1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "xfs_metafile.h" 39 #include "xfs_rtgroup.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtrefcount_btree.h" 42 #include "scrub/stats.h" 43 #include "xfs_zone_alloc.h" 44 45 static DEFINE_MUTEX(xfs_uuid_table_mutex); 46 static int xfs_uuid_table_size; 47 static uuid_t *xfs_uuid_table; 48 49 void 50 xfs_uuid_table_free(void) 51 { 52 if (xfs_uuid_table_size == 0) 53 return; 54 kfree(xfs_uuid_table); 55 xfs_uuid_table = NULL; 56 xfs_uuid_table_size = 0; 57 } 58 59 /* 60 * See if the UUID is unique among mounted XFS filesystems. 61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 62 */ 63 STATIC int 64 xfs_uuid_mount( 65 struct xfs_mount *mp) 66 { 67 uuid_t *uuid = &mp->m_sb.sb_uuid; 68 int hole, i; 69 70 /* Publish UUID in struct super_block */ 71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 72 73 if (xfs_has_nouuid(mp)) 74 return 0; 75 76 if (uuid_is_null(uuid)) { 77 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 78 return -EINVAL; 79 } 80 81 mutex_lock(&xfs_uuid_table_mutex); 82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 83 if (uuid_is_null(&xfs_uuid_table[i])) { 84 hole = i; 85 continue; 86 } 87 if (uuid_equal(uuid, &xfs_uuid_table[i])) 88 goto out_duplicate; 89 } 90 91 if (hole < 0) { 92 xfs_uuid_table = krealloc(xfs_uuid_table, 93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 94 GFP_KERNEL | __GFP_NOFAIL); 95 hole = xfs_uuid_table_size++; 96 } 97 xfs_uuid_table[hole] = *uuid; 98 mutex_unlock(&xfs_uuid_table_mutex); 99 100 return 0; 101 102 out_duplicate: 103 mutex_unlock(&xfs_uuid_table_mutex); 104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 105 return -EINVAL; 106 } 107 108 STATIC void 109 xfs_uuid_unmount( 110 struct xfs_mount *mp) 111 { 112 uuid_t *uuid = &mp->m_sb.sb_uuid; 113 int i; 114 115 if (xfs_has_nouuid(mp)) 116 return; 117 118 mutex_lock(&xfs_uuid_table_mutex); 119 for (i = 0; i < xfs_uuid_table_size; i++) { 120 if (uuid_is_null(&xfs_uuid_table[i])) 121 continue; 122 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 123 continue; 124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 125 break; 126 } 127 ASSERT(i < xfs_uuid_table_size); 128 mutex_unlock(&xfs_uuid_table_mutex); 129 } 130 131 /* 132 * Check size of device based on the (data/realtime) block count. 133 * Note: this check is used by the growfs code as well as mount. 134 */ 135 int 136 xfs_sb_validate_fsb_count( 137 xfs_sb_t *sbp, 138 uint64_t nblocks) 139 { 140 uint64_t max_bytes; 141 142 ASSERT(sbp->sb_blocklog >= BBSHIFT); 143 144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 145 return -EFBIG; 146 147 /* Limited by ULONG_MAX of page cache index */ 148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 149 return -EFBIG; 150 return 0; 151 } 152 153 /* 154 * xfs_readsb 155 * 156 * Does the initial read of the superblock. 157 */ 158 int 159 xfs_readsb( 160 struct xfs_mount *mp, 161 int flags) 162 { 163 unsigned int sector_size; 164 struct xfs_buf *bp; 165 struct xfs_sb *sbp = &mp->m_sb; 166 int error; 167 int loud = !(flags & XFS_MFSI_QUIET); 168 const struct xfs_buf_ops *buf_ops; 169 170 ASSERT(mp->m_sb_bp == NULL); 171 ASSERT(mp->m_ddev_targp != NULL); 172 173 /* 174 * In the first pass, use the device sector size to just read enough 175 * of the superblock to extract the XFS sector size. 176 * 177 * The device sector size must be smaller than or equal to the XFS 178 * sector size and thus we can always read the superblock. Once we know 179 * the XFS sector size, re-read it and run the buffer verifier. 180 */ 181 sector_size = mp->m_ddev_targp->bt_logical_sectorsize; 182 buf_ops = NULL; 183 184 reread: 185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 186 BTOBB(sector_size), &bp, buf_ops); 187 if (error) { 188 if (loud) 189 xfs_warn(mp, "SB validate failed with error %d.", error); 190 /* bad CRC means corrupted metadata */ 191 if (error == -EFSBADCRC) 192 error = -EFSCORRUPTED; 193 return error; 194 } 195 196 /* 197 * Initialize the mount structure from the superblock. 198 */ 199 xfs_sb_from_disk(sbp, bp->b_addr); 200 201 /* 202 * If we haven't validated the superblock, do so now before we try 203 * to check the sector size and reread the superblock appropriately. 204 */ 205 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 206 if (loud) 207 xfs_warn(mp, "Invalid superblock magic number"); 208 error = -EINVAL; 209 goto release_buf; 210 } 211 212 /* 213 * We must be able to do sector-sized and sector-aligned IO. 214 */ 215 if (sector_size > sbp->sb_sectsize) { 216 if (loud) 217 xfs_warn(mp, "device supports %u byte sectors (not %u)", 218 sector_size, sbp->sb_sectsize); 219 error = -ENOSYS; 220 goto release_buf; 221 } 222 223 if (buf_ops == NULL) { 224 /* 225 * Re-read the superblock so the buffer is correctly sized, 226 * and properly verified. 227 */ 228 xfs_buf_relse(bp); 229 sector_size = sbp->sb_sectsize; 230 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 231 goto reread; 232 } 233 234 mp->m_features |= xfs_sb_version_to_features(sbp); 235 xfs_reinit_percpu_counters(mp); 236 237 /* 238 * If logged xattrs are enabled after log recovery finishes, then set 239 * the opstate so that log recovery will work properly. 240 */ 241 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 242 xfs_set_using_logged_xattrs(mp); 243 244 /* no need to be quiet anymore, so reset the buf ops */ 245 bp->b_ops = &xfs_sb_buf_ops; 246 247 /* 248 * Keep a pointer of the sb buffer around instead of caching it in the 249 * buffer cache because we access it frequently. 250 */ 251 mp->m_sb_bp = bp; 252 xfs_buf_unlock(bp); 253 return 0; 254 255 release_buf: 256 xfs_buf_relse(bp); 257 return error; 258 } 259 260 /* 261 * If the sunit/swidth change would move the precomputed root inode value, we 262 * must reject the ondisk change because repair will stumble over that. 263 * However, we allow the mount to proceed because we never rejected this 264 * combination before. Returns true to update the sb, false otherwise. 265 */ 266 static inline int 267 xfs_check_new_dalign( 268 struct xfs_mount *mp, 269 int new_dalign, 270 bool *update_sb) 271 { 272 struct xfs_sb *sbp = &mp->m_sb; 273 xfs_ino_t calc_ino; 274 275 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 276 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 277 278 if (sbp->sb_rootino == calc_ino) { 279 *update_sb = true; 280 return 0; 281 } 282 283 xfs_warn(mp, 284 "Cannot change stripe alignment; would require moving root inode."); 285 286 /* 287 * XXX: Next time we add a new incompat feature, this should start 288 * returning -EINVAL to fail the mount. Until then, spit out a warning 289 * that we're ignoring the administrator's instructions. 290 */ 291 xfs_warn(mp, "Skipping superblock stripe alignment update."); 292 *update_sb = false; 293 return 0; 294 } 295 296 /* 297 * If we were provided with new sunit/swidth values as mount options, make sure 298 * that they pass basic alignment and superblock feature checks, and convert 299 * them into the same units (FSB) that everything else expects. This step 300 * /must/ be done before computing the inode geometry. 301 */ 302 STATIC int 303 xfs_validate_new_dalign( 304 struct xfs_mount *mp) 305 { 306 if (mp->m_dalign == 0) 307 return 0; 308 309 /* 310 * If stripe unit and stripe width are not multiples 311 * of the fs blocksize turn off alignment. 312 */ 313 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 314 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 315 xfs_warn(mp, 316 "alignment check failed: sunit/swidth vs. blocksize(%d)", 317 mp->m_sb.sb_blocksize); 318 return -EINVAL; 319 } 320 321 /* 322 * Convert the stripe unit and width to FSBs. 323 */ 324 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 325 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 326 xfs_warn(mp, 327 "alignment check failed: sunit/swidth vs. agsize(%d)", 328 mp->m_sb.sb_agblocks); 329 return -EINVAL; 330 } 331 332 if (!mp->m_dalign) { 333 xfs_warn(mp, 334 "alignment check failed: sunit(%d) less than bsize(%d)", 335 mp->m_dalign, mp->m_sb.sb_blocksize); 336 return -EINVAL; 337 } 338 339 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 340 341 if (!xfs_has_dalign(mp)) { 342 xfs_warn(mp, 343 "cannot change alignment: superblock does not support data alignment"); 344 return -EINVAL; 345 } 346 347 return 0; 348 } 349 350 /* Update alignment values based on mount options and sb values. */ 351 STATIC int 352 xfs_update_alignment( 353 struct xfs_mount *mp) 354 { 355 struct xfs_sb *sbp = &mp->m_sb; 356 357 if (mp->m_dalign) { 358 bool update_sb; 359 int error; 360 361 if (sbp->sb_unit == mp->m_dalign && 362 sbp->sb_width == mp->m_swidth) 363 return 0; 364 365 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 366 if (error || !update_sb) 367 return error; 368 369 sbp->sb_unit = mp->m_dalign; 370 sbp->sb_width = mp->m_swidth; 371 mp->m_update_sb = true; 372 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 373 mp->m_dalign = sbp->sb_unit; 374 mp->m_swidth = sbp->sb_width; 375 } 376 377 return 0; 378 } 379 380 /* 381 * precalculate the low space thresholds for dynamic speculative preallocation. 382 */ 383 void 384 xfs_set_low_space_thresholds( 385 struct xfs_mount *mp) 386 { 387 uint64_t dblocks = mp->m_sb.sb_dblocks; 388 uint64_t rtexts = mp->m_sb.sb_rextents; 389 int i; 390 391 do_div(dblocks, 100); 392 do_div(rtexts, 100); 393 394 for (i = 0; i < XFS_LOWSP_MAX; i++) { 395 mp->m_low_space[i] = dblocks * (i + 1); 396 mp->m_low_rtexts[i] = rtexts * (i + 1); 397 } 398 } 399 400 /* 401 * Check that the data (and log if separate) is an ok size. 402 */ 403 STATIC int 404 xfs_check_sizes( 405 struct xfs_mount *mp) 406 { 407 struct xfs_buf *bp; 408 xfs_daddr_t d; 409 int error; 410 411 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 412 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 413 xfs_warn(mp, "filesystem size mismatch detected"); 414 return -EFBIG; 415 } 416 error = xfs_buf_read_uncached(mp->m_ddev_targp, 417 d - XFS_FSS_TO_BB(mp, 1), 418 XFS_FSS_TO_BB(mp, 1), &bp, NULL); 419 if (error) { 420 xfs_warn(mp, "last sector read failed"); 421 return error; 422 } 423 xfs_buf_relse(bp); 424 425 if (mp->m_logdev_targp == mp->m_ddev_targp) 426 return 0; 427 428 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 429 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 430 xfs_warn(mp, "log size mismatch detected"); 431 return -EFBIG; 432 } 433 error = xfs_buf_read_uncached(mp->m_logdev_targp, 434 d - XFS_FSB_TO_BB(mp, 1), 435 XFS_FSB_TO_BB(mp, 1), &bp, NULL); 436 if (error) { 437 xfs_warn(mp, "log device read failed"); 438 return error; 439 } 440 xfs_buf_relse(bp); 441 return 0; 442 } 443 444 /* 445 * Clear the quotaflags in memory and in the superblock. 446 */ 447 int 448 xfs_mount_reset_sbqflags( 449 struct xfs_mount *mp) 450 { 451 mp->m_qflags = 0; 452 453 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 454 if (mp->m_sb.sb_qflags == 0) 455 return 0; 456 spin_lock(&mp->m_sb_lock); 457 mp->m_sb.sb_qflags = 0; 458 spin_unlock(&mp->m_sb_lock); 459 460 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 461 return 0; 462 463 return xfs_sync_sb(mp, false); 464 } 465 466 static const char *const xfs_free_pool_name[] = { 467 [XC_FREE_BLOCKS] = "free blocks", 468 [XC_FREE_RTEXTENTS] = "free rt extents", 469 [XC_FREE_RTAVAILABLE] = "available rt extents", 470 }; 471 472 uint64_t 473 xfs_default_resblks( 474 struct xfs_mount *mp, 475 enum xfs_free_counter ctr) 476 { 477 switch (ctr) { 478 case XC_FREE_BLOCKS: 479 /* 480 * Default to 5% or 8192 FSBs of space reserved, whichever is 481 * smaller. 482 * 483 * This is intended to cover concurrent allocation transactions 484 * when we initially hit ENOSPC. These each require a 4 block 485 * reservation. Hence by default we cover roughly 2000 486 * concurrent allocation reservations. 487 */ 488 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL); 489 case XC_FREE_RTEXTENTS: 490 case XC_FREE_RTAVAILABLE: 491 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp)) 492 return xfs_zoned_default_resblks(mp, ctr); 493 return 0; 494 default: 495 ASSERT(0); 496 return 0; 497 } 498 } 499 500 /* Ensure the summary counts are correct. */ 501 STATIC int 502 xfs_check_summary_counts( 503 struct xfs_mount *mp) 504 { 505 int error = 0; 506 507 /* 508 * The AG0 superblock verifier rejects in-progress filesystems, 509 * so we should never see the flag set this far into mounting. 510 */ 511 if (mp->m_sb.sb_inprogress) { 512 xfs_err(mp, "sb_inprogress set after log recovery??"); 513 WARN_ON(1); 514 return -EFSCORRUPTED; 515 } 516 517 /* 518 * Now the log is mounted, we know if it was an unclean shutdown or 519 * not. If it was, with the first phase of recovery has completed, we 520 * have consistent AG blocks on disk. We have not recovered EFIs yet, 521 * but they are recovered transactionally in the second recovery phase 522 * later. 523 * 524 * If the log was clean when we mounted, we can check the summary 525 * counters. If any of them are obviously incorrect, we can recompute 526 * them from the AGF headers in the next step. 527 */ 528 if (xfs_is_clean(mp) && 529 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 530 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 531 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 532 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 533 534 /* 535 * We can safely re-initialise incore superblock counters from the 536 * per-ag data. These may not be correct if the filesystem was not 537 * cleanly unmounted, so we waited for recovery to finish before doing 538 * this. 539 * 540 * If the filesystem was cleanly unmounted or the previous check did 541 * not flag anything weird, then we can trust the values in the 542 * superblock to be correct and we don't need to do anything here. 543 * Otherwise, recalculate the summary counters. 544 */ 545 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 546 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 547 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 548 if (error) 549 return error; 550 } 551 552 /* 553 * Older kernels misused sb_frextents to reflect both incore 554 * reservations made by running transactions and the actual count of 555 * free rt extents in the ondisk metadata. Transactions committed 556 * during runtime can therefore contain a superblock update that 557 * undercounts the number of free rt extents tracked in the rt bitmap. 558 * A clean unmount record will have the correct frextents value since 559 * there can be no other transactions running at that point. 560 * 561 * If we're mounting the rt volume after recovering the log, recompute 562 * frextents from the rtbitmap file to fix the inconsistency. 563 */ 564 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) { 565 error = xfs_rtalloc_reinit_frextents(mp); 566 if (error) 567 return error; 568 } 569 570 return 0; 571 } 572 573 static void 574 xfs_unmount_check( 575 struct xfs_mount *mp) 576 { 577 if (xfs_is_shutdown(mp)) 578 return; 579 580 if (percpu_counter_sum(&mp->m_ifree) > 581 percpu_counter_sum(&mp->m_icount)) { 582 xfs_alert(mp, "ifree/icount mismatch at unmount"); 583 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 584 } 585 } 586 587 /* 588 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 589 * internal inode structures can be sitting in the CIL and AIL at this point, 590 * so we need to unpin them, write them back and/or reclaim them before unmount 591 * can proceed. In other words, callers are required to have inactivated all 592 * inodes. 593 * 594 * An inode cluster that has been freed can have its buffer still pinned in 595 * memory because the transaction is still sitting in a iclog. The stale inodes 596 * on that buffer will be pinned to the buffer until the transaction hits the 597 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 598 * may never see the pinned buffer, so nothing will push out the iclog and 599 * unpin the buffer. 600 * 601 * Hence we need to force the log to unpin everything first. However, log 602 * forces don't wait for the discards they issue to complete, so we have to 603 * explicitly wait for them to complete here as well. 604 * 605 * Then we can tell the world we are unmounting so that error handling knows 606 * that the filesystem is going away and we should error out anything that we 607 * have been retrying in the background. This will prevent never-ending 608 * retries in AIL pushing from hanging the unmount. 609 * 610 * Finally, we can push the AIL to clean all the remaining dirty objects, then 611 * reclaim the remaining inodes that are still in memory at this point in time. 612 */ 613 static void 614 xfs_unmount_flush_inodes( 615 struct xfs_mount *mp) 616 { 617 xfs_log_force(mp, XFS_LOG_SYNC); 618 xfs_extent_busy_wait_all(mp); 619 flush_workqueue(xfs_discard_wq); 620 621 xfs_set_unmounting(mp); 622 623 xfs_ail_push_all_sync(mp->m_ail); 624 xfs_inodegc_stop(mp); 625 cancel_delayed_work_sync(&mp->m_reclaim_work); 626 xfs_reclaim_inodes(mp); 627 xfs_health_unmount(mp); 628 } 629 630 static void 631 xfs_mount_setup_inode_geom( 632 struct xfs_mount *mp) 633 { 634 struct xfs_ino_geometry *igeo = M_IGEO(mp); 635 636 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 637 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 638 639 xfs_ialloc_setup_geometry(mp); 640 } 641 642 /* Mount the metadata directory tree root. */ 643 STATIC int 644 xfs_mount_setup_metadir( 645 struct xfs_mount *mp) 646 { 647 int error; 648 649 /* Load the metadata directory root inode into memory. */ 650 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, 651 &mp->m_metadirip); 652 if (error) 653 xfs_warn(mp, "Failed to load metadir root directory, error %d", 654 error); 655 return error; 656 } 657 658 /* Compute maximum possible height for per-AG btree types for this fs. */ 659 static inline void 660 xfs_agbtree_compute_maxlevels( 661 struct xfs_mount *mp) 662 { 663 unsigned int levels; 664 665 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 666 levels = max(levels, mp->m_rmap_maxlevels); 667 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 668 } 669 670 /* Maximum atomic write IO size that the kernel allows. */ 671 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp) 672 { 673 return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT)); 674 } 675 676 static inline unsigned int max_pow_of_two_factor(const unsigned int nr) 677 { 678 return 1 << (ffs(nr) - 1); 679 } 680 681 /* 682 * If the underlying device advertises atomic write support, limit the size of 683 * atomic writes to the greatest power-of-two factor of the group size so 684 * that every atomic write unit aligns with the start of every group. This is 685 * required so that the allocations for an atomic write will always be 686 * aligned compatibly with the alignment requirements of the storage. 687 * 688 * If the device doesn't advertise atomic writes, then there are no alignment 689 * restrictions and the largest out-of-place write we can do ourselves is the 690 * number of blocks that user files can allocate from any group. 691 */ 692 static xfs_extlen_t 693 xfs_calc_group_awu_max( 694 struct xfs_mount *mp, 695 enum xfs_group_type type) 696 { 697 struct xfs_groups *g = &mp->m_groups[type]; 698 struct xfs_buftarg *btp = xfs_group_type_buftarg(mp, type); 699 700 if (g->blocks == 0) 701 return 0; 702 if (btp && btp->bt_awu_min > 0) 703 return max_pow_of_two_factor(g->blocks); 704 return rounddown_pow_of_two(g->blocks); 705 } 706 707 /* Compute the maximum atomic write unit size for each section. */ 708 static inline void 709 xfs_calc_atomic_write_unit_max( 710 struct xfs_mount *mp, 711 enum xfs_group_type type) 712 { 713 struct xfs_groups *g = &mp->m_groups[type]; 714 715 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); 716 const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp); 717 const xfs_extlen_t max_gsize = xfs_calc_group_awu_max(mp, type); 718 719 g->awu_max = min3(max_write, max_ioend, max_gsize); 720 trace_xfs_calc_atomic_write_unit_max(mp, type, max_write, max_ioend, 721 max_gsize, g->awu_max); 722 } 723 724 /* 725 * Try to set the atomic write maximum to a new value that we got from 726 * userspace via mount option. 727 */ 728 int 729 xfs_set_max_atomic_write_opt( 730 struct xfs_mount *mp, 731 unsigned long long new_max_bytes) 732 { 733 const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes); 734 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); 735 const xfs_extlen_t max_group = 736 max(mp->m_groups[XG_TYPE_AG].blocks, 737 mp->m_groups[XG_TYPE_RTG].blocks); 738 const xfs_extlen_t max_group_write = 739 max(xfs_calc_group_awu_max(mp, XG_TYPE_AG), 740 xfs_calc_group_awu_max(mp, XG_TYPE_RTG)); 741 int error; 742 743 if (new_max_bytes == 0) 744 goto set_limit; 745 746 ASSERT(max_write <= U32_MAX); 747 748 /* generic_atomic_write_valid enforces power of two length */ 749 if (!is_power_of_2(new_max_bytes)) { 750 xfs_warn(mp, 751 "max atomic write size of %llu bytes is not a power of 2", 752 new_max_bytes); 753 return -EINVAL; 754 } 755 756 if (new_max_bytes & mp->m_blockmask) { 757 xfs_warn(mp, 758 "max atomic write size of %llu bytes not aligned with fsblock", 759 new_max_bytes); 760 return -EINVAL; 761 } 762 763 if (new_max_fsbs > max_write) { 764 xfs_warn(mp, 765 "max atomic write size of %lluk cannot be larger than max write size %lluk", 766 new_max_bytes >> 10, 767 XFS_FSB_TO_B(mp, max_write) >> 10); 768 return -EINVAL; 769 } 770 771 if (new_max_fsbs > max_group) { 772 xfs_warn(mp, 773 "max atomic write size of %lluk cannot be larger than allocation group size %lluk", 774 new_max_bytes >> 10, 775 XFS_FSB_TO_B(mp, max_group) >> 10); 776 return -EINVAL; 777 } 778 779 if (new_max_fsbs > max_group_write) { 780 xfs_warn(mp, 781 "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk", 782 new_max_bytes >> 10, 783 XFS_FSB_TO_B(mp, max_group_write) >> 10); 784 return -EINVAL; 785 } 786 787 set_limit: 788 error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs); 789 if (error) { 790 xfs_warn(mp, 791 "cannot support completing atomic writes of %lluk", 792 new_max_bytes >> 10); 793 return error; 794 } 795 796 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_AG); 797 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_RTG); 798 mp->m_awu_max_bytes = new_max_bytes; 799 return 0; 800 } 801 802 /* Compute maximum possible height for realtime btree types for this fs. */ 803 static inline void 804 xfs_rtbtree_compute_maxlevels( 805 struct xfs_mount *mp) 806 { 807 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, 808 mp->m_rtrefc_maxlevels); 809 } 810 811 /* 812 * This function does the following on an initial mount of a file system: 813 * - reads the superblock from disk and init the mount struct 814 * - if we're a 32-bit kernel, do a size check on the superblock 815 * so we don't mount terabyte filesystems 816 * - init mount struct realtime fields 817 * - allocate inode hash table for fs 818 * - init directory manager 819 * - perform recovery and init the log manager 820 */ 821 int 822 xfs_mountfs( 823 struct xfs_mount *mp) 824 { 825 struct xfs_sb *sbp = &(mp->m_sb); 826 struct xfs_inode *rip; 827 struct xfs_ino_geometry *igeo = M_IGEO(mp); 828 uint quotamount = 0; 829 uint quotaflags = 0; 830 int error = 0; 831 int i; 832 833 xfs_sb_mount_common(mp, sbp); 834 835 /* 836 * Check for a mismatched features2 values. Older kernels read & wrote 837 * into the wrong sb offset for sb_features2 on some platforms due to 838 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 839 * which made older superblock reading/writing routines swap it as a 840 * 64-bit value. 841 * 842 * For backwards compatibility, we make both slots equal. 843 * 844 * If we detect a mismatched field, we OR the set bits into the existing 845 * features2 field in case it has already been modified; we don't want 846 * to lose any features. We then update the bad location with the ORed 847 * value so that older kernels will see any features2 flags. The 848 * superblock writeback code ensures the new sb_features2 is copied to 849 * sb_bad_features2 before it is logged or written to disk. 850 */ 851 if (xfs_sb_has_mismatched_features2(sbp)) { 852 xfs_warn(mp, "correcting sb_features alignment problem"); 853 sbp->sb_features2 |= sbp->sb_bad_features2; 854 mp->m_update_sb = true; 855 } 856 857 858 /* always use v2 inodes by default now */ 859 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 860 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 861 mp->m_features |= XFS_FEAT_NLINK; 862 mp->m_update_sb = true; 863 } 864 865 /* 866 * If we were given new sunit/swidth options, do some basic validation 867 * checks and convert the incore dalign and swidth values to the 868 * same units (FSB) that everything else uses. This /must/ happen 869 * before computing the inode geometry. 870 */ 871 error = xfs_validate_new_dalign(mp); 872 if (error) 873 goto out; 874 875 xfs_alloc_compute_maxlevels(mp); 876 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 877 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 878 xfs_mount_setup_inode_geom(mp); 879 xfs_rmapbt_compute_maxlevels(mp); 880 xfs_rtrmapbt_compute_maxlevels(mp); 881 xfs_refcountbt_compute_maxlevels(mp); 882 xfs_rtrefcountbt_compute_maxlevels(mp); 883 884 xfs_agbtree_compute_maxlevels(mp); 885 xfs_rtbtree_compute_maxlevels(mp); 886 887 /* 888 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 889 * is NOT aligned turn off m_dalign since allocator alignment is within 890 * an ag, therefore ag has to be aligned at stripe boundary. Note that 891 * we must compute the free space and rmap btree geometry before doing 892 * this. 893 */ 894 error = xfs_update_alignment(mp); 895 if (error) 896 goto out; 897 898 /* enable fail_at_unmount as default */ 899 mp->m_fail_unmount = true; 900 901 error = xfs_mount_sysfs_init(mp); 902 if (error) 903 goto out_remove_scrub_stats; 904 905 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 906 907 error = xfs_errortag_init(mp); 908 if (error) 909 goto out_remove_sysfs; 910 911 error = xfs_uuid_mount(mp); 912 if (error) 913 goto out_remove_errortag; 914 915 /* 916 * Update the preferred write size based on the information from the 917 * on-disk superblock. 918 */ 919 mp->m_allocsize_log = 920 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 921 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 922 923 /* set the low space thresholds for dynamic preallocation */ 924 xfs_set_low_space_thresholds(mp); 925 926 /* 927 * If enabled, sparse inode chunk alignment is expected to match the 928 * cluster size. Full inode chunk alignment must match the chunk size, 929 * but that is checked on sb read verification... 930 */ 931 if (xfs_has_sparseinodes(mp) && 932 mp->m_sb.sb_spino_align != 933 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 934 xfs_warn(mp, 935 "Sparse inode block alignment (%u) must match cluster size (%llu).", 936 mp->m_sb.sb_spino_align, 937 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 938 error = -EINVAL; 939 goto out_remove_uuid; 940 } 941 942 /* 943 * Check that the data (and log if separate) is an ok size. 944 */ 945 error = xfs_check_sizes(mp); 946 if (error) 947 goto out_remove_uuid; 948 949 /* 950 * Initialize realtime fields in the mount structure 951 */ 952 error = xfs_rtmount_init(mp); 953 if (error) { 954 xfs_warn(mp, "RT mount failed"); 955 goto out_remove_uuid; 956 } 957 958 /* 959 * Copies the low order bits of the timestamp and the randomly 960 * set "sequence" number out of a UUID. 961 */ 962 mp->m_fixedfsid[0] = 963 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 964 get_unaligned_be16(&sbp->sb_uuid.b[4]); 965 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 966 967 error = xfs_da_mount(mp); 968 if (error) { 969 xfs_warn(mp, "Failed dir/attr init: %d", error); 970 goto out_remove_uuid; 971 } 972 973 /* 974 * Initialize the precomputed transaction reservations values. 975 */ 976 xfs_trans_init(mp); 977 978 /* 979 * Allocate and initialize the per-ag data. 980 */ 981 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 982 mp->m_sb.sb_dblocks, &mp->m_maxagi); 983 if (error) { 984 xfs_warn(mp, "Failed per-ag init: %d", error); 985 goto out_free_dir; 986 } 987 988 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, 989 mp->m_sb.sb_rextents); 990 if (error) { 991 xfs_warn(mp, "Failed rtgroup init: %d", error); 992 goto out_free_perag; 993 } 994 995 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 996 xfs_warn(mp, "no log defined"); 997 error = -EFSCORRUPTED; 998 goto out_free_rtgroup; 999 } 1000 1001 error = xfs_inodegc_register_shrinker(mp); 1002 if (error) 1003 goto out_fail_wait; 1004 1005 /* 1006 * If we're resuming quota status, pick up the preliminary qflags from 1007 * the ondisk superblock so that we know if we should recover dquots. 1008 */ 1009 if (xfs_is_resuming_quotaon(mp)) 1010 xfs_qm_resume_quotaon(mp); 1011 1012 /* 1013 * Log's mount-time initialization. The first part of recovery can place 1014 * some items on the AIL, to be handled when recovery is finished or 1015 * cancelled. 1016 */ 1017 error = xfs_log_mount(mp, mp->m_logdev_targp, 1018 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1019 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1020 if (error) { 1021 xfs_warn(mp, "log mount failed"); 1022 goto out_inodegc_shrinker; 1023 } 1024 1025 /* 1026 * If we're resuming quota status and recovered the log, re-sample the 1027 * qflags from the ondisk superblock now that we've recovered it, just 1028 * in case someone shut down enforcement just before a crash. 1029 */ 1030 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log)) 1031 xfs_qm_resume_quotaon(mp); 1032 1033 /* 1034 * If logged xattrs are still enabled after log recovery finishes, then 1035 * they'll be available until unmount. Otherwise, turn them off. 1036 */ 1037 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 1038 xfs_set_using_logged_xattrs(mp); 1039 else 1040 xfs_clear_using_logged_xattrs(mp); 1041 1042 /* Enable background inode inactivation workers. */ 1043 xfs_inodegc_start(mp); 1044 xfs_blockgc_start(mp); 1045 1046 /* 1047 * Now that we've recovered any pending superblock feature bit 1048 * additions, we can finish setting up the attr2 behaviour for the 1049 * mount. The noattr2 option overrides the superblock flag, so only 1050 * check the superblock feature flag if the mount option is not set. 1051 */ 1052 if (xfs_has_noattr2(mp)) { 1053 mp->m_features &= ~XFS_FEAT_ATTR2; 1054 } else if (!xfs_has_attr2(mp) && 1055 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 1056 mp->m_features |= XFS_FEAT_ATTR2; 1057 } 1058 1059 if (xfs_has_metadir(mp)) { 1060 error = xfs_mount_setup_metadir(mp); 1061 if (error) 1062 goto out_free_metadir; 1063 } 1064 1065 /* 1066 * Get and sanity-check the root inode. 1067 * Save the pointer to it in the mount structure. 1068 */ 1069 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 1070 XFS_ILOCK_EXCL, &rip); 1071 if (error) { 1072 xfs_warn(mp, 1073 "Failed to read root inode 0x%llx, error %d", 1074 sbp->sb_rootino, -error); 1075 goto out_free_metadir; 1076 } 1077 1078 ASSERT(rip != NULL); 1079 1080 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 1081 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1082 (unsigned long long)rip->i_ino); 1083 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1084 error = -EFSCORRUPTED; 1085 goto out_rele_rip; 1086 } 1087 mp->m_rootip = rip; /* save it */ 1088 1089 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1090 1091 /* 1092 * Initialize realtime inode pointers in the mount structure 1093 */ 1094 error = xfs_rtmount_inodes(mp); 1095 if (error) { 1096 /* 1097 * Free up the root inode. 1098 */ 1099 xfs_warn(mp, "failed to read RT inodes"); 1100 goto out_rele_rip; 1101 } 1102 1103 /* Make sure the summary counts are ok. */ 1104 error = xfs_check_summary_counts(mp); 1105 if (error) 1106 goto out_rtunmount; 1107 1108 /* 1109 * If this is a read-only mount defer the superblock updates until 1110 * the next remount into writeable mode. Otherwise we would never 1111 * perform the update e.g. for the root filesystem. 1112 */ 1113 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 1114 error = xfs_sync_sb(mp, false); 1115 if (error) { 1116 xfs_warn(mp, "failed to write sb changes"); 1117 goto out_rtunmount; 1118 } 1119 } 1120 1121 /* 1122 * Initialise the XFS quota management subsystem for this mount 1123 */ 1124 if (XFS_IS_QUOTA_ON(mp)) { 1125 error = xfs_qm_newmount(mp, "amount, "aflags); 1126 if (error) 1127 goto out_rtunmount; 1128 } else { 1129 /* 1130 * If a file system had quotas running earlier, but decided to 1131 * mount without -o uquota/pquota/gquota options, revoke the 1132 * quotachecked license. 1133 */ 1134 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1135 xfs_notice(mp, "resetting quota flags"); 1136 error = xfs_mount_reset_sbqflags(mp); 1137 if (error) 1138 goto out_rtunmount; 1139 } 1140 } 1141 1142 /* 1143 * Finish recovering the file system. This part needed to be delayed 1144 * until after the root and real-time bitmap inodes were consistently 1145 * read in. Temporarily create per-AG space reservations for metadata 1146 * btree shape changes because space freeing transactions (for inode 1147 * inactivation) require the per-AG reservation in lieu of reserving 1148 * blocks. 1149 */ 1150 error = xfs_fs_reserve_ag_blocks(mp); 1151 if (error && error == -ENOSPC) 1152 xfs_warn(mp, 1153 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 1154 error = xfs_log_mount_finish(mp); 1155 xfs_fs_unreserve_ag_blocks(mp); 1156 if (error) { 1157 xfs_warn(mp, "log mount finish failed"); 1158 goto out_rtunmount; 1159 } 1160 1161 /* 1162 * Now the log is fully replayed, we can transition to full read-only 1163 * mode for read-only mounts. This will sync all the metadata and clean 1164 * the log so that the recovery we just performed does not have to be 1165 * replayed again on the next mount. 1166 * 1167 * We use the same quiesce mechanism as the rw->ro remount, as they are 1168 * semantically identical operations. 1169 */ 1170 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 1171 xfs_log_clean(mp); 1172 1173 if (xfs_has_zoned(mp)) { 1174 error = xfs_mount_zones(mp); 1175 if (error) 1176 goto out_rtunmount; 1177 } 1178 1179 /* 1180 * Complete the quota initialisation, post-log-replay component. 1181 */ 1182 if (quotamount) { 1183 ASSERT(mp->m_qflags == 0); 1184 mp->m_qflags = quotaflags; 1185 1186 xfs_qm_mount_quotas(mp); 1187 } 1188 1189 /* 1190 * Now we are mounted, reserve a small amount of unused space for 1191 * privileged transactions. This is needed so that transaction 1192 * space required for critical operations can dip into this pool 1193 * when at ENOSPC. This is needed for operations like create with 1194 * attr, unwritten extent conversion at ENOSPC, garbage collection 1195 * etc. Data allocations are not allowed to use this reserved space. 1196 * 1197 * This may drive us straight to ENOSPC on mount, but that implies 1198 * we were already there on the last unmount. Warn if this occurs. 1199 */ 1200 if (!xfs_is_readonly(mp)) { 1201 for (i = 0; i < XC_FREE_NR; i++) { 1202 error = xfs_reserve_blocks(mp, i, 1203 xfs_default_resblks(mp, i)); 1204 if (error) 1205 xfs_warn(mp, 1206 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.", 1207 xfs_free_pool_name[i]); 1208 } 1209 1210 /* Reserve AG blocks for future btree expansion. */ 1211 error = xfs_fs_reserve_ag_blocks(mp); 1212 if (error && error != -ENOSPC) 1213 goto out_agresv; 1214 1215 xfs_zone_gc_start(mp); 1216 } 1217 1218 /* 1219 * Pre-calculate atomic write unit max. This involves computations 1220 * derived from transaction reservations, so we must do this after the 1221 * log is fully initialized. 1222 */ 1223 error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes); 1224 if (error) 1225 goto out_agresv; 1226 1227 return 0; 1228 1229 out_agresv: 1230 xfs_fs_unreserve_ag_blocks(mp); 1231 xfs_qm_unmount_quotas(mp); 1232 if (xfs_has_zoned(mp)) 1233 xfs_unmount_zones(mp); 1234 out_rtunmount: 1235 xfs_rtunmount_inodes(mp); 1236 out_rele_rip: 1237 xfs_irele(rip); 1238 /* Clean out dquots that might be in memory after quotacheck. */ 1239 xfs_qm_unmount(mp); 1240 out_free_metadir: 1241 if (mp->m_metadirip) 1242 xfs_irele(mp->m_metadirip); 1243 1244 /* 1245 * Inactivate all inodes that might still be in memory after a log 1246 * intent recovery failure so that reclaim can free them. Metadata 1247 * inodes and the root directory shouldn't need inactivation, but the 1248 * mount failed for some reason, so pull down all the state and flee. 1249 */ 1250 xfs_inodegc_flush(mp); 1251 1252 /* 1253 * Flush all inode reclamation work and flush the log. 1254 * We have to do this /after/ rtunmount and qm_unmount because those 1255 * two will have scheduled delayed reclaim for the rt/quota inodes. 1256 * 1257 * This is slightly different from the unmountfs call sequence 1258 * because we could be tearing down a partially set up mount. In 1259 * particular, if log_mount_finish fails we bail out without calling 1260 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1261 * quota inodes. 1262 */ 1263 xfs_unmount_flush_inodes(mp); 1264 xfs_log_mount_cancel(mp); 1265 out_inodegc_shrinker: 1266 shrinker_free(mp->m_inodegc_shrinker); 1267 out_fail_wait: 1268 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1269 xfs_buftarg_drain(mp->m_logdev_targp); 1270 xfs_buftarg_drain(mp->m_ddev_targp); 1271 out_free_rtgroup: 1272 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1273 out_free_perag: 1274 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1275 out_free_dir: 1276 xfs_da_unmount(mp); 1277 out_remove_uuid: 1278 xfs_uuid_unmount(mp); 1279 out_remove_errortag: 1280 xfs_errortag_del(mp); 1281 out_remove_sysfs: 1282 xfs_mount_sysfs_del(mp); 1283 out_remove_scrub_stats: 1284 xchk_stats_unregister(mp->m_scrub_stats); 1285 out: 1286 return error; 1287 } 1288 1289 /* 1290 * This flushes out the inodes,dquots and the superblock, unmounts the 1291 * log and makes sure that incore structures are freed. 1292 */ 1293 void 1294 xfs_unmountfs( 1295 struct xfs_mount *mp) 1296 { 1297 int error; 1298 1299 /* 1300 * Perform all on-disk metadata updates required to inactivate inodes 1301 * that the VFS evicted earlier in the unmount process. Freeing inodes 1302 * and discarding CoW fork preallocations can cause shape changes to 1303 * the free inode and refcount btrees, respectively, so we must finish 1304 * this before we discard the metadata space reservations. Metadata 1305 * inodes and the root directory do not require inactivation. 1306 */ 1307 xfs_inodegc_flush(mp); 1308 1309 xfs_blockgc_stop(mp); 1310 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate)) 1311 xfs_zone_gc_stop(mp); 1312 xfs_fs_unreserve_ag_blocks(mp); 1313 xfs_qm_unmount_quotas(mp); 1314 if (xfs_has_zoned(mp)) 1315 xfs_unmount_zones(mp); 1316 xfs_rtunmount_inodes(mp); 1317 xfs_irele(mp->m_rootip); 1318 if (mp->m_metadirip) 1319 xfs_irele(mp->m_metadirip); 1320 1321 xfs_unmount_flush_inodes(mp); 1322 1323 xfs_qm_unmount(mp); 1324 1325 /* 1326 * Unreserve any blocks we have so that when we unmount we don't account 1327 * the reserved free space as used. This is really only necessary for 1328 * lazy superblock counting because it trusts the incore superblock 1329 * counters to be absolutely correct on clean unmount. 1330 * 1331 * We don't bother correcting this elsewhere for lazy superblock 1332 * counting because on mount of an unclean filesystem we reconstruct the 1333 * correct counter value and this is irrelevant. 1334 * 1335 * For non-lazy counter filesystems, this doesn't matter at all because 1336 * we only every apply deltas to the superblock and hence the incore 1337 * value does not matter.... 1338 */ 1339 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0); 1340 if (error) 1341 xfs_warn(mp, "Unable to free reserved block pool. " 1342 "Freespace may not be correct on next mount."); 1343 xfs_unmount_check(mp); 1344 1345 /* 1346 * Indicate that it's ok to clear log incompat bits before cleaning 1347 * the log and writing the unmount record. 1348 */ 1349 xfs_set_done_with_log_incompat(mp); 1350 xfs_log_unmount(mp); 1351 xfs_da_unmount(mp); 1352 xfs_uuid_unmount(mp); 1353 1354 #if defined(DEBUG) 1355 xfs_errortag_clearall(mp); 1356 #endif 1357 shrinker_free(mp->m_inodegc_shrinker); 1358 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1359 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1360 xfs_errortag_del(mp); 1361 xchk_stats_unregister(mp->m_scrub_stats); 1362 xfs_mount_sysfs_del(mp); 1363 } 1364 1365 /* 1366 * Determine whether modifications can proceed. The caller specifies the minimum 1367 * freeze level for which modifications should not be allowed. This allows 1368 * certain operations to proceed while the freeze sequence is in progress, if 1369 * necessary. 1370 */ 1371 bool 1372 xfs_fs_writable( 1373 struct xfs_mount *mp, 1374 int level) 1375 { 1376 ASSERT(level > SB_UNFROZEN); 1377 if ((mp->m_super->s_writers.frozen >= level) || 1378 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1379 return false; 1380 1381 return true; 1382 } 1383 1384 /* 1385 * Estimate the amount of free space that is not available to userspace and is 1386 * not explicitly reserved from the incore fdblocks. This includes: 1387 * 1388 * - The minimum number of blocks needed to support splitting a bmap btree 1389 * - The blocks currently in use by the freespace btrees because they record 1390 * the actual blocks that will fill per-AG metadata space reservations 1391 */ 1392 uint64_t 1393 xfs_freecounter_unavailable( 1394 struct xfs_mount *mp, 1395 enum xfs_free_counter ctr) 1396 { 1397 if (ctr != XC_FREE_BLOCKS) 1398 return 0; 1399 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1400 } 1401 1402 void 1403 xfs_add_freecounter( 1404 struct xfs_mount *mp, 1405 enum xfs_free_counter ctr, 1406 uint64_t delta) 1407 { 1408 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1409 uint64_t res_used; 1410 1411 /* 1412 * If the reserve pool is depleted, put blocks back into it first. 1413 * Most of the time the pool is full. 1414 */ 1415 if (likely(counter->res_avail == counter->res_total)) { 1416 percpu_counter_add(&counter->count, delta); 1417 return; 1418 } 1419 1420 spin_lock(&mp->m_sb_lock); 1421 res_used = counter->res_total - counter->res_avail; 1422 if (res_used > delta) { 1423 counter->res_avail += delta; 1424 } else { 1425 delta -= res_used; 1426 counter->res_avail = counter->res_total; 1427 percpu_counter_add(&counter->count, delta); 1428 } 1429 spin_unlock(&mp->m_sb_lock); 1430 } 1431 1432 1433 /* Adjust in-core free blocks or RT extents. */ 1434 int 1435 xfs_dec_freecounter( 1436 struct xfs_mount *mp, 1437 enum xfs_free_counter ctr, 1438 uint64_t delta, 1439 bool rsvd) 1440 { 1441 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1442 s32 batch; 1443 1444 ASSERT(ctr < XC_FREE_NR); 1445 1446 /* 1447 * Taking blocks away, need to be more accurate the closer we 1448 * are to zero. 1449 * 1450 * If the counter has a value of less than 2 * max batch size, 1451 * then make everything serialise as we are real close to 1452 * ENOSPC. 1453 */ 1454 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH, 1455 XFS_FDBLOCKS_BATCH) < 0) 1456 batch = 1; 1457 else 1458 batch = XFS_FDBLOCKS_BATCH; 1459 1460 /* 1461 * Set aside allocbt blocks because these blocks are tracked as free 1462 * space but not available for allocation. Technically this means that a 1463 * single reservation cannot consume all remaining free space, but the 1464 * ratio of allocbt blocks to usable free blocks should be rather small. 1465 * The tradeoff without this is that filesystems that maintain high 1466 * perag block reservations can over reserve physical block availability 1467 * and fail physical allocation, which leads to much more serious 1468 * problems (i.e. transaction abort, pagecache discards, etc.) than 1469 * slightly premature -ENOSPC. 1470 */ 1471 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch); 1472 if (__percpu_counter_compare(&counter->count, 1473 xfs_freecounter_unavailable(mp, ctr), 1474 XFS_FDBLOCKS_BATCH) < 0) { 1475 /* 1476 * Lock up the sb for dipping into reserves before releasing the 1477 * space that took us to ENOSPC. 1478 */ 1479 spin_lock(&mp->m_sb_lock); 1480 percpu_counter_add(&counter->count, delta); 1481 if (!rsvd) 1482 goto fdblocks_enospc; 1483 if (delta > counter->res_avail) { 1484 if (ctr == XC_FREE_BLOCKS) 1485 xfs_warn_once(mp, 1486 "Reserve blocks depleted! Consider increasing reserve pool size."); 1487 goto fdblocks_enospc; 1488 } 1489 counter->res_avail -= delta; 1490 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_); 1491 spin_unlock(&mp->m_sb_lock); 1492 } 1493 1494 /* we had space! */ 1495 return 0; 1496 1497 fdblocks_enospc: 1498 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_); 1499 spin_unlock(&mp->m_sb_lock); 1500 return -ENOSPC; 1501 } 1502 1503 /* 1504 * Used to free the superblock along various error paths. 1505 */ 1506 void 1507 xfs_freesb( 1508 struct xfs_mount *mp) 1509 { 1510 struct xfs_buf *bp = mp->m_sb_bp; 1511 1512 xfs_buf_lock(bp); 1513 mp->m_sb_bp = NULL; 1514 xfs_buf_relse(bp); 1515 } 1516 1517 /* 1518 * If the underlying (data/log/rt) device is readonly, there are some 1519 * operations that cannot proceed. 1520 */ 1521 int 1522 xfs_dev_is_read_only( 1523 struct xfs_mount *mp, 1524 char *message) 1525 { 1526 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1527 xfs_readonly_buftarg(mp->m_logdev_targp) || 1528 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1529 xfs_notice(mp, "%s required on read-only device.", message); 1530 xfs_notice(mp, "write access unavailable, cannot proceed."); 1531 return -EROFS; 1532 } 1533 return 0; 1534 } 1535 1536 /* Force the summary counters to be recalculated at next mount. */ 1537 void 1538 xfs_force_summary_recalc( 1539 struct xfs_mount *mp) 1540 { 1541 if (!xfs_has_lazysbcount(mp)) 1542 return; 1543 1544 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1545 } 1546 1547 /* 1548 * Enable a log incompat feature flag in the primary superblock. The caller 1549 * cannot have any other transactions in progress. 1550 */ 1551 int 1552 xfs_add_incompat_log_feature( 1553 struct xfs_mount *mp, 1554 uint32_t feature) 1555 { 1556 struct xfs_dsb *dsb; 1557 int error; 1558 1559 ASSERT(hweight32(feature) == 1); 1560 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1561 1562 /* 1563 * Force the log to disk and kick the background AIL thread to reduce 1564 * the chances that the bwrite will stall waiting for the AIL to unpin 1565 * the primary superblock buffer. This isn't a data integrity 1566 * operation, so we don't need a synchronous push. 1567 */ 1568 error = xfs_log_force(mp, XFS_LOG_SYNC); 1569 if (error) 1570 return error; 1571 xfs_ail_push_all(mp->m_ail); 1572 1573 /* 1574 * Lock the primary superblock buffer to serialize all callers that 1575 * are trying to set feature bits. 1576 */ 1577 xfs_buf_lock(mp->m_sb_bp); 1578 xfs_buf_hold(mp->m_sb_bp); 1579 1580 if (xfs_is_shutdown(mp)) { 1581 error = -EIO; 1582 goto rele; 1583 } 1584 1585 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1586 goto rele; 1587 1588 /* 1589 * Write the primary superblock to disk immediately, because we need 1590 * the log_incompat bit to be set in the primary super now to protect 1591 * the log items that we're going to commit later. 1592 */ 1593 dsb = mp->m_sb_bp->b_addr; 1594 xfs_sb_to_disk(dsb, &mp->m_sb); 1595 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1596 error = xfs_bwrite(mp->m_sb_bp); 1597 if (error) 1598 goto shutdown; 1599 1600 /* 1601 * Add the feature bits to the incore superblock before we unlock the 1602 * buffer. 1603 */ 1604 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1605 xfs_buf_relse(mp->m_sb_bp); 1606 1607 /* Log the superblock to disk. */ 1608 return xfs_sync_sb(mp, false); 1609 shutdown: 1610 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1611 rele: 1612 xfs_buf_relse(mp->m_sb_bp); 1613 return error; 1614 } 1615 1616 /* 1617 * Clear all the log incompat flags from the superblock. 1618 * 1619 * The caller cannot be in a transaction, must ensure that the log does not 1620 * contain any log items protected by any log incompat bit, and must ensure 1621 * that there are no other threads that depend on the state of the log incompat 1622 * feature flags in the primary super. 1623 * 1624 * Returns true if the superblock is dirty. 1625 */ 1626 bool 1627 xfs_clear_incompat_log_features( 1628 struct xfs_mount *mp) 1629 { 1630 bool ret = false; 1631 1632 if (!xfs_has_crc(mp) || 1633 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1634 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1635 xfs_is_shutdown(mp) || 1636 !xfs_is_done_with_log_incompat(mp)) 1637 return false; 1638 1639 /* 1640 * Update the incore superblock. We synchronize on the primary super 1641 * buffer lock to be consistent with the add function, though at least 1642 * in theory this shouldn't be necessary. 1643 */ 1644 xfs_buf_lock(mp->m_sb_bp); 1645 xfs_buf_hold(mp->m_sb_bp); 1646 1647 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1648 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1649 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1650 ret = true; 1651 } 1652 1653 xfs_buf_relse(mp->m_sb_bp); 1654 return ret; 1655 } 1656 1657 /* 1658 * Update the in-core delayed block counter. 1659 * 1660 * We prefer to update the counter without having to take a spinlock for every 1661 * counter update (i.e. batching). Each change to delayed allocation 1662 * reservations can change can easily exceed the default percpu counter 1663 * batching, so we use a larger batch factor here. 1664 * 1665 * Note that we don't currently have any callers requiring fast summation 1666 * (e.g. percpu_counter_read) so we can use a big batch value here. 1667 */ 1668 #define XFS_DELALLOC_BATCH (4096) 1669 void 1670 xfs_mod_delalloc( 1671 struct xfs_inode *ip, 1672 int64_t data_delta, 1673 int64_t ind_delta) 1674 { 1675 struct xfs_mount *mp = ip->i_mount; 1676 1677 if (XFS_IS_REALTIME_INODE(ip)) { 1678 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1679 xfs_blen_to_rtbxlen(mp, data_delta), 1680 XFS_DELALLOC_BATCH); 1681 if (!ind_delta) 1682 return; 1683 data_delta = 0; 1684 } 1685 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1686 XFS_DELALLOC_BATCH); 1687 } 1688