xref: /linux/fs/xfs/xfs_mount.c (revision 9bbafc71919adfdf83fafd2ce909853b493e7d86)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 #include "xfs_ag.h"
36 
37 static DEFINE_MUTEX(xfs_uuid_table_mutex);
38 static int xfs_uuid_table_size;
39 static uuid_t *xfs_uuid_table;
40 
41 void
42 xfs_uuid_table_free(void)
43 {
44 	if (xfs_uuid_table_size == 0)
45 		return;
46 	kmem_free(xfs_uuid_table);
47 	xfs_uuid_table = NULL;
48 	xfs_uuid_table_size = 0;
49 }
50 
51 /*
52  * See if the UUID is unique among mounted XFS filesystems.
53  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54  */
55 STATIC int
56 xfs_uuid_mount(
57 	struct xfs_mount	*mp)
58 {
59 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
60 	int			hole, i;
61 
62 	/* Publish UUID in struct super_block */
63 	uuid_copy(&mp->m_super->s_uuid, uuid);
64 
65 	if (mp->m_flags & XFS_MOUNT_NOUUID)
66 		return 0;
67 
68 	if (uuid_is_null(uuid)) {
69 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
70 		return -EINVAL;
71 	}
72 
73 	mutex_lock(&xfs_uuid_table_mutex);
74 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 		if (uuid_is_null(&xfs_uuid_table[i])) {
76 			hole = i;
77 			continue;
78 		}
79 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 			goto out_duplicate;
81 	}
82 
83 	if (hole < 0) {
84 		xfs_uuid_table = krealloc(xfs_uuid_table,
85 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 			GFP_KERNEL | __GFP_NOFAIL);
87 		hole = xfs_uuid_table_size++;
88 	}
89 	xfs_uuid_table[hole] = *uuid;
90 	mutex_unlock(&xfs_uuid_table_mutex);
91 
92 	return 0;
93 
94  out_duplicate:
95 	mutex_unlock(&xfs_uuid_table_mutex);
96 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
97 	return -EINVAL;
98 }
99 
100 STATIC void
101 xfs_uuid_unmount(
102 	struct xfs_mount	*mp)
103 {
104 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
105 	int			i;
106 
107 	if (mp->m_flags & XFS_MOUNT_NOUUID)
108 		return;
109 
110 	mutex_lock(&xfs_uuid_table_mutex);
111 	for (i = 0; i < xfs_uuid_table_size; i++) {
112 		if (uuid_is_null(&xfs_uuid_table[i]))
113 			continue;
114 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 			continue;
116 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 		break;
118 	}
119 	ASSERT(i < xfs_uuid_table_size);
120 	mutex_unlock(&xfs_uuid_table_mutex);
121 }
122 
123 
124 STATIC void
125 __xfs_free_perag(
126 	struct rcu_head	*head)
127 {
128 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
129 
130 	ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
131 	ASSERT(atomic_read(&pag->pag_ref) == 0);
132 	kmem_free(pag);
133 }
134 
135 /*
136  * Free up the per-ag resources associated with the mount structure.
137  */
138 STATIC void
139 xfs_free_perag(
140 	xfs_mount_t	*mp)
141 {
142 	xfs_agnumber_t	agno;
143 	struct xfs_perag *pag;
144 
145 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
146 		spin_lock(&mp->m_perag_lock);
147 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
148 		spin_unlock(&mp->m_perag_lock);
149 		ASSERT(pag);
150 		ASSERT(atomic_read(&pag->pag_ref) == 0);
151 		cancel_delayed_work_sync(&pag->pag_blockgc_work);
152 		xfs_iunlink_destroy(pag);
153 		xfs_buf_hash_destroy(pag);
154 		call_rcu(&pag->rcu_head, __xfs_free_perag);
155 	}
156 }
157 
158 /*
159  * Check size of device based on the (data/realtime) block count.
160  * Note: this check is used by the growfs code as well as mount.
161  */
162 int
163 xfs_sb_validate_fsb_count(
164 	xfs_sb_t	*sbp,
165 	uint64_t	nblocks)
166 {
167 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
168 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
169 
170 	/* Limited by ULONG_MAX of page cache index */
171 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
172 		return -EFBIG;
173 	return 0;
174 }
175 
176 int
177 xfs_initialize_perag(
178 	xfs_mount_t	*mp,
179 	xfs_agnumber_t	agcount,
180 	xfs_agnumber_t	*maxagi)
181 {
182 	xfs_agnumber_t	index;
183 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
184 	xfs_perag_t	*pag;
185 	int		error = -ENOMEM;
186 
187 	/*
188 	 * Walk the current per-ag tree so we don't try to initialise AGs
189 	 * that already exist (growfs case). Allocate and insert all the
190 	 * AGs we don't find ready for initialisation.
191 	 */
192 	for (index = 0; index < agcount; index++) {
193 		pag = xfs_perag_get(mp, index);
194 		if (pag) {
195 			xfs_perag_put(pag);
196 			continue;
197 		}
198 
199 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
200 		if (!pag) {
201 			error = -ENOMEM;
202 			goto out_unwind_new_pags;
203 		}
204 		pag->pag_agno = index;
205 		pag->pag_mount = mp;
206 		spin_lock_init(&pag->pag_ici_lock);
207 		INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
208 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
209 
210 		error = xfs_buf_hash_init(pag);
211 		if (error)
212 			goto out_free_pag;
213 		init_waitqueue_head(&pag->pagb_wait);
214 		spin_lock_init(&pag->pagb_lock);
215 		pag->pagb_count = 0;
216 		pag->pagb_tree = RB_ROOT;
217 
218 		error = radix_tree_preload(GFP_NOFS);
219 		if (error)
220 			goto out_hash_destroy;
221 
222 		spin_lock(&mp->m_perag_lock);
223 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
224 			WARN_ON_ONCE(1);
225 			spin_unlock(&mp->m_perag_lock);
226 			radix_tree_preload_end();
227 			error = -EEXIST;
228 			goto out_hash_destroy;
229 		}
230 		spin_unlock(&mp->m_perag_lock);
231 		radix_tree_preload_end();
232 		/* first new pag is fully initialized */
233 		if (first_initialised == NULLAGNUMBER)
234 			first_initialised = index;
235 		error = xfs_iunlink_init(pag);
236 		if (error)
237 			goto out_hash_destroy;
238 		spin_lock_init(&pag->pag_state_lock);
239 	}
240 
241 	index = xfs_set_inode_alloc(mp, agcount);
242 
243 	if (maxagi)
244 		*maxagi = index;
245 
246 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 	return 0;
248 
249 out_hash_destroy:
250 	xfs_buf_hash_destroy(pag);
251 out_free_pag:
252 	kmem_free(pag);
253 out_unwind_new_pags:
254 	/* unwind any prior newly initialized pags */
255 	for (index = first_initialised; index < agcount; index++) {
256 		pag = radix_tree_delete(&mp->m_perag_tree, index);
257 		if (!pag)
258 			break;
259 		xfs_buf_hash_destroy(pag);
260 		xfs_iunlink_destroy(pag);
261 		kmem_free(pag);
262 	}
263 	return error;
264 }
265 
266 /*
267  * xfs_readsb
268  *
269  * Does the initial read of the superblock.
270  */
271 int
272 xfs_readsb(
273 	struct xfs_mount *mp,
274 	int		flags)
275 {
276 	unsigned int	sector_size;
277 	struct xfs_buf	*bp;
278 	struct xfs_sb	*sbp = &mp->m_sb;
279 	int		error;
280 	int		loud = !(flags & XFS_MFSI_QUIET);
281 	const struct xfs_buf_ops *buf_ops;
282 
283 	ASSERT(mp->m_sb_bp == NULL);
284 	ASSERT(mp->m_ddev_targp != NULL);
285 
286 	/*
287 	 * For the initial read, we must guess at the sector
288 	 * size based on the block device.  It's enough to
289 	 * get the sb_sectsize out of the superblock and
290 	 * then reread with the proper length.
291 	 * We don't verify it yet, because it may not be complete.
292 	 */
293 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
294 	buf_ops = NULL;
295 
296 	/*
297 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
298 	 * around at all times to optimize access to the superblock. Therefore,
299 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
300 	 * elevated.
301 	 */
302 reread:
303 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
305 				      buf_ops);
306 	if (error) {
307 		if (loud)
308 			xfs_warn(mp, "SB validate failed with error %d.", error);
309 		/* bad CRC means corrupted metadata */
310 		if (error == -EFSBADCRC)
311 			error = -EFSCORRUPTED;
312 		return error;
313 	}
314 
315 	/*
316 	 * Initialize the mount structure from the superblock.
317 	 */
318 	xfs_sb_from_disk(sbp, bp->b_addr);
319 
320 	/*
321 	 * If we haven't validated the superblock, do so now before we try
322 	 * to check the sector size and reread the superblock appropriately.
323 	 */
324 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
325 		if (loud)
326 			xfs_warn(mp, "Invalid superblock magic number");
327 		error = -EINVAL;
328 		goto release_buf;
329 	}
330 
331 	/*
332 	 * We must be able to do sector-sized and sector-aligned IO.
333 	 */
334 	if (sector_size > sbp->sb_sectsize) {
335 		if (loud)
336 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
337 				sector_size, sbp->sb_sectsize);
338 		error = -ENOSYS;
339 		goto release_buf;
340 	}
341 
342 	if (buf_ops == NULL) {
343 		/*
344 		 * Re-read the superblock so the buffer is correctly sized,
345 		 * and properly verified.
346 		 */
347 		xfs_buf_relse(bp);
348 		sector_size = sbp->sb_sectsize;
349 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
350 		goto reread;
351 	}
352 
353 	xfs_reinit_percpu_counters(mp);
354 
355 	/* no need to be quiet anymore, so reset the buf ops */
356 	bp->b_ops = &xfs_sb_buf_ops;
357 
358 	mp->m_sb_bp = bp;
359 	xfs_buf_unlock(bp);
360 	return 0;
361 
362 release_buf:
363 	xfs_buf_relse(bp);
364 	return error;
365 }
366 
367 /*
368  * If the sunit/swidth change would move the precomputed root inode value, we
369  * must reject the ondisk change because repair will stumble over that.
370  * However, we allow the mount to proceed because we never rejected this
371  * combination before.  Returns true to update the sb, false otherwise.
372  */
373 static inline int
374 xfs_check_new_dalign(
375 	struct xfs_mount	*mp,
376 	int			new_dalign,
377 	bool			*update_sb)
378 {
379 	struct xfs_sb		*sbp = &mp->m_sb;
380 	xfs_ino_t		calc_ino;
381 
382 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
383 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
384 
385 	if (sbp->sb_rootino == calc_ino) {
386 		*update_sb = true;
387 		return 0;
388 	}
389 
390 	xfs_warn(mp,
391 "Cannot change stripe alignment; would require moving root inode.");
392 
393 	/*
394 	 * XXX: Next time we add a new incompat feature, this should start
395 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
396 	 * that we're ignoring the administrator's instructions.
397 	 */
398 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
399 	*update_sb = false;
400 	return 0;
401 }
402 
403 /*
404  * If we were provided with new sunit/swidth values as mount options, make sure
405  * that they pass basic alignment and superblock feature checks, and convert
406  * them into the same units (FSB) that everything else expects.  This step
407  * /must/ be done before computing the inode geometry.
408  */
409 STATIC int
410 xfs_validate_new_dalign(
411 	struct xfs_mount	*mp)
412 {
413 	if (mp->m_dalign == 0)
414 		return 0;
415 
416 	/*
417 	 * If stripe unit and stripe width are not multiples
418 	 * of the fs blocksize turn off alignment.
419 	 */
420 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
421 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
422 		xfs_warn(mp,
423 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
424 			mp->m_sb.sb_blocksize);
425 		return -EINVAL;
426 	} else {
427 		/*
428 		 * Convert the stripe unit and width to FSBs.
429 		 */
430 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
431 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
432 			xfs_warn(mp,
433 		"alignment check failed: sunit/swidth vs. agsize(%d)",
434 				 mp->m_sb.sb_agblocks);
435 			return -EINVAL;
436 		} else if (mp->m_dalign) {
437 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
438 		} else {
439 			xfs_warn(mp,
440 		"alignment check failed: sunit(%d) less than bsize(%d)",
441 				 mp->m_dalign, mp->m_sb.sb_blocksize);
442 			return -EINVAL;
443 		}
444 	}
445 
446 	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
447 		xfs_warn(mp,
448 "cannot change alignment: superblock does not support data alignment");
449 		return -EINVAL;
450 	}
451 
452 	return 0;
453 }
454 
455 /* Update alignment values based on mount options and sb values. */
456 STATIC int
457 xfs_update_alignment(
458 	struct xfs_mount	*mp)
459 {
460 	struct xfs_sb		*sbp = &mp->m_sb;
461 
462 	if (mp->m_dalign) {
463 		bool		update_sb;
464 		int		error;
465 
466 		if (sbp->sb_unit == mp->m_dalign &&
467 		    sbp->sb_width == mp->m_swidth)
468 			return 0;
469 
470 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
471 		if (error || !update_sb)
472 			return error;
473 
474 		sbp->sb_unit = mp->m_dalign;
475 		sbp->sb_width = mp->m_swidth;
476 		mp->m_update_sb = true;
477 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
478 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
479 		mp->m_dalign = sbp->sb_unit;
480 		mp->m_swidth = sbp->sb_width;
481 	}
482 
483 	return 0;
484 }
485 
486 /*
487  * precalculate the low space thresholds for dynamic speculative preallocation.
488  */
489 void
490 xfs_set_low_space_thresholds(
491 	struct xfs_mount	*mp)
492 {
493 	int i;
494 
495 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
496 		uint64_t space = mp->m_sb.sb_dblocks;
497 
498 		do_div(space, 100);
499 		mp->m_low_space[i] = space * (i + 1);
500 	}
501 }
502 
503 /*
504  * Check that the data (and log if separate) is an ok size.
505  */
506 STATIC int
507 xfs_check_sizes(
508 	struct xfs_mount *mp)
509 {
510 	struct xfs_buf	*bp;
511 	xfs_daddr_t	d;
512 	int		error;
513 
514 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
515 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
516 		xfs_warn(mp, "filesystem size mismatch detected");
517 		return -EFBIG;
518 	}
519 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
520 					d - XFS_FSS_TO_BB(mp, 1),
521 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
522 	if (error) {
523 		xfs_warn(mp, "last sector read failed");
524 		return error;
525 	}
526 	xfs_buf_relse(bp);
527 
528 	if (mp->m_logdev_targp == mp->m_ddev_targp)
529 		return 0;
530 
531 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
532 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
533 		xfs_warn(mp, "log size mismatch detected");
534 		return -EFBIG;
535 	}
536 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
537 					d - XFS_FSB_TO_BB(mp, 1),
538 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
539 	if (error) {
540 		xfs_warn(mp, "log device read failed");
541 		return error;
542 	}
543 	xfs_buf_relse(bp);
544 	return 0;
545 }
546 
547 /*
548  * Clear the quotaflags in memory and in the superblock.
549  */
550 int
551 xfs_mount_reset_sbqflags(
552 	struct xfs_mount	*mp)
553 {
554 	mp->m_qflags = 0;
555 
556 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
557 	if (mp->m_sb.sb_qflags == 0)
558 		return 0;
559 	spin_lock(&mp->m_sb_lock);
560 	mp->m_sb.sb_qflags = 0;
561 	spin_unlock(&mp->m_sb_lock);
562 
563 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
564 		return 0;
565 
566 	return xfs_sync_sb(mp, false);
567 }
568 
569 uint64_t
570 xfs_default_resblks(xfs_mount_t *mp)
571 {
572 	uint64_t resblks;
573 
574 	/*
575 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
576 	 * smaller.  This is intended to cover concurrent allocation
577 	 * transactions when we initially hit enospc. These each require a 4
578 	 * block reservation. Hence by default we cover roughly 2000 concurrent
579 	 * allocation reservations.
580 	 */
581 	resblks = mp->m_sb.sb_dblocks;
582 	do_div(resblks, 20);
583 	resblks = min_t(uint64_t, resblks, 8192);
584 	return resblks;
585 }
586 
587 /* Ensure the summary counts are correct. */
588 STATIC int
589 xfs_check_summary_counts(
590 	struct xfs_mount	*mp)
591 {
592 	/*
593 	 * The AG0 superblock verifier rejects in-progress filesystems,
594 	 * so we should never see the flag set this far into mounting.
595 	 */
596 	if (mp->m_sb.sb_inprogress) {
597 		xfs_err(mp, "sb_inprogress set after log recovery??");
598 		WARN_ON(1);
599 		return -EFSCORRUPTED;
600 	}
601 
602 	/*
603 	 * Now the log is mounted, we know if it was an unclean shutdown or
604 	 * not. If it was, with the first phase of recovery has completed, we
605 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
606 	 * but they are recovered transactionally in the second recovery phase
607 	 * later.
608 	 *
609 	 * If the log was clean when we mounted, we can check the summary
610 	 * counters.  If any of them are obviously incorrect, we can recompute
611 	 * them from the AGF headers in the next step.
612 	 */
613 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
614 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
615 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
616 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
617 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
618 
619 	/*
620 	 * We can safely re-initialise incore superblock counters from the
621 	 * per-ag data. These may not be correct if the filesystem was not
622 	 * cleanly unmounted, so we waited for recovery to finish before doing
623 	 * this.
624 	 *
625 	 * If the filesystem was cleanly unmounted or the previous check did
626 	 * not flag anything weird, then we can trust the values in the
627 	 * superblock to be correct and we don't need to do anything here.
628 	 * Otherwise, recalculate the summary counters.
629 	 */
630 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
631 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
632 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
633 		return 0;
634 
635 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
636 }
637 
638 /*
639  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
640  * internal inode structures can be sitting in the CIL and AIL at this point,
641  * so we need to unpin them, write them back and/or reclaim them before unmount
642  * can proceed.
643  *
644  * An inode cluster that has been freed can have its buffer still pinned in
645  * memory because the transaction is still sitting in a iclog. The stale inodes
646  * on that buffer will be pinned to the buffer until the transaction hits the
647  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
648  * may never see the pinned buffer, so nothing will push out the iclog and
649  * unpin the buffer.
650  *
651  * Hence we need to force the log to unpin everything first. However, log
652  * forces don't wait for the discards they issue to complete, so we have to
653  * explicitly wait for them to complete here as well.
654  *
655  * Then we can tell the world we are unmounting so that error handling knows
656  * that the filesystem is going away and we should error out anything that we
657  * have been retrying in the background.  This will prevent never-ending
658  * retries in AIL pushing from hanging the unmount.
659  *
660  * Finally, we can push the AIL to clean all the remaining dirty objects, then
661  * reclaim the remaining inodes that are still in memory at this point in time.
662  */
663 static void
664 xfs_unmount_flush_inodes(
665 	struct xfs_mount	*mp)
666 {
667 	xfs_log_force(mp, XFS_LOG_SYNC);
668 	xfs_extent_busy_wait_all(mp);
669 	flush_workqueue(xfs_discard_wq);
670 
671 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
672 
673 	xfs_ail_push_all_sync(mp->m_ail);
674 	cancel_delayed_work_sync(&mp->m_reclaim_work);
675 	xfs_reclaim_inodes(mp);
676 	xfs_health_unmount(mp);
677 }
678 
679 static void
680 xfs_mount_setup_inode_geom(
681 	struct xfs_mount	*mp)
682 {
683 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
684 
685 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
686 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
687 
688 	xfs_ialloc_setup_geometry(mp);
689 }
690 
691 /*
692  * This function does the following on an initial mount of a file system:
693  *	- reads the superblock from disk and init the mount struct
694  *	- if we're a 32-bit kernel, do a size check on the superblock
695  *		so we don't mount terabyte filesystems
696  *	- init mount struct realtime fields
697  *	- allocate inode hash table for fs
698  *	- init directory manager
699  *	- perform recovery and init the log manager
700  */
701 int
702 xfs_mountfs(
703 	struct xfs_mount	*mp)
704 {
705 	struct xfs_sb		*sbp = &(mp->m_sb);
706 	struct xfs_inode	*rip;
707 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
708 	uint64_t		resblks;
709 	uint			quotamount = 0;
710 	uint			quotaflags = 0;
711 	int			error = 0;
712 
713 	xfs_sb_mount_common(mp, sbp);
714 
715 	/*
716 	 * Check for a mismatched features2 values.  Older kernels read & wrote
717 	 * into the wrong sb offset for sb_features2 on some platforms due to
718 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
719 	 * which made older superblock reading/writing routines swap it as a
720 	 * 64-bit value.
721 	 *
722 	 * For backwards compatibility, we make both slots equal.
723 	 *
724 	 * If we detect a mismatched field, we OR the set bits into the existing
725 	 * features2 field in case it has already been modified; we don't want
726 	 * to lose any features.  We then update the bad location with the ORed
727 	 * value so that older kernels will see any features2 flags. The
728 	 * superblock writeback code ensures the new sb_features2 is copied to
729 	 * sb_bad_features2 before it is logged or written to disk.
730 	 */
731 	if (xfs_sb_has_mismatched_features2(sbp)) {
732 		xfs_warn(mp, "correcting sb_features alignment problem");
733 		sbp->sb_features2 |= sbp->sb_bad_features2;
734 		mp->m_update_sb = true;
735 
736 		/*
737 		 * Re-check for ATTR2 in case it was found in bad_features2
738 		 * slot.
739 		 */
740 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
741 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
742 			mp->m_flags |= XFS_MOUNT_ATTR2;
743 	}
744 
745 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
746 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
747 		xfs_sb_version_removeattr2(&mp->m_sb);
748 		mp->m_update_sb = true;
749 
750 		/* update sb_versionnum for the clearing of the morebits */
751 		if (!sbp->sb_features2)
752 			mp->m_update_sb = true;
753 	}
754 
755 	/* always use v2 inodes by default now */
756 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
757 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
758 		mp->m_update_sb = true;
759 	}
760 
761 	/*
762 	 * If we were given new sunit/swidth options, do some basic validation
763 	 * checks and convert the incore dalign and swidth values to the
764 	 * same units (FSB) that everything else uses.  This /must/ happen
765 	 * before computing the inode geometry.
766 	 */
767 	error = xfs_validate_new_dalign(mp);
768 	if (error)
769 		goto out;
770 
771 	xfs_alloc_compute_maxlevels(mp);
772 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
773 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
774 	xfs_mount_setup_inode_geom(mp);
775 	xfs_rmapbt_compute_maxlevels(mp);
776 	xfs_refcountbt_compute_maxlevels(mp);
777 
778 	/*
779 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
780 	 * is NOT aligned turn off m_dalign since allocator alignment is within
781 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
782 	 * we must compute the free space and rmap btree geometry before doing
783 	 * this.
784 	 */
785 	error = xfs_update_alignment(mp);
786 	if (error)
787 		goto out;
788 
789 	/* enable fail_at_unmount as default */
790 	mp->m_fail_unmount = true;
791 
792 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
793 			       NULL, mp->m_super->s_id);
794 	if (error)
795 		goto out;
796 
797 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
798 			       &mp->m_kobj, "stats");
799 	if (error)
800 		goto out_remove_sysfs;
801 
802 	error = xfs_error_sysfs_init(mp);
803 	if (error)
804 		goto out_del_stats;
805 
806 	error = xfs_errortag_init(mp);
807 	if (error)
808 		goto out_remove_error_sysfs;
809 
810 	error = xfs_uuid_mount(mp);
811 	if (error)
812 		goto out_remove_errortag;
813 
814 	/*
815 	 * Update the preferred write size based on the information from the
816 	 * on-disk superblock.
817 	 */
818 	mp->m_allocsize_log =
819 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
820 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
821 
822 	/* set the low space thresholds for dynamic preallocation */
823 	xfs_set_low_space_thresholds(mp);
824 
825 	/*
826 	 * If enabled, sparse inode chunk alignment is expected to match the
827 	 * cluster size. Full inode chunk alignment must match the chunk size,
828 	 * but that is checked on sb read verification...
829 	 */
830 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
831 	    mp->m_sb.sb_spino_align !=
832 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
833 		xfs_warn(mp,
834 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
835 			 mp->m_sb.sb_spino_align,
836 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
837 		error = -EINVAL;
838 		goto out_remove_uuid;
839 	}
840 
841 	/*
842 	 * Check that the data (and log if separate) is an ok size.
843 	 */
844 	error = xfs_check_sizes(mp);
845 	if (error)
846 		goto out_remove_uuid;
847 
848 	/*
849 	 * Initialize realtime fields in the mount structure
850 	 */
851 	error = xfs_rtmount_init(mp);
852 	if (error) {
853 		xfs_warn(mp, "RT mount failed");
854 		goto out_remove_uuid;
855 	}
856 
857 	/*
858 	 *  Copies the low order bits of the timestamp and the randomly
859 	 *  set "sequence" number out of a UUID.
860 	 */
861 	mp->m_fixedfsid[0] =
862 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
863 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
864 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
865 
866 	error = xfs_da_mount(mp);
867 	if (error) {
868 		xfs_warn(mp, "Failed dir/attr init: %d", error);
869 		goto out_remove_uuid;
870 	}
871 
872 	/*
873 	 * Initialize the precomputed transaction reservations values.
874 	 */
875 	xfs_trans_init(mp);
876 
877 	/*
878 	 * Allocate and initialize the per-ag data.
879 	 */
880 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
881 	if (error) {
882 		xfs_warn(mp, "Failed per-ag init: %d", error);
883 		goto out_free_dir;
884 	}
885 
886 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
887 		xfs_warn(mp, "no log defined");
888 		error = -EFSCORRUPTED;
889 		goto out_free_perag;
890 	}
891 
892 	/*
893 	 * Log's mount-time initialization. The first part of recovery can place
894 	 * some items on the AIL, to be handled when recovery is finished or
895 	 * cancelled.
896 	 */
897 	error = xfs_log_mount(mp, mp->m_logdev_targp,
898 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
899 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
900 	if (error) {
901 		xfs_warn(mp, "log mount failed");
902 		goto out_fail_wait;
903 	}
904 
905 	/* Make sure the summary counts are ok. */
906 	error = xfs_check_summary_counts(mp);
907 	if (error)
908 		goto out_log_dealloc;
909 
910 	/*
911 	 * Get and sanity-check the root inode.
912 	 * Save the pointer to it in the mount structure.
913 	 */
914 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
915 			 XFS_ILOCK_EXCL, &rip);
916 	if (error) {
917 		xfs_warn(mp,
918 			"Failed to read root inode 0x%llx, error %d",
919 			sbp->sb_rootino, -error);
920 		goto out_log_dealloc;
921 	}
922 
923 	ASSERT(rip != NULL);
924 
925 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
926 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
927 			(unsigned long long)rip->i_ino);
928 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
929 		error = -EFSCORRUPTED;
930 		goto out_rele_rip;
931 	}
932 	mp->m_rootip = rip;	/* save it */
933 
934 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
935 
936 	/*
937 	 * Initialize realtime inode pointers in the mount structure
938 	 */
939 	error = xfs_rtmount_inodes(mp);
940 	if (error) {
941 		/*
942 		 * Free up the root inode.
943 		 */
944 		xfs_warn(mp, "failed to read RT inodes");
945 		goto out_rele_rip;
946 	}
947 
948 	/*
949 	 * If this is a read-only mount defer the superblock updates until
950 	 * the next remount into writeable mode.  Otherwise we would never
951 	 * perform the update e.g. for the root filesystem.
952 	 */
953 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
954 		error = xfs_sync_sb(mp, false);
955 		if (error) {
956 			xfs_warn(mp, "failed to write sb changes");
957 			goto out_rtunmount;
958 		}
959 	}
960 
961 	/*
962 	 * Initialise the XFS quota management subsystem for this mount
963 	 */
964 	if (XFS_IS_QUOTA_RUNNING(mp)) {
965 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
966 		if (error)
967 			goto out_rtunmount;
968 	} else {
969 		ASSERT(!XFS_IS_QUOTA_ON(mp));
970 
971 		/*
972 		 * If a file system had quotas running earlier, but decided to
973 		 * mount without -o uquota/pquota/gquota options, revoke the
974 		 * quotachecked license.
975 		 */
976 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
977 			xfs_notice(mp, "resetting quota flags");
978 			error = xfs_mount_reset_sbqflags(mp);
979 			if (error)
980 				goto out_rtunmount;
981 		}
982 	}
983 
984 	/*
985 	 * Finish recovering the file system.  This part needed to be delayed
986 	 * until after the root and real-time bitmap inodes were consistently
987 	 * read in.
988 	 */
989 	error = xfs_log_mount_finish(mp);
990 	if (error) {
991 		xfs_warn(mp, "log mount finish failed");
992 		goto out_rtunmount;
993 	}
994 
995 	/*
996 	 * Now the log is fully replayed, we can transition to full read-only
997 	 * mode for read-only mounts. This will sync all the metadata and clean
998 	 * the log so that the recovery we just performed does not have to be
999 	 * replayed again on the next mount.
1000 	 *
1001 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1002 	 * semantically identical operations.
1003 	 */
1004 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
1005 							XFS_MOUNT_RDONLY) {
1006 		xfs_log_clean(mp);
1007 	}
1008 
1009 	/*
1010 	 * Complete the quota initialisation, post-log-replay component.
1011 	 */
1012 	if (quotamount) {
1013 		ASSERT(mp->m_qflags == 0);
1014 		mp->m_qflags = quotaflags;
1015 
1016 		xfs_qm_mount_quotas(mp);
1017 	}
1018 
1019 	/*
1020 	 * Now we are mounted, reserve a small amount of unused space for
1021 	 * privileged transactions. This is needed so that transaction
1022 	 * space required for critical operations can dip into this pool
1023 	 * when at ENOSPC. This is needed for operations like create with
1024 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1025 	 * are not allowed to use this reserved space.
1026 	 *
1027 	 * This may drive us straight to ENOSPC on mount, but that implies
1028 	 * we were already there on the last unmount. Warn if this occurs.
1029 	 */
1030 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1031 		resblks = xfs_default_resblks(mp);
1032 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1033 		if (error)
1034 			xfs_warn(mp,
1035 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1036 
1037 		/* Recover any CoW blocks that never got remapped. */
1038 		error = xfs_reflink_recover_cow(mp);
1039 		if (error) {
1040 			xfs_err(mp,
1041 	"Error %d recovering leftover CoW allocations.", error);
1042 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1043 			goto out_quota;
1044 		}
1045 
1046 		/* Reserve AG blocks for future btree expansion. */
1047 		error = xfs_fs_reserve_ag_blocks(mp);
1048 		if (error && error != -ENOSPC)
1049 			goto out_agresv;
1050 	}
1051 
1052 	return 0;
1053 
1054  out_agresv:
1055 	xfs_fs_unreserve_ag_blocks(mp);
1056  out_quota:
1057 	xfs_qm_unmount_quotas(mp);
1058  out_rtunmount:
1059 	xfs_rtunmount_inodes(mp);
1060  out_rele_rip:
1061 	xfs_irele(rip);
1062 	/* Clean out dquots that might be in memory after quotacheck. */
1063 	xfs_qm_unmount(mp);
1064 	/*
1065 	 * Flush all inode reclamation work and flush the log.
1066 	 * We have to do this /after/ rtunmount and qm_unmount because those
1067 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1068 	 *
1069 	 * This is slightly different from the unmountfs call sequence
1070 	 * because we could be tearing down a partially set up mount.  In
1071 	 * particular, if log_mount_finish fails we bail out without calling
1072 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1073 	 * quota inodes.
1074 	 */
1075 	xfs_unmount_flush_inodes(mp);
1076  out_log_dealloc:
1077 	xfs_log_mount_cancel(mp);
1078  out_fail_wait:
1079 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1080 		xfs_buftarg_drain(mp->m_logdev_targp);
1081 	xfs_buftarg_drain(mp->m_ddev_targp);
1082  out_free_perag:
1083 	xfs_free_perag(mp);
1084  out_free_dir:
1085 	xfs_da_unmount(mp);
1086  out_remove_uuid:
1087 	xfs_uuid_unmount(mp);
1088  out_remove_errortag:
1089 	xfs_errortag_del(mp);
1090  out_remove_error_sysfs:
1091 	xfs_error_sysfs_del(mp);
1092  out_del_stats:
1093 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1094  out_remove_sysfs:
1095 	xfs_sysfs_del(&mp->m_kobj);
1096  out:
1097 	return error;
1098 }
1099 
1100 /*
1101  * This flushes out the inodes,dquots and the superblock, unmounts the
1102  * log and makes sure that incore structures are freed.
1103  */
1104 void
1105 xfs_unmountfs(
1106 	struct xfs_mount	*mp)
1107 {
1108 	uint64_t		resblks;
1109 	int			error;
1110 
1111 	xfs_blockgc_stop(mp);
1112 	xfs_fs_unreserve_ag_blocks(mp);
1113 	xfs_qm_unmount_quotas(mp);
1114 	xfs_rtunmount_inodes(mp);
1115 	xfs_irele(mp->m_rootip);
1116 
1117 	xfs_unmount_flush_inodes(mp);
1118 
1119 	xfs_qm_unmount(mp);
1120 
1121 	/*
1122 	 * Unreserve any blocks we have so that when we unmount we don't account
1123 	 * the reserved free space as used. This is really only necessary for
1124 	 * lazy superblock counting because it trusts the incore superblock
1125 	 * counters to be absolutely correct on clean unmount.
1126 	 *
1127 	 * We don't bother correcting this elsewhere for lazy superblock
1128 	 * counting because on mount of an unclean filesystem we reconstruct the
1129 	 * correct counter value and this is irrelevant.
1130 	 *
1131 	 * For non-lazy counter filesystems, this doesn't matter at all because
1132 	 * we only every apply deltas to the superblock and hence the incore
1133 	 * value does not matter....
1134 	 */
1135 	resblks = 0;
1136 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1137 	if (error)
1138 		xfs_warn(mp, "Unable to free reserved block pool. "
1139 				"Freespace may not be correct on next mount.");
1140 
1141 	xfs_log_unmount(mp);
1142 	xfs_da_unmount(mp);
1143 	xfs_uuid_unmount(mp);
1144 
1145 #if defined(DEBUG)
1146 	xfs_errortag_clearall(mp);
1147 #endif
1148 	xfs_free_perag(mp);
1149 
1150 	xfs_errortag_del(mp);
1151 	xfs_error_sysfs_del(mp);
1152 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1153 	xfs_sysfs_del(&mp->m_kobj);
1154 }
1155 
1156 /*
1157  * Determine whether modifications can proceed. The caller specifies the minimum
1158  * freeze level for which modifications should not be allowed. This allows
1159  * certain operations to proceed while the freeze sequence is in progress, if
1160  * necessary.
1161  */
1162 bool
1163 xfs_fs_writable(
1164 	struct xfs_mount	*mp,
1165 	int			level)
1166 {
1167 	ASSERT(level > SB_UNFROZEN);
1168 	if ((mp->m_super->s_writers.frozen >= level) ||
1169 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1170 		return false;
1171 
1172 	return true;
1173 }
1174 
1175 /*
1176  * Deltas for the block count can vary from 1 to very large, but lock contention
1177  * only occurs on frequent small block count updates such as in the delayed
1178  * allocation path for buffered writes (page a time updates). Hence we set
1179  * a large batch count (1024) to minimise global counter updates except when
1180  * we get near to ENOSPC and we have to be very accurate with our updates.
1181  */
1182 #define XFS_FDBLOCKS_BATCH	1024
1183 int
1184 xfs_mod_fdblocks(
1185 	struct xfs_mount	*mp,
1186 	int64_t			delta,
1187 	bool			rsvd)
1188 {
1189 	int64_t			lcounter;
1190 	long long		res_used;
1191 	s32			batch;
1192 	uint64_t		set_aside;
1193 
1194 	if (delta > 0) {
1195 		/*
1196 		 * If the reserve pool is depleted, put blocks back into it
1197 		 * first. Most of the time the pool is full.
1198 		 */
1199 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1200 			percpu_counter_add(&mp->m_fdblocks, delta);
1201 			return 0;
1202 		}
1203 
1204 		spin_lock(&mp->m_sb_lock);
1205 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1206 
1207 		if (res_used > delta) {
1208 			mp->m_resblks_avail += delta;
1209 		} else {
1210 			delta -= res_used;
1211 			mp->m_resblks_avail = mp->m_resblks;
1212 			percpu_counter_add(&mp->m_fdblocks, delta);
1213 		}
1214 		spin_unlock(&mp->m_sb_lock);
1215 		return 0;
1216 	}
1217 
1218 	/*
1219 	 * Taking blocks away, need to be more accurate the closer we
1220 	 * are to zero.
1221 	 *
1222 	 * If the counter has a value of less than 2 * max batch size,
1223 	 * then make everything serialise as we are real close to
1224 	 * ENOSPC.
1225 	 */
1226 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1227 				     XFS_FDBLOCKS_BATCH) < 0)
1228 		batch = 1;
1229 	else
1230 		batch = XFS_FDBLOCKS_BATCH;
1231 
1232 	/*
1233 	 * Set aside allocbt blocks because these blocks are tracked as free
1234 	 * space but not available for allocation. Technically this means that a
1235 	 * single reservation cannot consume all remaining free space, but the
1236 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1237 	 * The tradeoff without this is that filesystems that maintain high
1238 	 * perag block reservations can over reserve physical block availability
1239 	 * and fail physical allocation, which leads to much more serious
1240 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1241 	 * slightly premature -ENOSPC.
1242 	 */
1243 	set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1244 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1245 	if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1246 				     XFS_FDBLOCKS_BATCH) >= 0) {
1247 		/* we had space! */
1248 		return 0;
1249 	}
1250 
1251 	/*
1252 	 * lock up the sb for dipping into reserves before releasing the space
1253 	 * that took us to ENOSPC.
1254 	 */
1255 	spin_lock(&mp->m_sb_lock);
1256 	percpu_counter_add(&mp->m_fdblocks, -delta);
1257 	if (!rsvd)
1258 		goto fdblocks_enospc;
1259 
1260 	lcounter = (long long)mp->m_resblks_avail + delta;
1261 	if (lcounter >= 0) {
1262 		mp->m_resblks_avail = lcounter;
1263 		spin_unlock(&mp->m_sb_lock);
1264 		return 0;
1265 	}
1266 	xfs_warn_once(mp,
1267 "Reserve blocks depleted! Consider increasing reserve pool size.");
1268 
1269 fdblocks_enospc:
1270 	spin_unlock(&mp->m_sb_lock);
1271 	return -ENOSPC;
1272 }
1273 
1274 int
1275 xfs_mod_frextents(
1276 	struct xfs_mount	*mp,
1277 	int64_t			delta)
1278 {
1279 	int64_t			lcounter;
1280 	int			ret = 0;
1281 
1282 	spin_lock(&mp->m_sb_lock);
1283 	lcounter = mp->m_sb.sb_frextents + delta;
1284 	if (lcounter < 0)
1285 		ret = -ENOSPC;
1286 	else
1287 		mp->m_sb.sb_frextents = lcounter;
1288 	spin_unlock(&mp->m_sb_lock);
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Used to free the superblock along various error paths.
1294  */
1295 void
1296 xfs_freesb(
1297 	struct xfs_mount	*mp)
1298 {
1299 	struct xfs_buf		*bp = mp->m_sb_bp;
1300 
1301 	xfs_buf_lock(bp);
1302 	mp->m_sb_bp = NULL;
1303 	xfs_buf_relse(bp);
1304 }
1305 
1306 /*
1307  * If the underlying (data/log/rt) device is readonly, there are some
1308  * operations that cannot proceed.
1309  */
1310 int
1311 xfs_dev_is_read_only(
1312 	struct xfs_mount	*mp,
1313 	char			*message)
1314 {
1315 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1316 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1317 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1318 		xfs_notice(mp, "%s required on read-only device.", message);
1319 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1320 		return -EROFS;
1321 	}
1322 	return 0;
1323 }
1324 
1325 /* Force the summary counters to be recalculated at next mount. */
1326 void
1327 xfs_force_summary_recalc(
1328 	struct xfs_mount	*mp)
1329 {
1330 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1331 		return;
1332 
1333 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1334 }
1335 
1336 /*
1337  * Update the in-core delayed block counter.
1338  *
1339  * We prefer to update the counter without having to take a spinlock for every
1340  * counter update (i.e. batching).  Each change to delayed allocation
1341  * reservations can change can easily exceed the default percpu counter
1342  * batching, so we use a larger batch factor here.
1343  *
1344  * Note that we don't currently have any callers requiring fast summation
1345  * (e.g. percpu_counter_read) so we can use a big batch value here.
1346  */
1347 #define XFS_DELALLOC_BATCH	(4096)
1348 void
1349 xfs_mod_delalloc(
1350 	struct xfs_mount	*mp,
1351 	int64_t			delta)
1352 {
1353 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1354 			XFS_DELALLOC_BATCH);
1355 }
1356