1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_sysfs.h" 45 #include "xfs_rmap_btree.h" 46 47 48 static DEFINE_MUTEX(xfs_uuid_table_mutex); 49 static int xfs_uuid_table_size; 50 static uuid_t *xfs_uuid_table; 51 52 void 53 xfs_uuid_table_free(void) 54 { 55 if (xfs_uuid_table_size == 0) 56 return; 57 kmem_free(xfs_uuid_table); 58 xfs_uuid_table = NULL; 59 xfs_uuid_table_size = 0; 60 } 61 62 /* 63 * See if the UUID is unique among mounted XFS filesystems. 64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 65 */ 66 STATIC int 67 xfs_uuid_mount( 68 struct xfs_mount *mp) 69 { 70 uuid_t *uuid = &mp->m_sb.sb_uuid; 71 int hole, i; 72 73 if (mp->m_flags & XFS_MOUNT_NOUUID) 74 return 0; 75 76 if (uuid_is_nil(uuid)) { 77 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 78 return -EINVAL; 79 } 80 81 mutex_lock(&xfs_uuid_table_mutex); 82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 83 if (uuid_is_nil(&xfs_uuid_table[i])) { 84 hole = i; 85 continue; 86 } 87 if (uuid_equal(uuid, &xfs_uuid_table[i])) 88 goto out_duplicate; 89 } 90 91 if (hole < 0) { 92 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 94 KM_SLEEP); 95 hole = xfs_uuid_table_size++; 96 } 97 xfs_uuid_table[hole] = *uuid; 98 mutex_unlock(&xfs_uuid_table_mutex); 99 100 return 0; 101 102 out_duplicate: 103 mutex_unlock(&xfs_uuid_table_mutex); 104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 105 return -EINVAL; 106 } 107 108 STATIC void 109 xfs_uuid_unmount( 110 struct xfs_mount *mp) 111 { 112 uuid_t *uuid = &mp->m_sb.sb_uuid; 113 int i; 114 115 if (mp->m_flags & XFS_MOUNT_NOUUID) 116 return; 117 118 mutex_lock(&xfs_uuid_table_mutex); 119 for (i = 0; i < xfs_uuid_table_size; i++) { 120 if (uuid_is_nil(&xfs_uuid_table[i])) 121 continue; 122 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 123 continue; 124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 125 break; 126 } 127 ASSERT(i < xfs_uuid_table_size); 128 mutex_unlock(&xfs_uuid_table_mutex); 129 } 130 131 132 STATIC void 133 __xfs_free_perag( 134 struct rcu_head *head) 135 { 136 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 137 138 ASSERT(atomic_read(&pag->pag_ref) == 0); 139 kmem_free(pag); 140 } 141 142 /* 143 * Free up the per-ag resources associated with the mount structure. 144 */ 145 STATIC void 146 xfs_free_perag( 147 xfs_mount_t *mp) 148 { 149 xfs_agnumber_t agno; 150 struct xfs_perag *pag; 151 152 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 153 spin_lock(&mp->m_perag_lock); 154 pag = radix_tree_delete(&mp->m_perag_tree, agno); 155 spin_unlock(&mp->m_perag_lock); 156 ASSERT(pag); 157 ASSERT(atomic_read(&pag->pag_ref) == 0); 158 call_rcu(&pag->rcu_head, __xfs_free_perag); 159 } 160 } 161 162 /* 163 * Check size of device based on the (data/realtime) block count. 164 * Note: this check is used by the growfs code as well as mount. 165 */ 166 int 167 xfs_sb_validate_fsb_count( 168 xfs_sb_t *sbp, 169 __uint64_t nblocks) 170 { 171 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 172 ASSERT(sbp->sb_blocklog >= BBSHIFT); 173 174 /* Limited by ULONG_MAX of page cache index */ 175 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 176 return -EFBIG; 177 return 0; 178 } 179 180 int 181 xfs_initialize_perag( 182 xfs_mount_t *mp, 183 xfs_agnumber_t agcount, 184 xfs_agnumber_t *maxagi) 185 { 186 xfs_agnumber_t index; 187 xfs_agnumber_t first_initialised = 0; 188 xfs_perag_t *pag; 189 int error = -ENOMEM; 190 191 /* 192 * Walk the current per-ag tree so we don't try to initialise AGs 193 * that already exist (growfs case). Allocate and insert all the 194 * AGs we don't find ready for initialisation. 195 */ 196 for (index = 0; index < agcount; index++) { 197 pag = xfs_perag_get(mp, index); 198 if (pag) { 199 xfs_perag_put(pag); 200 continue; 201 } 202 if (!first_initialised) 203 first_initialised = index; 204 205 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 206 if (!pag) 207 goto out_unwind; 208 pag->pag_agno = index; 209 pag->pag_mount = mp; 210 spin_lock_init(&pag->pag_ici_lock); 211 mutex_init(&pag->pag_ici_reclaim_lock); 212 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 213 spin_lock_init(&pag->pag_buf_lock); 214 pag->pag_buf_tree = RB_ROOT; 215 216 if (radix_tree_preload(GFP_NOFS)) 217 goto out_unwind; 218 219 spin_lock(&mp->m_perag_lock); 220 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 221 BUG(); 222 spin_unlock(&mp->m_perag_lock); 223 radix_tree_preload_end(); 224 error = -EEXIST; 225 goto out_unwind; 226 } 227 spin_unlock(&mp->m_perag_lock); 228 radix_tree_preload_end(); 229 } 230 231 index = xfs_set_inode_alloc(mp, agcount); 232 233 if (maxagi) 234 *maxagi = index; 235 236 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 237 return 0; 238 239 out_unwind: 240 kmem_free(pag); 241 for (; index > first_initialised; index--) { 242 pag = radix_tree_delete(&mp->m_perag_tree, index); 243 kmem_free(pag); 244 } 245 return error; 246 } 247 248 /* 249 * xfs_readsb 250 * 251 * Does the initial read of the superblock. 252 */ 253 int 254 xfs_readsb( 255 struct xfs_mount *mp, 256 int flags) 257 { 258 unsigned int sector_size; 259 struct xfs_buf *bp; 260 struct xfs_sb *sbp = &mp->m_sb; 261 int error; 262 int loud = !(flags & XFS_MFSI_QUIET); 263 const struct xfs_buf_ops *buf_ops; 264 265 ASSERT(mp->m_sb_bp == NULL); 266 ASSERT(mp->m_ddev_targp != NULL); 267 268 /* 269 * For the initial read, we must guess at the sector 270 * size based on the block device. It's enough to 271 * get the sb_sectsize out of the superblock and 272 * then reread with the proper length. 273 * We don't verify it yet, because it may not be complete. 274 */ 275 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 276 buf_ops = NULL; 277 278 /* 279 * Allocate a (locked) buffer to hold the superblock. This will be kept 280 * around at all times to optimize access to the superblock. Therefore, 281 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 282 * elevated. 283 */ 284 reread: 285 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 286 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 287 buf_ops); 288 if (error) { 289 if (loud) 290 xfs_warn(mp, "SB validate failed with error %d.", error); 291 /* bad CRC means corrupted metadata */ 292 if (error == -EFSBADCRC) 293 error = -EFSCORRUPTED; 294 return error; 295 } 296 297 /* 298 * Initialize the mount structure from the superblock. 299 */ 300 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 301 302 /* 303 * If we haven't validated the superblock, do so now before we try 304 * to check the sector size and reread the superblock appropriately. 305 */ 306 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 307 if (loud) 308 xfs_warn(mp, "Invalid superblock magic number"); 309 error = -EINVAL; 310 goto release_buf; 311 } 312 313 /* 314 * We must be able to do sector-sized and sector-aligned IO. 315 */ 316 if (sector_size > sbp->sb_sectsize) { 317 if (loud) 318 xfs_warn(mp, "device supports %u byte sectors (not %u)", 319 sector_size, sbp->sb_sectsize); 320 error = -ENOSYS; 321 goto release_buf; 322 } 323 324 if (buf_ops == NULL) { 325 /* 326 * Re-read the superblock so the buffer is correctly sized, 327 * and properly verified. 328 */ 329 xfs_buf_relse(bp); 330 sector_size = sbp->sb_sectsize; 331 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 332 goto reread; 333 } 334 335 xfs_reinit_percpu_counters(mp); 336 337 /* no need to be quiet anymore, so reset the buf ops */ 338 bp->b_ops = &xfs_sb_buf_ops; 339 340 mp->m_sb_bp = bp; 341 xfs_buf_unlock(bp); 342 return 0; 343 344 release_buf: 345 xfs_buf_relse(bp); 346 return error; 347 } 348 349 /* 350 * Update alignment values based on mount options and sb values 351 */ 352 STATIC int 353 xfs_update_alignment(xfs_mount_t *mp) 354 { 355 xfs_sb_t *sbp = &(mp->m_sb); 356 357 if (mp->m_dalign) { 358 /* 359 * If stripe unit and stripe width are not multiples 360 * of the fs blocksize turn off alignment. 361 */ 362 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 363 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 364 xfs_warn(mp, 365 "alignment check failed: sunit/swidth vs. blocksize(%d)", 366 sbp->sb_blocksize); 367 return -EINVAL; 368 } else { 369 /* 370 * Convert the stripe unit and width to FSBs. 371 */ 372 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 373 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 374 xfs_warn(mp, 375 "alignment check failed: sunit/swidth vs. agsize(%d)", 376 sbp->sb_agblocks); 377 return -EINVAL; 378 } else if (mp->m_dalign) { 379 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 380 } else { 381 xfs_warn(mp, 382 "alignment check failed: sunit(%d) less than bsize(%d)", 383 mp->m_dalign, sbp->sb_blocksize); 384 return -EINVAL; 385 } 386 } 387 388 /* 389 * Update superblock with new values 390 * and log changes 391 */ 392 if (xfs_sb_version_hasdalign(sbp)) { 393 if (sbp->sb_unit != mp->m_dalign) { 394 sbp->sb_unit = mp->m_dalign; 395 mp->m_update_sb = true; 396 } 397 if (sbp->sb_width != mp->m_swidth) { 398 sbp->sb_width = mp->m_swidth; 399 mp->m_update_sb = true; 400 } 401 } else { 402 xfs_warn(mp, 403 "cannot change alignment: superblock does not support data alignment"); 404 return -EINVAL; 405 } 406 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 407 xfs_sb_version_hasdalign(&mp->m_sb)) { 408 mp->m_dalign = sbp->sb_unit; 409 mp->m_swidth = sbp->sb_width; 410 } 411 412 return 0; 413 } 414 415 /* 416 * Set the maximum inode count for this filesystem 417 */ 418 STATIC void 419 xfs_set_maxicount(xfs_mount_t *mp) 420 { 421 xfs_sb_t *sbp = &(mp->m_sb); 422 __uint64_t icount; 423 424 if (sbp->sb_imax_pct) { 425 /* 426 * Make sure the maximum inode count is a multiple 427 * of the units we allocate inodes in. 428 */ 429 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 430 do_div(icount, 100); 431 do_div(icount, mp->m_ialloc_blks); 432 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 433 sbp->sb_inopblog; 434 } else { 435 mp->m_maxicount = 0; 436 } 437 } 438 439 /* 440 * Set the default minimum read and write sizes unless 441 * already specified in a mount option. 442 * We use smaller I/O sizes when the file system 443 * is being used for NFS service (wsync mount option). 444 */ 445 STATIC void 446 xfs_set_rw_sizes(xfs_mount_t *mp) 447 { 448 xfs_sb_t *sbp = &(mp->m_sb); 449 int readio_log, writeio_log; 450 451 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 452 if (mp->m_flags & XFS_MOUNT_WSYNC) { 453 readio_log = XFS_WSYNC_READIO_LOG; 454 writeio_log = XFS_WSYNC_WRITEIO_LOG; 455 } else { 456 readio_log = XFS_READIO_LOG_LARGE; 457 writeio_log = XFS_WRITEIO_LOG_LARGE; 458 } 459 } else { 460 readio_log = mp->m_readio_log; 461 writeio_log = mp->m_writeio_log; 462 } 463 464 if (sbp->sb_blocklog > readio_log) { 465 mp->m_readio_log = sbp->sb_blocklog; 466 } else { 467 mp->m_readio_log = readio_log; 468 } 469 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 470 if (sbp->sb_blocklog > writeio_log) { 471 mp->m_writeio_log = sbp->sb_blocklog; 472 } else { 473 mp->m_writeio_log = writeio_log; 474 } 475 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 476 } 477 478 /* 479 * precalculate the low space thresholds for dynamic speculative preallocation. 480 */ 481 void 482 xfs_set_low_space_thresholds( 483 struct xfs_mount *mp) 484 { 485 int i; 486 487 for (i = 0; i < XFS_LOWSP_MAX; i++) { 488 __uint64_t space = mp->m_sb.sb_dblocks; 489 490 do_div(space, 100); 491 mp->m_low_space[i] = space * (i + 1); 492 } 493 } 494 495 496 /* 497 * Set whether we're using inode alignment. 498 */ 499 STATIC void 500 xfs_set_inoalignment(xfs_mount_t *mp) 501 { 502 if (xfs_sb_version_hasalign(&mp->m_sb) && 503 mp->m_sb.sb_inoalignmt >= 504 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 505 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 506 else 507 mp->m_inoalign_mask = 0; 508 /* 509 * If we are using stripe alignment, check whether 510 * the stripe unit is a multiple of the inode alignment 511 */ 512 if (mp->m_dalign && mp->m_inoalign_mask && 513 !(mp->m_dalign & mp->m_inoalign_mask)) 514 mp->m_sinoalign = mp->m_dalign; 515 else 516 mp->m_sinoalign = 0; 517 } 518 519 /* 520 * Check that the data (and log if separate) is an ok size. 521 */ 522 STATIC int 523 xfs_check_sizes( 524 struct xfs_mount *mp) 525 { 526 struct xfs_buf *bp; 527 xfs_daddr_t d; 528 int error; 529 530 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 531 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 532 xfs_warn(mp, "filesystem size mismatch detected"); 533 return -EFBIG; 534 } 535 error = xfs_buf_read_uncached(mp->m_ddev_targp, 536 d - XFS_FSS_TO_BB(mp, 1), 537 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 538 if (error) { 539 xfs_warn(mp, "last sector read failed"); 540 return error; 541 } 542 xfs_buf_relse(bp); 543 544 if (mp->m_logdev_targp == mp->m_ddev_targp) 545 return 0; 546 547 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 548 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 549 xfs_warn(mp, "log size mismatch detected"); 550 return -EFBIG; 551 } 552 error = xfs_buf_read_uncached(mp->m_logdev_targp, 553 d - XFS_FSB_TO_BB(mp, 1), 554 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 555 if (error) { 556 xfs_warn(mp, "log device read failed"); 557 return error; 558 } 559 xfs_buf_relse(bp); 560 return 0; 561 } 562 563 /* 564 * Clear the quotaflags in memory and in the superblock. 565 */ 566 int 567 xfs_mount_reset_sbqflags( 568 struct xfs_mount *mp) 569 { 570 mp->m_qflags = 0; 571 572 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 573 if (mp->m_sb.sb_qflags == 0) 574 return 0; 575 spin_lock(&mp->m_sb_lock); 576 mp->m_sb.sb_qflags = 0; 577 spin_unlock(&mp->m_sb_lock); 578 579 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 580 return 0; 581 582 return xfs_sync_sb(mp, false); 583 } 584 585 __uint64_t 586 xfs_default_resblks(xfs_mount_t *mp) 587 { 588 __uint64_t resblks; 589 590 /* 591 * We default to 5% or 8192 fsbs of space reserved, whichever is 592 * smaller. This is intended to cover concurrent allocation 593 * transactions when we initially hit enospc. These each require a 4 594 * block reservation. Hence by default we cover roughly 2000 concurrent 595 * allocation reservations. 596 */ 597 resblks = mp->m_sb.sb_dblocks; 598 do_div(resblks, 20); 599 resblks = min_t(__uint64_t, resblks, 8192); 600 return resblks; 601 } 602 603 /* 604 * This function does the following on an initial mount of a file system: 605 * - reads the superblock from disk and init the mount struct 606 * - if we're a 32-bit kernel, do a size check on the superblock 607 * so we don't mount terabyte filesystems 608 * - init mount struct realtime fields 609 * - allocate inode hash table for fs 610 * - init directory manager 611 * - perform recovery and init the log manager 612 */ 613 int 614 xfs_mountfs( 615 struct xfs_mount *mp) 616 { 617 struct xfs_sb *sbp = &(mp->m_sb); 618 struct xfs_inode *rip; 619 __uint64_t resblks; 620 uint quotamount = 0; 621 uint quotaflags = 0; 622 int error = 0; 623 624 xfs_sb_mount_common(mp, sbp); 625 626 /* 627 * Check for a mismatched features2 values. Older kernels read & wrote 628 * into the wrong sb offset for sb_features2 on some platforms due to 629 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 630 * which made older superblock reading/writing routines swap it as a 631 * 64-bit value. 632 * 633 * For backwards compatibility, we make both slots equal. 634 * 635 * If we detect a mismatched field, we OR the set bits into the existing 636 * features2 field in case it has already been modified; we don't want 637 * to lose any features. We then update the bad location with the ORed 638 * value so that older kernels will see any features2 flags. The 639 * superblock writeback code ensures the new sb_features2 is copied to 640 * sb_bad_features2 before it is logged or written to disk. 641 */ 642 if (xfs_sb_has_mismatched_features2(sbp)) { 643 xfs_warn(mp, "correcting sb_features alignment problem"); 644 sbp->sb_features2 |= sbp->sb_bad_features2; 645 mp->m_update_sb = true; 646 647 /* 648 * Re-check for ATTR2 in case it was found in bad_features2 649 * slot. 650 */ 651 if (xfs_sb_version_hasattr2(&mp->m_sb) && 652 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 653 mp->m_flags |= XFS_MOUNT_ATTR2; 654 } 655 656 if (xfs_sb_version_hasattr2(&mp->m_sb) && 657 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 658 xfs_sb_version_removeattr2(&mp->m_sb); 659 mp->m_update_sb = true; 660 661 /* update sb_versionnum for the clearing of the morebits */ 662 if (!sbp->sb_features2) 663 mp->m_update_sb = true; 664 } 665 666 /* always use v2 inodes by default now */ 667 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 668 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 669 mp->m_update_sb = true; 670 } 671 672 /* 673 * Check if sb_agblocks is aligned at stripe boundary 674 * If sb_agblocks is NOT aligned turn off m_dalign since 675 * allocator alignment is within an ag, therefore ag has 676 * to be aligned at stripe boundary. 677 */ 678 error = xfs_update_alignment(mp); 679 if (error) 680 goto out; 681 682 xfs_alloc_compute_maxlevels(mp); 683 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 684 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 685 xfs_ialloc_compute_maxlevels(mp); 686 xfs_rmapbt_compute_maxlevels(mp); 687 688 xfs_set_maxicount(mp); 689 690 /* enable fail_at_unmount as default */ 691 mp->m_fail_unmount = 1; 692 693 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 694 if (error) 695 goto out; 696 697 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 698 &mp->m_kobj, "stats"); 699 if (error) 700 goto out_remove_sysfs; 701 702 error = xfs_error_sysfs_init(mp); 703 if (error) 704 goto out_del_stats; 705 706 707 error = xfs_uuid_mount(mp); 708 if (error) 709 goto out_remove_error_sysfs; 710 711 /* 712 * Set the minimum read and write sizes 713 */ 714 xfs_set_rw_sizes(mp); 715 716 /* set the low space thresholds for dynamic preallocation */ 717 xfs_set_low_space_thresholds(mp); 718 719 /* 720 * Set the inode cluster size. 721 * This may still be overridden by the file system 722 * block size if it is larger than the chosen cluster size. 723 * 724 * For v5 filesystems, scale the cluster size with the inode size to 725 * keep a constant ratio of inode per cluster buffer, but only if mkfs 726 * has set the inode alignment value appropriately for larger cluster 727 * sizes. 728 */ 729 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 730 if (xfs_sb_version_hascrc(&mp->m_sb)) { 731 int new_size = mp->m_inode_cluster_size; 732 733 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 734 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 735 mp->m_inode_cluster_size = new_size; 736 } 737 738 /* 739 * If enabled, sparse inode chunk alignment is expected to match the 740 * cluster size. Full inode chunk alignment must match the chunk size, 741 * but that is checked on sb read verification... 742 */ 743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 744 mp->m_sb.sb_spino_align != 745 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 746 xfs_warn(mp, 747 "Sparse inode block alignment (%u) must match cluster size (%llu).", 748 mp->m_sb.sb_spino_align, 749 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 750 error = -EINVAL; 751 goto out_remove_uuid; 752 } 753 754 /* 755 * Set inode alignment fields 756 */ 757 xfs_set_inoalignment(mp); 758 759 /* 760 * Check that the data (and log if separate) is an ok size. 761 */ 762 error = xfs_check_sizes(mp); 763 if (error) 764 goto out_remove_uuid; 765 766 /* 767 * Initialize realtime fields in the mount structure 768 */ 769 error = xfs_rtmount_init(mp); 770 if (error) { 771 xfs_warn(mp, "RT mount failed"); 772 goto out_remove_uuid; 773 } 774 775 /* 776 * Copies the low order bits of the timestamp and the randomly 777 * set "sequence" number out of a UUID. 778 */ 779 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 780 781 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 782 783 error = xfs_da_mount(mp); 784 if (error) { 785 xfs_warn(mp, "Failed dir/attr init: %d", error); 786 goto out_remove_uuid; 787 } 788 789 /* 790 * Initialize the precomputed transaction reservations values. 791 */ 792 xfs_trans_init(mp); 793 794 /* 795 * Allocate and initialize the per-ag data. 796 */ 797 spin_lock_init(&mp->m_perag_lock); 798 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 799 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 800 if (error) { 801 xfs_warn(mp, "Failed per-ag init: %d", error); 802 goto out_free_dir; 803 } 804 805 if (!sbp->sb_logblocks) { 806 xfs_warn(mp, "no log defined"); 807 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 808 error = -EFSCORRUPTED; 809 goto out_free_perag; 810 } 811 812 /* 813 * Log's mount-time initialization. The first part of recovery can place 814 * some items on the AIL, to be handled when recovery is finished or 815 * cancelled. 816 */ 817 error = xfs_log_mount(mp, mp->m_logdev_targp, 818 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 819 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 820 if (error) { 821 xfs_warn(mp, "log mount failed"); 822 goto out_fail_wait; 823 } 824 825 /* 826 * Now the log is mounted, we know if it was an unclean shutdown or 827 * not. If it was, with the first phase of recovery has completed, we 828 * have consistent AG blocks on disk. We have not recovered EFIs yet, 829 * but they are recovered transactionally in the second recovery phase 830 * later. 831 * 832 * Hence we can safely re-initialise incore superblock counters from 833 * the per-ag data. These may not be correct if the filesystem was not 834 * cleanly unmounted, so we need to wait for recovery to finish before 835 * doing this. 836 * 837 * If the filesystem was cleanly unmounted, then we can trust the 838 * values in the superblock to be correct and we don't need to do 839 * anything here. 840 * 841 * If we are currently making the filesystem, the initialisation will 842 * fail as the perag data is in an undefined state. 843 */ 844 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 845 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 846 !mp->m_sb.sb_inprogress) { 847 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 848 if (error) 849 goto out_log_dealloc; 850 } 851 852 /* 853 * Get and sanity-check the root inode. 854 * Save the pointer to it in the mount structure. 855 */ 856 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 857 if (error) { 858 xfs_warn(mp, "failed to read root inode"); 859 goto out_log_dealloc; 860 } 861 862 ASSERT(rip != NULL); 863 864 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 865 xfs_warn(mp, "corrupted root inode %llu: not a directory", 866 (unsigned long long)rip->i_ino); 867 xfs_iunlock(rip, XFS_ILOCK_EXCL); 868 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 869 mp); 870 error = -EFSCORRUPTED; 871 goto out_rele_rip; 872 } 873 mp->m_rootip = rip; /* save it */ 874 875 xfs_iunlock(rip, XFS_ILOCK_EXCL); 876 877 /* 878 * Initialize realtime inode pointers in the mount structure 879 */ 880 error = xfs_rtmount_inodes(mp); 881 if (error) { 882 /* 883 * Free up the root inode. 884 */ 885 xfs_warn(mp, "failed to read RT inodes"); 886 goto out_rele_rip; 887 } 888 889 /* 890 * If this is a read-only mount defer the superblock updates until 891 * the next remount into writeable mode. Otherwise we would never 892 * perform the update e.g. for the root filesystem. 893 */ 894 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 895 error = xfs_sync_sb(mp, false); 896 if (error) { 897 xfs_warn(mp, "failed to write sb changes"); 898 goto out_rtunmount; 899 } 900 } 901 902 /* 903 * Initialise the XFS quota management subsystem for this mount 904 */ 905 if (XFS_IS_QUOTA_RUNNING(mp)) { 906 error = xfs_qm_newmount(mp, "amount, "aflags); 907 if (error) 908 goto out_rtunmount; 909 } else { 910 ASSERT(!XFS_IS_QUOTA_ON(mp)); 911 912 /* 913 * If a file system had quotas running earlier, but decided to 914 * mount without -o uquota/pquota/gquota options, revoke the 915 * quotachecked license. 916 */ 917 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 918 xfs_notice(mp, "resetting quota flags"); 919 error = xfs_mount_reset_sbqflags(mp); 920 if (error) 921 goto out_rtunmount; 922 } 923 } 924 925 /* 926 * Finish recovering the file system. This part needed to be delayed 927 * until after the root and real-time bitmap inodes were consistently 928 * read in. 929 */ 930 error = xfs_log_mount_finish(mp); 931 if (error) { 932 xfs_warn(mp, "log mount finish failed"); 933 goto out_rtunmount; 934 } 935 936 /* 937 * Complete the quota initialisation, post-log-replay component. 938 */ 939 if (quotamount) { 940 ASSERT(mp->m_qflags == 0); 941 mp->m_qflags = quotaflags; 942 943 xfs_qm_mount_quotas(mp); 944 } 945 946 /* 947 * Now we are mounted, reserve a small amount of unused space for 948 * privileged transactions. This is needed so that transaction 949 * space required for critical operations can dip into this pool 950 * when at ENOSPC. This is needed for operations like create with 951 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 952 * are not allowed to use this reserved space. 953 * 954 * This may drive us straight to ENOSPC on mount, but that implies 955 * we were already there on the last unmount. Warn if this occurs. 956 */ 957 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 958 resblks = xfs_default_resblks(mp); 959 error = xfs_reserve_blocks(mp, &resblks, NULL); 960 if (error) 961 xfs_warn(mp, 962 "Unable to allocate reserve blocks. Continuing without reserve pool."); 963 } 964 965 return 0; 966 967 out_rtunmount: 968 xfs_rtunmount_inodes(mp); 969 out_rele_rip: 970 IRELE(rip); 971 cancel_delayed_work_sync(&mp->m_reclaim_work); 972 xfs_reclaim_inodes(mp, SYNC_WAIT); 973 out_log_dealloc: 974 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 975 xfs_log_mount_cancel(mp); 976 out_fail_wait: 977 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 978 xfs_wait_buftarg(mp->m_logdev_targp); 979 xfs_wait_buftarg(mp->m_ddev_targp); 980 out_free_perag: 981 xfs_free_perag(mp); 982 out_free_dir: 983 xfs_da_unmount(mp); 984 out_remove_uuid: 985 xfs_uuid_unmount(mp); 986 out_remove_error_sysfs: 987 xfs_error_sysfs_del(mp); 988 out_del_stats: 989 xfs_sysfs_del(&mp->m_stats.xs_kobj); 990 out_remove_sysfs: 991 xfs_sysfs_del(&mp->m_kobj); 992 out: 993 return error; 994 } 995 996 /* 997 * This flushes out the inodes,dquots and the superblock, unmounts the 998 * log and makes sure that incore structures are freed. 999 */ 1000 void 1001 xfs_unmountfs( 1002 struct xfs_mount *mp) 1003 { 1004 __uint64_t resblks; 1005 int error; 1006 1007 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1008 1009 xfs_qm_unmount_quotas(mp); 1010 xfs_rtunmount_inodes(mp); 1011 IRELE(mp->m_rootip); 1012 1013 /* 1014 * We can potentially deadlock here if we have an inode cluster 1015 * that has been freed has its buffer still pinned in memory because 1016 * the transaction is still sitting in a iclog. The stale inodes 1017 * on that buffer will have their flush locks held until the 1018 * transaction hits the disk and the callbacks run. the inode 1019 * flush takes the flush lock unconditionally and with nothing to 1020 * push out the iclog we will never get that unlocked. hence we 1021 * need to force the log first. 1022 */ 1023 xfs_log_force(mp, XFS_LOG_SYNC); 1024 1025 /* 1026 * We now need to tell the world we are unmounting. This will allow 1027 * us to detect that the filesystem is going away and we should error 1028 * out anything that we have been retrying in the background. This will 1029 * prevent neverending retries in AIL pushing from hanging the unmount. 1030 */ 1031 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1032 1033 /* 1034 * Flush all pending changes from the AIL. 1035 */ 1036 xfs_ail_push_all_sync(mp->m_ail); 1037 1038 /* 1039 * And reclaim all inodes. At this point there should be no dirty 1040 * inodes and none should be pinned or locked, but use synchronous 1041 * reclaim just to be sure. We can stop background inode reclaim 1042 * here as well if it is still running. 1043 */ 1044 cancel_delayed_work_sync(&mp->m_reclaim_work); 1045 xfs_reclaim_inodes(mp, SYNC_WAIT); 1046 1047 xfs_qm_unmount(mp); 1048 1049 /* 1050 * Unreserve any blocks we have so that when we unmount we don't account 1051 * the reserved free space as used. This is really only necessary for 1052 * lazy superblock counting because it trusts the incore superblock 1053 * counters to be absolutely correct on clean unmount. 1054 * 1055 * We don't bother correcting this elsewhere for lazy superblock 1056 * counting because on mount of an unclean filesystem we reconstruct the 1057 * correct counter value and this is irrelevant. 1058 * 1059 * For non-lazy counter filesystems, this doesn't matter at all because 1060 * we only every apply deltas to the superblock and hence the incore 1061 * value does not matter.... 1062 */ 1063 resblks = 0; 1064 error = xfs_reserve_blocks(mp, &resblks, NULL); 1065 if (error) 1066 xfs_warn(mp, "Unable to free reserved block pool. " 1067 "Freespace may not be correct on next mount."); 1068 1069 error = xfs_log_sbcount(mp); 1070 if (error) 1071 xfs_warn(mp, "Unable to update superblock counters. " 1072 "Freespace may not be correct on next mount."); 1073 1074 1075 xfs_log_unmount(mp); 1076 xfs_da_unmount(mp); 1077 xfs_uuid_unmount(mp); 1078 1079 #if defined(DEBUG) 1080 xfs_errortag_clearall(mp, 0); 1081 #endif 1082 xfs_free_perag(mp); 1083 1084 xfs_error_sysfs_del(mp); 1085 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1086 xfs_sysfs_del(&mp->m_kobj); 1087 } 1088 1089 /* 1090 * Determine whether modifications can proceed. The caller specifies the minimum 1091 * freeze level for which modifications should not be allowed. This allows 1092 * certain operations to proceed while the freeze sequence is in progress, if 1093 * necessary. 1094 */ 1095 bool 1096 xfs_fs_writable( 1097 struct xfs_mount *mp, 1098 int level) 1099 { 1100 ASSERT(level > SB_UNFROZEN); 1101 if ((mp->m_super->s_writers.frozen >= level) || 1102 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1103 return false; 1104 1105 return true; 1106 } 1107 1108 /* 1109 * xfs_log_sbcount 1110 * 1111 * Sync the superblock counters to disk. 1112 * 1113 * Note this code can be called during the process of freezing, so we use the 1114 * transaction allocator that does not block when the transaction subsystem is 1115 * in its frozen state. 1116 */ 1117 int 1118 xfs_log_sbcount(xfs_mount_t *mp) 1119 { 1120 /* allow this to proceed during the freeze sequence... */ 1121 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1122 return 0; 1123 1124 /* 1125 * we don't need to do this if we are updating the superblock 1126 * counters on every modification. 1127 */ 1128 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1129 return 0; 1130 1131 return xfs_sync_sb(mp, true); 1132 } 1133 1134 /* 1135 * Deltas for the inode count are +/-64, hence we use a large batch size 1136 * of 128 so we don't need to take the counter lock on every update. 1137 */ 1138 #define XFS_ICOUNT_BATCH 128 1139 int 1140 xfs_mod_icount( 1141 struct xfs_mount *mp, 1142 int64_t delta) 1143 { 1144 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1145 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1146 ASSERT(0); 1147 percpu_counter_add(&mp->m_icount, -delta); 1148 return -EINVAL; 1149 } 1150 return 0; 1151 } 1152 1153 int 1154 xfs_mod_ifree( 1155 struct xfs_mount *mp, 1156 int64_t delta) 1157 { 1158 percpu_counter_add(&mp->m_ifree, delta); 1159 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1160 ASSERT(0); 1161 percpu_counter_add(&mp->m_ifree, -delta); 1162 return -EINVAL; 1163 } 1164 return 0; 1165 } 1166 1167 /* 1168 * Deltas for the block count can vary from 1 to very large, but lock contention 1169 * only occurs on frequent small block count updates such as in the delayed 1170 * allocation path for buffered writes (page a time updates). Hence we set 1171 * a large batch count (1024) to minimise global counter updates except when 1172 * we get near to ENOSPC and we have to be very accurate with our updates. 1173 */ 1174 #define XFS_FDBLOCKS_BATCH 1024 1175 int 1176 xfs_mod_fdblocks( 1177 struct xfs_mount *mp, 1178 int64_t delta, 1179 bool rsvd) 1180 { 1181 int64_t lcounter; 1182 long long res_used; 1183 s32 batch; 1184 1185 if (delta > 0) { 1186 /* 1187 * If the reserve pool is depleted, put blocks back into it 1188 * first. Most of the time the pool is full. 1189 */ 1190 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1191 percpu_counter_add(&mp->m_fdblocks, delta); 1192 return 0; 1193 } 1194 1195 spin_lock(&mp->m_sb_lock); 1196 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1197 1198 if (res_used > delta) { 1199 mp->m_resblks_avail += delta; 1200 } else { 1201 delta -= res_used; 1202 mp->m_resblks_avail = mp->m_resblks; 1203 percpu_counter_add(&mp->m_fdblocks, delta); 1204 } 1205 spin_unlock(&mp->m_sb_lock); 1206 return 0; 1207 } 1208 1209 /* 1210 * Taking blocks away, need to be more accurate the closer we 1211 * are to zero. 1212 * 1213 * If the counter has a value of less than 2 * max batch size, 1214 * then make everything serialise as we are real close to 1215 * ENOSPC. 1216 */ 1217 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1218 XFS_FDBLOCKS_BATCH) < 0) 1219 batch = 1; 1220 else 1221 batch = XFS_FDBLOCKS_BATCH; 1222 1223 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1224 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1225 XFS_FDBLOCKS_BATCH) >= 0) { 1226 /* we had space! */ 1227 return 0; 1228 } 1229 1230 /* 1231 * lock up the sb for dipping into reserves before releasing the space 1232 * that took us to ENOSPC. 1233 */ 1234 spin_lock(&mp->m_sb_lock); 1235 percpu_counter_add(&mp->m_fdblocks, -delta); 1236 if (!rsvd) 1237 goto fdblocks_enospc; 1238 1239 lcounter = (long long)mp->m_resblks_avail + delta; 1240 if (lcounter >= 0) { 1241 mp->m_resblks_avail = lcounter; 1242 spin_unlock(&mp->m_sb_lock); 1243 return 0; 1244 } 1245 printk_once(KERN_WARNING 1246 "Filesystem \"%s\": reserve blocks depleted! " 1247 "Consider increasing reserve pool size.", 1248 mp->m_fsname); 1249 fdblocks_enospc: 1250 spin_unlock(&mp->m_sb_lock); 1251 return -ENOSPC; 1252 } 1253 1254 int 1255 xfs_mod_frextents( 1256 struct xfs_mount *mp, 1257 int64_t delta) 1258 { 1259 int64_t lcounter; 1260 int ret = 0; 1261 1262 spin_lock(&mp->m_sb_lock); 1263 lcounter = mp->m_sb.sb_frextents + delta; 1264 if (lcounter < 0) 1265 ret = -ENOSPC; 1266 else 1267 mp->m_sb.sb_frextents = lcounter; 1268 spin_unlock(&mp->m_sb_lock); 1269 return ret; 1270 } 1271 1272 /* 1273 * xfs_getsb() is called to obtain the buffer for the superblock. 1274 * The buffer is returned locked and read in from disk. 1275 * The buffer should be released with a call to xfs_brelse(). 1276 * 1277 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1278 * the superblock buffer if it can be locked without sleeping. 1279 * If it can't then we'll return NULL. 1280 */ 1281 struct xfs_buf * 1282 xfs_getsb( 1283 struct xfs_mount *mp, 1284 int flags) 1285 { 1286 struct xfs_buf *bp = mp->m_sb_bp; 1287 1288 if (!xfs_buf_trylock(bp)) { 1289 if (flags & XBF_TRYLOCK) 1290 return NULL; 1291 xfs_buf_lock(bp); 1292 } 1293 1294 xfs_buf_hold(bp); 1295 ASSERT(bp->b_flags & XBF_DONE); 1296 return bp; 1297 } 1298 1299 /* 1300 * Used to free the superblock along various error paths. 1301 */ 1302 void 1303 xfs_freesb( 1304 struct xfs_mount *mp) 1305 { 1306 struct xfs_buf *bp = mp->m_sb_bp; 1307 1308 xfs_buf_lock(bp); 1309 mp->m_sb_bp = NULL; 1310 xfs_buf_relse(bp); 1311 } 1312 1313 /* 1314 * If the underlying (data/log/rt) device is readonly, there are some 1315 * operations that cannot proceed. 1316 */ 1317 int 1318 xfs_dev_is_read_only( 1319 struct xfs_mount *mp, 1320 char *message) 1321 { 1322 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1323 xfs_readonly_buftarg(mp->m_logdev_targp) || 1324 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1325 xfs_notice(mp, "%s required on read-only device.", message); 1326 xfs_notice(mp, "write access unavailable, cannot proceed."); 1327 return -EROFS; 1328 } 1329 return 0; 1330 } 1331