	}
1306 
1307 	/*
1308 	 * Taking blocks away, need to be more accurate the closer we
1309 	 * are to zero.
1310 	 *
1311 	 * If the counter has a value of less than 2 * max batch size,
1312 	 * then make everything serialise as we are real close to
1313 	 * ENOSPC.
1314 	 */
1315 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1316 				     XFS_FDBLOCKS_BATCH) < 0)
1317 		batch = 1;
1318 	else
1319 		batch = XFS_FDBLOCKS_BATCH;
1320 
1321 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1322 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1323 				     XFS_FDBLOCKS_BATCH) >= 0) {
1324 		/* we had space! */
1325 		return 0;
1326 	}
1327 
1328 	/*
1329 	 * lock up the sb for dipping into reserves before releasing the space
1330 	 * that took us to ENOSPC.
1331 	 */
1332 	spin_lock(&mp->m_sb_lock);
1333 	percpu_counter_add(&mp->m_fdblocks, -delta);
1334 	if (!rsvd)
1335 		goto fdblocks_enospc;
1336 
1337 	lcounter = (long long)mp->m_resblks_avail + delta;
1338 	if (lcounter >= 0) {
1339 		mp->m_resblks_avail = lcounter;
1340 		spin_unlock(&mp->m_sb_lock);
1341 		return 0;
1342 	}
1343 	printk_once(KERN_WARNING
1344 		"Filesystem \"%s\": reserve blocks depleted! "
1345 		"Consider increasing reserve pool size.",
1346 		mp->m_fsname);
1347 fdblocks_enospc:
1348 	spin_unlock(&mp->m_sb_lock);
1349 	return -ENOSPC;
1350 }
1351 
1352 int
1353 xfs_mod_frextents(
1354 	struct xfs_mount	*mp,
1355 	int64_t			delta)
1356 {
1357 	int64_t			lcounter;
1358 	int			ret = 0;
1359 
1360 	spin_lock(&mp->m_sb_lock);
1361 	lcounter = mp->m_sb.sb_frextents + delta;
1362 	if (lcounter < 0)
1363 		ret = -ENOSPC;
1364 	else
1365 		mp->m_sb.sb_frextents = lcounter;
1366 	spin_unlock(&mp->m_sb_lock);
1367 	return ret;
1368 }
1369 
1370 /*
1371  * xfs_getsb() is called to obtain the buffer for the superblock.
1372  * The buffer is returned locked and read in from disk.
1373  * The buffer should be released with a call to xfs_brelse().
1374  *
1375  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1376  * the superblock buffer if it can be locked without sleeping.
1377  * If it can't then we'll return NULL.
1378  */
1379 struct xfs_buf *
1380 xfs_getsb(
1381 	struct xfs_mount	*mp,
1382 	int			flags)
1383 {
1384 	struct xfs_buf		*bp = mp->m_sb_bp;
1385 
1386 	if (!xfs_buf_trylock(bp)) {
1387 		if (flags & XBF_TRYLOCK)
1388 			return NULL;
1389 		xfs_buf_lock(bp);
1390 	}
1391 
1392 	xfs_buf_hold(bp);
1393 	ASSERT(bp->b_flags & XBF_DONE);
1394 	return bp;
1395 }
1396 
1397 /*
1398  * Used to free the superblock along various error paths.
1399  */
1400 void
1401 xfs_freesb(
1402 	struct xfs_mount	*mp)
1403 {
1404 	struct xfs_buf		*bp = mp->m_sb_bp;
1405 
1406 	xfs_buf_lock(bp);
1407 	mp->m_sb_bp = NULL;
1408 	xfs_buf_relse(bp);
1409 }
1410 
1411 /*
1412  * If the underlying (data/log/rt) device is readonly, there are some
1413  * operations that cannot proceed.
1414  */
1415 int
1416 xfs_dev_is_read_only(
1417 	struct xfs_mount	*mp,
1418 	char			*message)
1419 {
1420 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1421 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1422 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1423 		xfs_notice(mp, "%s required on read-only device.", message);
1424 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1425 		return -EROFS;
1426 	}
1427 	return 0;
1428 }
1429 
1430 /* Force the summary counters to be recalculated at next mount. */
1431 void
1432 xfs_force_summary_recalc(
1433 	struct xfs_mount	*mp)
1434 {
1435 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1436 		return;
1437 
1438 	spin_lock(&mp->m_sb_lock);
1439 	mp->m_flags |= XFS_MOUNT_BAD_SUMMARY;
1440 	spin_unlock(&mp->m_sb_lock);
1441 }
1442