1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "scrub/stats.h" 38 39 static DEFINE_MUTEX(xfs_uuid_table_mutex); 40 static int xfs_uuid_table_size; 41 static uuid_t *xfs_uuid_table; 42 43 void 44 xfs_uuid_table_free(void) 45 { 46 if (xfs_uuid_table_size == 0) 47 return; 48 kmem_free(xfs_uuid_table); 49 xfs_uuid_table = NULL; 50 xfs_uuid_table_size = 0; 51 } 52 53 /* 54 * See if the UUID is unique among mounted XFS filesystems. 55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 56 */ 57 STATIC int 58 xfs_uuid_mount( 59 struct xfs_mount *mp) 60 { 61 uuid_t *uuid = &mp->m_sb.sb_uuid; 62 int hole, i; 63 64 /* Publish UUID in struct super_block */ 65 uuid_copy(&mp->m_super->s_uuid, uuid); 66 67 if (xfs_has_nouuid(mp)) 68 return 0; 69 70 if (uuid_is_null(uuid)) { 71 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 72 return -EINVAL; 73 } 74 75 mutex_lock(&xfs_uuid_table_mutex); 76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 77 if (uuid_is_null(&xfs_uuid_table[i])) { 78 hole = i; 79 continue; 80 } 81 if (uuid_equal(uuid, &xfs_uuid_table[i])) 82 goto out_duplicate; 83 } 84 85 if (hole < 0) { 86 xfs_uuid_table = krealloc(xfs_uuid_table, 87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 88 GFP_KERNEL | __GFP_NOFAIL); 89 hole = xfs_uuid_table_size++; 90 } 91 xfs_uuid_table[hole] = *uuid; 92 mutex_unlock(&xfs_uuid_table_mutex); 93 94 return 0; 95 96 out_duplicate: 97 mutex_unlock(&xfs_uuid_table_mutex); 98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 99 return -EINVAL; 100 } 101 102 STATIC void 103 xfs_uuid_unmount( 104 struct xfs_mount *mp) 105 { 106 uuid_t *uuid = &mp->m_sb.sb_uuid; 107 int i; 108 109 if (xfs_has_nouuid(mp)) 110 return; 111 112 mutex_lock(&xfs_uuid_table_mutex); 113 for (i = 0; i < xfs_uuid_table_size; i++) { 114 if (uuid_is_null(&xfs_uuid_table[i])) 115 continue; 116 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 117 continue; 118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 119 break; 120 } 121 ASSERT(i < xfs_uuid_table_size); 122 mutex_unlock(&xfs_uuid_table_mutex); 123 } 124 125 /* 126 * Check size of device based on the (data/realtime) block count. 127 * Note: this check is used by the growfs code as well as mount. 128 */ 129 int 130 xfs_sb_validate_fsb_count( 131 xfs_sb_t *sbp, 132 uint64_t nblocks) 133 { 134 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 135 ASSERT(sbp->sb_blocklog >= BBSHIFT); 136 137 /* Limited by ULONG_MAX of page cache index */ 138 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 139 return -EFBIG; 140 return 0; 141 } 142 143 /* 144 * xfs_readsb 145 * 146 * Does the initial read of the superblock. 147 */ 148 int 149 xfs_readsb( 150 struct xfs_mount *mp, 151 int flags) 152 { 153 unsigned int sector_size; 154 struct xfs_buf *bp; 155 struct xfs_sb *sbp = &mp->m_sb; 156 int error; 157 int loud = !(flags & XFS_MFSI_QUIET); 158 const struct xfs_buf_ops *buf_ops; 159 160 ASSERT(mp->m_sb_bp == NULL); 161 ASSERT(mp->m_ddev_targp != NULL); 162 163 /* 164 * For the initial read, we must guess at the sector 165 * size based on the block device. It's enough to 166 * get the sb_sectsize out of the superblock and 167 * then reread with the proper length. 168 * We don't verify it yet, because it may not be complete. 169 */ 170 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 171 buf_ops = NULL; 172 173 /* 174 * Allocate a (locked) buffer to hold the superblock. This will be kept 175 * around at all times to optimize access to the superblock. Therefore, 176 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 177 * elevated. 178 */ 179 reread: 180 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 181 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 182 buf_ops); 183 if (error) { 184 if (loud) 185 xfs_warn(mp, "SB validate failed with error %d.", error); 186 /* bad CRC means corrupted metadata */ 187 if (error == -EFSBADCRC) 188 error = -EFSCORRUPTED; 189 return error; 190 } 191 192 /* 193 * Initialize the mount structure from the superblock. 194 */ 195 xfs_sb_from_disk(sbp, bp->b_addr); 196 197 /* 198 * If we haven't validated the superblock, do so now before we try 199 * to check the sector size and reread the superblock appropriately. 200 */ 201 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 202 if (loud) 203 xfs_warn(mp, "Invalid superblock magic number"); 204 error = -EINVAL; 205 goto release_buf; 206 } 207 208 /* 209 * We must be able to do sector-sized and sector-aligned IO. 210 */ 211 if (sector_size > sbp->sb_sectsize) { 212 if (loud) 213 xfs_warn(mp, "device supports %u byte sectors (not %u)", 214 sector_size, sbp->sb_sectsize); 215 error = -ENOSYS; 216 goto release_buf; 217 } 218 219 if (buf_ops == NULL) { 220 /* 221 * Re-read the superblock so the buffer is correctly sized, 222 * and properly verified. 223 */ 224 xfs_buf_relse(bp); 225 sector_size = sbp->sb_sectsize; 226 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 227 goto reread; 228 } 229 230 mp->m_features |= xfs_sb_version_to_features(sbp); 231 xfs_reinit_percpu_counters(mp); 232 233 /* no need to be quiet anymore, so reset the buf ops */ 234 bp->b_ops = &xfs_sb_buf_ops; 235 236 mp->m_sb_bp = bp; 237 xfs_buf_unlock(bp); 238 return 0; 239 240 release_buf: 241 xfs_buf_relse(bp); 242 return error; 243 } 244 245 /* 246 * If the sunit/swidth change would move the precomputed root inode value, we 247 * must reject the ondisk change because repair will stumble over that. 248 * However, we allow the mount to proceed because we never rejected this 249 * combination before. Returns true to update the sb, false otherwise. 250 */ 251 static inline int 252 xfs_check_new_dalign( 253 struct xfs_mount *mp, 254 int new_dalign, 255 bool *update_sb) 256 { 257 struct xfs_sb *sbp = &mp->m_sb; 258 xfs_ino_t calc_ino; 259 260 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 261 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 262 263 if (sbp->sb_rootino == calc_ino) { 264 *update_sb = true; 265 return 0; 266 } 267 268 xfs_warn(mp, 269 "Cannot change stripe alignment; would require moving root inode."); 270 271 /* 272 * XXX: Next time we add a new incompat feature, this should start 273 * returning -EINVAL to fail the mount. Until then, spit out a warning 274 * that we're ignoring the administrator's instructions. 275 */ 276 xfs_warn(mp, "Skipping superblock stripe alignment update."); 277 *update_sb = false; 278 return 0; 279 } 280 281 /* 282 * If we were provided with new sunit/swidth values as mount options, make sure 283 * that they pass basic alignment and superblock feature checks, and convert 284 * them into the same units (FSB) that everything else expects. This step 285 * /must/ be done before computing the inode geometry. 286 */ 287 STATIC int 288 xfs_validate_new_dalign( 289 struct xfs_mount *mp) 290 { 291 if (mp->m_dalign == 0) 292 return 0; 293 294 /* 295 * If stripe unit and stripe width are not multiples 296 * of the fs blocksize turn off alignment. 297 */ 298 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 299 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 300 xfs_warn(mp, 301 "alignment check failed: sunit/swidth vs. blocksize(%d)", 302 mp->m_sb.sb_blocksize); 303 return -EINVAL; 304 } 305 306 /* 307 * Convert the stripe unit and width to FSBs. 308 */ 309 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 310 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 311 xfs_warn(mp, 312 "alignment check failed: sunit/swidth vs. agsize(%d)", 313 mp->m_sb.sb_agblocks); 314 return -EINVAL; 315 } 316 317 if (!mp->m_dalign) { 318 xfs_warn(mp, 319 "alignment check failed: sunit(%d) less than bsize(%d)", 320 mp->m_dalign, mp->m_sb.sb_blocksize); 321 return -EINVAL; 322 } 323 324 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 325 326 if (!xfs_has_dalign(mp)) { 327 xfs_warn(mp, 328 "cannot change alignment: superblock does not support data alignment"); 329 return -EINVAL; 330 } 331 332 return 0; 333 } 334 335 /* Update alignment values based on mount options and sb values. */ 336 STATIC int 337 xfs_update_alignment( 338 struct xfs_mount *mp) 339 { 340 struct xfs_sb *sbp = &mp->m_sb; 341 342 if (mp->m_dalign) { 343 bool update_sb; 344 int error; 345 346 if (sbp->sb_unit == mp->m_dalign && 347 sbp->sb_width == mp->m_swidth) 348 return 0; 349 350 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 351 if (error || !update_sb) 352 return error; 353 354 sbp->sb_unit = mp->m_dalign; 355 sbp->sb_width = mp->m_swidth; 356 mp->m_update_sb = true; 357 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 358 mp->m_dalign = sbp->sb_unit; 359 mp->m_swidth = sbp->sb_width; 360 } 361 362 return 0; 363 } 364 365 /* 366 * precalculate the low space thresholds for dynamic speculative preallocation. 367 */ 368 void 369 xfs_set_low_space_thresholds( 370 struct xfs_mount *mp) 371 { 372 uint64_t dblocks = mp->m_sb.sb_dblocks; 373 uint64_t rtexts = mp->m_sb.sb_rextents; 374 int i; 375 376 do_div(dblocks, 100); 377 do_div(rtexts, 100); 378 379 for (i = 0; i < XFS_LOWSP_MAX; i++) { 380 mp->m_low_space[i] = dblocks * (i + 1); 381 mp->m_low_rtexts[i] = rtexts * (i + 1); 382 } 383 } 384 385 /* 386 * Check that the data (and log if separate) is an ok size. 387 */ 388 STATIC int 389 xfs_check_sizes( 390 struct xfs_mount *mp) 391 { 392 struct xfs_buf *bp; 393 xfs_daddr_t d; 394 int error; 395 396 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 397 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 398 xfs_warn(mp, "filesystem size mismatch detected"); 399 return -EFBIG; 400 } 401 error = xfs_buf_read_uncached(mp->m_ddev_targp, 402 d - XFS_FSS_TO_BB(mp, 1), 403 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 404 if (error) { 405 xfs_warn(mp, "last sector read failed"); 406 return error; 407 } 408 xfs_buf_relse(bp); 409 410 if (mp->m_logdev_targp == mp->m_ddev_targp) 411 return 0; 412 413 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 414 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 415 xfs_warn(mp, "log size mismatch detected"); 416 return -EFBIG; 417 } 418 error = xfs_buf_read_uncached(mp->m_logdev_targp, 419 d - XFS_FSB_TO_BB(mp, 1), 420 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 421 if (error) { 422 xfs_warn(mp, "log device read failed"); 423 return error; 424 } 425 xfs_buf_relse(bp); 426 return 0; 427 } 428 429 /* 430 * Clear the quotaflags in memory and in the superblock. 431 */ 432 int 433 xfs_mount_reset_sbqflags( 434 struct xfs_mount *mp) 435 { 436 mp->m_qflags = 0; 437 438 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 439 if (mp->m_sb.sb_qflags == 0) 440 return 0; 441 spin_lock(&mp->m_sb_lock); 442 mp->m_sb.sb_qflags = 0; 443 spin_unlock(&mp->m_sb_lock); 444 445 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 446 return 0; 447 448 return xfs_sync_sb(mp, false); 449 } 450 451 uint64_t 452 xfs_default_resblks(xfs_mount_t *mp) 453 { 454 uint64_t resblks; 455 456 /* 457 * We default to 5% or 8192 fsbs of space reserved, whichever is 458 * smaller. This is intended to cover concurrent allocation 459 * transactions when we initially hit enospc. These each require a 4 460 * block reservation. Hence by default we cover roughly 2000 concurrent 461 * allocation reservations. 462 */ 463 resblks = mp->m_sb.sb_dblocks; 464 do_div(resblks, 20); 465 resblks = min_t(uint64_t, resblks, 8192); 466 return resblks; 467 } 468 469 /* Ensure the summary counts are correct. */ 470 STATIC int 471 xfs_check_summary_counts( 472 struct xfs_mount *mp) 473 { 474 int error = 0; 475 476 /* 477 * The AG0 superblock verifier rejects in-progress filesystems, 478 * so we should never see the flag set this far into mounting. 479 */ 480 if (mp->m_sb.sb_inprogress) { 481 xfs_err(mp, "sb_inprogress set after log recovery??"); 482 WARN_ON(1); 483 return -EFSCORRUPTED; 484 } 485 486 /* 487 * Now the log is mounted, we know if it was an unclean shutdown or 488 * not. If it was, with the first phase of recovery has completed, we 489 * have consistent AG blocks on disk. We have not recovered EFIs yet, 490 * but they are recovered transactionally in the second recovery phase 491 * later. 492 * 493 * If the log was clean when we mounted, we can check the summary 494 * counters. If any of them are obviously incorrect, we can recompute 495 * them from the AGF headers in the next step. 496 */ 497 if (xfs_is_clean(mp) && 498 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 499 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 500 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 501 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 502 503 /* 504 * We can safely re-initialise incore superblock counters from the 505 * per-ag data. These may not be correct if the filesystem was not 506 * cleanly unmounted, so we waited for recovery to finish before doing 507 * this. 508 * 509 * If the filesystem was cleanly unmounted or the previous check did 510 * not flag anything weird, then we can trust the values in the 511 * superblock to be correct and we don't need to do anything here. 512 * Otherwise, recalculate the summary counters. 513 */ 514 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 515 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 516 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 517 if (error) 518 return error; 519 } 520 521 /* 522 * Older kernels misused sb_frextents to reflect both incore 523 * reservations made by running transactions and the actual count of 524 * free rt extents in the ondisk metadata. Transactions committed 525 * during runtime can therefore contain a superblock update that 526 * undercounts the number of free rt extents tracked in the rt bitmap. 527 * A clean unmount record will have the correct frextents value since 528 * there can be no other transactions running at that point. 529 * 530 * If we're mounting the rt volume after recovering the log, recompute 531 * frextents from the rtbitmap file to fix the inconsistency. 532 */ 533 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 534 error = xfs_rtalloc_reinit_frextents(mp); 535 if (error) 536 return error; 537 } 538 539 return 0; 540 } 541 542 static void 543 xfs_unmount_check( 544 struct xfs_mount *mp) 545 { 546 if (xfs_is_shutdown(mp)) 547 return; 548 549 if (percpu_counter_sum(&mp->m_ifree) > 550 percpu_counter_sum(&mp->m_icount)) { 551 xfs_alert(mp, "ifree/icount mismatch at unmount"); 552 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 553 } 554 } 555 556 /* 557 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 558 * internal inode structures can be sitting in the CIL and AIL at this point, 559 * so we need to unpin them, write them back and/or reclaim them before unmount 560 * can proceed. In other words, callers are required to have inactivated all 561 * inodes. 562 * 563 * An inode cluster that has been freed can have its buffer still pinned in 564 * memory because the transaction is still sitting in a iclog. The stale inodes 565 * on that buffer will be pinned to the buffer until the transaction hits the 566 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 567 * may never see the pinned buffer, so nothing will push out the iclog and 568 * unpin the buffer. 569 * 570 * Hence we need to force the log to unpin everything first. However, log 571 * forces don't wait for the discards they issue to complete, so we have to 572 * explicitly wait for them to complete here as well. 573 * 574 * Then we can tell the world we are unmounting so that error handling knows 575 * that the filesystem is going away and we should error out anything that we 576 * have been retrying in the background. This will prevent never-ending 577 * retries in AIL pushing from hanging the unmount. 578 * 579 * Finally, we can push the AIL to clean all the remaining dirty objects, then 580 * reclaim the remaining inodes that are still in memory at this point in time. 581 */ 582 static void 583 xfs_unmount_flush_inodes( 584 struct xfs_mount *mp) 585 { 586 xfs_log_force(mp, XFS_LOG_SYNC); 587 xfs_extent_busy_wait_all(mp); 588 flush_workqueue(xfs_discard_wq); 589 590 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 591 592 xfs_ail_push_all_sync(mp->m_ail); 593 xfs_inodegc_stop(mp); 594 cancel_delayed_work_sync(&mp->m_reclaim_work); 595 xfs_reclaim_inodes(mp); 596 xfs_health_unmount(mp); 597 } 598 599 static void 600 xfs_mount_setup_inode_geom( 601 struct xfs_mount *mp) 602 { 603 struct xfs_ino_geometry *igeo = M_IGEO(mp); 604 605 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 606 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 607 608 xfs_ialloc_setup_geometry(mp); 609 } 610 611 /* Compute maximum possible height for per-AG btree types for this fs. */ 612 static inline void 613 xfs_agbtree_compute_maxlevels( 614 struct xfs_mount *mp) 615 { 616 unsigned int levels; 617 618 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 619 levels = max(levels, mp->m_rmap_maxlevels); 620 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 621 } 622 623 /* 624 * This function does the following on an initial mount of a file system: 625 * - reads the superblock from disk and init the mount struct 626 * - if we're a 32-bit kernel, do a size check on the superblock 627 * so we don't mount terabyte filesystems 628 * - init mount struct realtime fields 629 * - allocate inode hash table for fs 630 * - init directory manager 631 * - perform recovery and init the log manager 632 */ 633 int 634 xfs_mountfs( 635 struct xfs_mount *mp) 636 { 637 struct xfs_sb *sbp = &(mp->m_sb); 638 struct xfs_inode *rip; 639 struct xfs_ino_geometry *igeo = M_IGEO(mp); 640 uint64_t resblks; 641 uint quotamount = 0; 642 uint quotaflags = 0; 643 int error = 0; 644 645 xfs_sb_mount_common(mp, sbp); 646 647 /* 648 * Check for a mismatched features2 values. Older kernels read & wrote 649 * into the wrong sb offset for sb_features2 on some platforms due to 650 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 651 * which made older superblock reading/writing routines swap it as a 652 * 64-bit value. 653 * 654 * For backwards compatibility, we make both slots equal. 655 * 656 * If we detect a mismatched field, we OR the set bits into the existing 657 * features2 field in case it has already been modified; we don't want 658 * to lose any features. We then update the bad location with the ORed 659 * value so that older kernels will see any features2 flags. The 660 * superblock writeback code ensures the new sb_features2 is copied to 661 * sb_bad_features2 before it is logged or written to disk. 662 */ 663 if (xfs_sb_has_mismatched_features2(sbp)) { 664 xfs_warn(mp, "correcting sb_features alignment problem"); 665 sbp->sb_features2 |= sbp->sb_bad_features2; 666 mp->m_update_sb = true; 667 } 668 669 670 /* always use v2 inodes by default now */ 671 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 672 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 673 mp->m_features |= XFS_FEAT_NLINK; 674 mp->m_update_sb = true; 675 } 676 677 /* 678 * If we were given new sunit/swidth options, do some basic validation 679 * checks and convert the incore dalign and swidth values to the 680 * same units (FSB) that everything else uses. This /must/ happen 681 * before computing the inode geometry. 682 */ 683 error = xfs_validate_new_dalign(mp); 684 if (error) 685 goto out; 686 687 xfs_alloc_compute_maxlevels(mp); 688 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 689 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 690 xfs_mount_setup_inode_geom(mp); 691 xfs_rmapbt_compute_maxlevels(mp); 692 xfs_refcountbt_compute_maxlevels(mp); 693 694 xfs_agbtree_compute_maxlevels(mp); 695 696 /* 697 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 698 * is NOT aligned turn off m_dalign since allocator alignment is within 699 * an ag, therefore ag has to be aligned at stripe boundary. Note that 700 * we must compute the free space and rmap btree geometry before doing 701 * this. 702 */ 703 error = xfs_update_alignment(mp); 704 if (error) 705 goto out; 706 707 /* enable fail_at_unmount as default */ 708 mp->m_fail_unmount = true; 709 710 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 711 NULL, mp->m_super->s_id); 712 if (error) 713 goto out; 714 715 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 716 &mp->m_kobj, "stats"); 717 if (error) 718 goto out_remove_sysfs; 719 720 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 721 722 error = xfs_error_sysfs_init(mp); 723 if (error) 724 goto out_remove_scrub_stats; 725 726 error = xfs_errortag_init(mp); 727 if (error) 728 goto out_remove_error_sysfs; 729 730 error = xfs_uuid_mount(mp); 731 if (error) 732 goto out_remove_errortag; 733 734 /* 735 * Update the preferred write size based on the information from the 736 * on-disk superblock. 737 */ 738 mp->m_allocsize_log = 739 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 740 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 741 742 /* set the low space thresholds for dynamic preallocation */ 743 xfs_set_low_space_thresholds(mp); 744 745 /* 746 * If enabled, sparse inode chunk alignment is expected to match the 747 * cluster size. Full inode chunk alignment must match the chunk size, 748 * but that is checked on sb read verification... 749 */ 750 if (xfs_has_sparseinodes(mp) && 751 mp->m_sb.sb_spino_align != 752 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 753 xfs_warn(mp, 754 "Sparse inode block alignment (%u) must match cluster size (%llu).", 755 mp->m_sb.sb_spino_align, 756 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 757 error = -EINVAL; 758 goto out_remove_uuid; 759 } 760 761 /* 762 * Check that the data (and log if separate) is an ok size. 763 */ 764 error = xfs_check_sizes(mp); 765 if (error) 766 goto out_remove_uuid; 767 768 /* 769 * Initialize realtime fields in the mount structure 770 */ 771 error = xfs_rtmount_init(mp); 772 if (error) { 773 xfs_warn(mp, "RT mount failed"); 774 goto out_remove_uuid; 775 } 776 777 /* 778 * Copies the low order bits of the timestamp and the randomly 779 * set "sequence" number out of a UUID. 780 */ 781 mp->m_fixedfsid[0] = 782 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 783 get_unaligned_be16(&sbp->sb_uuid.b[4]); 784 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 785 786 error = xfs_da_mount(mp); 787 if (error) { 788 xfs_warn(mp, "Failed dir/attr init: %d", error); 789 goto out_remove_uuid; 790 } 791 792 /* 793 * Initialize the precomputed transaction reservations values. 794 */ 795 xfs_trans_init(mp); 796 797 /* 798 * Allocate and initialize the per-ag data. 799 */ 800 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, 801 &mp->m_maxagi); 802 if (error) { 803 xfs_warn(mp, "Failed per-ag init: %d", error); 804 goto out_free_dir; 805 } 806 807 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 808 xfs_warn(mp, "no log defined"); 809 error = -EFSCORRUPTED; 810 goto out_free_perag; 811 } 812 813 error = xfs_inodegc_register_shrinker(mp); 814 if (error) 815 goto out_fail_wait; 816 817 /* 818 * Log's mount-time initialization. The first part of recovery can place 819 * some items on the AIL, to be handled when recovery is finished or 820 * cancelled. 821 */ 822 error = xfs_log_mount(mp, mp->m_logdev_targp, 823 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 824 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 825 if (error) { 826 xfs_warn(mp, "log mount failed"); 827 goto out_inodegc_shrinker; 828 } 829 830 /* Enable background inode inactivation workers. */ 831 xfs_inodegc_start(mp); 832 xfs_blockgc_start(mp); 833 834 /* 835 * Now that we've recovered any pending superblock feature bit 836 * additions, we can finish setting up the attr2 behaviour for the 837 * mount. The noattr2 option overrides the superblock flag, so only 838 * check the superblock feature flag if the mount option is not set. 839 */ 840 if (xfs_has_noattr2(mp)) { 841 mp->m_features &= ~XFS_FEAT_ATTR2; 842 } else if (!xfs_has_attr2(mp) && 843 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 844 mp->m_features |= XFS_FEAT_ATTR2; 845 } 846 847 /* 848 * Get and sanity-check the root inode. 849 * Save the pointer to it in the mount structure. 850 */ 851 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 852 XFS_ILOCK_EXCL, &rip); 853 if (error) { 854 xfs_warn(mp, 855 "Failed to read root inode 0x%llx, error %d", 856 sbp->sb_rootino, -error); 857 goto out_log_dealloc; 858 } 859 860 ASSERT(rip != NULL); 861 862 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 863 xfs_warn(mp, "corrupted root inode %llu: not a directory", 864 (unsigned long long)rip->i_ino); 865 xfs_iunlock(rip, XFS_ILOCK_EXCL); 866 error = -EFSCORRUPTED; 867 goto out_rele_rip; 868 } 869 mp->m_rootip = rip; /* save it */ 870 871 xfs_iunlock(rip, XFS_ILOCK_EXCL); 872 873 /* 874 * Initialize realtime inode pointers in the mount structure 875 */ 876 error = xfs_rtmount_inodes(mp); 877 if (error) { 878 /* 879 * Free up the root inode. 880 */ 881 xfs_warn(mp, "failed to read RT inodes"); 882 goto out_rele_rip; 883 } 884 885 /* Make sure the summary counts are ok. */ 886 error = xfs_check_summary_counts(mp); 887 if (error) 888 goto out_rtunmount; 889 890 /* 891 * If this is a read-only mount defer the superblock updates until 892 * the next remount into writeable mode. Otherwise we would never 893 * perform the update e.g. for the root filesystem. 894 */ 895 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 896 error = xfs_sync_sb(mp, false); 897 if (error) { 898 xfs_warn(mp, "failed to write sb changes"); 899 goto out_rtunmount; 900 } 901 } 902 903 /* 904 * Initialise the XFS quota management subsystem for this mount 905 */ 906 if (XFS_IS_QUOTA_ON(mp)) { 907 error = xfs_qm_newmount(mp, "amount, "aflags); 908 if (error) 909 goto out_rtunmount; 910 } else { 911 /* 912 * If a file system had quotas running earlier, but decided to 913 * mount without -o uquota/pquota/gquota options, revoke the 914 * quotachecked license. 915 */ 916 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 917 xfs_notice(mp, "resetting quota flags"); 918 error = xfs_mount_reset_sbqflags(mp); 919 if (error) 920 goto out_rtunmount; 921 } 922 } 923 924 /* 925 * Finish recovering the file system. This part needed to be delayed 926 * until after the root and real-time bitmap inodes were consistently 927 * read in. Temporarily create per-AG space reservations for metadata 928 * btree shape changes because space freeing transactions (for inode 929 * inactivation) require the per-AG reservation in lieu of reserving 930 * blocks. 931 */ 932 error = xfs_fs_reserve_ag_blocks(mp); 933 if (error && error == -ENOSPC) 934 xfs_warn(mp, 935 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 936 error = xfs_log_mount_finish(mp); 937 xfs_fs_unreserve_ag_blocks(mp); 938 if (error) { 939 xfs_warn(mp, "log mount finish failed"); 940 goto out_rtunmount; 941 } 942 943 /* 944 * Now the log is fully replayed, we can transition to full read-only 945 * mode for read-only mounts. This will sync all the metadata and clean 946 * the log so that the recovery we just performed does not have to be 947 * replayed again on the next mount. 948 * 949 * We use the same quiesce mechanism as the rw->ro remount, as they are 950 * semantically identical operations. 951 */ 952 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 953 xfs_log_clean(mp); 954 955 /* 956 * Complete the quota initialisation, post-log-replay component. 957 */ 958 if (quotamount) { 959 ASSERT(mp->m_qflags == 0); 960 mp->m_qflags = quotaflags; 961 962 xfs_qm_mount_quotas(mp); 963 } 964 965 /* 966 * Now we are mounted, reserve a small amount of unused space for 967 * privileged transactions. This is needed so that transaction 968 * space required for critical operations can dip into this pool 969 * when at ENOSPC. This is needed for operations like create with 970 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 971 * are not allowed to use this reserved space. 972 * 973 * This may drive us straight to ENOSPC on mount, but that implies 974 * we were already there on the last unmount. Warn if this occurs. 975 */ 976 if (!xfs_is_readonly(mp)) { 977 resblks = xfs_default_resblks(mp); 978 error = xfs_reserve_blocks(mp, &resblks, NULL); 979 if (error) 980 xfs_warn(mp, 981 "Unable to allocate reserve blocks. Continuing without reserve pool."); 982 983 /* Reserve AG blocks for future btree expansion. */ 984 error = xfs_fs_reserve_ag_blocks(mp); 985 if (error && error != -ENOSPC) 986 goto out_agresv; 987 } 988 989 return 0; 990 991 out_agresv: 992 xfs_fs_unreserve_ag_blocks(mp); 993 xfs_qm_unmount_quotas(mp); 994 out_rtunmount: 995 xfs_rtunmount_inodes(mp); 996 out_rele_rip: 997 xfs_irele(rip); 998 /* Clean out dquots that might be in memory after quotacheck. */ 999 xfs_qm_unmount(mp); 1000 1001 /* 1002 * Inactivate all inodes that might still be in memory after a log 1003 * intent recovery failure so that reclaim can free them. Metadata 1004 * inodes and the root directory shouldn't need inactivation, but the 1005 * mount failed for some reason, so pull down all the state and flee. 1006 */ 1007 xfs_inodegc_flush(mp); 1008 1009 /* 1010 * Flush all inode reclamation work and flush the log. 1011 * We have to do this /after/ rtunmount and qm_unmount because those 1012 * two will have scheduled delayed reclaim for the rt/quota inodes. 1013 * 1014 * This is slightly different from the unmountfs call sequence 1015 * because we could be tearing down a partially set up mount. In 1016 * particular, if log_mount_finish fails we bail out without calling 1017 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1018 * quota inodes. 1019 */ 1020 xfs_unmount_flush_inodes(mp); 1021 out_log_dealloc: 1022 xfs_log_mount_cancel(mp); 1023 out_inodegc_shrinker: 1024 shrinker_free(mp->m_inodegc_shrinker); 1025 out_fail_wait: 1026 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1027 xfs_buftarg_drain(mp->m_logdev_targp); 1028 xfs_buftarg_drain(mp->m_ddev_targp); 1029 out_free_perag: 1030 xfs_free_perag(mp); 1031 out_free_dir: 1032 xfs_da_unmount(mp); 1033 out_remove_uuid: 1034 xfs_uuid_unmount(mp); 1035 out_remove_errortag: 1036 xfs_errortag_del(mp); 1037 out_remove_error_sysfs: 1038 xfs_error_sysfs_del(mp); 1039 out_remove_scrub_stats: 1040 xchk_stats_unregister(mp->m_scrub_stats); 1041 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1042 out_remove_sysfs: 1043 xfs_sysfs_del(&mp->m_kobj); 1044 out: 1045 return error; 1046 } 1047 1048 /* 1049 * This flushes out the inodes,dquots and the superblock, unmounts the 1050 * log and makes sure that incore structures are freed. 1051 */ 1052 void 1053 xfs_unmountfs( 1054 struct xfs_mount *mp) 1055 { 1056 uint64_t resblks; 1057 int error; 1058 1059 /* 1060 * Perform all on-disk metadata updates required to inactivate inodes 1061 * that the VFS evicted earlier in the unmount process. Freeing inodes 1062 * and discarding CoW fork preallocations can cause shape changes to 1063 * the free inode and refcount btrees, respectively, so we must finish 1064 * this before we discard the metadata space reservations. Metadata 1065 * inodes and the root directory do not require inactivation. 1066 */ 1067 xfs_inodegc_flush(mp); 1068 1069 xfs_blockgc_stop(mp); 1070 xfs_fs_unreserve_ag_blocks(mp); 1071 xfs_qm_unmount_quotas(mp); 1072 xfs_rtunmount_inodes(mp); 1073 xfs_irele(mp->m_rootip); 1074 1075 xfs_unmount_flush_inodes(mp); 1076 1077 xfs_qm_unmount(mp); 1078 1079 /* 1080 * Unreserve any blocks we have so that when we unmount we don't account 1081 * the reserved free space as used. This is really only necessary for 1082 * lazy superblock counting because it trusts the incore superblock 1083 * counters to be absolutely correct on clean unmount. 1084 * 1085 * We don't bother correcting this elsewhere for lazy superblock 1086 * counting because on mount of an unclean filesystem we reconstruct the 1087 * correct counter value and this is irrelevant. 1088 * 1089 * For non-lazy counter filesystems, this doesn't matter at all because 1090 * we only every apply deltas to the superblock and hence the incore 1091 * value does not matter.... 1092 */ 1093 resblks = 0; 1094 error = xfs_reserve_blocks(mp, &resblks, NULL); 1095 if (error) 1096 xfs_warn(mp, "Unable to free reserved block pool. " 1097 "Freespace may not be correct on next mount."); 1098 xfs_unmount_check(mp); 1099 1100 xfs_log_unmount(mp); 1101 xfs_da_unmount(mp); 1102 xfs_uuid_unmount(mp); 1103 1104 #if defined(DEBUG) 1105 xfs_errortag_clearall(mp); 1106 #endif 1107 shrinker_free(mp->m_inodegc_shrinker); 1108 xfs_free_perag(mp); 1109 1110 xfs_errortag_del(mp); 1111 xfs_error_sysfs_del(mp); 1112 xchk_stats_unregister(mp->m_scrub_stats); 1113 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1114 xfs_sysfs_del(&mp->m_kobj); 1115 } 1116 1117 /* 1118 * Determine whether modifications can proceed. The caller specifies the minimum 1119 * freeze level for which modifications should not be allowed. This allows 1120 * certain operations to proceed while the freeze sequence is in progress, if 1121 * necessary. 1122 */ 1123 bool 1124 xfs_fs_writable( 1125 struct xfs_mount *mp, 1126 int level) 1127 { 1128 ASSERT(level > SB_UNFROZEN); 1129 if ((mp->m_super->s_writers.frozen >= level) || 1130 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1131 return false; 1132 1133 return true; 1134 } 1135 1136 /* Adjust m_fdblocks or m_frextents. */ 1137 int 1138 xfs_mod_freecounter( 1139 struct xfs_mount *mp, 1140 struct percpu_counter *counter, 1141 int64_t delta, 1142 bool rsvd) 1143 { 1144 int64_t lcounter; 1145 long long res_used; 1146 uint64_t set_aside = 0; 1147 s32 batch; 1148 bool has_resv_pool; 1149 1150 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1151 has_resv_pool = (counter == &mp->m_fdblocks); 1152 if (rsvd) 1153 ASSERT(has_resv_pool); 1154 1155 if (delta > 0) { 1156 /* 1157 * If the reserve pool is depleted, put blocks back into it 1158 * first. Most of the time the pool is full. 1159 */ 1160 if (likely(!has_resv_pool || 1161 mp->m_resblks == mp->m_resblks_avail)) { 1162 percpu_counter_add(counter, delta); 1163 return 0; 1164 } 1165 1166 spin_lock(&mp->m_sb_lock); 1167 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1168 1169 if (res_used > delta) { 1170 mp->m_resblks_avail += delta; 1171 } else { 1172 delta -= res_used; 1173 mp->m_resblks_avail = mp->m_resblks; 1174 percpu_counter_add(counter, delta); 1175 } 1176 spin_unlock(&mp->m_sb_lock); 1177 return 0; 1178 } 1179 1180 /* 1181 * Taking blocks away, need to be more accurate the closer we 1182 * are to zero. 1183 * 1184 * If the counter has a value of less than 2 * max batch size, 1185 * then make everything serialise as we are real close to 1186 * ENOSPC. 1187 */ 1188 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1189 XFS_FDBLOCKS_BATCH) < 0) 1190 batch = 1; 1191 else 1192 batch = XFS_FDBLOCKS_BATCH; 1193 1194 /* 1195 * Set aside allocbt blocks because these blocks are tracked as free 1196 * space but not available for allocation. Technically this means that a 1197 * single reservation cannot consume all remaining free space, but the 1198 * ratio of allocbt blocks to usable free blocks should be rather small. 1199 * The tradeoff without this is that filesystems that maintain high 1200 * perag block reservations can over reserve physical block availability 1201 * and fail physical allocation, which leads to much more serious 1202 * problems (i.e. transaction abort, pagecache discards, etc.) than 1203 * slightly premature -ENOSPC. 1204 */ 1205 if (has_resv_pool) 1206 set_aside = xfs_fdblocks_unavailable(mp); 1207 percpu_counter_add_batch(counter, delta, batch); 1208 if (__percpu_counter_compare(counter, set_aside, 1209 XFS_FDBLOCKS_BATCH) >= 0) { 1210 /* we had space! */ 1211 return 0; 1212 } 1213 1214 /* 1215 * lock up the sb for dipping into reserves before releasing the space 1216 * that took us to ENOSPC. 1217 */ 1218 spin_lock(&mp->m_sb_lock); 1219 percpu_counter_add(counter, -delta); 1220 if (!has_resv_pool || !rsvd) 1221 goto fdblocks_enospc; 1222 1223 lcounter = (long long)mp->m_resblks_avail + delta; 1224 if (lcounter >= 0) { 1225 mp->m_resblks_avail = lcounter; 1226 spin_unlock(&mp->m_sb_lock); 1227 return 0; 1228 } 1229 xfs_warn_once(mp, 1230 "Reserve blocks depleted! Consider increasing reserve pool size."); 1231 1232 fdblocks_enospc: 1233 spin_unlock(&mp->m_sb_lock); 1234 return -ENOSPC; 1235 } 1236 1237 /* 1238 * Used to free the superblock along various error paths. 1239 */ 1240 void 1241 xfs_freesb( 1242 struct xfs_mount *mp) 1243 { 1244 struct xfs_buf *bp = mp->m_sb_bp; 1245 1246 xfs_buf_lock(bp); 1247 mp->m_sb_bp = NULL; 1248 xfs_buf_relse(bp); 1249 } 1250 1251 /* 1252 * If the underlying (data/log/rt) device is readonly, there are some 1253 * operations that cannot proceed. 1254 */ 1255 int 1256 xfs_dev_is_read_only( 1257 struct xfs_mount *mp, 1258 char *message) 1259 { 1260 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1261 xfs_readonly_buftarg(mp->m_logdev_targp) || 1262 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1263 xfs_notice(mp, "%s required on read-only device.", message); 1264 xfs_notice(mp, "write access unavailable, cannot proceed."); 1265 return -EROFS; 1266 } 1267 return 0; 1268 } 1269 1270 /* Force the summary counters to be recalculated at next mount. */ 1271 void 1272 xfs_force_summary_recalc( 1273 struct xfs_mount *mp) 1274 { 1275 if (!xfs_has_lazysbcount(mp)) 1276 return; 1277 1278 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1279 } 1280 1281 /* 1282 * Enable a log incompat feature flag in the primary superblock. The caller 1283 * cannot have any other transactions in progress. 1284 */ 1285 int 1286 xfs_add_incompat_log_feature( 1287 struct xfs_mount *mp, 1288 uint32_t feature) 1289 { 1290 struct xfs_dsb *dsb; 1291 int error; 1292 1293 ASSERT(hweight32(feature) == 1); 1294 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1295 1296 /* 1297 * Force the log to disk and kick the background AIL thread to reduce 1298 * the chances that the bwrite will stall waiting for the AIL to unpin 1299 * the primary superblock buffer. This isn't a data integrity 1300 * operation, so we don't need a synchronous push. 1301 */ 1302 error = xfs_log_force(mp, XFS_LOG_SYNC); 1303 if (error) 1304 return error; 1305 xfs_ail_push_all(mp->m_ail); 1306 1307 /* 1308 * Lock the primary superblock buffer to serialize all callers that 1309 * are trying to set feature bits. 1310 */ 1311 xfs_buf_lock(mp->m_sb_bp); 1312 xfs_buf_hold(mp->m_sb_bp); 1313 1314 if (xfs_is_shutdown(mp)) { 1315 error = -EIO; 1316 goto rele; 1317 } 1318 1319 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1320 goto rele; 1321 1322 /* 1323 * Write the primary superblock to disk immediately, because we need 1324 * the log_incompat bit to be set in the primary super now to protect 1325 * the log items that we're going to commit later. 1326 */ 1327 dsb = mp->m_sb_bp->b_addr; 1328 xfs_sb_to_disk(dsb, &mp->m_sb); 1329 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1330 error = xfs_bwrite(mp->m_sb_bp); 1331 if (error) 1332 goto shutdown; 1333 1334 /* 1335 * Add the feature bits to the incore superblock before we unlock the 1336 * buffer. 1337 */ 1338 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1339 xfs_buf_relse(mp->m_sb_bp); 1340 1341 /* Log the superblock to disk. */ 1342 return xfs_sync_sb(mp, false); 1343 shutdown: 1344 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1345 rele: 1346 xfs_buf_relse(mp->m_sb_bp); 1347 return error; 1348 } 1349 1350 /* 1351 * Clear all the log incompat flags from the superblock. 1352 * 1353 * The caller cannot be in a transaction, must ensure that the log does not 1354 * contain any log items protected by any log incompat bit, and must ensure 1355 * that there are no other threads that depend on the state of the log incompat 1356 * feature flags in the primary super. 1357 * 1358 * Returns true if the superblock is dirty. 1359 */ 1360 bool 1361 xfs_clear_incompat_log_features( 1362 struct xfs_mount *mp) 1363 { 1364 bool ret = false; 1365 1366 if (!xfs_has_crc(mp) || 1367 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1368 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1369 xfs_is_shutdown(mp)) 1370 return false; 1371 1372 /* 1373 * Update the incore superblock. We synchronize on the primary super 1374 * buffer lock to be consistent with the add function, though at least 1375 * in theory this shouldn't be necessary. 1376 */ 1377 xfs_buf_lock(mp->m_sb_bp); 1378 xfs_buf_hold(mp->m_sb_bp); 1379 1380 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1381 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1382 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1383 ret = true; 1384 } 1385 1386 xfs_buf_relse(mp->m_sb_bp); 1387 return ret; 1388 } 1389 1390 /* 1391 * Update the in-core delayed block counter. 1392 * 1393 * We prefer to update the counter without having to take a spinlock for every 1394 * counter update (i.e. batching). Each change to delayed allocation 1395 * reservations can change can easily exceed the default percpu counter 1396 * batching, so we use a larger batch factor here. 1397 * 1398 * Note that we don't currently have any callers requiring fast summation 1399 * (e.g. percpu_counter_read) so we can use a big batch value here. 1400 */ 1401 #define XFS_DELALLOC_BATCH (4096) 1402 void 1403 xfs_mod_delalloc( 1404 struct xfs_mount *mp, 1405 int64_t delta) 1406 { 1407 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1408 XFS_DELALLOC_BATCH); 1409 } 1410