1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_dir2.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_alloc.h" 22 #include "xfs_rtalloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_fsops.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_refcount_btree.h" 35 #include "xfs_reflink.h" 36 #include "xfs_extent_busy.h" 37 38 39 static DEFINE_MUTEX(xfs_uuid_table_mutex); 40 static int xfs_uuid_table_size; 41 static uuid_t *xfs_uuid_table; 42 43 void 44 xfs_uuid_table_free(void) 45 { 46 if (xfs_uuid_table_size == 0) 47 return; 48 kmem_free(xfs_uuid_table); 49 xfs_uuid_table = NULL; 50 xfs_uuid_table_size = 0; 51 } 52 53 /* 54 * See if the UUID is unique among mounted XFS filesystems. 55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 56 */ 57 STATIC int 58 xfs_uuid_mount( 59 struct xfs_mount *mp) 60 { 61 uuid_t *uuid = &mp->m_sb.sb_uuid; 62 int hole, i; 63 64 /* Publish UUID in struct super_block */ 65 uuid_copy(&mp->m_super->s_uuid, uuid); 66 67 if (mp->m_flags & XFS_MOUNT_NOUUID) 68 return 0; 69 70 if (uuid_is_null(uuid)) { 71 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 72 return -EINVAL; 73 } 74 75 mutex_lock(&xfs_uuid_table_mutex); 76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 77 if (uuid_is_null(&xfs_uuid_table[i])) { 78 hole = i; 79 continue; 80 } 81 if (uuid_equal(uuid, &xfs_uuid_table[i])) 82 goto out_duplicate; 83 } 84 85 if (hole < 0) { 86 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 88 KM_SLEEP); 89 hole = xfs_uuid_table_size++; 90 } 91 xfs_uuid_table[hole] = *uuid; 92 mutex_unlock(&xfs_uuid_table_mutex); 93 94 return 0; 95 96 out_duplicate: 97 mutex_unlock(&xfs_uuid_table_mutex); 98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 99 return -EINVAL; 100 } 101 102 STATIC void 103 xfs_uuid_unmount( 104 struct xfs_mount *mp) 105 { 106 uuid_t *uuid = &mp->m_sb.sb_uuid; 107 int i; 108 109 if (mp->m_flags & XFS_MOUNT_NOUUID) 110 return; 111 112 mutex_lock(&xfs_uuid_table_mutex); 113 for (i = 0; i < xfs_uuid_table_size; i++) { 114 if (uuid_is_null(&xfs_uuid_table[i])) 115 continue; 116 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 117 continue; 118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 119 break; 120 } 121 ASSERT(i < xfs_uuid_table_size); 122 mutex_unlock(&xfs_uuid_table_mutex); 123 } 124 125 126 STATIC void 127 __xfs_free_perag( 128 struct rcu_head *head) 129 { 130 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 131 132 ASSERT(atomic_read(&pag->pag_ref) == 0); 133 kmem_free(pag); 134 } 135 136 /* 137 * Free up the per-ag resources associated with the mount structure. 138 */ 139 STATIC void 140 xfs_free_perag( 141 xfs_mount_t *mp) 142 { 143 xfs_agnumber_t agno; 144 struct xfs_perag *pag; 145 146 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 147 spin_lock(&mp->m_perag_lock); 148 pag = radix_tree_delete(&mp->m_perag_tree, agno); 149 spin_unlock(&mp->m_perag_lock); 150 ASSERT(pag); 151 ASSERT(atomic_read(&pag->pag_ref) == 0); 152 xfs_buf_hash_destroy(pag); 153 mutex_destroy(&pag->pag_ici_reclaim_lock); 154 call_rcu(&pag->rcu_head, __xfs_free_perag); 155 } 156 } 157 158 /* 159 * Check size of device based on the (data/realtime) block count. 160 * Note: this check is used by the growfs code as well as mount. 161 */ 162 int 163 xfs_sb_validate_fsb_count( 164 xfs_sb_t *sbp, 165 uint64_t nblocks) 166 { 167 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 168 ASSERT(sbp->sb_blocklog >= BBSHIFT); 169 170 /* Limited by ULONG_MAX of page cache index */ 171 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 172 return -EFBIG; 173 return 0; 174 } 175 176 int 177 xfs_initialize_perag( 178 xfs_mount_t *mp, 179 xfs_agnumber_t agcount, 180 xfs_agnumber_t *maxagi) 181 { 182 xfs_agnumber_t index; 183 xfs_agnumber_t first_initialised = NULLAGNUMBER; 184 xfs_perag_t *pag; 185 int error = -ENOMEM; 186 187 /* 188 * Walk the current per-ag tree so we don't try to initialise AGs 189 * that already exist (growfs case). Allocate and insert all the 190 * AGs we don't find ready for initialisation. 191 */ 192 for (index = 0; index < agcount; index++) { 193 pag = xfs_perag_get(mp, index); 194 if (pag) { 195 xfs_perag_put(pag); 196 continue; 197 } 198 199 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 200 if (!pag) 201 goto out_unwind_new_pags; 202 pag->pag_agno = index; 203 pag->pag_mount = mp; 204 spin_lock_init(&pag->pag_ici_lock); 205 mutex_init(&pag->pag_ici_reclaim_lock); 206 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 207 if (xfs_buf_hash_init(pag)) 208 goto out_free_pag; 209 init_waitqueue_head(&pag->pagb_wait); 210 spin_lock_init(&pag->pagb_lock); 211 pag->pagb_count = 0; 212 pag->pagb_tree = RB_ROOT; 213 214 if (radix_tree_preload(GFP_NOFS)) 215 goto out_hash_destroy; 216 217 spin_lock(&mp->m_perag_lock); 218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 219 BUG(); 220 spin_unlock(&mp->m_perag_lock); 221 radix_tree_preload_end(); 222 error = -EEXIST; 223 goto out_hash_destroy; 224 } 225 spin_unlock(&mp->m_perag_lock); 226 radix_tree_preload_end(); 227 /* first new pag is fully initialized */ 228 if (first_initialised == NULLAGNUMBER) 229 first_initialised = index; 230 } 231 232 index = xfs_set_inode_alloc(mp, agcount); 233 234 if (maxagi) 235 *maxagi = index; 236 237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 238 return 0; 239 240 out_hash_destroy: 241 xfs_buf_hash_destroy(pag); 242 out_free_pag: 243 mutex_destroy(&pag->pag_ici_reclaim_lock); 244 kmem_free(pag); 245 out_unwind_new_pags: 246 /* unwind any prior newly initialized pags */ 247 for (index = first_initialised; index < agcount; index++) { 248 pag = radix_tree_delete(&mp->m_perag_tree, index); 249 if (!pag) 250 break; 251 xfs_buf_hash_destroy(pag); 252 mutex_destroy(&pag->pag_ici_reclaim_lock); 253 kmem_free(pag); 254 } 255 return error; 256 } 257 258 /* 259 * xfs_readsb 260 * 261 * Does the initial read of the superblock. 262 */ 263 int 264 xfs_readsb( 265 struct xfs_mount *mp, 266 int flags) 267 { 268 unsigned int sector_size; 269 struct xfs_buf *bp; 270 struct xfs_sb *sbp = &mp->m_sb; 271 int error; 272 int loud = !(flags & XFS_MFSI_QUIET); 273 const struct xfs_buf_ops *buf_ops; 274 275 ASSERT(mp->m_sb_bp == NULL); 276 ASSERT(mp->m_ddev_targp != NULL); 277 278 /* 279 * For the initial read, we must guess at the sector 280 * size based on the block device. It's enough to 281 * get the sb_sectsize out of the superblock and 282 * then reread with the proper length. 283 * We don't verify it yet, because it may not be complete. 284 */ 285 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 286 buf_ops = NULL; 287 288 /* 289 * Allocate a (locked) buffer to hold the superblock. This will be kept 290 * around at all times to optimize access to the superblock. Therefore, 291 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 292 * elevated. 293 */ 294 reread: 295 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 296 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 297 buf_ops); 298 if (error) { 299 if (loud) 300 xfs_warn(mp, "SB validate failed with error %d.", error); 301 /* bad CRC means corrupted metadata */ 302 if (error == -EFSBADCRC) 303 error = -EFSCORRUPTED; 304 return error; 305 } 306 307 /* 308 * Initialize the mount structure from the superblock. 309 */ 310 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 311 312 /* 313 * If we haven't validated the superblock, do so now before we try 314 * to check the sector size and reread the superblock appropriately. 315 */ 316 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 317 if (loud) 318 xfs_warn(mp, "Invalid superblock magic number"); 319 error = -EINVAL; 320 goto release_buf; 321 } 322 323 /* 324 * We must be able to do sector-sized and sector-aligned IO. 325 */ 326 if (sector_size > sbp->sb_sectsize) { 327 if (loud) 328 xfs_warn(mp, "device supports %u byte sectors (not %u)", 329 sector_size, sbp->sb_sectsize); 330 error = -ENOSYS; 331 goto release_buf; 332 } 333 334 if (buf_ops == NULL) { 335 /* 336 * Re-read the superblock so the buffer is correctly sized, 337 * and properly verified. 338 */ 339 xfs_buf_relse(bp); 340 sector_size = sbp->sb_sectsize; 341 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 342 goto reread; 343 } 344 345 xfs_reinit_percpu_counters(mp); 346 347 /* no need to be quiet anymore, so reset the buf ops */ 348 bp->b_ops = &xfs_sb_buf_ops; 349 350 mp->m_sb_bp = bp; 351 xfs_buf_unlock(bp); 352 return 0; 353 354 release_buf: 355 xfs_buf_relse(bp); 356 return error; 357 } 358 359 /* 360 * Update alignment values based on mount options and sb values 361 */ 362 STATIC int 363 xfs_update_alignment(xfs_mount_t *mp) 364 { 365 xfs_sb_t *sbp = &(mp->m_sb); 366 367 if (mp->m_dalign) { 368 /* 369 * If stripe unit and stripe width are not multiples 370 * of the fs blocksize turn off alignment. 371 */ 372 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 373 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 374 xfs_warn(mp, 375 "alignment check failed: sunit/swidth vs. blocksize(%d)", 376 sbp->sb_blocksize); 377 return -EINVAL; 378 } else { 379 /* 380 * Convert the stripe unit and width to FSBs. 381 */ 382 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 383 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 384 xfs_warn(mp, 385 "alignment check failed: sunit/swidth vs. agsize(%d)", 386 sbp->sb_agblocks); 387 return -EINVAL; 388 } else if (mp->m_dalign) { 389 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 390 } else { 391 xfs_warn(mp, 392 "alignment check failed: sunit(%d) less than bsize(%d)", 393 mp->m_dalign, sbp->sb_blocksize); 394 return -EINVAL; 395 } 396 } 397 398 /* 399 * Update superblock with new values 400 * and log changes 401 */ 402 if (xfs_sb_version_hasdalign(sbp)) { 403 if (sbp->sb_unit != mp->m_dalign) { 404 sbp->sb_unit = mp->m_dalign; 405 mp->m_update_sb = true; 406 } 407 if (sbp->sb_width != mp->m_swidth) { 408 sbp->sb_width = mp->m_swidth; 409 mp->m_update_sb = true; 410 } 411 } else { 412 xfs_warn(mp, 413 "cannot change alignment: superblock does not support data alignment"); 414 return -EINVAL; 415 } 416 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 417 xfs_sb_version_hasdalign(&mp->m_sb)) { 418 mp->m_dalign = sbp->sb_unit; 419 mp->m_swidth = sbp->sb_width; 420 } 421 422 return 0; 423 } 424 425 /* 426 * Set the maximum inode count for this filesystem 427 */ 428 STATIC void 429 xfs_set_maxicount(xfs_mount_t *mp) 430 { 431 xfs_sb_t *sbp = &(mp->m_sb); 432 uint64_t icount; 433 434 if (sbp->sb_imax_pct) { 435 /* 436 * Make sure the maximum inode count is a multiple 437 * of the units we allocate inodes in. 438 */ 439 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 440 do_div(icount, 100); 441 do_div(icount, mp->m_ialloc_blks); 442 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 443 sbp->sb_inopblog; 444 } else { 445 mp->m_maxicount = 0; 446 } 447 } 448 449 /* 450 * Set the default minimum read and write sizes unless 451 * already specified in a mount option. 452 * We use smaller I/O sizes when the file system 453 * is being used for NFS service (wsync mount option). 454 */ 455 STATIC void 456 xfs_set_rw_sizes(xfs_mount_t *mp) 457 { 458 xfs_sb_t *sbp = &(mp->m_sb); 459 int readio_log, writeio_log; 460 461 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 462 if (mp->m_flags & XFS_MOUNT_WSYNC) { 463 readio_log = XFS_WSYNC_READIO_LOG; 464 writeio_log = XFS_WSYNC_WRITEIO_LOG; 465 } else { 466 readio_log = XFS_READIO_LOG_LARGE; 467 writeio_log = XFS_WRITEIO_LOG_LARGE; 468 } 469 } else { 470 readio_log = mp->m_readio_log; 471 writeio_log = mp->m_writeio_log; 472 } 473 474 if (sbp->sb_blocklog > readio_log) { 475 mp->m_readio_log = sbp->sb_blocklog; 476 } else { 477 mp->m_readio_log = readio_log; 478 } 479 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 480 if (sbp->sb_blocklog > writeio_log) { 481 mp->m_writeio_log = sbp->sb_blocklog; 482 } else { 483 mp->m_writeio_log = writeio_log; 484 } 485 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 486 } 487 488 /* 489 * precalculate the low space thresholds for dynamic speculative preallocation. 490 */ 491 void 492 xfs_set_low_space_thresholds( 493 struct xfs_mount *mp) 494 { 495 int i; 496 497 for (i = 0; i < XFS_LOWSP_MAX; i++) { 498 uint64_t space = mp->m_sb.sb_dblocks; 499 500 do_div(space, 100); 501 mp->m_low_space[i] = space * (i + 1); 502 } 503 } 504 505 506 /* 507 * Set whether we're using inode alignment. 508 */ 509 STATIC void 510 xfs_set_inoalignment(xfs_mount_t *mp) 511 { 512 if (xfs_sb_version_hasalign(&mp->m_sb) && 513 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 514 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 515 else 516 mp->m_inoalign_mask = 0; 517 /* 518 * If we are using stripe alignment, check whether 519 * the stripe unit is a multiple of the inode alignment 520 */ 521 if (mp->m_dalign && mp->m_inoalign_mask && 522 !(mp->m_dalign & mp->m_inoalign_mask)) 523 mp->m_sinoalign = mp->m_dalign; 524 else 525 mp->m_sinoalign = 0; 526 } 527 528 /* 529 * Check that the data (and log if separate) is an ok size. 530 */ 531 STATIC int 532 xfs_check_sizes( 533 struct xfs_mount *mp) 534 { 535 struct xfs_buf *bp; 536 xfs_daddr_t d; 537 int error; 538 539 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 540 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 541 xfs_warn(mp, "filesystem size mismatch detected"); 542 return -EFBIG; 543 } 544 error = xfs_buf_read_uncached(mp->m_ddev_targp, 545 d - XFS_FSS_TO_BB(mp, 1), 546 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 547 if (error) { 548 xfs_warn(mp, "last sector read failed"); 549 return error; 550 } 551 xfs_buf_relse(bp); 552 553 if (mp->m_logdev_targp == mp->m_ddev_targp) 554 return 0; 555 556 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 557 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 558 xfs_warn(mp, "log size mismatch detected"); 559 return -EFBIG; 560 } 561 error = xfs_buf_read_uncached(mp->m_logdev_targp, 562 d - XFS_FSB_TO_BB(mp, 1), 563 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 564 if (error) { 565 xfs_warn(mp, "log device read failed"); 566 return error; 567 } 568 xfs_buf_relse(bp); 569 return 0; 570 } 571 572 /* 573 * Clear the quotaflags in memory and in the superblock. 574 */ 575 int 576 xfs_mount_reset_sbqflags( 577 struct xfs_mount *mp) 578 { 579 mp->m_qflags = 0; 580 581 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 582 if (mp->m_sb.sb_qflags == 0) 583 return 0; 584 spin_lock(&mp->m_sb_lock); 585 mp->m_sb.sb_qflags = 0; 586 spin_unlock(&mp->m_sb_lock); 587 588 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 589 return 0; 590 591 return xfs_sync_sb(mp, false); 592 } 593 594 uint64_t 595 xfs_default_resblks(xfs_mount_t *mp) 596 { 597 uint64_t resblks; 598 599 /* 600 * We default to 5% or 8192 fsbs of space reserved, whichever is 601 * smaller. This is intended to cover concurrent allocation 602 * transactions when we initially hit enospc. These each require a 4 603 * block reservation. Hence by default we cover roughly 2000 concurrent 604 * allocation reservations. 605 */ 606 resblks = mp->m_sb.sb_dblocks; 607 do_div(resblks, 20); 608 resblks = min_t(uint64_t, resblks, 8192); 609 return resblks; 610 } 611 612 /* Ensure the summary counts are correct. */ 613 STATIC int 614 xfs_check_summary_counts( 615 struct xfs_mount *mp) 616 { 617 /* 618 * The AG0 superblock verifier rejects in-progress filesystems, 619 * so we should never see the flag set this far into mounting. 620 */ 621 if (mp->m_sb.sb_inprogress) { 622 xfs_err(mp, "sb_inprogress set after log recovery??"); 623 WARN_ON(1); 624 return -EFSCORRUPTED; 625 } 626 627 /* 628 * Now the log is mounted, we know if it was an unclean shutdown or 629 * not. If it was, with the first phase of recovery has completed, we 630 * have consistent AG blocks on disk. We have not recovered EFIs yet, 631 * but they are recovered transactionally in the second recovery phase 632 * later. 633 * 634 * If the log was clean when we mounted, we can check the summary 635 * counters. If any of them are obviously incorrect, we can recompute 636 * them from the AGF headers in the next step. 637 */ 638 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 639 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 640 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 641 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; 642 643 /* 644 * We can safely re-initialise incore superblock counters from the 645 * per-ag data. These may not be correct if the filesystem was not 646 * cleanly unmounted, so we waited for recovery to finish before doing 647 * this. 648 * 649 * If the filesystem was cleanly unmounted or the previous check did 650 * not flag anything weird, then we can trust the values in the 651 * superblock to be correct and we don't need to do anything here. 652 * Otherwise, recalculate the summary counters. 653 */ 654 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 655 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 656 !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) 657 return 0; 658 659 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 660 } 661 662 /* 663 * This function does the following on an initial mount of a file system: 664 * - reads the superblock from disk and init the mount struct 665 * - if we're a 32-bit kernel, do a size check on the superblock 666 * so we don't mount terabyte filesystems 667 * - init mount struct realtime fields 668 * - allocate inode hash table for fs 669 * - init directory manager 670 * - perform recovery and init the log manager 671 */ 672 int 673 xfs_mountfs( 674 struct xfs_mount *mp) 675 { 676 struct xfs_sb *sbp = &(mp->m_sb); 677 struct xfs_inode *rip; 678 uint64_t resblks; 679 uint quotamount = 0; 680 uint quotaflags = 0; 681 int error = 0; 682 683 xfs_sb_mount_common(mp, sbp); 684 685 /* 686 * Check for a mismatched features2 values. Older kernels read & wrote 687 * into the wrong sb offset for sb_features2 on some platforms due to 688 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 689 * which made older superblock reading/writing routines swap it as a 690 * 64-bit value. 691 * 692 * For backwards compatibility, we make both slots equal. 693 * 694 * If we detect a mismatched field, we OR the set bits into the existing 695 * features2 field in case it has already been modified; we don't want 696 * to lose any features. We then update the bad location with the ORed 697 * value so that older kernels will see any features2 flags. The 698 * superblock writeback code ensures the new sb_features2 is copied to 699 * sb_bad_features2 before it is logged or written to disk. 700 */ 701 if (xfs_sb_has_mismatched_features2(sbp)) { 702 xfs_warn(mp, "correcting sb_features alignment problem"); 703 sbp->sb_features2 |= sbp->sb_bad_features2; 704 mp->m_update_sb = true; 705 706 /* 707 * Re-check for ATTR2 in case it was found in bad_features2 708 * slot. 709 */ 710 if (xfs_sb_version_hasattr2(&mp->m_sb) && 711 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 712 mp->m_flags |= XFS_MOUNT_ATTR2; 713 } 714 715 if (xfs_sb_version_hasattr2(&mp->m_sb) && 716 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 717 xfs_sb_version_removeattr2(&mp->m_sb); 718 mp->m_update_sb = true; 719 720 /* update sb_versionnum for the clearing of the morebits */ 721 if (!sbp->sb_features2) 722 mp->m_update_sb = true; 723 } 724 725 /* always use v2 inodes by default now */ 726 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 727 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 728 mp->m_update_sb = true; 729 } 730 731 /* 732 * Check if sb_agblocks is aligned at stripe boundary 733 * If sb_agblocks is NOT aligned turn off m_dalign since 734 * allocator alignment is within an ag, therefore ag has 735 * to be aligned at stripe boundary. 736 */ 737 error = xfs_update_alignment(mp); 738 if (error) 739 goto out; 740 741 xfs_alloc_compute_maxlevels(mp); 742 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 743 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 744 xfs_ialloc_compute_maxlevels(mp); 745 xfs_rmapbt_compute_maxlevels(mp); 746 xfs_refcountbt_compute_maxlevels(mp); 747 748 xfs_set_maxicount(mp); 749 750 /* enable fail_at_unmount as default */ 751 mp->m_fail_unmount = true; 752 753 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 754 if (error) 755 goto out; 756 757 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 758 &mp->m_kobj, "stats"); 759 if (error) 760 goto out_remove_sysfs; 761 762 error = xfs_error_sysfs_init(mp); 763 if (error) 764 goto out_del_stats; 765 766 error = xfs_errortag_init(mp); 767 if (error) 768 goto out_remove_error_sysfs; 769 770 error = xfs_uuid_mount(mp); 771 if (error) 772 goto out_remove_errortag; 773 774 /* 775 * Set the minimum read and write sizes 776 */ 777 xfs_set_rw_sizes(mp); 778 779 /* set the low space thresholds for dynamic preallocation */ 780 xfs_set_low_space_thresholds(mp); 781 782 /* 783 * Set the inode cluster size. 784 * This may still be overridden by the file system 785 * block size if it is larger than the chosen cluster size. 786 * 787 * For v5 filesystems, scale the cluster size with the inode size to 788 * keep a constant ratio of inode per cluster buffer, but only if mkfs 789 * has set the inode alignment value appropriately for larger cluster 790 * sizes. 791 */ 792 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 793 if (xfs_sb_version_hascrc(&mp->m_sb)) { 794 int new_size = mp->m_inode_cluster_size; 795 796 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 797 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 798 mp->m_inode_cluster_size = new_size; 799 } 800 801 /* 802 * If enabled, sparse inode chunk alignment is expected to match the 803 * cluster size. Full inode chunk alignment must match the chunk size, 804 * but that is checked on sb read verification... 805 */ 806 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 807 mp->m_sb.sb_spino_align != 808 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 809 xfs_warn(mp, 810 "Sparse inode block alignment (%u) must match cluster size (%llu).", 811 mp->m_sb.sb_spino_align, 812 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 813 error = -EINVAL; 814 goto out_remove_uuid; 815 } 816 817 /* 818 * Set inode alignment fields 819 */ 820 xfs_set_inoalignment(mp); 821 822 /* 823 * Check that the data (and log if separate) is an ok size. 824 */ 825 error = xfs_check_sizes(mp); 826 if (error) 827 goto out_remove_uuid; 828 829 /* 830 * Initialize realtime fields in the mount structure 831 */ 832 error = xfs_rtmount_init(mp); 833 if (error) { 834 xfs_warn(mp, "RT mount failed"); 835 goto out_remove_uuid; 836 } 837 838 /* 839 * Copies the low order bits of the timestamp and the randomly 840 * set "sequence" number out of a UUID. 841 */ 842 mp->m_fixedfsid[0] = 843 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 844 get_unaligned_be16(&sbp->sb_uuid.b[4]); 845 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 846 847 error = xfs_da_mount(mp); 848 if (error) { 849 xfs_warn(mp, "Failed dir/attr init: %d", error); 850 goto out_remove_uuid; 851 } 852 853 /* 854 * Initialize the precomputed transaction reservations values. 855 */ 856 xfs_trans_init(mp); 857 858 /* 859 * Allocate and initialize the per-ag data. 860 */ 861 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 862 if (error) { 863 xfs_warn(mp, "Failed per-ag init: %d", error); 864 goto out_free_dir; 865 } 866 867 if (!sbp->sb_logblocks) { 868 xfs_warn(mp, "no log defined"); 869 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 870 error = -EFSCORRUPTED; 871 goto out_free_perag; 872 } 873 874 /* 875 * Log's mount-time initialization. The first part of recovery can place 876 * some items on the AIL, to be handled when recovery is finished or 877 * cancelled. 878 */ 879 error = xfs_log_mount(mp, mp->m_logdev_targp, 880 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 881 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 882 if (error) { 883 xfs_warn(mp, "log mount failed"); 884 goto out_fail_wait; 885 } 886 887 /* Make sure the summary counts are ok. */ 888 error = xfs_check_summary_counts(mp); 889 if (error) 890 goto out_log_dealloc; 891 892 /* 893 * Get and sanity-check the root inode. 894 * Save the pointer to it in the mount structure. 895 */ 896 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 897 XFS_ILOCK_EXCL, &rip); 898 if (error) { 899 xfs_warn(mp, 900 "Failed to read root inode 0x%llx, error %d", 901 sbp->sb_rootino, -error); 902 goto out_log_dealloc; 903 } 904 905 ASSERT(rip != NULL); 906 907 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 908 xfs_warn(mp, "corrupted root inode %llu: not a directory", 909 (unsigned long long)rip->i_ino); 910 xfs_iunlock(rip, XFS_ILOCK_EXCL); 911 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 912 mp); 913 error = -EFSCORRUPTED; 914 goto out_rele_rip; 915 } 916 mp->m_rootip = rip; /* save it */ 917 918 xfs_iunlock(rip, XFS_ILOCK_EXCL); 919 920 /* 921 * Initialize realtime inode pointers in the mount structure 922 */ 923 error = xfs_rtmount_inodes(mp); 924 if (error) { 925 /* 926 * Free up the root inode. 927 */ 928 xfs_warn(mp, "failed to read RT inodes"); 929 goto out_rele_rip; 930 } 931 932 /* 933 * If this is a read-only mount defer the superblock updates until 934 * the next remount into writeable mode. Otherwise we would never 935 * perform the update e.g. for the root filesystem. 936 */ 937 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 938 error = xfs_sync_sb(mp, false); 939 if (error) { 940 xfs_warn(mp, "failed to write sb changes"); 941 goto out_rtunmount; 942 } 943 } 944 945 /* 946 * Initialise the XFS quota management subsystem for this mount 947 */ 948 if (XFS_IS_QUOTA_RUNNING(mp)) { 949 error = xfs_qm_newmount(mp, "amount, "aflags); 950 if (error) 951 goto out_rtunmount; 952 } else { 953 ASSERT(!XFS_IS_QUOTA_ON(mp)); 954 955 /* 956 * If a file system had quotas running earlier, but decided to 957 * mount without -o uquota/pquota/gquota options, revoke the 958 * quotachecked license. 959 */ 960 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 961 xfs_notice(mp, "resetting quota flags"); 962 error = xfs_mount_reset_sbqflags(mp); 963 if (error) 964 goto out_rtunmount; 965 } 966 } 967 968 /* 969 * Finish recovering the file system. This part needed to be delayed 970 * until after the root and real-time bitmap inodes were consistently 971 * read in. 972 */ 973 error = xfs_log_mount_finish(mp); 974 if (error) { 975 xfs_warn(mp, "log mount finish failed"); 976 goto out_rtunmount; 977 } 978 979 /* 980 * Now the log is fully replayed, we can transition to full read-only 981 * mode for read-only mounts. This will sync all the metadata and clean 982 * the log so that the recovery we just performed does not have to be 983 * replayed again on the next mount. 984 * 985 * We use the same quiesce mechanism as the rw->ro remount, as they are 986 * semantically identical operations. 987 */ 988 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 989 XFS_MOUNT_RDONLY) { 990 xfs_quiesce_attr(mp); 991 } 992 993 /* 994 * Complete the quota initialisation, post-log-replay component. 995 */ 996 if (quotamount) { 997 ASSERT(mp->m_qflags == 0); 998 mp->m_qflags = quotaflags; 999 1000 xfs_qm_mount_quotas(mp); 1001 } 1002 1003 /* 1004 * Now we are mounted, reserve a small amount of unused space for 1005 * privileged transactions. This is needed so that transaction 1006 * space required for critical operations can dip into this pool 1007 * when at ENOSPC. This is needed for operations like create with 1008 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1009 * are not allowed to use this reserved space. 1010 * 1011 * This may drive us straight to ENOSPC on mount, but that implies 1012 * we were already there on the last unmount. Warn if this occurs. 1013 */ 1014 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1015 resblks = xfs_default_resblks(mp); 1016 error = xfs_reserve_blocks(mp, &resblks, NULL); 1017 if (error) 1018 xfs_warn(mp, 1019 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1020 1021 /* Recover any CoW blocks that never got remapped. */ 1022 error = xfs_reflink_recover_cow(mp); 1023 if (error) { 1024 xfs_err(mp, 1025 "Error %d recovering leftover CoW allocations.", error); 1026 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1027 goto out_quota; 1028 } 1029 1030 /* Reserve AG blocks for future btree expansion. */ 1031 error = xfs_fs_reserve_ag_blocks(mp); 1032 if (error && error != -ENOSPC) 1033 goto out_agresv; 1034 } 1035 1036 return 0; 1037 1038 out_agresv: 1039 xfs_fs_unreserve_ag_blocks(mp); 1040 out_quota: 1041 xfs_qm_unmount_quotas(mp); 1042 out_rtunmount: 1043 xfs_rtunmount_inodes(mp); 1044 out_rele_rip: 1045 xfs_irele(rip); 1046 /* Clean out dquots that might be in memory after quotacheck. */ 1047 xfs_qm_unmount(mp); 1048 /* 1049 * Cancel all delayed reclaim work and reclaim the inodes directly. 1050 * We have to do this /after/ rtunmount and qm_unmount because those 1051 * two will have scheduled delayed reclaim for the rt/quota inodes. 1052 * 1053 * This is slightly different from the unmountfs call sequence 1054 * because we could be tearing down a partially set up mount. In 1055 * particular, if log_mount_finish fails we bail out without calling 1056 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1057 * quota inodes. 1058 */ 1059 cancel_delayed_work_sync(&mp->m_reclaim_work); 1060 xfs_reclaim_inodes(mp, SYNC_WAIT); 1061 out_log_dealloc: 1062 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1063 xfs_log_mount_cancel(mp); 1064 out_fail_wait: 1065 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1066 xfs_wait_buftarg(mp->m_logdev_targp); 1067 xfs_wait_buftarg(mp->m_ddev_targp); 1068 out_free_perag: 1069 xfs_free_perag(mp); 1070 out_free_dir: 1071 xfs_da_unmount(mp); 1072 out_remove_uuid: 1073 xfs_uuid_unmount(mp); 1074 out_remove_errortag: 1075 xfs_errortag_del(mp); 1076 out_remove_error_sysfs: 1077 xfs_error_sysfs_del(mp); 1078 out_del_stats: 1079 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1080 out_remove_sysfs: 1081 xfs_sysfs_del(&mp->m_kobj); 1082 out: 1083 return error; 1084 } 1085 1086 /* 1087 * This flushes out the inodes,dquots and the superblock, unmounts the 1088 * log and makes sure that incore structures are freed. 1089 */ 1090 void 1091 xfs_unmountfs( 1092 struct xfs_mount *mp) 1093 { 1094 uint64_t resblks; 1095 int error; 1096 1097 xfs_icache_disable_reclaim(mp); 1098 xfs_fs_unreserve_ag_blocks(mp); 1099 xfs_qm_unmount_quotas(mp); 1100 xfs_rtunmount_inodes(mp); 1101 xfs_irele(mp->m_rootip); 1102 1103 /* 1104 * We can potentially deadlock here if we have an inode cluster 1105 * that has been freed has its buffer still pinned in memory because 1106 * the transaction is still sitting in a iclog. The stale inodes 1107 * on that buffer will have their flush locks held until the 1108 * transaction hits the disk and the callbacks run. the inode 1109 * flush takes the flush lock unconditionally and with nothing to 1110 * push out the iclog we will never get that unlocked. hence we 1111 * need to force the log first. 1112 */ 1113 xfs_log_force(mp, XFS_LOG_SYNC); 1114 1115 /* 1116 * Wait for all busy extents to be freed, including completion of 1117 * any discard operation. 1118 */ 1119 xfs_extent_busy_wait_all(mp); 1120 flush_workqueue(xfs_discard_wq); 1121 1122 /* 1123 * We now need to tell the world we are unmounting. This will allow 1124 * us to detect that the filesystem is going away and we should error 1125 * out anything that we have been retrying in the background. This will 1126 * prevent neverending retries in AIL pushing from hanging the unmount. 1127 */ 1128 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1129 1130 /* 1131 * Flush all pending changes from the AIL. 1132 */ 1133 xfs_ail_push_all_sync(mp->m_ail); 1134 1135 /* 1136 * And reclaim all inodes. At this point there should be no dirty 1137 * inodes and none should be pinned or locked, but use synchronous 1138 * reclaim just to be sure. We can stop background inode reclaim 1139 * here as well if it is still running. 1140 */ 1141 cancel_delayed_work_sync(&mp->m_reclaim_work); 1142 xfs_reclaim_inodes(mp, SYNC_WAIT); 1143 1144 xfs_qm_unmount(mp); 1145 1146 /* 1147 * Unreserve any blocks we have so that when we unmount we don't account 1148 * the reserved free space as used. This is really only necessary for 1149 * lazy superblock counting because it trusts the incore superblock 1150 * counters to be absolutely correct on clean unmount. 1151 * 1152 * We don't bother correcting this elsewhere for lazy superblock 1153 * counting because on mount of an unclean filesystem we reconstruct the 1154 * correct counter value and this is irrelevant. 1155 * 1156 * For non-lazy counter filesystems, this doesn't matter at all because 1157 * we only every apply deltas to the superblock and hence the incore 1158 * value does not matter.... 1159 */ 1160 resblks = 0; 1161 error = xfs_reserve_blocks(mp, &resblks, NULL); 1162 if (error) 1163 xfs_warn(mp, "Unable to free reserved block pool. " 1164 "Freespace may not be correct on next mount."); 1165 1166 error = xfs_log_sbcount(mp); 1167 if (error) 1168 xfs_warn(mp, "Unable to update superblock counters. " 1169 "Freespace may not be correct on next mount."); 1170 1171 1172 xfs_log_unmount(mp); 1173 xfs_da_unmount(mp); 1174 xfs_uuid_unmount(mp); 1175 1176 #if defined(DEBUG) 1177 xfs_errortag_clearall(mp); 1178 #endif 1179 xfs_free_perag(mp); 1180 1181 xfs_errortag_del(mp); 1182 xfs_error_sysfs_del(mp); 1183 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1184 xfs_sysfs_del(&mp->m_kobj); 1185 } 1186 1187 /* 1188 * Determine whether modifications can proceed. The caller specifies the minimum 1189 * freeze level for which modifications should not be allowed. This allows 1190 * certain operations to proceed while the freeze sequence is in progress, if 1191 * necessary. 1192 */ 1193 bool 1194 xfs_fs_writable( 1195 struct xfs_mount *mp, 1196 int level) 1197 { 1198 ASSERT(level > SB_UNFROZEN); 1199 if ((mp->m_super->s_writers.frozen >= level) || 1200 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1201 return false; 1202 1203 return true; 1204 } 1205 1206 /* 1207 * xfs_log_sbcount 1208 * 1209 * Sync the superblock counters to disk. 1210 * 1211 * Note this code can be called during the process of freezing, so we use the 1212 * transaction allocator that does not block when the transaction subsystem is 1213 * in its frozen state. 1214 */ 1215 int 1216 xfs_log_sbcount(xfs_mount_t *mp) 1217 { 1218 /* allow this to proceed during the freeze sequence... */ 1219 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1220 return 0; 1221 1222 /* 1223 * we don't need to do this if we are updating the superblock 1224 * counters on every modification. 1225 */ 1226 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1227 return 0; 1228 1229 return xfs_sync_sb(mp, true); 1230 } 1231 1232 /* 1233 * Deltas for the inode count are +/-64, hence we use a large batch size 1234 * of 128 so we don't need to take the counter lock on every update. 1235 */ 1236 #define XFS_ICOUNT_BATCH 128 1237 int 1238 xfs_mod_icount( 1239 struct xfs_mount *mp, 1240 int64_t delta) 1241 { 1242 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1243 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1244 ASSERT(0); 1245 percpu_counter_add(&mp->m_icount, -delta); 1246 return -EINVAL; 1247 } 1248 return 0; 1249 } 1250 1251 int 1252 xfs_mod_ifree( 1253 struct xfs_mount *mp, 1254 int64_t delta) 1255 { 1256 percpu_counter_add(&mp->m_ifree, delta); 1257 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1258 ASSERT(0); 1259 percpu_counter_add(&mp->m_ifree, -delta); 1260 return -EINVAL; 1261 } 1262 return 0; 1263 } 1264 1265 /* 1266 * Deltas for the block count can vary from 1 to very large, but lock contention 1267 * only occurs on frequent small block count updates such as in the delayed 1268 * allocation path for buffered writes (page a time updates). Hence we set 1269 * a large batch count (1024) to minimise global counter updates except when 1270 * we get near to ENOSPC and we have to be very accurate with our updates. 1271 */ 1272 #define XFS_FDBLOCKS_BATCH 1024 1273 int 1274 xfs_mod_fdblocks( 1275 struct xfs_mount *mp, 1276 int64_t delta, 1277 bool rsvd) 1278 { 1279 int64_t lcounter; 1280 long long res_used; 1281 s32 batch; 1282 1283 if (delta > 0) { 1284 /* 1285 * If the reserve pool is depleted, put blocks back into it 1286 * first. Most of the time the pool is full. 1287 */ 1288 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1289 percpu_counter_add(&mp->m_fdblocks, delta); 1290 return 0; 1291 } 1292 1293 spin_lock(&mp->m_sb_lock); 1294 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1295 1296 if (res_used > delta) { 1297 mp->m_resblks_avail += delta; 1298 } else { 1299 delta -= res_used; 1300 mp->m_resblks_avail = mp->m_resblks; 1301 percpu_counter_add(&mp->m_fdblocks, delta); 1302 } 1303 spin_unlock(&mp->m_sb_lock); 1304 return 0; 1305 } 1306 1307 /* 1308 * Taking blocks away, need to be more accurate the closer we 1309 * are to zero. 1310 * 1311 * If the counter has a value of less than 2 * max batch size, 1312 * then make everything serialise as we are real close to 1313 * ENOSPC. 1314 */ 1315 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1316 XFS_FDBLOCKS_BATCH) < 0) 1317 batch = 1; 1318 else 1319 batch = XFS_FDBLOCKS_BATCH; 1320 1321 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1322 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1323 XFS_FDBLOCKS_BATCH) >= 0) { 1324 /* we had space! */ 1325 return 0; 1326 } 1327 1328 /* 1329 * lock up the sb for dipping into reserves before releasing the space 1330 * that took us to ENOSPC. 1331 */ 1332 spin_lock(&mp->m_sb_lock); 1333 percpu_counter_add(&mp->m_fdblocks, -delta); 1334 if (!rsvd) 1335 goto fdblocks_enospc; 1336 1337 lcounter = (long long)mp->m_resblks_avail + delta; 1338 if (lcounter >= 0) { 1339 mp->m_resblks_avail = lcounter; 1340 spin_unlock(&mp->m_sb_lock); 1341 return 0; 1342 } 1343 printk_once(KERN_WARNING 1344 "Filesystem \"%s\": reserve blocks depleted! " 1345 "Consider increasing reserve pool size.", 1346 mp->m_fsname); 1347 fdblocks_enospc: 1348 spin_unlock(&mp->m_sb_lock); 1349 return -ENOSPC; 1350 } 1351 1352 int 1353 xfs_mod_frextents( 1354 struct xfs_mount *mp, 1355 int64_t delta) 1356 { 1357 int64_t lcounter; 1358 int ret = 0; 1359 1360 spin_lock(&mp->m_sb_lock); 1361 lcounter = mp->m_sb.sb_frextents + delta; 1362 if (lcounter < 0) 1363 ret = -ENOSPC; 1364 else 1365 mp->m_sb.sb_frextents = lcounter; 1366 spin_unlock(&mp->m_sb_lock); 1367 return ret; 1368 } 1369 1370 /* 1371 * xfs_getsb() is called to obtain the buffer for the superblock. 1372 * The buffer is returned locked and read in from disk. 1373 * The buffer should be released with a call to xfs_brelse(). 1374 * 1375 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1376 * the superblock buffer if it can be locked without sleeping. 1377 * If it can't then we'll return NULL. 1378 */ 1379 struct xfs_buf * 1380 xfs_getsb( 1381 struct xfs_mount *mp, 1382 int flags) 1383 { 1384 struct xfs_buf *bp = mp->m_sb_bp; 1385 1386 if (!xfs_buf_trylock(bp)) { 1387 if (flags & XBF_TRYLOCK) 1388 return NULL; 1389 xfs_buf_lock(bp); 1390 } 1391 1392 xfs_buf_hold(bp); 1393 ASSERT(bp->b_flags & XBF_DONE); 1394 return bp; 1395 } 1396 1397 /* 1398 * Used to free the superblock along various error paths. 1399 */ 1400 void 1401 xfs_freesb( 1402 struct xfs_mount *mp) 1403 { 1404 struct xfs_buf *bp = mp->m_sb_bp; 1405 1406 xfs_buf_lock(bp); 1407 mp->m_sb_bp = NULL; 1408 xfs_buf_relse(bp); 1409 } 1410 1411 /* 1412 * If the underlying (data/log/rt) device is readonly, there are some 1413 * operations that cannot proceed. 1414 */ 1415 int 1416 xfs_dev_is_read_only( 1417 struct xfs_mount *mp, 1418 char *message) 1419 { 1420 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1421 xfs_readonly_buftarg(mp->m_logdev_targp) || 1422 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1423 xfs_notice(mp, "%s required on read-only device.", message); 1424 xfs_notice(mp, "write access unavailable, cannot proceed."); 1425 return -EROFS; 1426 } 1427 return 0; 1428 } 1429 1430 /* Force the summary counters to be recalculated at next mount. */ 1431 void 1432 xfs_force_summary_recalc( 1433 struct xfs_mount *mp) 1434 { 1435 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1436 return; 1437 1438 spin_lock(&mp->m_sb_lock); 1439 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; 1440 spin_unlock(&mp->m_sb_lock); 1441 } 1442