1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "xfs_metafile.h" 39 #include "xfs_rtgroup.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtrefcount_btree.h" 42 #include "scrub/stats.h" 43 #include "xfs_zone_alloc.h" 44 45 static DEFINE_MUTEX(xfs_uuid_table_mutex); 46 static int xfs_uuid_table_size; 47 static uuid_t *xfs_uuid_table; 48 49 void 50 xfs_uuid_table_free(void) 51 { 52 if (xfs_uuid_table_size == 0) 53 return; 54 kfree(xfs_uuid_table); 55 xfs_uuid_table = NULL; 56 xfs_uuid_table_size = 0; 57 } 58 59 /* 60 * See if the UUID is unique among mounted XFS filesystems. 61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 62 */ 63 STATIC int 64 xfs_uuid_mount( 65 struct xfs_mount *mp) 66 { 67 uuid_t *uuid = &mp->m_sb.sb_uuid; 68 int hole, i; 69 70 /* Publish UUID in struct super_block */ 71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 72 73 if (xfs_has_nouuid(mp)) 74 return 0; 75 76 if (uuid_is_null(uuid)) { 77 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 78 return -EINVAL; 79 } 80 81 mutex_lock(&xfs_uuid_table_mutex); 82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 83 if (uuid_is_null(&xfs_uuid_table[i])) { 84 hole = i; 85 continue; 86 } 87 if (uuid_equal(uuid, &xfs_uuid_table[i])) 88 goto out_duplicate; 89 } 90 91 if (hole < 0) { 92 xfs_uuid_table = krealloc(xfs_uuid_table, 93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 94 GFP_KERNEL | __GFP_NOFAIL); 95 hole = xfs_uuid_table_size++; 96 } 97 xfs_uuid_table[hole] = *uuid; 98 mutex_unlock(&xfs_uuid_table_mutex); 99 100 return 0; 101 102 out_duplicate: 103 mutex_unlock(&xfs_uuid_table_mutex); 104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 105 return -EINVAL; 106 } 107 108 STATIC void 109 xfs_uuid_unmount( 110 struct xfs_mount *mp) 111 { 112 uuid_t *uuid = &mp->m_sb.sb_uuid; 113 int i; 114 115 if (xfs_has_nouuid(mp)) 116 return; 117 118 mutex_lock(&xfs_uuid_table_mutex); 119 for (i = 0; i < xfs_uuid_table_size; i++) { 120 if (uuid_is_null(&xfs_uuid_table[i])) 121 continue; 122 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 123 continue; 124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 125 break; 126 } 127 ASSERT(i < xfs_uuid_table_size); 128 mutex_unlock(&xfs_uuid_table_mutex); 129 } 130 131 /* 132 * Check size of device based on the (data/realtime) block count. 133 * Note: this check is used by the growfs code as well as mount. 134 */ 135 int 136 xfs_sb_validate_fsb_count( 137 xfs_sb_t *sbp, 138 uint64_t nblocks) 139 { 140 uint64_t max_bytes; 141 142 ASSERT(sbp->sb_blocklog >= BBSHIFT); 143 144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 145 return -EFBIG; 146 147 /* Limited by ULONG_MAX of page cache index */ 148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 149 return -EFBIG; 150 return 0; 151 } 152 153 /* 154 * xfs_readsb 155 * 156 * Does the initial read of the superblock. 157 */ 158 int 159 xfs_readsb( 160 struct xfs_mount *mp, 161 int flags) 162 { 163 unsigned int sector_size; 164 struct xfs_buf *bp; 165 struct xfs_sb *sbp = &mp->m_sb; 166 int error; 167 int loud = !(flags & XFS_MFSI_QUIET); 168 const struct xfs_buf_ops *buf_ops; 169 170 ASSERT(mp->m_sb_bp == NULL); 171 ASSERT(mp->m_ddev_targp != NULL); 172 173 /* 174 * For the initial read, we must guess at the sector 175 * size based on the block device. It's enough to 176 * get the sb_sectsize out of the superblock and 177 * then reread with the proper length. 178 * We don't verify it yet, because it may not be complete. 179 */ 180 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 181 buf_ops = NULL; 182 183 /* 184 * Allocate a (locked) buffer to hold the superblock. This will be kept 185 * around at all times to optimize access to the superblock. 186 */ 187 reread: 188 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 189 BTOBB(sector_size), &bp, buf_ops); 190 if (error) { 191 if (loud) 192 xfs_warn(mp, "SB validate failed with error %d.", error); 193 /* bad CRC means corrupted metadata */ 194 if (error == -EFSBADCRC) 195 error = -EFSCORRUPTED; 196 return error; 197 } 198 199 /* 200 * Initialize the mount structure from the superblock. 201 */ 202 xfs_sb_from_disk(sbp, bp->b_addr); 203 204 /* 205 * If we haven't validated the superblock, do so now before we try 206 * to check the sector size and reread the superblock appropriately. 207 */ 208 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 209 if (loud) 210 xfs_warn(mp, "Invalid superblock magic number"); 211 error = -EINVAL; 212 goto release_buf; 213 } 214 215 /* 216 * We must be able to do sector-sized and sector-aligned IO. 217 */ 218 if (sector_size > sbp->sb_sectsize) { 219 if (loud) 220 xfs_warn(mp, "device supports %u byte sectors (not %u)", 221 sector_size, sbp->sb_sectsize); 222 error = -ENOSYS; 223 goto release_buf; 224 } 225 226 if (buf_ops == NULL) { 227 /* 228 * Re-read the superblock so the buffer is correctly sized, 229 * and properly verified. 230 */ 231 xfs_buf_relse(bp); 232 sector_size = sbp->sb_sectsize; 233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 234 goto reread; 235 } 236 237 mp->m_features |= xfs_sb_version_to_features(sbp); 238 xfs_reinit_percpu_counters(mp); 239 240 /* 241 * If logged xattrs are enabled after log recovery finishes, then set 242 * the opstate so that log recovery will work properly. 243 */ 244 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 245 xfs_set_using_logged_xattrs(mp); 246 247 /* no need to be quiet anymore, so reset the buf ops */ 248 bp->b_ops = &xfs_sb_buf_ops; 249 250 mp->m_sb_bp = bp; 251 xfs_buf_unlock(bp); 252 return 0; 253 254 release_buf: 255 xfs_buf_relse(bp); 256 return error; 257 } 258 259 /* 260 * If the sunit/swidth change would move the precomputed root inode value, we 261 * must reject the ondisk change because repair will stumble over that. 262 * However, we allow the mount to proceed because we never rejected this 263 * combination before. Returns true to update the sb, false otherwise. 264 */ 265 static inline int 266 xfs_check_new_dalign( 267 struct xfs_mount *mp, 268 int new_dalign, 269 bool *update_sb) 270 { 271 struct xfs_sb *sbp = &mp->m_sb; 272 xfs_ino_t calc_ino; 273 274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 276 277 if (sbp->sb_rootino == calc_ino) { 278 *update_sb = true; 279 return 0; 280 } 281 282 xfs_warn(mp, 283 "Cannot change stripe alignment; would require moving root inode."); 284 285 /* 286 * XXX: Next time we add a new incompat feature, this should start 287 * returning -EINVAL to fail the mount. Until then, spit out a warning 288 * that we're ignoring the administrator's instructions. 289 */ 290 xfs_warn(mp, "Skipping superblock stripe alignment update."); 291 *update_sb = false; 292 return 0; 293 } 294 295 /* 296 * If we were provided with new sunit/swidth values as mount options, make sure 297 * that they pass basic alignment and superblock feature checks, and convert 298 * them into the same units (FSB) that everything else expects. This step 299 * /must/ be done before computing the inode geometry. 300 */ 301 STATIC int 302 xfs_validate_new_dalign( 303 struct xfs_mount *mp) 304 { 305 if (mp->m_dalign == 0) 306 return 0; 307 308 /* 309 * If stripe unit and stripe width are not multiples 310 * of the fs blocksize turn off alignment. 311 */ 312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 314 xfs_warn(mp, 315 "alignment check failed: sunit/swidth vs. blocksize(%d)", 316 mp->m_sb.sb_blocksize); 317 return -EINVAL; 318 } 319 320 /* 321 * Convert the stripe unit and width to FSBs. 322 */ 323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 325 xfs_warn(mp, 326 "alignment check failed: sunit/swidth vs. agsize(%d)", 327 mp->m_sb.sb_agblocks); 328 return -EINVAL; 329 } 330 331 if (!mp->m_dalign) { 332 xfs_warn(mp, 333 "alignment check failed: sunit(%d) less than bsize(%d)", 334 mp->m_dalign, mp->m_sb.sb_blocksize); 335 return -EINVAL; 336 } 337 338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 339 340 if (!xfs_has_dalign(mp)) { 341 xfs_warn(mp, 342 "cannot change alignment: superblock does not support data alignment"); 343 return -EINVAL; 344 } 345 346 return 0; 347 } 348 349 /* Update alignment values based on mount options and sb values. */ 350 STATIC int 351 xfs_update_alignment( 352 struct xfs_mount *mp) 353 { 354 struct xfs_sb *sbp = &mp->m_sb; 355 356 if (mp->m_dalign) { 357 bool update_sb; 358 int error; 359 360 if (sbp->sb_unit == mp->m_dalign && 361 sbp->sb_width == mp->m_swidth) 362 return 0; 363 364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 365 if (error || !update_sb) 366 return error; 367 368 sbp->sb_unit = mp->m_dalign; 369 sbp->sb_width = mp->m_swidth; 370 mp->m_update_sb = true; 371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 372 mp->m_dalign = sbp->sb_unit; 373 mp->m_swidth = sbp->sb_width; 374 } 375 376 return 0; 377 } 378 379 /* 380 * precalculate the low space thresholds for dynamic speculative preallocation. 381 */ 382 void 383 xfs_set_low_space_thresholds( 384 struct xfs_mount *mp) 385 { 386 uint64_t dblocks = mp->m_sb.sb_dblocks; 387 uint64_t rtexts = mp->m_sb.sb_rextents; 388 int i; 389 390 do_div(dblocks, 100); 391 do_div(rtexts, 100); 392 393 for (i = 0; i < XFS_LOWSP_MAX; i++) { 394 mp->m_low_space[i] = dblocks * (i + 1); 395 mp->m_low_rtexts[i] = rtexts * (i + 1); 396 } 397 } 398 399 /* 400 * Check that the data (and log if separate) is an ok size. 401 */ 402 STATIC int 403 xfs_check_sizes( 404 struct xfs_mount *mp) 405 { 406 struct xfs_buf *bp; 407 xfs_daddr_t d; 408 int error; 409 410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 412 xfs_warn(mp, "filesystem size mismatch detected"); 413 return -EFBIG; 414 } 415 error = xfs_buf_read_uncached(mp->m_ddev_targp, 416 d - XFS_FSS_TO_BB(mp, 1), 417 XFS_FSS_TO_BB(mp, 1), &bp, NULL); 418 if (error) { 419 xfs_warn(mp, "last sector read failed"); 420 return error; 421 } 422 xfs_buf_relse(bp); 423 424 if (mp->m_logdev_targp == mp->m_ddev_targp) 425 return 0; 426 427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 429 xfs_warn(mp, "log size mismatch detected"); 430 return -EFBIG; 431 } 432 error = xfs_buf_read_uncached(mp->m_logdev_targp, 433 d - XFS_FSB_TO_BB(mp, 1), 434 XFS_FSB_TO_BB(mp, 1), &bp, NULL); 435 if (error) { 436 xfs_warn(mp, "log device read failed"); 437 return error; 438 } 439 xfs_buf_relse(bp); 440 return 0; 441 } 442 443 /* 444 * Clear the quotaflags in memory and in the superblock. 445 */ 446 int 447 xfs_mount_reset_sbqflags( 448 struct xfs_mount *mp) 449 { 450 mp->m_qflags = 0; 451 452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 453 if (mp->m_sb.sb_qflags == 0) 454 return 0; 455 spin_lock(&mp->m_sb_lock); 456 mp->m_sb.sb_qflags = 0; 457 spin_unlock(&mp->m_sb_lock); 458 459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 460 return 0; 461 462 return xfs_sync_sb(mp, false); 463 } 464 465 static const char *const xfs_free_pool_name[] = { 466 [XC_FREE_BLOCKS] = "free blocks", 467 [XC_FREE_RTEXTENTS] = "free rt extents", 468 [XC_FREE_RTAVAILABLE] = "available rt extents", 469 }; 470 471 uint64_t 472 xfs_default_resblks( 473 struct xfs_mount *mp, 474 enum xfs_free_counter ctr) 475 { 476 switch (ctr) { 477 case XC_FREE_BLOCKS: 478 /* 479 * Default to 5% or 8192 FSBs of space reserved, whichever is 480 * smaller. 481 * 482 * This is intended to cover concurrent allocation transactions 483 * when we initially hit ENOSPC. These each require a 4 block 484 * reservation. Hence by default we cover roughly 2000 485 * concurrent allocation reservations. 486 */ 487 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL); 488 case XC_FREE_RTEXTENTS: 489 case XC_FREE_RTAVAILABLE: 490 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp)) 491 return xfs_zoned_default_resblks(mp, ctr); 492 return 0; 493 default: 494 ASSERT(0); 495 return 0; 496 } 497 } 498 499 /* Ensure the summary counts are correct. */ 500 STATIC int 501 xfs_check_summary_counts( 502 struct xfs_mount *mp) 503 { 504 int error = 0; 505 506 /* 507 * The AG0 superblock verifier rejects in-progress filesystems, 508 * so we should never see the flag set this far into mounting. 509 */ 510 if (mp->m_sb.sb_inprogress) { 511 xfs_err(mp, "sb_inprogress set after log recovery??"); 512 WARN_ON(1); 513 return -EFSCORRUPTED; 514 } 515 516 /* 517 * Now the log is mounted, we know if it was an unclean shutdown or 518 * not. If it was, with the first phase of recovery has completed, we 519 * have consistent AG blocks on disk. We have not recovered EFIs yet, 520 * but they are recovered transactionally in the second recovery phase 521 * later. 522 * 523 * If the log was clean when we mounted, we can check the summary 524 * counters. If any of them are obviously incorrect, we can recompute 525 * them from the AGF headers in the next step. 526 */ 527 if (xfs_is_clean(mp) && 528 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 529 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 530 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 531 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 532 533 /* 534 * We can safely re-initialise incore superblock counters from the 535 * per-ag data. These may not be correct if the filesystem was not 536 * cleanly unmounted, so we waited for recovery to finish before doing 537 * this. 538 * 539 * If the filesystem was cleanly unmounted or the previous check did 540 * not flag anything weird, then we can trust the values in the 541 * superblock to be correct and we don't need to do anything here. 542 * Otherwise, recalculate the summary counters. 543 */ 544 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 545 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 546 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 547 if (error) 548 return error; 549 } 550 551 /* 552 * Older kernels misused sb_frextents to reflect both incore 553 * reservations made by running transactions and the actual count of 554 * free rt extents in the ondisk metadata. Transactions committed 555 * during runtime can therefore contain a superblock update that 556 * undercounts the number of free rt extents tracked in the rt bitmap. 557 * A clean unmount record will have the correct frextents value since 558 * there can be no other transactions running at that point. 559 * 560 * If we're mounting the rt volume after recovering the log, recompute 561 * frextents from the rtbitmap file to fix the inconsistency. 562 */ 563 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) { 564 error = xfs_rtalloc_reinit_frextents(mp); 565 if (error) 566 return error; 567 } 568 569 return 0; 570 } 571 572 static void 573 xfs_unmount_check( 574 struct xfs_mount *mp) 575 { 576 if (xfs_is_shutdown(mp)) 577 return; 578 579 if (percpu_counter_sum(&mp->m_ifree) > 580 percpu_counter_sum(&mp->m_icount)) { 581 xfs_alert(mp, "ifree/icount mismatch at unmount"); 582 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 583 } 584 } 585 586 /* 587 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 588 * internal inode structures can be sitting in the CIL and AIL at this point, 589 * so we need to unpin them, write them back and/or reclaim them before unmount 590 * can proceed. In other words, callers are required to have inactivated all 591 * inodes. 592 * 593 * An inode cluster that has been freed can have its buffer still pinned in 594 * memory because the transaction is still sitting in a iclog. The stale inodes 595 * on that buffer will be pinned to the buffer until the transaction hits the 596 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 597 * may never see the pinned buffer, so nothing will push out the iclog and 598 * unpin the buffer. 599 * 600 * Hence we need to force the log to unpin everything first. However, log 601 * forces don't wait for the discards they issue to complete, so we have to 602 * explicitly wait for them to complete here as well. 603 * 604 * Then we can tell the world we are unmounting so that error handling knows 605 * that the filesystem is going away and we should error out anything that we 606 * have been retrying in the background. This will prevent never-ending 607 * retries in AIL pushing from hanging the unmount. 608 * 609 * Finally, we can push the AIL to clean all the remaining dirty objects, then 610 * reclaim the remaining inodes that are still in memory at this point in time. 611 */ 612 static void 613 xfs_unmount_flush_inodes( 614 struct xfs_mount *mp) 615 { 616 xfs_log_force(mp, XFS_LOG_SYNC); 617 xfs_extent_busy_wait_all(mp); 618 flush_workqueue(xfs_discard_wq); 619 620 xfs_set_unmounting(mp); 621 622 xfs_ail_push_all_sync(mp->m_ail); 623 xfs_inodegc_stop(mp); 624 cancel_delayed_work_sync(&mp->m_reclaim_work); 625 xfs_reclaim_inodes(mp); 626 xfs_health_unmount(mp); 627 } 628 629 static void 630 xfs_mount_setup_inode_geom( 631 struct xfs_mount *mp) 632 { 633 struct xfs_ino_geometry *igeo = M_IGEO(mp); 634 635 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 636 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 637 638 xfs_ialloc_setup_geometry(mp); 639 } 640 641 /* Mount the metadata directory tree root. */ 642 STATIC int 643 xfs_mount_setup_metadir( 644 struct xfs_mount *mp) 645 { 646 int error; 647 648 /* Load the metadata directory root inode into memory. */ 649 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, 650 &mp->m_metadirip); 651 if (error) 652 xfs_warn(mp, "Failed to load metadir root directory, error %d", 653 error); 654 return error; 655 } 656 657 /* Compute maximum possible height for per-AG btree types for this fs. */ 658 static inline void 659 xfs_agbtree_compute_maxlevels( 660 struct xfs_mount *mp) 661 { 662 unsigned int levels; 663 664 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 665 levels = max(levels, mp->m_rmap_maxlevels); 666 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 667 } 668 669 /* Maximum atomic write IO size that the kernel allows. */ 670 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp) 671 { 672 return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT)); 673 } 674 675 static inline unsigned int max_pow_of_two_factor(const unsigned int nr) 676 { 677 return 1 << (ffs(nr) - 1); 678 } 679 680 /* 681 * If the data device advertises atomic write support, limit the size of data 682 * device atomic writes to the greatest power-of-two factor of the AG size so 683 * that every atomic write unit aligns with the start of every AG. This is 684 * required so that the per-AG allocations for an atomic write will always be 685 * aligned compatibly with the alignment requirements of the storage. 686 * 687 * If the data device doesn't advertise atomic writes, then there are no 688 * alignment restrictions and the largest out-of-place write we can do 689 * ourselves is the number of blocks that user files can allocate from any AG. 690 */ 691 static inline xfs_extlen_t xfs_calc_perag_awu_max(struct xfs_mount *mp) 692 { 693 if (mp->m_ddev_targp->bt_bdev_awu_min > 0) 694 return max_pow_of_two_factor(mp->m_sb.sb_agblocks); 695 return rounddown_pow_of_two(mp->m_ag_max_usable); 696 } 697 698 /* 699 * Reflink on the realtime device requires rtgroups, and atomic writes require 700 * reflink. 701 * 702 * If the realtime device advertises atomic write support, limit the size of 703 * data device atomic writes to the greatest power-of-two factor of the rtgroup 704 * size so that every atomic write unit aligns with the start of every rtgroup. 705 * This is required so that the per-rtgroup allocations for an atomic write 706 * will always be aligned compatibly with the alignment requirements of the 707 * storage. 708 * 709 * If the rt device doesn't advertise atomic writes, then there are no 710 * alignment restrictions and the largest out-of-place write we can do 711 * ourselves is the number of blocks that user files can allocate from any 712 * rtgroup. 713 */ 714 static inline xfs_extlen_t xfs_calc_rtgroup_awu_max(struct xfs_mount *mp) 715 { 716 struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG]; 717 718 if (rgs->blocks == 0) 719 return 0; 720 if (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_bdev_awu_min > 0) 721 return max_pow_of_two_factor(rgs->blocks); 722 return rounddown_pow_of_two(rgs->blocks); 723 } 724 725 /* Compute the maximum atomic write unit size for each section. */ 726 static inline void 727 xfs_calc_atomic_write_unit_max( 728 struct xfs_mount *mp) 729 { 730 struct xfs_groups *ags = &mp->m_groups[XG_TYPE_AG]; 731 struct xfs_groups *rgs = &mp->m_groups[XG_TYPE_RTG]; 732 733 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); 734 const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp); 735 const xfs_extlen_t max_agsize = xfs_calc_perag_awu_max(mp); 736 const xfs_extlen_t max_rgsize = xfs_calc_rtgroup_awu_max(mp); 737 738 ags->awu_max = min3(max_write, max_ioend, max_agsize); 739 rgs->awu_max = min3(max_write, max_ioend, max_rgsize); 740 741 trace_xfs_calc_atomic_write_unit_max(mp, max_write, max_ioend, 742 max_agsize, max_rgsize); 743 } 744 745 /* 746 * Try to set the atomic write maximum to a new value that we got from 747 * userspace via mount option. 748 */ 749 int 750 xfs_set_max_atomic_write_opt( 751 struct xfs_mount *mp, 752 unsigned long long new_max_bytes) 753 { 754 const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes); 755 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); 756 const xfs_extlen_t max_group = 757 max(mp->m_groups[XG_TYPE_AG].blocks, 758 mp->m_groups[XG_TYPE_RTG].blocks); 759 const xfs_extlen_t max_group_write = 760 max(xfs_calc_perag_awu_max(mp), xfs_calc_rtgroup_awu_max(mp)); 761 int error; 762 763 if (new_max_bytes == 0) 764 goto set_limit; 765 766 ASSERT(max_write <= U32_MAX); 767 768 /* generic_atomic_write_valid enforces power of two length */ 769 if (!is_power_of_2(new_max_bytes)) { 770 xfs_warn(mp, 771 "max atomic write size of %llu bytes is not a power of 2", 772 new_max_bytes); 773 return -EINVAL; 774 } 775 776 if (new_max_bytes & mp->m_blockmask) { 777 xfs_warn(mp, 778 "max atomic write size of %llu bytes not aligned with fsblock", 779 new_max_bytes); 780 return -EINVAL; 781 } 782 783 if (new_max_fsbs > max_write) { 784 xfs_warn(mp, 785 "max atomic write size of %lluk cannot be larger than max write size %lluk", 786 new_max_bytes >> 10, 787 XFS_FSB_TO_B(mp, max_write) >> 10); 788 return -EINVAL; 789 } 790 791 if (new_max_fsbs > max_group) { 792 xfs_warn(mp, 793 "max atomic write size of %lluk cannot be larger than allocation group size %lluk", 794 new_max_bytes >> 10, 795 XFS_FSB_TO_B(mp, max_group) >> 10); 796 return -EINVAL; 797 } 798 799 if (new_max_fsbs > max_group_write) { 800 xfs_warn(mp, 801 "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk", 802 new_max_bytes >> 10, 803 XFS_FSB_TO_B(mp, max_group_write) >> 10); 804 return -EINVAL; 805 } 806 807 set_limit: 808 error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs); 809 if (error) { 810 xfs_warn(mp, 811 "cannot support completing atomic writes of %lluk", 812 new_max_bytes >> 10); 813 return error; 814 } 815 816 xfs_calc_atomic_write_unit_max(mp); 817 mp->m_awu_max_bytes = new_max_bytes; 818 return 0; 819 } 820 821 /* Compute maximum possible height for realtime btree types for this fs. */ 822 static inline void 823 xfs_rtbtree_compute_maxlevels( 824 struct xfs_mount *mp) 825 { 826 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, 827 mp->m_rtrefc_maxlevels); 828 } 829 830 /* 831 * This function does the following on an initial mount of a file system: 832 * - reads the superblock from disk and init the mount struct 833 * - if we're a 32-bit kernel, do a size check on the superblock 834 * so we don't mount terabyte filesystems 835 * - init mount struct realtime fields 836 * - allocate inode hash table for fs 837 * - init directory manager 838 * - perform recovery and init the log manager 839 */ 840 int 841 xfs_mountfs( 842 struct xfs_mount *mp) 843 { 844 struct xfs_sb *sbp = &(mp->m_sb); 845 struct xfs_inode *rip; 846 struct xfs_ino_geometry *igeo = M_IGEO(mp); 847 uint quotamount = 0; 848 uint quotaflags = 0; 849 int error = 0; 850 int i; 851 852 xfs_sb_mount_common(mp, sbp); 853 854 /* 855 * Check for a mismatched features2 values. Older kernels read & wrote 856 * into the wrong sb offset for sb_features2 on some platforms due to 857 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 858 * which made older superblock reading/writing routines swap it as a 859 * 64-bit value. 860 * 861 * For backwards compatibility, we make both slots equal. 862 * 863 * If we detect a mismatched field, we OR the set bits into the existing 864 * features2 field in case it has already been modified; we don't want 865 * to lose any features. We then update the bad location with the ORed 866 * value so that older kernels will see any features2 flags. The 867 * superblock writeback code ensures the new sb_features2 is copied to 868 * sb_bad_features2 before it is logged or written to disk. 869 */ 870 if (xfs_sb_has_mismatched_features2(sbp)) { 871 xfs_warn(mp, "correcting sb_features alignment problem"); 872 sbp->sb_features2 |= sbp->sb_bad_features2; 873 mp->m_update_sb = true; 874 } 875 876 877 /* always use v2 inodes by default now */ 878 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 879 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 880 mp->m_features |= XFS_FEAT_NLINK; 881 mp->m_update_sb = true; 882 } 883 884 /* 885 * If we were given new sunit/swidth options, do some basic validation 886 * checks and convert the incore dalign and swidth values to the 887 * same units (FSB) that everything else uses. This /must/ happen 888 * before computing the inode geometry. 889 */ 890 error = xfs_validate_new_dalign(mp); 891 if (error) 892 goto out; 893 894 xfs_alloc_compute_maxlevels(mp); 895 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 896 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 897 xfs_mount_setup_inode_geom(mp); 898 xfs_rmapbt_compute_maxlevels(mp); 899 xfs_rtrmapbt_compute_maxlevels(mp); 900 xfs_refcountbt_compute_maxlevels(mp); 901 xfs_rtrefcountbt_compute_maxlevels(mp); 902 903 xfs_agbtree_compute_maxlevels(mp); 904 xfs_rtbtree_compute_maxlevels(mp); 905 906 /* 907 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 908 * is NOT aligned turn off m_dalign since allocator alignment is within 909 * an ag, therefore ag has to be aligned at stripe boundary. Note that 910 * we must compute the free space and rmap btree geometry before doing 911 * this. 912 */ 913 error = xfs_update_alignment(mp); 914 if (error) 915 goto out; 916 917 /* enable fail_at_unmount as default */ 918 mp->m_fail_unmount = true; 919 920 error = xfs_mount_sysfs_init(mp); 921 if (error) 922 goto out_remove_scrub_stats; 923 924 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 925 926 error = xfs_errortag_init(mp); 927 if (error) 928 goto out_remove_sysfs; 929 930 error = xfs_uuid_mount(mp); 931 if (error) 932 goto out_remove_errortag; 933 934 /* 935 * Update the preferred write size based on the information from the 936 * on-disk superblock. 937 */ 938 mp->m_allocsize_log = 939 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 940 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 941 942 /* set the low space thresholds for dynamic preallocation */ 943 xfs_set_low_space_thresholds(mp); 944 945 /* 946 * If enabled, sparse inode chunk alignment is expected to match the 947 * cluster size. Full inode chunk alignment must match the chunk size, 948 * but that is checked on sb read verification... 949 */ 950 if (xfs_has_sparseinodes(mp) && 951 mp->m_sb.sb_spino_align != 952 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 953 xfs_warn(mp, 954 "Sparse inode block alignment (%u) must match cluster size (%llu).", 955 mp->m_sb.sb_spino_align, 956 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 957 error = -EINVAL; 958 goto out_remove_uuid; 959 } 960 961 /* 962 * Check that the data (and log if separate) is an ok size. 963 */ 964 error = xfs_check_sizes(mp); 965 if (error) 966 goto out_remove_uuid; 967 968 /* 969 * Initialize realtime fields in the mount structure 970 */ 971 error = xfs_rtmount_init(mp); 972 if (error) { 973 xfs_warn(mp, "RT mount failed"); 974 goto out_remove_uuid; 975 } 976 977 /* 978 * Copies the low order bits of the timestamp and the randomly 979 * set "sequence" number out of a UUID. 980 */ 981 mp->m_fixedfsid[0] = 982 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 983 get_unaligned_be16(&sbp->sb_uuid.b[4]); 984 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 985 986 error = xfs_da_mount(mp); 987 if (error) { 988 xfs_warn(mp, "Failed dir/attr init: %d", error); 989 goto out_remove_uuid; 990 } 991 992 /* 993 * Initialize the precomputed transaction reservations values. 994 */ 995 xfs_trans_init(mp); 996 997 /* 998 * Allocate and initialize the per-ag data. 999 */ 1000 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 1001 mp->m_sb.sb_dblocks, &mp->m_maxagi); 1002 if (error) { 1003 xfs_warn(mp, "Failed per-ag init: %d", error); 1004 goto out_free_dir; 1005 } 1006 1007 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, 1008 mp->m_sb.sb_rextents); 1009 if (error) { 1010 xfs_warn(mp, "Failed rtgroup init: %d", error); 1011 goto out_free_perag; 1012 } 1013 1014 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 1015 xfs_warn(mp, "no log defined"); 1016 error = -EFSCORRUPTED; 1017 goto out_free_rtgroup; 1018 } 1019 1020 error = xfs_inodegc_register_shrinker(mp); 1021 if (error) 1022 goto out_fail_wait; 1023 1024 /* 1025 * If we're resuming quota status, pick up the preliminary qflags from 1026 * the ondisk superblock so that we know if we should recover dquots. 1027 */ 1028 if (xfs_is_resuming_quotaon(mp)) 1029 xfs_qm_resume_quotaon(mp); 1030 1031 /* 1032 * Log's mount-time initialization. The first part of recovery can place 1033 * some items on the AIL, to be handled when recovery is finished or 1034 * cancelled. 1035 */ 1036 error = xfs_log_mount(mp, mp->m_logdev_targp, 1037 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1038 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1039 if (error) { 1040 xfs_warn(mp, "log mount failed"); 1041 goto out_inodegc_shrinker; 1042 } 1043 1044 /* 1045 * If we're resuming quota status and recovered the log, re-sample the 1046 * qflags from the ondisk superblock now that we've recovered it, just 1047 * in case someone shut down enforcement just before a crash. 1048 */ 1049 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log)) 1050 xfs_qm_resume_quotaon(mp); 1051 1052 /* 1053 * If logged xattrs are still enabled after log recovery finishes, then 1054 * they'll be available until unmount. Otherwise, turn them off. 1055 */ 1056 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 1057 xfs_set_using_logged_xattrs(mp); 1058 else 1059 xfs_clear_using_logged_xattrs(mp); 1060 1061 /* Enable background inode inactivation workers. */ 1062 xfs_inodegc_start(mp); 1063 xfs_blockgc_start(mp); 1064 1065 /* 1066 * Now that we've recovered any pending superblock feature bit 1067 * additions, we can finish setting up the attr2 behaviour for the 1068 * mount. The noattr2 option overrides the superblock flag, so only 1069 * check the superblock feature flag if the mount option is not set. 1070 */ 1071 if (xfs_has_noattr2(mp)) { 1072 mp->m_features &= ~XFS_FEAT_ATTR2; 1073 } else if (!xfs_has_attr2(mp) && 1074 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 1075 mp->m_features |= XFS_FEAT_ATTR2; 1076 } 1077 1078 if (xfs_has_metadir(mp)) { 1079 error = xfs_mount_setup_metadir(mp); 1080 if (error) 1081 goto out_free_metadir; 1082 } 1083 1084 /* 1085 * Get and sanity-check the root inode. 1086 * Save the pointer to it in the mount structure. 1087 */ 1088 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 1089 XFS_ILOCK_EXCL, &rip); 1090 if (error) { 1091 xfs_warn(mp, 1092 "Failed to read root inode 0x%llx, error %d", 1093 sbp->sb_rootino, -error); 1094 goto out_free_metadir; 1095 } 1096 1097 ASSERT(rip != NULL); 1098 1099 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 1100 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1101 (unsigned long long)rip->i_ino); 1102 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1103 error = -EFSCORRUPTED; 1104 goto out_rele_rip; 1105 } 1106 mp->m_rootip = rip; /* save it */ 1107 1108 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1109 1110 /* 1111 * Initialize realtime inode pointers in the mount structure 1112 */ 1113 error = xfs_rtmount_inodes(mp); 1114 if (error) { 1115 /* 1116 * Free up the root inode. 1117 */ 1118 xfs_warn(mp, "failed to read RT inodes"); 1119 goto out_rele_rip; 1120 } 1121 1122 /* Make sure the summary counts are ok. */ 1123 error = xfs_check_summary_counts(mp); 1124 if (error) 1125 goto out_rtunmount; 1126 1127 /* 1128 * If this is a read-only mount defer the superblock updates until 1129 * the next remount into writeable mode. Otherwise we would never 1130 * perform the update e.g. for the root filesystem. 1131 */ 1132 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 1133 error = xfs_sync_sb(mp, false); 1134 if (error) { 1135 xfs_warn(mp, "failed to write sb changes"); 1136 goto out_rtunmount; 1137 } 1138 } 1139 1140 /* 1141 * Initialise the XFS quota management subsystem for this mount 1142 */ 1143 if (XFS_IS_QUOTA_ON(mp)) { 1144 error = xfs_qm_newmount(mp, "amount, "aflags); 1145 if (error) 1146 goto out_rtunmount; 1147 } else { 1148 /* 1149 * If a file system had quotas running earlier, but decided to 1150 * mount without -o uquota/pquota/gquota options, revoke the 1151 * quotachecked license. 1152 */ 1153 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1154 xfs_notice(mp, "resetting quota flags"); 1155 error = xfs_mount_reset_sbqflags(mp); 1156 if (error) 1157 goto out_rtunmount; 1158 } 1159 } 1160 1161 /* 1162 * Finish recovering the file system. This part needed to be delayed 1163 * until after the root and real-time bitmap inodes were consistently 1164 * read in. Temporarily create per-AG space reservations for metadata 1165 * btree shape changes because space freeing transactions (for inode 1166 * inactivation) require the per-AG reservation in lieu of reserving 1167 * blocks. 1168 */ 1169 error = xfs_fs_reserve_ag_blocks(mp); 1170 if (error && error == -ENOSPC) 1171 xfs_warn(mp, 1172 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 1173 error = xfs_log_mount_finish(mp); 1174 xfs_fs_unreserve_ag_blocks(mp); 1175 if (error) { 1176 xfs_warn(mp, "log mount finish failed"); 1177 goto out_rtunmount; 1178 } 1179 1180 /* 1181 * Now the log is fully replayed, we can transition to full read-only 1182 * mode for read-only mounts. This will sync all the metadata and clean 1183 * the log so that the recovery we just performed does not have to be 1184 * replayed again on the next mount. 1185 * 1186 * We use the same quiesce mechanism as the rw->ro remount, as they are 1187 * semantically identical operations. 1188 */ 1189 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 1190 xfs_log_clean(mp); 1191 1192 if (xfs_has_zoned(mp)) { 1193 error = xfs_mount_zones(mp); 1194 if (error) 1195 goto out_rtunmount; 1196 } 1197 1198 /* 1199 * Complete the quota initialisation, post-log-replay component. 1200 */ 1201 if (quotamount) { 1202 ASSERT(mp->m_qflags == 0); 1203 mp->m_qflags = quotaflags; 1204 1205 xfs_qm_mount_quotas(mp); 1206 } 1207 1208 /* 1209 * Now we are mounted, reserve a small amount of unused space for 1210 * privileged transactions. This is needed so that transaction 1211 * space required for critical operations can dip into this pool 1212 * when at ENOSPC. This is needed for operations like create with 1213 * attr, unwritten extent conversion at ENOSPC, garbage collection 1214 * etc. Data allocations are not allowed to use this reserved space. 1215 * 1216 * This may drive us straight to ENOSPC on mount, but that implies 1217 * we were already there on the last unmount. Warn if this occurs. 1218 */ 1219 if (!xfs_is_readonly(mp)) { 1220 for (i = 0; i < XC_FREE_NR; i++) { 1221 error = xfs_reserve_blocks(mp, i, 1222 xfs_default_resblks(mp, i)); 1223 if (error) 1224 xfs_warn(mp, 1225 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.", 1226 xfs_free_pool_name[i]); 1227 } 1228 1229 /* Reserve AG blocks for future btree expansion. */ 1230 error = xfs_fs_reserve_ag_blocks(mp); 1231 if (error && error != -ENOSPC) 1232 goto out_agresv; 1233 1234 xfs_zone_gc_start(mp); 1235 } 1236 1237 /* 1238 * Pre-calculate atomic write unit max. This involves computations 1239 * derived from transaction reservations, so we must do this after the 1240 * log is fully initialized. 1241 */ 1242 error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes); 1243 if (error) 1244 goto out_agresv; 1245 1246 return 0; 1247 1248 out_agresv: 1249 xfs_fs_unreserve_ag_blocks(mp); 1250 xfs_qm_unmount_quotas(mp); 1251 if (xfs_has_zoned(mp)) 1252 xfs_unmount_zones(mp); 1253 out_rtunmount: 1254 xfs_rtunmount_inodes(mp); 1255 out_rele_rip: 1256 xfs_irele(rip); 1257 /* Clean out dquots that might be in memory after quotacheck. */ 1258 xfs_qm_unmount(mp); 1259 out_free_metadir: 1260 if (mp->m_metadirip) 1261 xfs_irele(mp->m_metadirip); 1262 1263 /* 1264 * Inactivate all inodes that might still be in memory after a log 1265 * intent recovery failure so that reclaim can free them. Metadata 1266 * inodes and the root directory shouldn't need inactivation, but the 1267 * mount failed for some reason, so pull down all the state and flee. 1268 */ 1269 xfs_inodegc_flush(mp); 1270 1271 /* 1272 * Flush all inode reclamation work and flush the log. 1273 * We have to do this /after/ rtunmount and qm_unmount because those 1274 * two will have scheduled delayed reclaim for the rt/quota inodes. 1275 * 1276 * This is slightly different from the unmountfs call sequence 1277 * because we could be tearing down a partially set up mount. In 1278 * particular, if log_mount_finish fails we bail out without calling 1279 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1280 * quota inodes. 1281 */ 1282 xfs_unmount_flush_inodes(mp); 1283 xfs_log_mount_cancel(mp); 1284 out_inodegc_shrinker: 1285 shrinker_free(mp->m_inodegc_shrinker); 1286 out_fail_wait: 1287 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1288 xfs_buftarg_drain(mp->m_logdev_targp); 1289 xfs_buftarg_drain(mp->m_ddev_targp); 1290 out_free_rtgroup: 1291 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1292 out_free_perag: 1293 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1294 out_free_dir: 1295 xfs_da_unmount(mp); 1296 out_remove_uuid: 1297 xfs_uuid_unmount(mp); 1298 out_remove_errortag: 1299 xfs_errortag_del(mp); 1300 out_remove_sysfs: 1301 xfs_mount_sysfs_del(mp); 1302 out_remove_scrub_stats: 1303 xchk_stats_unregister(mp->m_scrub_stats); 1304 out: 1305 return error; 1306 } 1307 1308 /* 1309 * This flushes out the inodes,dquots and the superblock, unmounts the 1310 * log and makes sure that incore structures are freed. 1311 */ 1312 void 1313 xfs_unmountfs( 1314 struct xfs_mount *mp) 1315 { 1316 int error; 1317 1318 /* 1319 * Perform all on-disk metadata updates required to inactivate inodes 1320 * that the VFS evicted earlier in the unmount process. Freeing inodes 1321 * and discarding CoW fork preallocations can cause shape changes to 1322 * the free inode and refcount btrees, respectively, so we must finish 1323 * this before we discard the metadata space reservations. Metadata 1324 * inodes and the root directory do not require inactivation. 1325 */ 1326 xfs_inodegc_flush(mp); 1327 1328 xfs_blockgc_stop(mp); 1329 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate)) 1330 xfs_zone_gc_stop(mp); 1331 xfs_fs_unreserve_ag_blocks(mp); 1332 xfs_qm_unmount_quotas(mp); 1333 if (xfs_has_zoned(mp)) 1334 xfs_unmount_zones(mp); 1335 xfs_rtunmount_inodes(mp); 1336 xfs_irele(mp->m_rootip); 1337 if (mp->m_metadirip) 1338 xfs_irele(mp->m_metadirip); 1339 1340 xfs_unmount_flush_inodes(mp); 1341 1342 xfs_qm_unmount(mp); 1343 1344 /* 1345 * Unreserve any blocks we have so that when we unmount we don't account 1346 * the reserved free space as used. This is really only necessary for 1347 * lazy superblock counting because it trusts the incore superblock 1348 * counters to be absolutely correct on clean unmount. 1349 * 1350 * We don't bother correcting this elsewhere for lazy superblock 1351 * counting because on mount of an unclean filesystem we reconstruct the 1352 * correct counter value and this is irrelevant. 1353 * 1354 * For non-lazy counter filesystems, this doesn't matter at all because 1355 * we only every apply deltas to the superblock and hence the incore 1356 * value does not matter.... 1357 */ 1358 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0); 1359 if (error) 1360 xfs_warn(mp, "Unable to free reserved block pool. " 1361 "Freespace may not be correct on next mount."); 1362 xfs_unmount_check(mp); 1363 1364 /* 1365 * Indicate that it's ok to clear log incompat bits before cleaning 1366 * the log and writing the unmount record. 1367 */ 1368 xfs_set_done_with_log_incompat(mp); 1369 xfs_log_unmount(mp); 1370 xfs_da_unmount(mp); 1371 xfs_uuid_unmount(mp); 1372 1373 #if defined(DEBUG) 1374 xfs_errortag_clearall(mp); 1375 #endif 1376 shrinker_free(mp->m_inodegc_shrinker); 1377 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1378 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1379 xfs_errortag_del(mp); 1380 xchk_stats_unregister(mp->m_scrub_stats); 1381 xfs_mount_sysfs_del(mp); 1382 } 1383 1384 /* 1385 * Determine whether modifications can proceed. The caller specifies the minimum 1386 * freeze level for which modifications should not be allowed. This allows 1387 * certain operations to proceed while the freeze sequence is in progress, if 1388 * necessary. 1389 */ 1390 bool 1391 xfs_fs_writable( 1392 struct xfs_mount *mp, 1393 int level) 1394 { 1395 ASSERT(level > SB_UNFROZEN); 1396 if ((mp->m_super->s_writers.frozen >= level) || 1397 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1398 return false; 1399 1400 return true; 1401 } 1402 1403 /* 1404 * Estimate the amount of free space that is not available to userspace and is 1405 * not explicitly reserved from the incore fdblocks. This includes: 1406 * 1407 * - The minimum number of blocks needed to support splitting a bmap btree 1408 * - The blocks currently in use by the freespace btrees because they record 1409 * the actual blocks that will fill per-AG metadata space reservations 1410 */ 1411 uint64_t 1412 xfs_freecounter_unavailable( 1413 struct xfs_mount *mp, 1414 enum xfs_free_counter ctr) 1415 { 1416 if (ctr != XC_FREE_BLOCKS) 1417 return 0; 1418 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1419 } 1420 1421 void 1422 xfs_add_freecounter( 1423 struct xfs_mount *mp, 1424 enum xfs_free_counter ctr, 1425 uint64_t delta) 1426 { 1427 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1428 uint64_t res_used; 1429 1430 /* 1431 * If the reserve pool is depleted, put blocks back into it first. 1432 * Most of the time the pool is full. 1433 */ 1434 if (likely(counter->res_avail == counter->res_total)) { 1435 percpu_counter_add(&counter->count, delta); 1436 return; 1437 } 1438 1439 spin_lock(&mp->m_sb_lock); 1440 res_used = counter->res_total - counter->res_avail; 1441 if (res_used > delta) { 1442 counter->res_avail += delta; 1443 } else { 1444 delta -= res_used; 1445 counter->res_avail = counter->res_total; 1446 percpu_counter_add(&counter->count, delta); 1447 } 1448 spin_unlock(&mp->m_sb_lock); 1449 } 1450 1451 1452 /* Adjust in-core free blocks or RT extents. */ 1453 int 1454 xfs_dec_freecounter( 1455 struct xfs_mount *mp, 1456 enum xfs_free_counter ctr, 1457 uint64_t delta, 1458 bool rsvd) 1459 { 1460 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1461 s32 batch; 1462 1463 ASSERT(ctr < XC_FREE_NR); 1464 1465 /* 1466 * Taking blocks away, need to be more accurate the closer we 1467 * are to zero. 1468 * 1469 * If the counter has a value of less than 2 * max batch size, 1470 * then make everything serialise as we are real close to 1471 * ENOSPC. 1472 */ 1473 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH, 1474 XFS_FDBLOCKS_BATCH) < 0) 1475 batch = 1; 1476 else 1477 batch = XFS_FDBLOCKS_BATCH; 1478 1479 /* 1480 * Set aside allocbt blocks because these blocks are tracked as free 1481 * space but not available for allocation. Technically this means that a 1482 * single reservation cannot consume all remaining free space, but the 1483 * ratio of allocbt blocks to usable free blocks should be rather small. 1484 * The tradeoff without this is that filesystems that maintain high 1485 * perag block reservations can over reserve physical block availability 1486 * and fail physical allocation, which leads to much more serious 1487 * problems (i.e. transaction abort, pagecache discards, etc.) than 1488 * slightly premature -ENOSPC. 1489 */ 1490 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch); 1491 if (__percpu_counter_compare(&counter->count, 1492 xfs_freecounter_unavailable(mp, ctr), 1493 XFS_FDBLOCKS_BATCH) < 0) { 1494 /* 1495 * Lock up the sb for dipping into reserves before releasing the 1496 * space that took us to ENOSPC. 1497 */ 1498 spin_lock(&mp->m_sb_lock); 1499 percpu_counter_add(&counter->count, delta); 1500 if (!rsvd) 1501 goto fdblocks_enospc; 1502 if (delta > counter->res_avail) { 1503 if (ctr == XC_FREE_BLOCKS) 1504 xfs_warn_once(mp, 1505 "Reserve blocks depleted! Consider increasing reserve pool size."); 1506 goto fdblocks_enospc; 1507 } 1508 counter->res_avail -= delta; 1509 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_); 1510 spin_unlock(&mp->m_sb_lock); 1511 } 1512 1513 /* we had space! */ 1514 return 0; 1515 1516 fdblocks_enospc: 1517 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_); 1518 spin_unlock(&mp->m_sb_lock); 1519 return -ENOSPC; 1520 } 1521 1522 /* 1523 * Used to free the superblock along various error paths. 1524 */ 1525 void 1526 xfs_freesb( 1527 struct xfs_mount *mp) 1528 { 1529 struct xfs_buf *bp = mp->m_sb_bp; 1530 1531 xfs_buf_lock(bp); 1532 mp->m_sb_bp = NULL; 1533 xfs_buf_relse(bp); 1534 } 1535 1536 /* 1537 * If the underlying (data/log/rt) device is readonly, there are some 1538 * operations that cannot proceed. 1539 */ 1540 int 1541 xfs_dev_is_read_only( 1542 struct xfs_mount *mp, 1543 char *message) 1544 { 1545 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1546 xfs_readonly_buftarg(mp->m_logdev_targp) || 1547 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1548 xfs_notice(mp, "%s required on read-only device.", message); 1549 xfs_notice(mp, "write access unavailable, cannot proceed."); 1550 return -EROFS; 1551 } 1552 return 0; 1553 } 1554 1555 /* Force the summary counters to be recalculated at next mount. */ 1556 void 1557 xfs_force_summary_recalc( 1558 struct xfs_mount *mp) 1559 { 1560 if (!xfs_has_lazysbcount(mp)) 1561 return; 1562 1563 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1564 } 1565 1566 /* 1567 * Enable a log incompat feature flag in the primary superblock. The caller 1568 * cannot have any other transactions in progress. 1569 */ 1570 int 1571 xfs_add_incompat_log_feature( 1572 struct xfs_mount *mp, 1573 uint32_t feature) 1574 { 1575 struct xfs_dsb *dsb; 1576 int error; 1577 1578 ASSERT(hweight32(feature) == 1); 1579 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1580 1581 /* 1582 * Force the log to disk and kick the background AIL thread to reduce 1583 * the chances that the bwrite will stall waiting for the AIL to unpin 1584 * the primary superblock buffer. This isn't a data integrity 1585 * operation, so we don't need a synchronous push. 1586 */ 1587 error = xfs_log_force(mp, XFS_LOG_SYNC); 1588 if (error) 1589 return error; 1590 xfs_ail_push_all(mp->m_ail); 1591 1592 /* 1593 * Lock the primary superblock buffer to serialize all callers that 1594 * are trying to set feature bits. 1595 */ 1596 xfs_buf_lock(mp->m_sb_bp); 1597 xfs_buf_hold(mp->m_sb_bp); 1598 1599 if (xfs_is_shutdown(mp)) { 1600 error = -EIO; 1601 goto rele; 1602 } 1603 1604 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1605 goto rele; 1606 1607 /* 1608 * Write the primary superblock to disk immediately, because we need 1609 * the log_incompat bit to be set in the primary super now to protect 1610 * the log items that we're going to commit later. 1611 */ 1612 dsb = mp->m_sb_bp->b_addr; 1613 xfs_sb_to_disk(dsb, &mp->m_sb); 1614 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1615 error = xfs_bwrite(mp->m_sb_bp); 1616 if (error) 1617 goto shutdown; 1618 1619 /* 1620 * Add the feature bits to the incore superblock before we unlock the 1621 * buffer. 1622 */ 1623 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1624 xfs_buf_relse(mp->m_sb_bp); 1625 1626 /* Log the superblock to disk. */ 1627 return xfs_sync_sb(mp, false); 1628 shutdown: 1629 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1630 rele: 1631 xfs_buf_relse(mp->m_sb_bp); 1632 return error; 1633 } 1634 1635 /* 1636 * Clear all the log incompat flags from the superblock. 1637 * 1638 * The caller cannot be in a transaction, must ensure that the log does not 1639 * contain any log items protected by any log incompat bit, and must ensure 1640 * that there are no other threads that depend on the state of the log incompat 1641 * feature flags in the primary super. 1642 * 1643 * Returns true if the superblock is dirty. 1644 */ 1645 bool 1646 xfs_clear_incompat_log_features( 1647 struct xfs_mount *mp) 1648 { 1649 bool ret = false; 1650 1651 if (!xfs_has_crc(mp) || 1652 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1653 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1654 xfs_is_shutdown(mp) || 1655 !xfs_is_done_with_log_incompat(mp)) 1656 return false; 1657 1658 /* 1659 * Update the incore superblock. We synchronize on the primary super 1660 * buffer lock to be consistent with the add function, though at least 1661 * in theory this shouldn't be necessary. 1662 */ 1663 xfs_buf_lock(mp->m_sb_bp); 1664 xfs_buf_hold(mp->m_sb_bp); 1665 1666 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1667 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1668 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1669 ret = true; 1670 } 1671 1672 xfs_buf_relse(mp->m_sb_bp); 1673 return ret; 1674 } 1675 1676 /* 1677 * Update the in-core delayed block counter. 1678 * 1679 * We prefer to update the counter without having to take a spinlock for every 1680 * counter update (i.e. batching). Each change to delayed allocation 1681 * reservations can change can easily exceed the default percpu counter 1682 * batching, so we use a larger batch factor here. 1683 * 1684 * Note that we don't currently have any callers requiring fast summation 1685 * (e.g. percpu_counter_read) so we can use a big batch value here. 1686 */ 1687 #define XFS_DELALLOC_BATCH (4096) 1688 void 1689 xfs_mod_delalloc( 1690 struct xfs_inode *ip, 1691 int64_t data_delta, 1692 int64_t ind_delta) 1693 { 1694 struct xfs_mount *mp = ip->i_mount; 1695 1696 if (XFS_IS_REALTIME_INODE(ip)) { 1697 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1698 xfs_blen_to_rtbxlen(mp, data_delta), 1699 XFS_DELALLOC_BATCH); 1700 if (!ind_delta) 1701 return; 1702 data_delta = 0; 1703 } 1704 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1705 XFS_DELALLOC_BATCH); 1706 } 1707