xref: /linux/fs/xfs/xfs_mount.c (revision a8a9fd042e0995ed63d33f507c26baf56031e581)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "xfs_metafile.h"
39 #include "xfs_rtgroup.h"
40 #include "xfs_rtrmap_btree.h"
41 #include "xfs_rtrefcount_btree.h"
42 #include "scrub/stats.h"
43 #include "xfs_zone_alloc.h"
44 
45 static DEFINE_MUTEX(xfs_uuid_table_mutex);
46 static int xfs_uuid_table_size;
47 static uuid_t *xfs_uuid_table;
48 
49 void
50 xfs_uuid_table_free(void)
51 {
52 	if (xfs_uuid_table_size == 0)
53 		return;
54 	kfree(xfs_uuid_table);
55 	xfs_uuid_table = NULL;
56 	xfs_uuid_table_size = 0;
57 }
58 
59 /*
60  * See if the UUID is unique among mounted XFS filesystems.
61  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
62  */
63 STATIC int
64 xfs_uuid_mount(
65 	struct xfs_mount	*mp)
66 {
67 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
68 	int			hole, i;
69 
70 	/* Publish UUID in struct super_block */
71 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
72 
73 	if (xfs_has_nouuid(mp))
74 		return 0;
75 
76 	if (uuid_is_null(uuid)) {
77 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_null(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = krealloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			GFP_KERNEL | __GFP_NOFAIL);
95 		hole = xfs_uuid_table_size++;
96 	}
97 	xfs_uuid_table[hole] = *uuid;
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 
100 	return 0;
101 
102  out_duplicate:
103 	mutex_unlock(&xfs_uuid_table_mutex);
104 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 	return -EINVAL;
106 }
107 
108 STATIC void
109 xfs_uuid_unmount(
110 	struct xfs_mount	*mp)
111 {
112 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
113 	int			i;
114 
115 	if (xfs_has_nouuid(mp))
116 		return;
117 
118 	mutex_lock(&xfs_uuid_table_mutex);
119 	for (i = 0; i < xfs_uuid_table_size; i++) {
120 		if (uuid_is_null(&xfs_uuid_table[i]))
121 			continue;
122 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 			continue;
124 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 		break;
126 	}
127 	ASSERT(i < xfs_uuid_table_size);
128 	mutex_unlock(&xfs_uuid_table_mutex);
129 }
130 
131 /*
132  * Check size of device based on the (data/realtime) block count.
133  * Note: this check is used by the growfs code as well as mount.
134  */
135 int
136 xfs_sb_validate_fsb_count(
137 	xfs_sb_t	*sbp,
138 	uint64_t	nblocks)
139 {
140 	uint64_t		max_bytes;
141 
142 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
143 
144 	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
145 		return -EFBIG;
146 
147 	/* Limited by ULONG_MAX of page cache index */
148 	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
149 		return -EFBIG;
150 	return 0;
151 }
152 
153 /*
154  * xfs_readsb
155  *
156  * Does the initial read of the superblock.
157  */
158 int
159 xfs_readsb(
160 	struct xfs_mount *mp,
161 	int		flags)
162 {
163 	unsigned int	sector_size;
164 	struct xfs_buf	*bp;
165 	struct xfs_sb	*sbp = &mp->m_sb;
166 	int		error;
167 	int		loud = !(flags & XFS_MFSI_QUIET);
168 	const struct xfs_buf_ops *buf_ops;
169 
170 	ASSERT(mp->m_sb_bp == NULL);
171 	ASSERT(mp->m_ddev_targp != NULL);
172 
173 	/*
174 	 * In the first pass, use the device sector size to just read enough
175 	 * of the superblock to extract the XFS sector size.
176 	 *
177 	 * The device sector size must be smaller than or equal to the XFS
178 	 * sector size and thus we can always read the superblock.  Once we know
179 	 * the XFS sector size, re-read it and run the buffer verifier.
180 	 */
181 	sector_size = mp->m_ddev_targp->bt_logical_sectorsize;
182 	buf_ops = NULL;
183 
184 reread:
185 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 				      BTOBB(sector_size), &bp, buf_ops);
187 	if (error) {
188 		if (loud)
189 			xfs_warn(mp, "SB validate failed with error %d.", error);
190 		/* bad CRC means corrupted metadata */
191 		if (error == -EFSBADCRC)
192 			error = -EFSCORRUPTED;
193 		return error;
194 	}
195 
196 	/*
197 	 * Initialize the mount structure from the superblock.
198 	 */
199 	xfs_sb_from_disk(sbp, bp->b_addr);
200 
201 	/*
202 	 * If we haven't validated the superblock, do so now before we try
203 	 * to check the sector size and reread the superblock appropriately.
204 	 */
205 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
206 		if (loud)
207 			xfs_warn(mp, "Invalid superblock magic number");
208 		error = -EINVAL;
209 		goto release_buf;
210 	}
211 
212 	/*
213 	 * We must be able to do sector-sized and sector-aligned IO.
214 	 */
215 	if (sector_size > sbp->sb_sectsize) {
216 		if (loud)
217 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
218 				sector_size, sbp->sb_sectsize);
219 		error = -ENOSYS;
220 		goto release_buf;
221 	}
222 
223 	if (buf_ops == NULL) {
224 		/*
225 		 * Re-read the superblock so the buffer is correctly sized,
226 		 * and properly verified.
227 		 */
228 		xfs_buf_relse(bp);
229 		sector_size = sbp->sb_sectsize;
230 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
231 		goto reread;
232 	}
233 
234 	mp->m_features |= xfs_sb_version_to_features(sbp);
235 	xfs_reinit_percpu_counters(mp);
236 
237 	/*
238 	 * If logged xattrs are enabled after log recovery finishes, then set
239 	 * the opstate so that log recovery will work properly.
240 	 */
241 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
242 		xfs_set_using_logged_xattrs(mp);
243 
244 	/* no need to be quiet anymore, so reset the buf ops */
245 	bp->b_ops = &xfs_sb_buf_ops;
246 
247 	/*
248 	 * Keep a pointer of the sb buffer around instead of caching it in the
249 	 * buffer cache because we access it frequently.
250 	 */
251 	mp->m_sb_bp = bp;
252 	xfs_buf_unlock(bp);
253 	return 0;
254 
255 release_buf:
256 	xfs_buf_relse(bp);
257 	return error;
258 }
259 
260 /*
261  * If the sunit/swidth change would move the precomputed root inode value, we
262  * must reject the ondisk change because repair will stumble over that.
263  * However, we allow the mount to proceed because we never rejected this
264  * combination before.  Returns true to update the sb, false otherwise.
265  */
266 static inline int
267 xfs_check_new_dalign(
268 	struct xfs_mount	*mp,
269 	int			new_dalign,
270 	bool			*update_sb)
271 {
272 	struct xfs_sb		*sbp = &mp->m_sb;
273 	xfs_ino_t		calc_ino;
274 
275 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
276 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
277 
278 	if (sbp->sb_rootino == calc_ino) {
279 		*update_sb = true;
280 		return 0;
281 	}
282 
283 	xfs_warn(mp,
284 "Cannot change stripe alignment; would require moving root inode.");
285 
286 	/*
287 	 * XXX: Next time we add a new incompat feature, this should start
288 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
289 	 * that we're ignoring the administrator's instructions.
290 	 */
291 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
292 	*update_sb = false;
293 	return 0;
294 }
295 
296 /*
297  * If we were provided with new sunit/swidth values as mount options, make sure
298  * that they pass basic alignment and superblock feature checks, and convert
299  * them into the same units (FSB) that everything else expects.  This step
300  * /must/ be done before computing the inode geometry.
301  */
302 STATIC int
303 xfs_validate_new_dalign(
304 	struct xfs_mount	*mp)
305 {
306 	if (mp->m_dalign == 0)
307 		return 0;
308 
309 	/*
310 	 * If stripe unit and stripe width are not multiples
311 	 * of the fs blocksize turn off alignment.
312 	 */
313 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
314 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
315 		xfs_warn(mp,
316 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
317 			mp->m_sb.sb_blocksize);
318 		return -EINVAL;
319 	}
320 
321 	/*
322 	 * Convert the stripe unit and width to FSBs.
323 	 */
324 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
325 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
326 		xfs_warn(mp,
327 	"alignment check failed: sunit/swidth vs. agsize(%d)",
328 			mp->m_sb.sb_agblocks);
329 		return -EINVAL;
330 	}
331 
332 	if (!mp->m_dalign) {
333 		xfs_warn(mp,
334 	"alignment check failed: sunit(%d) less than bsize(%d)",
335 			mp->m_dalign, mp->m_sb.sb_blocksize);
336 		return -EINVAL;
337 	}
338 
339 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
340 
341 	if (!xfs_has_dalign(mp)) {
342 		xfs_warn(mp,
343 "cannot change alignment: superblock does not support data alignment");
344 		return -EINVAL;
345 	}
346 
347 	return 0;
348 }
349 
350 /* Update alignment values based on mount options and sb values. */
351 STATIC int
352 xfs_update_alignment(
353 	struct xfs_mount	*mp)
354 {
355 	struct xfs_sb		*sbp = &mp->m_sb;
356 
357 	if (mp->m_dalign) {
358 		bool		update_sb;
359 		int		error;
360 
361 		if (sbp->sb_unit == mp->m_dalign &&
362 		    sbp->sb_width == mp->m_swidth)
363 			return 0;
364 
365 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
366 		if (error || !update_sb)
367 			return error;
368 
369 		sbp->sb_unit = mp->m_dalign;
370 		sbp->sb_width = mp->m_swidth;
371 		mp->m_update_sb = true;
372 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
373 		mp->m_dalign = sbp->sb_unit;
374 		mp->m_swidth = sbp->sb_width;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * precalculate the low space thresholds for dynamic speculative preallocation.
382  */
383 void
384 xfs_set_low_space_thresholds(
385 	struct xfs_mount	*mp)
386 {
387 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
388 	uint64_t		rtexts = mp->m_sb.sb_rextents;
389 	int			i;
390 
391 	do_div(dblocks, 100);
392 	do_div(rtexts, 100);
393 
394 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
395 		mp->m_low_space[i] = dblocks * (i + 1);
396 		mp->m_low_rtexts[i] = rtexts * (i + 1);
397 	}
398 }
399 
400 /*
401  * Check that the data (and log if separate) is an ok size.
402  */
403 STATIC int
404 xfs_check_sizes(
405 	struct xfs_mount *mp)
406 {
407 	struct xfs_buf	*bp;
408 	xfs_daddr_t	d;
409 	int		error;
410 
411 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
412 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
413 		xfs_warn(mp, "filesystem size mismatch detected");
414 		return -EFBIG;
415 	}
416 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
417 					d - XFS_FSS_TO_BB(mp, 1),
418 					XFS_FSS_TO_BB(mp, 1), &bp, NULL);
419 	if (error) {
420 		xfs_warn(mp, "last sector read failed");
421 		return error;
422 	}
423 	xfs_buf_relse(bp);
424 
425 	if (mp->m_logdev_targp == mp->m_ddev_targp)
426 		return 0;
427 
428 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
429 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
430 		xfs_warn(mp, "log size mismatch detected");
431 		return -EFBIG;
432 	}
433 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
434 					d - XFS_FSB_TO_BB(mp, 1),
435 					XFS_FSB_TO_BB(mp, 1), &bp, NULL);
436 	if (error) {
437 		xfs_warn(mp, "log device read failed");
438 		return error;
439 	}
440 	xfs_buf_relse(bp);
441 	return 0;
442 }
443 
444 /*
445  * Clear the quotaflags in memory and in the superblock.
446  */
447 int
448 xfs_mount_reset_sbqflags(
449 	struct xfs_mount	*mp)
450 {
451 	mp->m_qflags = 0;
452 
453 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
454 	if (mp->m_sb.sb_qflags == 0)
455 		return 0;
456 	spin_lock(&mp->m_sb_lock);
457 	mp->m_sb.sb_qflags = 0;
458 	spin_unlock(&mp->m_sb_lock);
459 
460 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
461 		return 0;
462 
463 	return xfs_sync_sb(mp, false);
464 }
465 
466 static const char *const xfs_free_pool_name[] = {
467 	[XC_FREE_BLOCKS]	= "free blocks",
468 	[XC_FREE_RTEXTENTS]	= "free rt extents",
469 	[XC_FREE_RTAVAILABLE]	= "available rt extents",
470 };
471 
472 uint64_t
473 xfs_default_resblks(
474 	struct xfs_mount	*mp,
475 	enum xfs_free_counter	ctr)
476 {
477 	switch (ctr) {
478 	case XC_FREE_BLOCKS:
479 		/*
480 		 * Default to 5% or 8192 FSBs of space reserved, whichever is
481 		 * smaller.
482 		 *
483 		 * This is intended to cover concurrent allocation transactions
484 		 * when we initially hit ENOSPC.  These each require a 4 block
485 		 * reservation. Hence by default we cover roughly 2000
486 		 * concurrent allocation reservations.
487 		 */
488 		return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL);
489 	case XC_FREE_RTEXTENTS:
490 	case XC_FREE_RTAVAILABLE:
491 		if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp))
492 			return xfs_zoned_default_resblks(mp, ctr);
493 		return 0;
494 	default:
495 		ASSERT(0);
496 		return 0;
497 	}
498 }
499 
500 /* Ensure the summary counts are correct. */
501 STATIC int
502 xfs_check_summary_counts(
503 	struct xfs_mount	*mp)
504 {
505 	int			error = 0;
506 
507 	/*
508 	 * The AG0 superblock verifier rejects in-progress filesystems,
509 	 * so we should never see the flag set this far into mounting.
510 	 */
511 	if (mp->m_sb.sb_inprogress) {
512 		xfs_err(mp, "sb_inprogress set after log recovery??");
513 		WARN_ON(1);
514 		return -EFSCORRUPTED;
515 	}
516 
517 	/*
518 	 * Now the log is mounted, we know if it was an unclean shutdown or
519 	 * not. If it was, with the first phase of recovery has completed, we
520 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
521 	 * but they are recovered transactionally in the second recovery phase
522 	 * later.
523 	 *
524 	 * If the log was clean when we mounted, we can check the summary
525 	 * counters.  If any of them are obviously incorrect, we can recompute
526 	 * them from the AGF headers in the next step.
527 	 */
528 	if (xfs_is_clean(mp) &&
529 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
530 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
531 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
532 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
533 
534 	/*
535 	 * We can safely re-initialise incore superblock counters from the
536 	 * per-ag data. These may not be correct if the filesystem was not
537 	 * cleanly unmounted, so we waited for recovery to finish before doing
538 	 * this.
539 	 *
540 	 * If the filesystem was cleanly unmounted or the previous check did
541 	 * not flag anything weird, then we can trust the values in the
542 	 * superblock to be correct and we don't need to do anything here.
543 	 * Otherwise, recalculate the summary counters.
544 	 */
545 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
546 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
547 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
548 		if (error)
549 			return error;
550 	}
551 
552 	/*
553 	 * Older kernels misused sb_frextents to reflect both incore
554 	 * reservations made by running transactions and the actual count of
555 	 * free rt extents in the ondisk metadata.  Transactions committed
556 	 * during runtime can therefore contain a superblock update that
557 	 * undercounts the number of free rt extents tracked in the rt bitmap.
558 	 * A clean unmount record will have the correct frextents value since
559 	 * there can be no other transactions running at that point.
560 	 *
561 	 * If we're mounting the rt volume after recovering the log, recompute
562 	 * frextents from the rtbitmap file to fix the inconsistency.
563 	 */
564 	if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) {
565 		error = xfs_rtalloc_reinit_frextents(mp);
566 		if (error)
567 			return error;
568 	}
569 
570 	return 0;
571 }
572 
573 static void
574 xfs_unmount_check(
575 	struct xfs_mount	*mp)
576 {
577 	if (xfs_is_shutdown(mp))
578 		return;
579 
580 	if (percpu_counter_sum(&mp->m_ifree) >
581 			percpu_counter_sum(&mp->m_icount)) {
582 		xfs_alert(mp, "ifree/icount mismatch at unmount");
583 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
584 	}
585 }
586 
587 /*
588  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
589  * internal inode structures can be sitting in the CIL and AIL at this point,
590  * so we need to unpin them, write them back and/or reclaim them before unmount
591  * can proceed.  In other words, callers are required to have inactivated all
592  * inodes.
593  *
594  * An inode cluster that has been freed can have its buffer still pinned in
595  * memory because the transaction is still sitting in a iclog. The stale inodes
596  * on that buffer will be pinned to the buffer until the transaction hits the
597  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
598  * may never see the pinned buffer, so nothing will push out the iclog and
599  * unpin the buffer.
600  *
601  * Hence we need to force the log to unpin everything first. However, log
602  * forces don't wait for the discards they issue to complete, so we have to
603  * explicitly wait for them to complete here as well.
604  *
605  * Then we can tell the world we are unmounting so that error handling knows
606  * that the filesystem is going away and we should error out anything that we
607  * have been retrying in the background.  This will prevent never-ending
608  * retries in AIL pushing from hanging the unmount.
609  *
610  * Finally, we can push the AIL to clean all the remaining dirty objects, then
611  * reclaim the remaining inodes that are still in memory at this point in time.
612  */
613 static void
614 xfs_unmount_flush_inodes(
615 	struct xfs_mount	*mp)
616 {
617 	xfs_log_force(mp, XFS_LOG_SYNC);
618 	xfs_extent_busy_wait_all(mp);
619 	flush_workqueue(xfs_discard_wq);
620 
621 	xfs_set_unmounting(mp);
622 
623 	xfs_ail_push_all_sync(mp->m_ail);
624 	xfs_inodegc_stop(mp);
625 	cancel_delayed_work_sync(&mp->m_reclaim_work);
626 	xfs_reclaim_inodes(mp);
627 	xfs_health_unmount(mp);
628 }
629 
630 static void
631 xfs_mount_setup_inode_geom(
632 	struct xfs_mount	*mp)
633 {
634 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
635 
636 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
637 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
638 
639 	xfs_ialloc_setup_geometry(mp);
640 }
641 
642 /* Mount the metadata directory tree root. */
643 STATIC int
644 xfs_mount_setup_metadir(
645 	struct xfs_mount	*mp)
646 {
647 	int			error;
648 
649 	/* Load the metadata directory root inode into memory. */
650 	error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR,
651 			&mp->m_metadirip);
652 	if (error)
653 		xfs_warn(mp, "Failed to load metadir root directory, error %d",
654 				error);
655 	return error;
656 }
657 
658 /* Compute maximum possible height for per-AG btree types for this fs. */
659 static inline void
660 xfs_agbtree_compute_maxlevels(
661 	struct xfs_mount	*mp)
662 {
663 	unsigned int		levels;
664 
665 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
666 	levels = max(levels, mp->m_rmap_maxlevels);
667 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
668 }
669 
670 /* Maximum atomic write IO size that the kernel allows. */
671 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp)
672 {
673 	return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT));
674 }
675 
676 static inline unsigned int max_pow_of_two_factor(const unsigned int nr)
677 {
678 	return 1 << (ffs(nr) - 1);
679 }
680 
681 /*
682  * If the underlying device advertises atomic write support, limit the size of
683  * atomic writes to the greatest power-of-two factor of the group size so
684  * that every atomic write unit aligns with the start of every group.  This is
685  * required so that the allocations for an atomic write will always be
686  * aligned compatibly with the alignment requirements of the storage.
687  *
688  * If the device doesn't advertise atomic writes, then there are no alignment
689  * restrictions and the largest out-of-place write we can do ourselves is the
690  * number of blocks that user files can allocate from any group.
691  */
692 static xfs_extlen_t
693 xfs_calc_group_awu_max(
694 	struct xfs_mount	*mp,
695 	enum xfs_group_type	type)
696 {
697 	struct xfs_groups	*g = &mp->m_groups[type];
698 	struct xfs_buftarg	*btp = xfs_group_type_buftarg(mp, type);
699 
700 	if (g->blocks == 0)
701 		return 0;
702 	if (btp && btp->bt_awu_min > 0)
703 		return max_pow_of_two_factor(g->blocks);
704 	return rounddown_pow_of_two(g->blocks);
705 }
706 
707 /* Compute the maximum atomic write unit size for each section. */
708 static inline void
709 xfs_calc_atomic_write_unit_max(
710 	struct xfs_mount	*mp,
711 	enum xfs_group_type	type)
712 {
713 	struct xfs_groups	*g = &mp->m_groups[type];
714 
715 	const xfs_extlen_t	max_write = xfs_calc_atomic_write_max(mp);
716 	const xfs_extlen_t	max_ioend = xfs_reflink_max_atomic_cow(mp);
717 	const xfs_extlen_t	max_gsize = xfs_calc_group_awu_max(mp, type);
718 
719 	g->awu_max = min3(max_write, max_ioend, max_gsize);
720 	trace_xfs_calc_atomic_write_unit_max(mp, type, max_write, max_ioend,
721 			max_gsize, g->awu_max);
722 }
723 
724 /*
725  * Try to set the atomic write maximum to a new value that we got from
726  * userspace via mount option.
727  */
728 int
729 xfs_set_max_atomic_write_opt(
730 	struct xfs_mount	*mp,
731 	unsigned long long	new_max_bytes)
732 {
733 	const xfs_filblks_t	new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes);
734 	const xfs_extlen_t	max_write = xfs_calc_atomic_write_max(mp);
735 	const xfs_extlen_t	max_group =
736 		max(mp->m_groups[XG_TYPE_AG].blocks,
737 		    mp->m_groups[XG_TYPE_RTG].blocks);
738 	const xfs_extlen_t	max_group_write =
739 		max(xfs_calc_group_awu_max(mp, XG_TYPE_AG),
740 		    xfs_calc_group_awu_max(mp, XG_TYPE_RTG));
741 	int			error;
742 
743 	if (new_max_bytes == 0)
744 		goto set_limit;
745 
746 	ASSERT(max_write <= U32_MAX);
747 
748 	/* generic_atomic_write_valid enforces power of two length */
749 	if (!is_power_of_2(new_max_bytes)) {
750 		xfs_warn(mp,
751  "max atomic write size of %llu bytes is not a power of 2",
752 				new_max_bytes);
753 		return -EINVAL;
754 	}
755 
756 	if (new_max_bytes & mp->m_blockmask) {
757 		xfs_warn(mp,
758  "max atomic write size of %llu bytes not aligned with fsblock",
759 				new_max_bytes);
760 		return -EINVAL;
761 	}
762 
763 	if (new_max_fsbs > max_write) {
764 		xfs_warn(mp,
765  "max atomic write size of %lluk cannot be larger than max write size %lluk",
766 				new_max_bytes >> 10,
767 				XFS_FSB_TO_B(mp, max_write) >> 10);
768 		return -EINVAL;
769 	}
770 
771 	if (new_max_fsbs > max_group) {
772 		xfs_warn(mp,
773  "max atomic write size of %lluk cannot be larger than allocation group size %lluk",
774 				new_max_bytes >> 10,
775 				XFS_FSB_TO_B(mp, max_group) >> 10);
776 		return -EINVAL;
777 	}
778 
779 	if (new_max_fsbs > max_group_write) {
780 		xfs_warn(mp,
781  "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk",
782 				new_max_bytes >> 10,
783 				XFS_FSB_TO_B(mp, max_group_write) >> 10);
784 		return -EINVAL;
785 	}
786 
787 set_limit:
788 	error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs);
789 	if (error) {
790 		xfs_warn(mp,
791  "cannot support completing atomic writes of %lluk",
792 				new_max_bytes >> 10);
793 		return error;
794 	}
795 
796 	xfs_calc_atomic_write_unit_max(mp, XG_TYPE_AG);
797 	xfs_calc_atomic_write_unit_max(mp, XG_TYPE_RTG);
798 	mp->m_awu_max_bytes = new_max_bytes;
799 	return 0;
800 }
801 
802 /* Compute maximum possible height for realtime btree types for this fs. */
803 static inline void
804 xfs_rtbtree_compute_maxlevels(
805 	struct xfs_mount	*mp)
806 {
807 	mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels,
808 				      mp->m_rtrefc_maxlevels);
809 }
810 
811 /*
812  * This function does the following on an initial mount of a file system:
813  *	- reads the superblock from disk and init the mount struct
814  *	- if we're a 32-bit kernel, do a size check on the superblock
815  *		so we don't mount terabyte filesystems
816  *	- init mount struct realtime fields
817  *	- allocate inode hash table for fs
818  *	- init directory manager
819  *	- perform recovery and init the log manager
820  */
821 int
822 xfs_mountfs(
823 	struct xfs_mount	*mp)
824 {
825 	struct xfs_sb		*sbp = &(mp->m_sb);
826 	struct xfs_inode	*rip;
827 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
828 	uint			quotamount = 0;
829 	uint			quotaflags = 0;
830 	int			error = 0;
831 	int			i;
832 
833 	xfs_sb_mount_common(mp, sbp);
834 
835 	/*
836 	 * Check for a mismatched features2 values.  Older kernels read & wrote
837 	 * into the wrong sb offset for sb_features2 on some platforms due to
838 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
839 	 * which made older superblock reading/writing routines swap it as a
840 	 * 64-bit value.
841 	 *
842 	 * For backwards compatibility, we make both slots equal.
843 	 *
844 	 * If we detect a mismatched field, we OR the set bits into the existing
845 	 * features2 field in case it has already been modified; we don't want
846 	 * to lose any features.  We then update the bad location with the ORed
847 	 * value so that older kernels will see any features2 flags. The
848 	 * superblock writeback code ensures the new sb_features2 is copied to
849 	 * sb_bad_features2 before it is logged or written to disk.
850 	 */
851 	if (xfs_sb_has_mismatched_features2(sbp)) {
852 		xfs_warn(mp, "correcting sb_features alignment problem");
853 		sbp->sb_features2 |= sbp->sb_bad_features2;
854 		mp->m_update_sb = true;
855 	}
856 
857 
858 	/* always use v2 inodes by default now */
859 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
860 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
861 		mp->m_features |= XFS_FEAT_NLINK;
862 		mp->m_update_sb = true;
863 	}
864 
865 	/*
866 	 * If we were given new sunit/swidth options, do some basic validation
867 	 * checks and convert the incore dalign and swidth values to the
868 	 * same units (FSB) that everything else uses.  This /must/ happen
869 	 * before computing the inode geometry.
870 	 */
871 	error = xfs_validate_new_dalign(mp);
872 	if (error)
873 		goto out;
874 
875 	xfs_alloc_compute_maxlevels(mp);
876 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
877 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
878 	xfs_mount_setup_inode_geom(mp);
879 	xfs_rmapbt_compute_maxlevels(mp);
880 	xfs_rtrmapbt_compute_maxlevels(mp);
881 	xfs_refcountbt_compute_maxlevels(mp);
882 	xfs_rtrefcountbt_compute_maxlevels(mp);
883 
884 	xfs_agbtree_compute_maxlevels(mp);
885 	xfs_rtbtree_compute_maxlevels(mp);
886 
887 	/*
888 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
889 	 * is NOT aligned turn off m_dalign since allocator alignment is within
890 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
891 	 * we must compute the free space and rmap btree geometry before doing
892 	 * this.
893 	 */
894 	error = xfs_update_alignment(mp);
895 	if (error)
896 		goto out;
897 
898 	/* enable fail_at_unmount as default */
899 	mp->m_fail_unmount = true;
900 
901 	error = xfs_mount_sysfs_init(mp);
902 	if (error)
903 		goto out_remove_scrub_stats;
904 
905 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
906 
907 	error = xfs_errortag_init(mp);
908 	if (error)
909 		goto out_remove_sysfs;
910 
911 	error = xfs_uuid_mount(mp);
912 	if (error)
913 		goto out_remove_errortag;
914 
915 	/*
916 	 * Update the preferred write size based on the information from the
917 	 * on-disk superblock.
918 	 */
919 	mp->m_allocsize_log =
920 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
921 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
922 
923 	/* set the low space thresholds for dynamic preallocation */
924 	xfs_set_low_space_thresholds(mp);
925 
926 	/*
927 	 * If enabled, sparse inode chunk alignment is expected to match the
928 	 * cluster size. Full inode chunk alignment must match the chunk size,
929 	 * but that is checked on sb read verification...
930 	 */
931 	if (xfs_has_sparseinodes(mp) &&
932 	    mp->m_sb.sb_spino_align !=
933 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
934 		xfs_warn(mp,
935 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
936 			 mp->m_sb.sb_spino_align,
937 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
938 		error = -EINVAL;
939 		goto out_remove_uuid;
940 	}
941 
942 	/*
943 	 * Check that the data (and log if separate) is an ok size.
944 	 */
945 	error = xfs_check_sizes(mp);
946 	if (error)
947 		goto out_remove_uuid;
948 
949 	/*
950 	 * Initialize realtime fields in the mount structure
951 	 */
952 	error = xfs_rtmount_init(mp);
953 	if (error) {
954 		xfs_warn(mp, "RT mount failed");
955 		goto out_remove_uuid;
956 	}
957 
958 	/*
959 	 *  Copies the low order bits of the timestamp and the randomly
960 	 *  set "sequence" number out of a UUID.
961 	 */
962 	mp->m_fixedfsid[0] =
963 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
964 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
965 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
966 
967 	error = xfs_da_mount(mp);
968 	if (error) {
969 		xfs_warn(mp, "Failed dir/attr init: %d", error);
970 		goto out_remove_uuid;
971 	}
972 
973 	/*
974 	 * Initialize the precomputed transaction reservations values.
975 	 */
976 	xfs_trans_init(mp);
977 
978 	/*
979 	 * Allocate and initialize the per-ag data.
980 	 */
981 	error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
982 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
983 	if (error) {
984 		xfs_warn(mp, "Failed per-ag init: %d", error);
985 		goto out_free_dir;
986 	}
987 
988 	error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount,
989 			mp->m_sb.sb_rextents);
990 	if (error) {
991 		xfs_warn(mp, "Failed rtgroup init: %d", error);
992 		goto out_free_perag;
993 	}
994 
995 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
996 		xfs_warn(mp, "no log defined");
997 		error = -EFSCORRUPTED;
998 		goto out_free_rtgroup;
999 	}
1000 
1001 	error = xfs_inodegc_register_shrinker(mp);
1002 	if (error)
1003 		goto out_fail_wait;
1004 
1005 	/*
1006 	 * If we're resuming quota status, pick up the preliminary qflags from
1007 	 * the ondisk superblock so that we know if we should recover dquots.
1008 	 */
1009 	if (xfs_is_resuming_quotaon(mp))
1010 		xfs_qm_resume_quotaon(mp);
1011 
1012 	/*
1013 	 * Log's mount-time initialization. The first part of recovery can place
1014 	 * some items on the AIL, to be handled when recovery is finished or
1015 	 * cancelled.
1016 	 */
1017 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1018 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1019 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1020 	if (error) {
1021 		xfs_warn(mp, "log mount failed");
1022 		goto out_inodegc_shrinker;
1023 	}
1024 
1025 	/*
1026 	 * If we're resuming quota status and recovered the log, re-sample the
1027 	 * qflags from the ondisk superblock now that we've recovered it, just
1028 	 * in case someone shut down enforcement just before a crash.
1029 	 */
1030 	if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log))
1031 		xfs_qm_resume_quotaon(mp);
1032 
1033 	/*
1034 	 * If logged xattrs are still enabled after log recovery finishes, then
1035 	 * they'll be available until unmount.  Otherwise, turn them off.
1036 	 */
1037 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
1038 		xfs_set_using_logged_xattrs(mp);
1039 	else
1040 		xfs_clear_using_logged_xattrs(mp);
1041 
1042 	/* Enable background inode inactivation workers. */
1043 	xfs_inodegc_start(mp);
1044 	xfs_blockgc_start(mp);
1045 
1046 	/*
1047 	 * Now that we've recovered any pending superblock feature bit
1048 	 * additions, we can finish setting up the attr2 behaviour for the
1049 	 * mount. The noattr2 option overrides the superblock flag, so only
1050 	 * check the superblock feature flag if the mount option is not set.
1051 	 */
1052 	if (xfs_has_noattr2(mp)) {
1053 		mp->m_features &= ~XFS_FEAT_ATTR2;
1054 	} else if (!xfs_has_attr2(mp) &&
1055 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
1056 		mp->m_features |= XFS_FEAT_ATTR2;
1057 	}
1058 
1059 	if (xfs_has_metadir(mp)) {
1060 		error = xfs_mount_setup_metadir(mp);
1061 		if (error)
1062 			goto out_free_metadir;
1063 	}
1064 
1065 	/*
1066 	 * Get and sanity-check the root inode.
1067 	 * Save the pointer to it in the mount structure.
1068 	 */
1069 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
1070 			 XFS_ILOCK_EXCL, &rip);
1071 	if (error) {
1072 		xfs_warn(mp,
1073 			"Failed to read root inode 0x%llx, error %d",
1074 			sbp->sb_rootino, -error);
1075 		goto out_free_metadir;
1076 	}
1077 
1078 	ASSERT(rip != NULL);
1079 
1080 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
1081 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1082 			(unsigned long long)rip->i_ino);
1083 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1084 		error = -EFSCORRUPTED;
1085 		goto out_rele_rip;
1086 	}
1087 	mp->m_rootip = rip;	/* save it */
1088 
1089 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1090 
1091 	/*
1092 	 * Initialize realtime inode pointers in the mount structure
1093 	 */
1094 	error = xfs_rtmount_inodes(mp);
1095 	if (error) {
1096 		/*
1097 		 * Free up the root inode.
1098 		 */
1099 		xfs_warn(mp, "failed to read RT inodes");
1100 		goto out_rele_rip;
1101 	}
1102 
1103 	/* Make sure the summary counts are ok. */
1104 	error = xfs_check_summary_counts(mp);
1105 	if (error)
1106 		goto out_rtunmount;
1107 
1108 	/*
1109 	 * If this is a read-only mount defer the superblock updates until
1110 	 * the next remount into writeable mode.  Otherwise we would never
1111 	 * perform the update e.g. for the root filesystem.
1112 	 */
1113 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
1114 		error = xfs_sync_sb(mp, false);
1115 		if (error) {
1116 			xfs_warn(mp, "failed to write sb changes");
1117 			goto out_rtunmount;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Initialise the XFS quota management subsystem for this mount
1123 	 */
1124 	if (XFS_IS_QUOTA_ON(mp)) {
1125 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1126 		if (error)
1127 			goto out_rtunmount;
1128 	} else {
1129 		/*
1130 		 * If a file system had quotas running earlier, but decided to
1131 		 * mount without -o uquota/pquota/gquota options, revoke the
1132 		 * quotachecked license.
1133 		 */
1134 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1135 			xfs_notice(mp, "resetting quota flags");
1136 			error = xfs_mount_reset_sbqflags(mp);
1137 			if (error)
1138 				goto out_rtunmount;
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Finish recovering the file system.  This part needed to be delayed
1144 	 * until after the root and real-time bitmap inodes were consistently
1145 	 * read in.  Temporarily create per-AG space reservations for metadata
1146 	 * btree shape changes because space freeing transactions (for inode
1147 	 * inactivation) require the per-AG reservation in lieu of reserving
1148 	 * blocks.
1149 	 */
1150 	error = xfs_fs_reserve_ag_blocks(mp);
1151 	if (error && error == -ENOSPC)
1152 		xfs_warn(mp,
1153 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
1154 	error = xfs_log_mount_finish(mp);
1155 	xfs_fs_unreserve_ag_blocks(mp);
1156 	if (error) {
1157 		xfs_warn(mp, "log mount finish failed");
1158 		goto out_rtunmount;
1159 	}
1160 
1161 	/*
1162 	 * Now the log is fully replayed, we can transition to full read-only
1163 	 * mode for read-only mounts. This will sync all the metadata and clean
1164 	 * the log so that the recovery we just performed does not have to be
1165 	 * replayed again on the next mount.
1166 	 *
1167 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1168 	 * semantically identical operations.
1169 	 */
1170 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
1171 		xfs_log_clean(mp);
1172 
1173 	if (xfs_has_zoned(mp)) {
1174 		error = xfs_mount_zones(mp);
1175 		if (error)
1176 			goto out_rtunmount;
1177 	}
1178 
1179 	/*
1180 	 * Complete the quota initialisation, post-log-replay component.
1181 	 */
1182 	if (quotamount) {
1183 		ASSERT(mp->m_qflags == 0);
1184 		mp->m_qflags = quotaflags;
1185 
1186 		xfs_qm_mount_quotas(mp);
1187 	}
1188 
1189 	/*
1190 	 * Now we are mounted, reserve a small amount of unused space for
1191 	 * privileged transactions. This is needed so that transaction
1192 	 * space required for critical operations can dip into this pool
1193 	 * when at ENOSPC. This is needed for operations like create with
1194 	 * attr, unwritten extent conversion at ENOSPC, garbage collection
1195 	 * etc. Data allocations are not allowed to use this reserved space.
1196 	 *
1197 	 * This may drive us straight to ENOSPC on mount, but that implies
1198 	 * we were already there on the last unmount. Warn if this occurs.
1199 	 */
1200 	if (!xfs_is_readonly(mp)) {
1201 		for (i = 0; i < XC_FREE_NR; i++) {
1202 			error = xfs_reserve_blocks(mp, i,
1203 					xfs_default_resblks(mp, i));
1204 			if (error)
1205 				xfs_warn(mp,
1206 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.",
1207 					xfs_free_pool_name[i]);
1208 		}
1209 
1210 		/* Reserve AG blocks for future btree expansion. */
1211 		error = xfs_fs_reserve_ag_blocks(mp);
1212 		if (error && error != -ENOSPC)
1213 			goto out_agresv;
1214 
1215 		xfs_zone_gc_start(mp);
1216 	}
1217 
1218 	/*
1219 	 * Pre-calculate atomic write unit max.  This involves computations
1220 	 * derived from transaction reservations, so we must do this after the
1221 	 * log is fully initialized.
1222 	 */
1223 	error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes);
1224 	if (error)
1225 		goto out_agresv;
1226 
1227 	return 0;
1228 
1229  out_agresv:
1230 	xfs_fs_unreserve_ag_blocks(mp);
1231 	xfs_qm_unmount_quotas(mp);
1232 	if (xfs_has_zoned(mp))
1233 		xfs_unmount_zones(mp);
1234  out_rtunmount:
1235 	xfs_rtunmount_inodes(mp);
1236  out_rele_rip:
1237 	xfs_irele(rip);
1238 	/* Clean out dquots that might be in memory after quotacheck. */
1239 	xfs_qm_unmount(mp);
1240  out_free_metadir:
1241 	if (mp->m_metadirip)
1242 		xfs_irele(mp->m_metadirip);
1243 
1244 	/*
1245 	 * Inactivate all inodes that might still be in memory after a log
1246 	 * intent recovery failure so that reclaim can free them.  Metadata
1247 	 * inodes and the root directory shouldn't need inactivation, but the
1248 	 * mount failed for some reason, so pull down all the state and flee.
1249 	 */
1250 	xfs_inodegc_flush(mp);
1251 
1252 	/*
1253 	 * Flush all inode reclamation work and flush the log.
1254 	 * We have to do this /after/ rtunmount and qm_unmount because those
1255 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1256 	 *
1257 	 * This is slightly different from the unmountfs call sequence
1258 	 * because we could be tearing down a partially set up mount.  In
1259 	 * particular, if log_mount_finish fails we bail out without calling
1260 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1261 	 * quota inodes.
1262 	 */
1263 	xfs_unmount_flush_inodes(mp);
1264 	xfs_log_mount_cancel(mp);
1265  out_inodegc_shrinker:
1266 	shrinker_free(mp->m_inodegc_shrinker);
1267  out_fail_wait:
1268 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1269 		xfs_buftarg_drain(mp->m_logdev_targp);
1270 	xfs_buftarg_drain(mp->m_ddev_targp);
1271  out_free_rtgroup:
1272 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1273  out_free_perag:
1274 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1275  out_free_dir:
1276 	xfs_da_unmount(mp);
1277  out_remove_uuid:
1278 	xfs_uuid_unmount(mp);
1279  out_remove_errortag:
1280 	xfs_errortag_del(mp);
1281  out_remove_sysfs:
1282 	xfs_mount_sysfs_del(mp);
1283  out_remove_scrub_stats:
1284 	xchk_stats_unregister(mp->m_scrub_stats);
1285  out:
1286 	return error;
1287 }
1288 
1289 /*
1290  * This flushes out the inodes,dquots and the superblock, unmounts the
1291  * log and makes sure that incore structures are freed.
1292  */
1293 void
1294 xfs_unmountfs(
1295 	struct xfs_mount	*mp)
1296 {
1297 	int			error;
1298 
1299 	/*
1300 	 * Perform all on-disk metadata updates required to inactivate inodes
1301 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1302 	 * and discarding CoW fork preallocations can cause shape changes to
1303 	 * the free inode and refcount btrees, respectively, so we must finish
1304 	 * this before we discard the metadata space reservations.  Metadata
1305 	 * inodes and the root directory do not require inactivation.
1306 	 */
1307 	xfs_inodegc_flush(mp);
1308 
1309 	xfs_blockgc_stop(mp);
1310 	if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate))
1311 		xfs_zone_gc_stop(mp);
1312 	xfs_fs_unreserve_ag_blocks(mp);
1313 	xfs_qm_unmount_quotas(mp);
1314 	if (xfs_has_zoned(mp))
1315 		xfs_unmount_zones(mp);
1316 	xfs_rtunmount_inodes(mp);
1317 	xfs_irele(mp->m_rootip);
1318 	if (mp->m_metadirip)
1319 		xfs_irele(mp->m_metadirip);
1320 
1321 	xfs_unmount_flush_inodes(mp);
1322 
1323 	xfs_qm_unmount(mp);
1324 
1325 	/*
1326 	 * Unreserve any blocks we have so that when we unmount we don't account
1327 	 * the reserved free space as used. This is really only necessary for
1328 	 * lazy superblock counting because it trusts the incore superblock
1329 	 * counters to be absolutely correct on clean unmount.
1330 	 *
1331 	 * We don't bother correcting this elsewhere for lazy superblock
1332 	 * counting because on mount of an unclean filesystem we reconstruct the
1333 	 * correct counter value and this is irrelevant.
1334 	 *
1335 	 * For non-lazy counter filesystems, this doesn't matter at all because
1336 	 * we only every apply deltas to the superblock and hence the incore
1337 	 * value does not matter....
1338 	 */
1339 	error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0);
1340 	if (error)
1341 		xfs_warn(mp, "Unable to free reserved block pool. "
1342 				"Freespace may not be correct on next mount.");
1343 	xfs_unmount_check(mp);
1344 
1345 	/*
1346 	 * Indicate that it's ok to clear log incompat bits before cleaning
1347 	 * the log and writing the unmount record.
1348 	 */
1349 	xfs_set_done_with_log_incompat(mp);
1350 	xfs_log_unmount(mp);
1351 	xfs_da_unmount(mp);
1352 	xfs_uuid_unmount(mp);
1353 
1354 #if defined(DEBUG)
1355 	xfs_errortag_clearall(mp);
1356 #endif
1357 	shrinker_free(mp->m_inodegc_shrinker);
1358 	xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount);
1359 	xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1360 	xfs_errortag_del(mp);
1361 	xchk_stats_unregister(mp->m_scrub_stats);
1362 	xfs_mount_sysfs_del(mp);
1363 }
1364 
1365 /*
1366  * Determine whether modifications can proceed. The caller specifies the minimum
1367  * freeze level for which modifications should not be allowed. This allows
1368  * certain operations to proceed while the freeze sequence is in progress, if
1369  * necessary.
1370  */
1371 bool
1372 xfs_fs_writable(
1373 	struct xfs_mount	*mp,
1374 	int			level)
1375 {
1376 	ASSERT(level > SB_UNFROZEN);
1377 	if ((mp->m_super->s_writers.frozen >= level) ||
1378 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1379 		return false;
1380 
1381 	return true;
1382 }
1383 
1384 /*
1385  * Estimate the amount of free space that is not available to userspace and is
1386  * not explicitly reserved from the incore fdblocks.  This includes:
1387  *
1388  * - The minimum number of blocks needed to support splitting a bmap btree
1389  * - The blocks currently in use by the freespace btrees because they record
1390  *   the actual blocks that will fill per-AG metadata space reservations
1391  */
1392 uint64_t
1393 xfs_freecounter_unavailable(
1394 	struct xfs_mount	*mp,
1395 	enum xfs_free_counter	ctr)
1396 {
1397 	if (ctr != XC_FREE_BLOCKS)
1398 		return 0;
1399 	return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1400 }
1401 
1402 void
1403 xfs_add_freecounter(
1404 	struct xfs_mount	*mp,
1405 	enum xfs_free_counter	ctr,
1406 	uint64_t		delta)
1407 {
1408 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1409 	uint64_t		res_used;
1410 
1411 	/*
1412 	 * If the reserve pool is depleted, put blocks back into it first.
1413 	 * Most of the time the pool is full.
1414 	 */
1415 	if (likely(counter->res_avail == counter->res_total)) {
1416 		percpu_counter_add(&counter->count, delta);
1417 		return;
1418 	}
1419 
1420 	spin_lock(&mp->m_sb_lock);
1421 	res_used = counter->res_total - counter->res_avail;
1422 	if (res_used > delta) {
1423 		counter->res_avail += delta;
1424 	} else {
1425 		delta -= res_used;
1426 		counter->res_avail = counter->res_total;
1427 		percpu_counter_add(&counter->count, delta);
1428 	}
1429 	spin_unlock(&mp->m_sb_lock);
1430 }
1431 
1432 
1433 /* Adjust in-core free blocks or RT extents. */
1434 int
1435 xfs_dec_freecounter(
1436 	struct xfs_mount	*mp,
1437 	enum xfs_free_counter	ctr,
1438 	uint64_t		delta,
1439 	bool			rsvd)
1440 {
1441 	struct xfs_freecounter	*counter = &mp->m_free[ctr];
1442 	s32			batch;
1443 
1444 	ASSERT(ctr < XC_FREE_NR);
1445 
1446 	/*
1447 	 * Taking blocks away, need to be more accurate the closer we
1448 	 * are to zero.
1449 	 *
1450 	 * If the counter has a value of less than 2 * max batch size,
1451 	 * then make everything serialise as we are real close to
1452 	 * ENOSPC.
1453 	 */
1454 	if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH,
1455 				     XFS_FDBLOCKS_BATCH) < 0)
1456 		batch = 1;
1457 	else
1458 		batch = XFS_FDBLOCKS_BATCH;
1459 
1460 	/*
1461 	 * Set aside allocbt blocks because these blocks are tracked as free
1462 	 * space but not available for allocation. Technically this means that a
1463 	 * single reservation cannot consume all remaining free space, but the
1464 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1465 	 * The tradeoff without this is that filesystems that maintain high
1466 	 * perag block reservations can over reserve physical block availability
1467 	 * and fail physical allocation, which leads to much more serious
1468 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1469 	 * slightly premature -ENOSPC.
1470 	 */
1471 	percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch);
1472 	if (__percpu_counter_compare(&counter->count,
1473 			xfs_freecounter_unavailable(mp, ctr),
1474 			XFS_FDBLOCKS_BATCH) < 0) {
1475 		/*
1476 		 * Lock up the sb for dipping into reserves before releasing the
1477 		 * space that took us to ENOSPC.
1478 		 */
1479 		spin_lock(&mp->m_sb_lock);
1480 		percpu_counter_add(&counter->count, delta);
1481 		if (!rsvd)
1482 			goto fdblocks_enospc;
1483 		if (delta > counter->res_avail) {
1484 			if (ctr == XC_FREE_BLOCKS)
1485 				xfs_warn_once(mp,
1486 "Reserve blocks depleted! Consider increasing reserve pool size.");
1487 			goto fdblocks_enospc;
1488 		}
1489 		counter->res_avail -= delta;
1490 		trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_);
1491 		spin_unlock(&mp->m_sb_lock);
1492 	}
1493 
1494 	/* we had space! */
1495 	return 0;
1496 
1497 fdblocks_enospc:
1498 	trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_);
1499 	spin_unlock(&mp->m_sb_lock);
1500 	return -ENOSPC;
1501 }
1502 
1503 /*
1504  * Used to free the superblock along various error paths.
1505  */
1506 void
1507 xfs_freesb(
1508 	struct xfs_mount	*mp)
1509 {
1510 	struct xfs_buf		*bp = mp->m_sb_bp;
1511 
1512 	xfs_buf_lock(bp);
1513 	mp->m_sb_bp = NULL;
1514 	xfs_buf_relse(bp);
1515 }
1516 
1517 /*
1518  * If the underlying (data/log/rt) device is readonly, there are some
1519  * operations that cannot proceed.
1520  */
1521 int
1522 xfs_dev_is_read_only(
1523 	struct xfs_mount	*mp,
1524 	char			*message)
1525 {
1526 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1527 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1528 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1529 		xfs_notice(mp, "%s required on read-only device.", message);
1530 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1531 		return -EROFS;
1532 	}
1533 	return 0;
1534 }
1535 
1536 /* Force the summary counters to be recalculated at next mount. */
1537 void
1538 xfs_force_summary_recalc(
1539 	struct xfs_mount	*mp)
1540 {
1541 	if (!xfs_has_lazysbcount(mp))
1542 		return;
1543 
1544 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1545 }
1546 
1547 /*
1548  * Enable a log incompat feature flag in the primary superblock.  The caller
1549  * cannot have any other transactions in progress.
1550  */
1551 int
1552 xfs_add_incompat_log_feature(
1553 	struct xfs_mount	*mp,
1554 	uint32_t		feature)
1555 {
1556 	struct xfs_dsb		*dsb;
1557 	int			error;
1558 
1559 	ASSERT(hweight32(feature) == 1);
1560 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1561 
1562 	/*
1563 	 * Force the log to disk and kick the background AIL thread to reduce
1564 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1565 	 * the primary superblock buffer.  This isn't a data integrity
1566 	 * operation, so we don't need a synchronous push.
1567 	 */
1568 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1569 	if (error)
1570 		return error;
1571 	xfs_ail_push_all(mp->m_ail);
1572 
1573 	/*
1574 	 * Lock the primary superblock buffer to serialize all callers that
1575 	 * are trying to set feature bits.
1576 	 */
1577 	xfs_buf_lock(mp->m_sb_bp);
1578 	xfs_buf_hold(mp->m_sb_bp);
1579 
1580 	if (xfs_is_shutdown(mp)) {
1581 		error = -EIO;
1582 		goto rele;
1583 	}
1584 
1585 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1586 		goto rele;
1587 
1588 	/*
1589 	 * Write the primary superblock to disk immediately, because we need
1590 	 * the log_incompat bit to be set in the primary super now to protect
1591 	 * the log items that we're going to commit later.
1592 	 */
1593 	dsb = mp->m_sb_bp->b_addr;
1594 	xfs_sb_to_disk(dsb, &mp->m_sb);
1595 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1596 	error = xfs_bwrite(mp->m_sb_bp);
1597 	if (error)
1598 		goto shutdown;
1599 
1600 	/*
1601 	 * Add the feature bits to the incore superblock before we unlock the
1602 	 * buffer.
1603 	 */
1604 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1605 	xfs_buf_relse(mp->m_sb_bp);
1606 
1607 	/* Log the superblock to disk. */
1608 	return xfs_sync_sb(mp, false);
1609 shutdown:
1610 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1611 rele:
1612 	xfs_buf_relse(mp->m_sb_bp);
1613 	return error;
1614 }
1615 
1616 /*
1617  * Clear all the log incompat flags from the superblock.
1618  *
1619  * The caller cannot be in a transaction, must ensure that the log does not
1620  * contain any log items protected by any log incompat bit, and must ensure
1621  * that there are no other threads that depend on the state of the log incompat
1622  * feature flags in the primary super.
1623  *
1624  * Returns true if the superblock is dirty.
1625  */
1626 bool
1627 xfs_clear_incompat_log_features(
1628 	struct xfs_mount	*mp)
1629 {
1630 	bool			ret = false;
1631 
1632 	if (!xfs_has_crc(mp) ||
1633 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1634 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1635 	    xfs_is_shutdown(mp) ||
1636 	    !xfs_is_done_with_log_incompat(mp))
1637 		return false;
1638 
1639 	/*
1640 	 * Update the incore superblock.  We synchronize on the primary super
1641 	 * buffer lock to be consistent with the add function, though at least
1642 	 * in theory this shouldn't be necessary.
1643 	 */
1644 	xfs_buf_lock(mp->m_sb_bp);
1645 	xfs_buf_hold(mp->m_sb_bp);
1646 
1647 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1648 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1649 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1650 		ret = true;
1651 	}
1652 
1653 	xfs_buf_relse(mp->m_sb_bp);
1654 	return ret;
1655 }
1656 
1657 /*
1658  * Update the in-core delayed block counter.
1659  *
1660  * We prefer to update the counter without having to take a spinlock for every
1661  * counter update (i.e. batching).  Each change to delayed allocation
1662  * reservations can change can easily exceed the default percpu counter
1663  * batching, so we use a larger batch factor here.
1664  *
1665  * Note that we don't currently have any callers requiring fast summation
1666  * (e.g. percpu_counter_read) so we can use a big batch value here.
1667  */
1668 #define XFS_DELALLOC_BATCH	(4096)
1669 void
1670 xfs_mod_delalloc(
1671 	struct xfs_inode	*ip,
1672 	int64_t			data_delta,
1673 	int64_t			ind_delta)
1674 {
1675 	struct xfs_mount	*mp = ip->i_mount;
1676 
1677 	if (XFS_IS_REALTIME_INODE(ip)) {
1678 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1679 				xfs_blen_to_rtbxlen(mp, data_delta),
1680 				XFS_DELALLOC_BATCH);
1681 		if (!ind_delta)
1682 			return;
1683 		data_delta = 0;
1684 	}
1685 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1686 			XFS_DELALLOC_BATCH);
1687 }
1688