1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC int xfs_mount_log_sb(xfs_mount_t *, __int64_t); 49 STATIC int xfs_uuid_mount(xfs_mount_t *); 50 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 51 52 53 #ifdef HAVE_PERCPU_SB 54 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 55 int); 56 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 57 int); 58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 59 int64_t, int); 60 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 61 62 #else 63 64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 67 68 #endif 69 70 static const struct { 71 short offset; 72 short type; /* 0 = integer 73 * 1 = binary / string (no translation) 74 */ 75 } xfs_sb_info[] = { 76 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 77 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 78 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 79 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_rextents), 0 }, 81 { offsetof(xfs_sb_t, sb_uuid), 1 }, 82 { offsetof(xfs_sb_t, sb_logstart), 0 }, 83 { offsetof(xfs_sb_t, sb_rootino), 0 }, 84 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 85 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 86 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 87 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 88 { offsetof(xfs_sb_t, sb_agcount), 0 }, 89 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 90 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 91 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 92 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 93 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 94 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 95 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 96 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 97 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 98 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 99 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 100 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 101 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 102 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 103 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 104 { offsetof(xfs_sb_t, sb_icount), 0 }, 105 { offsetof(xfs_sb_t, sb_ifree), 0 }, 106 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 107 { offsetof(xfs_sb_t, sb_frextents), 0 }, 108 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 109 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 110 { offsetof(xfs_sb_t, sb_qflags), 0 }, 111 { offsetof(xfs_sb_t, sb_flags), 0 }, 112 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 113 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 114 { offsetof(xfs_sb_t, sb_unit), 0 }, 115 { offsetof(xfs_sb_t, sb_width), 0 }, 116 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 117 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 118 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 119 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 120 { offsetof(xfs_sb_t, sb_features2), 0 }, 121 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 122 { sizeof(xfs_sb_t), 0 } 123 }; 124 125 /* 126 * Free up the resources associated with a mount structure. Assume that 127 * the structure was initially zeroed, so we can tell which fields got 128 * initialized. 129 */ 130 STATIC void 131 xfs_free_perag( 132 xfs_mount_t *mp) 133 { 134 if (mp->m_perag) { 135 int agno; 136 137 for (agno = 0; agno < mp->m_maxagi; agno++) 138 if (mp->m_perag[agno].pagb_list) 139 kmem_free(mp->m_perag[agno].pagb_list); 140 kmem_free(mp->m_perag); 141 } 142 } 143 144 /* 145 * Check size of device based on the (data/realtime) block count. 146 * Note: this check is used by the growfs code as well as mount. 147 */ 148 int 149 xfs_sb_validate_fsb_count( 150 xfs_sb_t *sbp, 151 __uint64_t nblocks) 152 { 153 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 154 ASSERT(sbp->sb_blocklog >= BBSHIFT); 155 156 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 157 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 158 return E2BIG; 159 #else /* Limited by UINT_MAX of sectors */ 160 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 161 return E2BIG; 162 #endif 163 return 0; 164 } 165 166 /* 167 * Check the validity of the SB found. 168 */ 169 STATIC int 170 xfs_mount_validate_sb( 171 xfs_mount_t *mp, 172 xfs_sb_t *sbp, 173 int flags) 174 { 175 /* 176 * If the log device and data device have the 177 * same device number, the log is internal. 178 * Consequently, the sb_logstart should be non-zero. If 179 * we have a zero sb_logstart in this case, we may be trying to mount 180 * a volume filesystem in a non-volume manner. 181 */ 182 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 183 xfs_fs_mount_cmn_err(flags, "bad magic number"); 184 return XFS_ERROR(EWRONGFS); 185 } 186 187 if (!xfs_sb_good_version(sbp)) { 188 xfs_fs_mount_cmn_err(flags, "bad version"); 189 return XFS_ERROR(EWRONGFS); 190 } 191 192 if (unlikely( 193 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 194 xfs_fs_mount_cmn_err(flags, 195 "filesystem is marked as having an external log; " 196 "specify logdev on the\nmount command line."); 197 return XFS_ERROR(EINVAL); 198 } 199 200 if (unlikely( 201 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 202 xfs_fs_mount_cmn_err(flags, 203 "filesystem is marked as having an internal log; " 204 "do not specify logdev on\nthe mount command line."); 205 return XFS_ERROR(EINVAL); 206 } 207 208 /* 209 * More sanity checking. These were stolen directly from 210 * xfs_repair. 211 */ 212 if (unlikely( 213 sbp->sb_agcount <= 0 || 214 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 215 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 216 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 217 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 218 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 219 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 220 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 221 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 222 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 223 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 224 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 225 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 226 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 227 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 228 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 229 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 230 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 231 return XFS_ERROR(EFSCORRUPTED); 232 } 233 234 /* 235 * Sanity check AG count, size fields against data size field 236 */ 237 if (unlikely( 238 sbp->sb_dblocks == 0 || 239 sbp->sb_dblocks > 240 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 241 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 242 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 243 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 244 return XFS_ERROR(EFSCORRUPTED); 245 } 246 247 /* 248 * Until this is fixed only page-sized or smaller data blocks work. 249 */ 250 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 251 xfs_fs_mount_cmn_err(flags, 252 "file system with blocksize %d bytes", 253 sbp->sb_blocksize); 254 xfs_fs_mount_cmn_err(flags, 255 "only pagesize (%ld) or less will currently work.", 256 PAGE_SIZE); 257 return XFS_ERROR(ENOSYS); 258 } 259 260 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 261 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 262 xfs_fs_mount_cmn_err(flags, 263 "file system too large to be mounted on this system."); 264 return XFS_ERROR(E2BIG); 265 } 266 267 if (unlikely(sbp->sb_inprogress)) { 268 xfs_fs_mount_cmn_err(flags, "file system busy"); 269 return XFS_ERROR(EFSCORRUPTED); 270 } 271 272 /* 273 * Version 1 directory format has never worked on Linux. 274 */ 275 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 276 xfs_fs_mount_cmn_err(flags, 277 "file system using version 1 directory format"); 278 return XFS_ERROR(ENOSYS); 279 } 280 281 return 0; 282 } 283 284 STATIC void 285 xfs_initialize_perag_icache( 286 xfs_perag_t *pag) 287 { 288 if (!pag->pag_ici_init) { 289 rwlock_init(&pag->pag_ici_lock); 290 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 291 pag->pag_ici_init = 1; 292 } 293 } 294 295 xfs_agnumber_t 296 xfs_initialize_perag( 297 xfs_mount_t *mp, 298 xfs_agnumber_t agcount) 299 { 300 xfs_agnumber_t index, max_metadata; 301 xfs_perag_t *pag; 302 xfs_agino_t agino; 303 xfs_ino_t ino; 304 xfs_sb_t *sbp = &mp->m_sb; 305 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 306 307 /* Check to see if the filesystem can overflow 32 bit inodes */ 308 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 309 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 310 311 /* Clear the mount flag if no inode can overflow 32 bits 312 * on this filesystem, or if specifically requested.. 313 */ 314 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 315 mp->m_flags |= XFS_MOUNT_32BITINODES; 316 } else { 317 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 318 } 319 320 /* If we can overflow then setup the ag headers accordingly */ 321 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 322 /* Calculate how much should be reserved for inodes to 323 * meet the max inode percentage. 324 */ 325 if (mp->m_maxicount) { 326 __uint64_t icount; 327 328 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 329 do_div(icount, 100); 330 icount += sbp->sb_agblocks - 1; 331 do_div(icount, sbp->sb_agblocks); 332 max_metadata = icount; 333 } else { 334 max_metadata = agcount; 335 } 336 for (index = 0; index < agcount; index++) { 337 ino = XFS_AGINO_TO_INO(mp, index, agino); 338 if (ino > max_inum) { 339 index++; 340 break; 341 } 342 343 /* This ag is preferred for inodes */ 344 pag = &mp->m_perag[index]; 345 pag->pagi_inodeok = 1; 346 if (index < max_metadata) 347 pag->pagf_metadata = 1; 348 xfs_initialize_perag_icache(pag); 349 } 350 } else { 351 /* Setup default behavior for smaller filesystems */ 352 for (index = 0; index < agcount; index++) { 353 pag = &mp->m_perag[index]; 354 pag->pagi_inodeok = 1; 355 xfs_initialize_perag_icache(pag); 356 } 357 } 358 return index; 359 } 360 361 void 362 xfs_sb_from_disk( 363 xfs_sb_t *to, 364 xfs_dsb_t *from) 365 { 366 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 367 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 368 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 369 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 370 to->sb_rextents = be64_to_cpu(from->sb_rextents); 371 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 372 to->sb_logstart = be64_to_cpu(from->sb_logstart); 373 to->sb_rootino = be64_to_cpu(from->sb_rootino); 374 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 375 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 376 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 377 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 378 to->sb_agcount = be32_to_cpu(from->sb_agcount); 379 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 380 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 381 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 382 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 383 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 384 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 385 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 386 to->sb_blocklog = from->sb_blocklog; 387 to->sb_sectlog = from->sb_sectlog; 388 to->sb_inodelog = from->sb_inodelog; 389 to->sb_inopblog = from->sb_inopblog; 390 to->sb_agblklog = from->sb_agblklog; 391 to->sb_rextslog = from->sb_rextslog; 392 to->sb_inprogress = from->sb_inprogress; 393 to->sb_imax_pct = from->sb_imax_pct; 394 to->sb_icount = be64_to_cpu(from->sb_icount); 395 to->sb_ifree = be64_to_cpu(from->sb_ifree); 396 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 397 to->sb_frextents = be64_to_cpu(from->sb_frextents); 398 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 399 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 400 to->sb_qflags = be16_to_cpu(from->sb_qflags); 401 to->sb_flags = from->sb_flags; 402 to->sb_shared_vn = from->sb_shared_vn; 403 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 404 to->sb_unit = be32_to_cpu(from->sb_unit); 405 to->sb_width = be32_to_cpu(from->sb_width); 406 to->sb_dirblklog = from->sb_dirblklog; 407 to->sb_logsectlog = from->sb_logsectlog; 408 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 409 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 410 to->sb_features2 = be32_to_cpu(from->sb_features2); 411 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 412 } 413 414 /* 415 * Copy in core superblock to ondisk one. 416 * 417 * The fields argument is mask of superblock fields to copy. 418 */ 419 void 420 xfs_sb_to_disk( 421 xfs_dsb_t *to, 422 xfs_sb_t *from, 423 __int64_t fields) 424 { 425 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 426 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 427 xfs_sb_field_t f; 428 int first; 429 int size; 430 431 ASSERT(fields); 432 if (!fields) 433 return; 434 435 while (fields) { 436 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 437 first = xfs_sb_info[f].offset; 438 size = xfs_sb_info[f + 1].offset - first; 439 440 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 441 442 if (size == 1 || xfs_sb_info[f].type == 1) { 443 memcpy(to_ptr + first, from_ptr + first, size); 444 } else { 445 switch (size) { 446 case 2: 447 *(__be16 *)(to_ptr + first) = 448 cpu_to_be16(*(__u16 *)(from_ptr + first)); 449 break; 450 case 4: 451 *(__be32 *)(to_ptr + first) = 452 cpu_to_be32(*(__u32 *)(from_ptr + first)); 453 break; 454 case 8: 455 *(__be64 *)(to_ptr + first) = 456 cpu_to_be64(*(__u64 *)(from_ptr + first)); 457 break; 458 default: 459 ASSERT(0); 460 } 461 } 462 463 fields &= ~(1LL << f); 464 } 465 } 466 467 /* 468 * xfs_readsb 469 * 470 * Does the initial read of the superblock. 471 */ 472 int 473 xfs_readsb(xfs_mount_t *mp, int flags) 474 { 475 unsigned int sector_size; 476 unsigned int extra_flags; 477 xfs_buf_t *bp; 478 int error; 479 480 ASSERT(mp->m_sb_bp == NULL); 481 ASSERT(mp->m_ddev_targp != NULL); 482 483 /* 484 * Allocate a (locked) buffer to hold the superblock. 485 * This will be kept around at all times to optimize 486 * access to the superblock. 487 */ 488 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 489 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 490 491 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 492 BTOBB(sector_size), extra_flags); 493 if (!bp || XFS_BUF_ISERROR(bp)) { 494 xfs_fs_mount_cmn_err(flags, "SB read failed"); 495 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 496 goto fail; 497 } 498 ASSERT(XFS_BUF_ISBUSY(bp)); 499 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 500 501 /* 502 * Initialize the mount structure from the superblock. 503 * But first do some basic consistency checking. 504 */ 505 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 506 507 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 508 if (error) { 509 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 510 goto fail; 511 } 512 513 /* 514 * We must be able to do sector-sized and sector-aligned IO. 515 */ 516 if (sector_size > mp->m_sb.sb_sectsize) { 517 xfs_fs_mount_cmn_err(flags, 518 "device supports only %u byte sectors (not %u)", 519 sector_size, mp->m_sb.sb_sectsize); 520 error = ENOSYS; 521 goto fail; 522 } 523 524 /* 525 * If device sector size is smaller than the superblock size, 526 * re-read the superblock so the buffer is correctly sized. 527 */ 528 if (sector_size < mp->m_sb.sb_sectsize) { 529 XFS_BUF_UNMANAGE(bp); 530 xfs_buf_relse(bp); 531 sector_size = mp->m_sb.sb_sectsize; 532 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 533 BTOBB(sector_size), extra_flags); 534 if (!bp || XFS_BUF_ISERROR(bp)) { 535 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 536 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 537 goto fail; 538 } 539 ASSERT(XFS_BUF_ISBUSY(bp)); 540 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 541 } 542 543 /* Initialize per-cpu counters */ 544 xfs_icsb_reinit_counters(mp); 545 546 mp->m_sb_bp = bp; 547 xfs_buf_relse(bp); 548 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 549 return 0; 550 551 fail: 552 if (bp) { 553 XFS_BUF_UNMANAGE(bp); 554 xfs_buf_relse(bp); 555 } 556 return error; 557 } 558 559 560 /* 561 * xfs_mount_common 562 * 563 * Mount initialization code establishing various mount 564 * fields from the superblock associated with the given 565 * mount structure 566 */ 567 STATIC void 568 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 569 { 570 int i; 571 572 mp->m_agfrotor = mp->m_agirotor = 0; 573 spin_lock_init(&mp->m_agirotor_lock); 574 mp->m_maxagi = mp->m_sb.sb_agcount; 575 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 576 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 577 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 578 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 579 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 580 mp->m_litino = sbp->sb_inodesize - 581 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t)); 582 mp->m_blockmask = sbp->sb_blocksize - 1; 583 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 584 mp->m_blockwmask = mp->m_blockwsize - 1; 585 INIT_LIST_HEAD(&mp->m_del_inodes); 586 587 /* 588 * Setup for attributes, in case they get created. 589 * This value is for inodes getting attributes for the first time, 590 * the per-inode value is for old attribute values. 591 */ 592 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); 593 switch (sbp->sb_inodesize) { 594 case 256: 595 mp->m_attroffset = XFS_LITINO(mp) - 596 XFS_BMDR_SPACE_CALC(MINABTPTRS); 597 break; 598 case 512: 599 case 1024: 600 case 2048: 601 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS); 602 break; 603 default: 604 ASSERT(0); 605 } 606 ASSERT(mp->m_attroffset < XFS_LITINO(mp)); 607 608 for (i = 0; i < 2; i++) { 609 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 610 xfs_alloc, i == 0); 611 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 612 xfs_alloc, i == 0); 613 } 614 for (i = 0; i < 2; i++) { 615 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 616 xfs_bmbt, i == 0); 617 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 618 xfs_bmbt, i == 0); 619 } 620 for (i = 0; i < 2; i++) { 621 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 622 xfs_inobt, i == 0); 623 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 624 xfs_inobt, i == 0); 625 } 626 627 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 628 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 629 sbp->sb_inopblock); 630 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 631 } 632 633 /* 634 * xfs_initialize_perag_data 635 * 636 * Read in each per-ag structure so we can count up the number of 637 * allocated inodes, free inodes and used filesystem blocks as this 638 * information is no longer persistent in the superblock. Once we have 639 * this information, write it into the in-core superblock structure. 640 */ 641 STATIC int 642 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 643 { 644 xfs_agnumber_t index; 645 xfs_perag_t *pag; 646 xfs_sb_t *sbp = &mp->m_sb; 647 uint64_t ifree = 0; 648 uint64_t ialloc = 0; 649 uint64_t bfree = 0; 650 uint64_t bfreelst = 0; 651 uint64_t btree = 0; 652 int error; 653 654 for (index = 0; index < agcount; index++) { 655 /* 656 * read the agf, then the agi. This gets us 657 * all the inforamtion we need and populates the 658 * per-ag structures for us. 659 */ 660 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 661 if (error) 662 return error; 663 664 error = xfs_ialloc_pagi_init(mp, NULL, index); 665 if (error) 666 return error; 667 pag = &mp->m_perag[index]; 668 ifree += pag->pagi_freecount; 669 ialloc += pag->pagi_count; 670 bfree += pag->pagf_freeblks; 671 bfreelst += pag->pagf_flcount; 672 btree += pag->pagf_btreeblks; 673 } 674 /* 675 * Overwrite incore superblock counters with just-read data 676 */ 677 spin_lock(&mp->m_sb_lock); 678 sbp->sb_ifree = ifree; 679 sbp->sb_icount = ialloc; 680 sbp->sb_fdblocks = bfree + bfreelst + btree; 681 spin_unlock(&mp->m_sb_lock); 682 683 /* Fixup the per-cpu counters as well. */ 684 xfs_icsb_reinit_counters(mp); 685 686 return 0; 687 } 688 689 /* 690 * Update alignment values based on mount options and sb values 691 */ 692 STATIC int 693 xfs_update_alignment(xfs_mount_t *mp, __uint64_t *update_flags) 694 { 695 xfs_sb_t *sbp = &(mp->m_sb); 696 697 if (mp->m_dalign) { 698 /* 699 * If stripe unit and stripe width are not multiples 700 * of the fs blocksize turn off alignment. 701 */ 702 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 703 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 704 if (mp->m_flags & XFS_MOUNT_RETERR) { 705 cmn_err(CE_WARN, 706 "XFS: alignment check 1 failed"); 707 return XFS_ERROR(EINVAL); 708 } 709 mp->m_dalign = mp->m_swidth = 0; 710 } else { 711 /* 712 * Convert the stripe unit and width to FSBs. 713 */ 714 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 715 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 716 if (mp->m_flags & XFS_MOUNT_RETERR) { 717 return XFS_ERROR(EINVAL); 718 } 719 xfs_fs_cmn_err(CE_WARN, mp, 720 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 721 mp->m_dalign, mp->m_swidth, 722 sbp->sb_agblocks); 723 724 mp->m_dalign = 0; 725 mp->m_swidth = 0; 726 } else if (mp->m_dalign) { 727 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 728 } else { 729 if (mp->m_flags & XFS_MOUNT_RETERR) { 730 xfs_fs_cmn_err(CE_WARN, mp, 731 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 732 mp->m_dalign, 733 mp->m_blockmask +1); 734 return XFS_ERROR(EINVAL); 735 } 736 mp->m_swidth = 0; 737 } 738 } 739 740 /* 741 * Update superblock with new values 742 * and log changes 743 */ 744 if (xfs_sb_version_hasdalign(sbp)) { 745 if (sbp->sb_unit != mp->m_dalign) { 746 sbp->sb_unit = mp->m_dalign; 747 *update_flags |= XFS_SB_UNIT; 748 } 749 if (sbp->sb_width != mp->m_swidth) { 750 sbp->sb_width = mp->m_swidth; 751 *update_flags |= XFS_SB_WIDTH; 752 } 753 } 754 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 755 xfs_sb_version_hasdalign(&mp->m_sb)) { 756 mp->m_dalign = sbp->sb_unit; 757 mp->m_swidth = sbp->sb_width; 758 } 759 760 return 0; 761 } 762 763 /* 764 * Set the maximum inode count for this filesystem 765 */ 766 STATIC void 767 xfs_set_maxicount(xfs_mount_t *mp) 768 { 769 xfs_sb_t *sbp = &(mp->m_sb); 770 __uint64_t icount; 771 772 if (sbp->sb_imax_pct) { 773 /* 774 * Make sure the maximum inode count is a multiple 775 * of the units we allocate inodes in. 776 */ 777 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 778 do_div(icount, 100); 779 do_div(icount, mp->m_ialloc_blks); 780 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 781 sbp->sb_inopblog; 782 } else { 783 mp->m_maxicount = 0; 784 } 785 } 786 787 /* 788 * Set the default minimum read and write sizes unless 789 * already specified in a mount option. 790 * We use smaller I/O sizes when the file system 791 * is being used for NFS service (wsync mount option). 792 */ 793 STATIC void 794 xfs_set_rw_sizes(xfs_mount_t *mp) 795 { 796 xfs_sb_t *sbp = &(mp->m_sb); 797 int readio_log, writeio_log; 798 799 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 800 if (mp->m_flags & XFS_MOUNT_WSYNC) { 801 readio_log = XFS_WSYNC_READIO_LOG; 802 writeio_log = XFS_WSYNC_WRITEIO_LOG; 803 } else { 804 readio_log = XFS_READIO_LOG_LARGE; 805 writeio_log = XFS_WRITEIO_LOG_LARGE; 806 } 807 } else { 808 readio_log = mp->m_readio_log; 809 writeio_log = mp->m_writeio_log; 810 } 811 812 if (sbp->sb_blocklog > readio_log) { 813 mp->m_readio_log = sbp->sb_blocklog; 814 } else { 815 mp->m_readio_log = readio_log; 816 } 817 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 818 if (sbp->sb_blocklog > writeio_log) { 819 mp->m_writeio_log = sbp->sb_blocklog; 820 } else { 821 mp->m_writeio_log = writeio_log; 822 } 823 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 824 } 825 826 /* 827 * Set whether we're using inode alignment. 828 */ 829 STATIC void 830 xfs_set_inoalignment(xfs_mount_t *mp) 831 { 832 if (xfs_sb_version_hasalign(&mp->m_sb) && 833 mp->m_sb.sb_inoalignmt >= 834 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 835 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 836 else 837 mp->m_inoalign_mask = 0; 838 /* 839 * If we are using stripe alignment, check whether 840 * the stripe unit is a multiple of the inode alignment 841 */ 842 if (mp->m_dalign && mp->m_inoalign_mask && 843 !(mp->m_dalign & mp->m_inoalign_mask)) 844 mp->m_sinoalign = mp->m_dalign; 845 else 846 mp->m_sinoalign = 0; 847 } 848 849 /* 850 * Check that the data (and log if separate) are an ok size. 851 */ 852 STATIC int 853 xfs_check_sizes(xfs_mount_t *mp) 854 { 855 xfs_buf_t *bp; 856 xfs_daddr_t d; 857 int error; 858 859 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 860 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 861 cmn_err(CE_WARN, "XFS: size check 1 failed"); 862 return XFS_ERROR(E2BIG); 863 } 864 error = xfs_read_buf(mp, mp->m_ddev_targp, 865 d - XFS_FSS_TO_BB(mp, 1), 866 XFS_FSS_TO_BB(mp, 1), 0, &bp); 867 if (!error) { 868 xfs_buf_relse(bp); 869 } else { 870 cmn_err(CE_WARN, "XFS: size check 2 failed"); 871 if (error == ENOSPC) 872 error = XFS_ERROR(E2BIG); 873 return error; 874 } 875 876 if (mp->m_logdev_targp != mp->m_ddev_targp) { 877 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 878 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 879 cmn_err(CE_WARN, "XFS: size check 3 failed"); 880 return XFS_ERROR(E2BIG); 881 } 882 error = xfs_read_buf(mp, mp->m_logdev_targp, 883 d - XFS_FSB_TO_BB(mp, 1), 884 XFS_FSB_TO_BB(mp, 1), 0, &bp); 885 if (!error) { 886 xfs_buf_relse(bp); 887 } else { 888 cmn_err(CE_WARN, "XFS: size check 3 failed"); 889 if (error == ENOSPC) 890 error = XFS_ERROR(E2BIG); 891 return error; 892 } 893 } 894 return 0; 895 } 896 897 /* 898 * xfs_mountfs 899 * 900 * This function does the following on an initial mount of a file system: 901 * - reads the superblock from disk and init the mount struct 902 * - if we're a 32-bit kernel, do a size check on the superblock 903 * so we don't mount terabyte filesystems 904 * - init mount struct realtime fields 905 * - allocate inode hash table for fs 906 * - init directory manager 907 * - perform recovery and init the log manager 908 */ 909 int 910 xfs_mountfs( 911 xfs_mount_t *mp) 912 { 913 xfs_sb_t *sbp = &(mp->m_sb); 914 xfs_inode_t *rip; 915 __uint64_t resblks; 916 __int64_t update_flags = 0LL; 917 uint quotamount, quotaflags; 918 int uuid_mounted = 0; 919 int error = 0; 920 921 xfs_mount_common(mp, sbp); 922 923 /* 924 * Check for a mismatched features2 values. Older kernels 925 * read & wrote into the wrong sb offset for sb_features2 926 * on some platforms due to xfs_sb_t not being 64bit size aligned 927 * when sb_features2 was added, which made older superblock 928 * reading/writing routines swap it as a 64-bit value. 929 * 930 * For backwards compatibility, we make both slots equal. 931 * 932 * If we detect a mismatched field, we OR the set bits into the 933 * existing features2 field in case it has already been modified; we 934 * don't want to lose any features. We then update the bad location 935 * with the ORed value so that older kernels will see any features2 936 * flags, and mark the two fields as needing updates once the 937 * transaction subsystem is online. 938 */ 939 if (xfs_sb_has_mismatched_features2(sbp)) { 940 cmn_err(CE_WARN, 941 "XFS: correcting sb_features alignment problem"); 942 sbp->sb_features2 |= sbp->sb_bad_features2; 943 sbp->sb_bad_features2 = sbp->sb_features2; 944 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 945 946 /* 947 * Re-check for ATTR2 in case it was found in bad_features2 948 * slot. 949 */ 950 if (xfs_sb_version_hasattr2(&mp->m_sb) && 951 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 952 mp->m_flags |= XFS_MOUNT_ATTR2; 953 } 954 955 if (xfs_sb_version_hasattr2(&mp->m_sb) && 956 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 957 xfs_sb_version_removeattr2(&mp->m_sb); 958 update_flags |= XFS_SB_FEATURES2; 959 960 /* update sb_versionnum for the clearing of the morebits */ 961 if (!sbp->sb_features2) 962 update_flags |= XFS_SB_VERSIONNUM; 963 } 964 965 /* 966 * Check if sb_agblocks is aligned at stripe boundary 967 * If sb_agblocks is NOT aligned turn off m_dalign since 968 * allocator alignment is within an ag, therefore ag has 969 * to be aligned at stripe boundary. 970 */ 971 error = xfs_update_alignment(mp, &update_flags); 972 if (error) 973 goto error1; 974 975 xfs_alloc_compute_maxlevels(mp); 976 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 977 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 978 xfs_ialloc_compute_maxlevels(mp); 979 980 xfs_set_maxicount(mp); 981 982 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 983 984 /* 985 * XFS uses the uuid from the superblock as the unique 986 * identifier for fsid. We can not use the uuid from the volume 987 * since a single partition filesystem is identical to a single 988 * partition volume/filesystem. 989 */ 990 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) { 991 if (xfs_uuid_mount(mp)) { 992 error = XFS_ERROR(EINVAL); 993 goto error1; 994 } 995 uuid_mounted=1; 996 } 997 998 /* 999 * Set the minimum read and write sizes 1000 */ 1001 xfs_set_rw_sizes(mp); 1002 1003 /* 1004 * Set the inode cluster size. 1005 * This may still be overridden by the file system 1006 * block size if it is larger than the chosen cluster size. 1007 */ 1008 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1009 1010 /* 1011 * Set inode alignment fields 1012 */ 1013 xfs_set_inoalignment(mp); 1014 1015 /* 1016 * Check that the data (and log if separate) are an ok size. 1017 */ 1018 error = xfs_check_sizes(mp); 1019 if (error) 1020 goto error1; 1021 1022 /* 1023 * Initialize realtime fields in the mount structure 1024 */ 1025 error = xfs_rtmount_init(mp); 1026 if (error) { 1027 cmn_err(CE_WARN, "XFS: RT mount failed"); 1028 goto error1; 1029 } 1030 1031 /* 1032 * Copies the low order bits of the timestamp and the randomly 1033 * set "sequence" number out of a UUID. 1034 */ 1035 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1036 1037 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1038 1039 xfs_dir_mount(mp); 1040 1041 /* 1042 * Initialize the attribute manager's entries. 1043 */ 1044 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1045 1046 /* 1047 * Initialize the precomputed transaction reservations values. 1048 */ 1049 xfs_trans_init(mp); 1050 1051 /* 1052 * Allocate and initialize the per-ag data. 1053 */ 1054 init_rwsem(&mp->m_peraglock); 1055 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), 1056 KM_MAYFAIL); 1057 if (!mp->m_perag) 1058 goto error1; 1059 1060 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1061 1062 /* 1063 * log's mount-time initialization. Perform 1st part recovery if needed 1064 */ 1065 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */ 1066 error = xfs_log_mount(mp, mp->m_logdev_targp, 1067 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1068 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1069 if (error) { 1070 cmn_err(CE_WARN, "XFS: log mount failed"); 1071 goto error2; 1072 } 1073 } else { /* No log has been defined */ 1074 cmn_err(CE_WARN, "XFS: no log defined"); 1075 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp); 1076 error = XFS_ERROR(EFSCORRUPTED); 1077 goto error2; 1078 } 1079 1080 /* 1081 * Now the log is mounted, we know if it was an unclean shutdown or 1082 * not. If it was, with the first phase of recovery has completed, we 1083 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1084 * but they are recovered transactionally in the second recovery phase 1085 * later. 1086 * 1087 * Hence we can safely re-initialise incore superblock counters from 1088 * the per-ag data. These may not be correct if the filesystem was not 1089 * cleanly unmounted, so we need to wait for recovery to finish before 1090 * doing this. 1091 * 1092 * If the filesystem was cleanly unmounted, then we can trust the 1093 * values in the superblock to be correct and we don't need to do 1094 * anything here. 1095 * 1096 * If we are currently making the filesystem, the initialisation will 1097 * fail as the perag data is in an undefined state. 1098 */ 1099 1100 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1101 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1102 !mp->m_sb.sb_inprogress) { 1103 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1104 if (error) { 1105 goto error2; 1106 } 1107 } 1108 /* 1109 * Get and sanity-check the root inode. 1110 * Save the pointer to it in the mount structure. 1111 */ 1112 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1113 if (error) { 1114 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1115 goto error3; 1116 } 1117 1118 ASSERT(rip != NULL); 1119 1120 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1121 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1122 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1123 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1124 (unsigned long long)rip->i_ino); 1125 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1126 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1127 mp); 1128 error = XFS_ERROR(EFSCORRUPTED); 1129 goto error4; 1130 } 1131 mp->m_rootip = rip; /* save it */ 1132 1133 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1134 1135 /* 1136 * Initialize realtime inode pointers in the mount structure 1137 */ 1138 error = xfs_rtmount_inodes(mp); 1139 if (error) { 1140 /* 1141 * Free up the root inode. 1142 */ 1143 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1144 goto error4; 1145 } 1146 1147 /* 1148 * If fs is not mounted readonly, then update the superblock changes. 1149 */ 1150 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1151 error = xfs_mount_log_sb(mp, update_flags); 1152 if (error) { 1153 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1154 goto error4; 1155 } 1156 } 1157 1158 /* 1159 * Initialise the XFS quota management subsystem for this mount 1160 */ 1161 error = XFS_QM_INIT(mp, "amount, "aflags); 1162 if (error) 1163 goto error4; 1164 1165 /* 1166 * Finish recovering the file system. This part needed to be 1167 * delayed until after the root and real-time bitmap inodes 1168 * were consistently read in. 1169 */ 1170 error = xfs_log_mount_finish(mp); 1171 if (error) { 1172 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1173 goto error4; 1174 } 1175 1176 /* 1177 * Complete the quota initialisation, post-log-replay component. 1178 */ 1179 error = XFS_QM_MOUNT(mp, quotamount, quotaflags); 1180 if (error) 1181 goto error4; 1182 1183 /* 1184 * Now we are mounted, reserve a small amount of unused space for 1185 * privileged transactions. This is needed so that transaction 1186 * space required for critical operations can dip into this pool 1187 * when at ENOSPC. This is needed for operations like create with 1188 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1189 * are not allowed to use this reserved space. 1190 * 1191 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1192 * This may drive us straight to ENOSPC on mount, but that implies 1193 * we were already there on the last unmount. Warn if this occurs. 1194 */ 1195 resblks = mp->m_sb.sb_dblocks; 1196 do_div(resblks, 20); 1197 resblks = min_t(__uint64_t, resblks, 1024); 1198 error = xfs_reserve_blocks(mp, &resblks, NULL); 1199 if (error) 1200 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1201 "Continuing without a reserve pool."); 1202 1203 return 0; 1204 1205 error4: 1206 /* 1207 * Free up the root inode. 1208 */ 1209 IRELE(rip); 1210 error3: 1211 xfs_log_unmount_dealloc(mp); 1212 error2: 1213 xfs_free_perag(mp); 1214 error1: 1215 if (uuid_mounted) 1216 uuid_table_remove(&mp->m_sb.sb_uuid); 1217 return error; 1218 } 1219 1220 /* 1221 * This flushes out the inodes,dquots and the superblock, unmounts the 1222 * log and makes sure that incore structures are freed. 1223 */ 1224 void 1225 xfs_unmountfs( 1226 struct xfs_mount *mp) 1227 { 1228 __uint64_t resblks; 1229 int error; 1230 1231 IRELE(mp->m_rootip); 1232 1233 /* 1234 * We can potentially deadlock here if we have an inode cluster 1235 * that has been freed has it's buffer still pinned in memory because 1236 * the transaction is still sitting in a iclog. The stale inodes 1237 * on that buffer will have their flush locks held until the 1238 * transaction hits the disk and the callbacks run. the inode 1239 * flush takes the flush lock unconditionally and with nothing to 1240 * push out the iclog we will never get that unlocked. hence we 1241 * need to force the log first. 1242 */ 1243 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1244 xfs_iflush_all(mp); 1245 1246 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); 1247 1248 /* 1249 * Flush out the log synchronously so that we know for sure 1250 * that nothing is pinned. This is important because bflush() 1251 * will skip pinned buffers. 1252 */ 1253 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1254 1255 xfs_binval(mp->m_ddev_targp); 1256 if (mp->m_rtdev_targp) { 1257 xfs_binval(mp->m_rtdev_targp); 1258 } 1259 1260 /* 1261 * Unreserve any blocks we have so that when we unmount we don't account 1262 * the reserved free space as used. This is really only necessary for 1263 * lazy superblock counting because it trusts the incore superblock 1264 * counters to be aboslutely correct on clean unmount. 1265 * 1266 * We don't bother correcting this elsewhere for lazy superblock 1267 * counting because on mount of an unclean filesystem we reconstruct the 1268 * correct counter value and this is irrelevant. 1269 * 1270 * For non-lazy counter filesystems, this doesn't matter at all because 1271 * we only every apply deltas to the superblock and hence the incore 1272 * value does not matter.... 1273 */ 1274 resblks = 0; 1275 error = xfs_reserve_blocks(mp, &resblks, NULL); 1276 if (error) 1277 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1278 "Freespace may not be correct on next mount."); 1279 1280 error = xfs_log_sbcount(mp, 1); 1281 if (error) 1282 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1283 "Freespace may not be correct on next mount."); 1284 xfs_unmountfs_writesb(mp); 1285 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1286 xfs_log_unmount(mp); /* Done! No more fs ops. */ 1287 1288 /* 1289 * All inodes from this mount point should be freed. 1290 */ 1291 ASSERT(mp->m_inodes == NULL); 1292 1293 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) 1294 uuid_table_remove(&mp->m_sb.sb_uuid); 1295 1296 #if defined(DEBUG) 1297 xfs_errortag_clearall(mp, 0); 1298 #endif 1299 xfs_free_perag(mp); 1300 if (mp->m_quotainfo) 1301 XFS_QM_DONE(mp); 1302 } 1303 1304 STATIC void 1305 xfs_unmountfs_wait(xfs_mount_t *mp) 1306 { 1307 if (mp->m_logdev_targp != mp->m_ddev_targp) 1308 xfs_wait_buftarg(mp->m_logdev_targp); 1309 if (mp->m_rtdev_targp) 1310 xfs_wait_buftarg(mp->m_rtdev_targp); 1311 xfs_wait_buftarg(mp->m_ddev_targp); 1312 } 1313 1314 int 1315 xfs_fs_writable(xfs_mount_t *mp) 1316 { 1317 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1318 (mp->m_flags & XFS_MOUNT_RDONLY)); 1319 } 1320 1321 /* 1322 * xfs_log_sbcount 1323 * 1324 * Called either periodically to keep the on disk superblock values 1325 * roughly up to date or from unmount to make sure the values are 1326 * correct on a clean unmount. 1327 * 1328 * Note this code can be called during the process of freezing, so 1329 * we may need to use the transaction allocator which does not not 1330 * block when the transaction subsystem is in its frozen state. 1331 */ 1332 int 1333 xfs_log_sbcount( 1334 xfs_mount_t *mp, 1335 uint sync) 1336 { 1337 xfs_trans_t *tp; 1338 int error; 1339 1340 if (!xfs_fs_writable(mp)) 1341 return 0; 1342 1343 xfs_icsb_sync_counters(mp, 0); 1344 1345 /* 1346 * we don't need to do this if we are updating the superblock 1347 * counters on every modification. 1348 */ 1349 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1350 return 0; 1351 1352 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1353 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1354 XFS_DEFAULT_LOG_COUNT); 1355 if (error) { 1356 xfs_trans_cancel(tp, 0); 1357 return error; 1358 } 1359 1360 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1361 if (sync) 1362 xfs_trans_set_sync(tp); 1363 error = xfs_trans_commit(tp, 0); 1364 return error; 1365 } 1366 1367 STATIC void 1368 xfs_mark_shared_ro( 1369 xfs_mount_t *mp, 1370 xfs_buf_t *bp) 1371 { 1372 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp); 1373 __uint16_t version; 1374 1375 if (!(sb->sb_flags & XFS_SBF_READONLY)) 1376 sb->sb_flags |= XFS_SBF_READONLY; 1377 1378 version = be16_to_cpu(sb->sb_versionnum); 1379 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 || 1380 !(version & XFS_SB_VERSION_SHAREDBIT)) 1381 version |= XFS_SB_VERSION_SHAREDBIT; 1382 sb->sb_versionnum = cpu_to_be16(version); 1383 } 1384 1385 int 1386 xfs_unmountfs_writesb(xfs_mount_t *mp) 1387 { 1388 xfs_buf_t *sbp; 1389 int error = 0; 1390 1391 /* 1392 * skip superblock write if fs is read-only, or 1393 * if we are doing a forced umount. 1394 */ 1395 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1396 XFS_FORCED_SHUTDOWN(mp))) { 1397 1398 sbp = xfs_getsb(mp, 0); 1399 1400 /* 1401 * mark shared-readonly if desired 1402 */ 1403 if (mp->m_mk_sharedro) 1404 xfs_mark_shared_ro(mp, sbp); 1405 1406 XFS_BUF_UNDONE(sbp); 1407 XFS_BUF_UNREAD(sbp); 1408 XFS_BUF_UNDELAYWRITE(sbp); 1409 XFS_BUF_WRITE(sbp); 1410 XFS_BUF_UNASYNC(sbp); 1411 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1412 xfsbdstrat(mp, sbp); 1413 error = xfs_iowait(sbp); 1414 if (error) 1415 xfs_ioerror_alert("xfs_unmountfs_writesb", 1416 mp, sbp, XFS_BUF_ADDR(sbp)); 1417 if (error && mp->m_mk_sharedro) 1418 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly"); 1419 xfs_buf_relse(sbp); 1420 } 1421 return error; 1422 } 1423 1424 /* 1425 * xfs_mod_sb() can be used to copy arbitrary changes to the 1426 * in-core superblock into the superblock buffer to be logged. 1427 * It does not provide the higher level of locking that is 1428 * needed to protect the in-core superblock from concurrent 1429 * access. 1430 */ 1431 void 1432 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1433 { 1434 xfs_buf_t *bp; 1435 int first; 1436 int last; 1437 xfs_mount_t *mp; 1438 xfs_sb_field_t f; 1439 1440 ASSERT(fields); 1441 if (!fields) 1442 return; 1443 mp = tp->t_mountp; 1444 bp = xfs_trans_getsb(tp, mp, 0); 1445 first = sizeof(xfs_sb_t); 1446 last = 0; 1447 1448 /* translate/copy */ 1449 1450 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1451 1452 /* find modified range */ 1453 1454 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1455 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1456 first = xfs_sb_info[f].offset; 1457 1458 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1459 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1460 last = xfs_sb_info[f + 1].offset - 1; 1461 1462 xfs_trans_log_buf(tp, bp, first, last); 1463 } 1464 1465 1466 /* 1467 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1468 * a delta to a specified field in the in-core superblock. Simply 1469 * switch on the field indicated and apply the delta to that field. 1470 * Fields are not allowed to dip below zero, so if the delta would 1471 * do this do not apply it and return EINVAL. 1472 * 1473 * The m_sb_lock must be held when this routine is called. 1474 */ 1475 int 1476 xfs_mod_incore_sb_unlocked( 1477 xfs_mount_t *mp, 1478 xfs_sb_field_t field, 1479 int64_t delta, 1480 int rsvd) 1481 { 1482 int scounter; /* short counter for 32 bit fields */ 1483 long long lcounter; /* long counter for 64 bit fields */ 1484 long long res_used, rem; 1485 1486 /* 1487 * With the in-core superblock spin lock held, switch 1488 * on the indicated field. Apply the delta to the 1489 * proper field. If the fields value would dip below 1490 * 0, then do not apply the delta and return EINVAL. 1491 */ 1492 switch (field) { 1493 case XFS_SBS_ICOUNT: 1494 lcounter = (long long)mp->m_sb.sb_icount; 1495 lcounter += delta; 1496 if (lcounter < 0) { 1497 ASSERT(0); 1498 return XFS_ERROR(EINVAL); 1499 } 1500 mp->m_sb.sb_icount = lcounter; 1501 return 0; 1502 case XFS_SBS_IFREE: 1503 lcounter = (long long)mp->m_sb.sb_ifree; 1504 lcounter += delta; 1505 if (lcounter < 0) { 1506 ASSERT(0); 1507 return XFS_ERROR(EINVAL); 1508 } 1509 mp->m_sb.sb_ifree = lcounter; 1510 return 0; 1511 case XFS_SBS_FDBLOCKS: 1512 lcounter = (long long) 1513 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1514 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1515 1516 if (delta > 0) { /* Putting blocks back */ 1517 if (res_used > delta) { 1518 mp->m_resblks_avail += delta; 1519 } else { 1520 rem = delta - res_used; 1521 mp->m_resblks_avail = mp->m_resblks; 1522 lcounter += rem; 1523 } 1524 } else { /* Taking blocks away */ 1525 1526 lcounter += delta; 1527 1528 /* 1529 * If were out of blocks, use any available reserved blocks if 1530 * were allowed to. 1531 */ 1532 1533 if (lcounter < 0) { 1534 if (rsvd) { 1535 lcounter = (long long)mp->m_resblks_avail + delta; 1536 if (lcounter < 0) { 1537 return XFS_ERROR(ENOSPC); 1538 } 1539 mp->m_resblks_avail = lcounter; 1540 return 0; 1541 } else { /* not reserved */ 1542 return XFS_ERROR(ENOSPC); 1543 } 1544 } 1545 } 1546 1547 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1548 return 0; 1549 case XFS_SBS_FREXTENTS: 1550 lcounter = (long long)mp->m_sb.sb_frextents; 1551 lcounter += delta; 1552 if (lcounter < 0) { 1553 return XFS_ERROR(ENOSPC); 1554 } 1555 mp->m_sb.sb_frextents = lcounter; 1556 return 0; 1557 case XFS_SBS_DBLOCKS: 1558 lcounter = (long long)mp->m_sb.sb_dblocks; 1559 lcounter += delta; 1560 if (lcounter < 0) { 1561 ASSERT(0); 1562 return XFS_ERROR(EINVAL); 1563 } 1564 mp->m_sb.sb_dblocks = lcounter; 1565 return 0; 1566 case XFS_SBS_AGCOUNT: 1567 scounter = mp->m_sb.sb_agcount; 1568 scounter += delta; 1569 if (scounter < 0) { 1570 ASSERT(0); 1571 return XFS_ERROR(EINVAL); 1572 } 1573 mp->m_sb.sb_agcount = scounter; 1574 return 0; 1575 case XFS_SBS_IMAX_PCT: 1576 scounter = mp->m_sb.sb_imax_pct; 1577 scounter += delta; 1578 if (scounter < 0) { 1579 ASSERT(0); 1580 return XFS_ERROR(EINVAL); 1581 } 1582 mp->m_sb.sb_imax_pct = scounter; 1583 return 0; 1584 case XFS_SBS_REXTSIZE: 1585 scounter = mp->m_sb.sb_rextsize; 1586 scounter += delta; 1587 if (scounter < 0) { 1588 ASSERT(0); 1589 return XFS_ERROR(EINVAL); 1590 } 1591 mp->m_sb.sb_rextsize = scounter; 1592 return 0; 1593 case XFS_SBS_RBMBLOCKS: 1594 scounter = mp->m_sb.sb_rbmblocks; 1595 scounter += delta; 1596 if (scounter < 0) { 1597 ASSERT(0); 1598 return XFS_ERROR(EINVAL); 1599 } 1600 mp->m_sb.sb_rbmblocks = scounter; 1601 return 0; 1602 case XFS_SBS_RBLOCKS: 1603 lcounter = (long long)mp->m_sb.sb_rblocks; 1604 lcounter += delta; 1605 if (lcounter < 0) { 1606 ASSERT(0); 1607 return XFS_ERROR(EINVAL); 1608 } 1609 mp->m_sb.sb_rblocks = lcounter; 1610 return 0; 1611 case XFS_SBS_REXTENTS: 1612 lcounter = (long long)mp->m_sb.sb_rextents; 1613 lcounter += delta; 1614 if (lcounter < 0) { 1615 ASSERT(0); 1616 return XFS_ERROR(EINVAL); 1617 } 1618 mp->m_sb.sb_rextents = lcounter; 1619 return 0; 1620 case XFS_SBS_REXTSLOG: 1621 scounter = mp->m_sb.sb_rextslog; 1622 scounter += delta; 1623 if (scounter < 0) { 1624 ASSERT(0); 1625 return XFS_ERROR(EINVAL); 1626 } 1627 mp->m_sb.sb_rextslog = scounter; 1628 return 0; 1629 default: 1630 ASSERT(0); 1631 return XFS_ERROR(EINVAL); 1632 } 1633 } 1634 1635 /* 1636 * xfs_mod_incore_sb() is used to change a field in the in-core 1637 * superblock structure by the specified delta. This modification 1638 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1639 * routine to do the work. 1640 */ 1641 int 1642 xfs_mod_incore_sb( 1643 xfs_mount_t *mp, 1644 xfs_sb_field_t field, 1645 int64_t delta, 1646 int rsvd) 1647 { 1648 int status; 1649 1650 /* check for per-cpu counters */ 1651 switch (field) { 1652 #ifdef HAVE_PERCPU_SB 1653 case XFS_SBS_ICOUNT: 1654 case XFS_SBS_IFREE: 1655 case XFS_SBS_FDBLOCKS: 1656 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1657 status = xfs_icsb_modify_counters(mp, field, 1658 delta, rsvd); 1659 break; 1660 } 1661 /* FALLTHROUGH */ 1662 #endif 1663 default: 1664 spin_lock(&mp->m_sb_lock); 1665 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1666 spin_unlock(&mp->m_sb_lock); 1667 break; 1668 } 1669 1670 return status; 1671 } 1672 1673 /* 1674 * xfs_mod_incore_sb_batch() is used to change more than one field 1675 * in the in-core superblock structure at a time. This modification 1676 * is protected by a lock internal to this module. The fields and 1677 * changes to those fields are specified in the array of xfs_mod_sb 1678 * structures passed in. 1679 * 1680 * Either all of the specified deltas will be applied or none of 1681 * them will. If any modified field dips below 0, then all modifications 1682 * will be backed out and EINVAL will be returned. 1683 */ 1684 int 1685 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1686 { 1687 int status=0; 1688 xfs_mod_sb_t *msbp; 1689 1690 /* 1691 * Loop through the array of mod structures and apply each 1692 * individually. If any fail, then back out all those 1693 * which have already been applied. Do all of this within 1694 * the scope of the m_sb_lock so that all of the changes will 1695 * be atomic. 1696 */ 1697 spin_lock(&mp->m_sb_lock); 1698 msbp = &msb[0]; 1699 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1700 /* 1701 * Apply the delta at index n. If it fails, break 1702 * from the loop so we'll fall into the undo loop 1703 * below. 1704 */ 1705 switch (msbp->msb_field) { 1706 #ifdef HAVE_PERCPU_SB 1707 case XFS_SBS_ICOUNT: 1708 case XFS_SBS_IFREE: 1709 case XFS_SBS_FDBLOCKS: 1710 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1711 spin_unlock(&mp->m_sb_lock); 1712 status = xfs_icsb_modify_counters(mp, 1713 msbp->msb_field, 1714 msbp->msb_delta, rsvd); 1715 spin_lock(&mp->m_sb_lock); 1716 break; 1717 } 1718 /* FALLTHROUGH */ 1719 #endif 1720 default: 1721 status = xfs_mod_incore_sb_unlocked(mp, 1722 msbp->msb_field, 1723 msbp->msb_delta, rsvd); 1724 break; 1725 } 1726 1727 if (status != 0) { 1728 break; 1729 } 1730 } 1731 1732 /* 1733 * If we didn't complete the loop above, then back out 1734 * any changes made to the superblock. If you add code 1735 * between the loop above and here, make sure that you 1736 * preserve the value of status. Loop back until 1737 * we step below the beginning of the array. Make sure 1738 * we don't touch anything back there. 1739 */ 1740 if (status != 0) { 1741 msbp--; 1742 while (msbp >= msb) { 1743 switch (msbp->msb_field) { 1744 #ifdef HAVE_PERCPU_SB 1745 case XFS_SBS_ICOUNT: 1746 case XFS_SBS_IFREE: 1747 case XFS_SBS_FDBLOCKS: 1748 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1749 spin_unlock(&mp->m_sb_lock); 1750 status = xfs_icsb_modify_counters(mp, 1751 msbp->msb_field, 1752 -(msbp->msb_delta), 1753 rsvd); 1754 spin_lock(&mp->m_sb_lock); 1755 break; 1756 } 1757 /* FALLTHROUGH */ 1758 #endif 1759 default: 1760 status = xfs_mod_incore_sb_unlocked(mp, 1761 msbp->msb_field, 1762 -(msbp->msb_delta), 1763 rsvd); 1764 break; 1765 } 1766 ASSERT(status == 0); 1767 msbp--; 1768 } 1769 } 1770 spin_unlock(&mp->m_sb_lock); 1771 return status; 1772 } 1773 1774 /* 1775 * xfs_getsb() is called to obtain the buffer for the superblock. 1776 * The buffer is returned locked and read in from disk. 1777 * The buffer should be released with a call to xfs_brelse(). 1778 * 1779 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1780 * the superblock buffer if it can be locked without sleeping. 1781 * If it can't then we'll return NULL. 1782 */ 1783 xfs_buf_t * 1784 xfs_getsb( 1785 xfs_mount_t *mp, 1786 int flags) 1787 { 1788 xfs_buf_t *bp; 1789 1790 ASSERT(mp->m_sb_bp != NULL); 1791 bp = mp->m_sb_bp; 1792 if (flags & XFS_BUF_TRYLOCK) { 1793 if (!XFS_BUF_CPSEMA(bp)) { 1794 return NULL; 1795 } 1796 } else { 1797 XFS_BUF_PSEMA(bp, PRIBIO); 1798 } 1799 XFS_BUF_HOLD(bp); 1800 ASSERT(XFS_BUF_ISDONE(bp)); 1801 return bp; 1802 } 1803 1804 /* 1805 * Used to free the superblock along various error paths. 1806 */ 1807 void 1808 xfs_freesb( 1809 xfs_mount_t *mp) 1810 { 1811 xfs_buf_t *bp; 1812 1813 /* 1814 * Use xfs_getsb() so that the buffer will be locked 1815 * when we call xfs_buf_relse(). 1816 */ 1817 bp = xfs_getsb(mp, 0); 1818 XFS_BUF_UNMANAGE(bp); 1819 xfs_buf_relse(bp); 1820 mp->m_sb_bp = NULL; 1821 } 1822 1823 /* 1824 * See if the UUID is unique among mounted XFS filesystems. 1825 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 1826 */ 1827 STATIC int 1828 xfs_uuid_mount( 1829 xfs_mount_t *mp) 1830 { 1831 if (uuid_is_nil(&mp->m_sb.sb_uuid)) { 1832 cmn_err(CE_WARN, 1833 "XFS: Filesystem %s has nil UUID - can't mount", 1834 mp->m_fsname); 1835 return -1; 1836 } 1837 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) { 1838 cmn_err(CE_WARN, 1839 "XFS: Filesystem %s has duplicate UUID - can't mount", 1840 mp->m_fsname); 1841 return -1; 1842 } 1843 return 0; 1844 } 1845 1846 /* 1847 * Used to log changes to the superblock unit and width fields which could 1848 * be altered by the mount options, as well as any potential sb_features2 1849 * fixup. Only the first superblock is updated. 1850 */ 1851 STATIC int 1852 xfs_mount_log_sb( 1853 xfs_mount_t *mp, 1854 __int64_t fields) 1855 { 1856 xfs_trans_t *tp; 1857 int error; 1858 1859 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1860 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1861 XFS_SB_VERSIONNUM)); 1862 1863 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1864 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1865 XFS_DEFAULT_LOG_COUNT); 1866 if (error) { 1867 xfs_trans_cancel(tp, 0); 1868 return error; 1869 } 1870 xfs_mod_sb(tp, fields); 1871 error = xfs_trans_commit(tp, 0); 1872 return error; 1873 } 1874 1875 1876 #ifdef HAVE_PERCPU_SB 1877 /* 1878 * Per-cpu incore superblock counters 1879 * 1880 * Simple concept, difficult implementation 1881 * 1882 * Basically, replace the incore superblock counters with a distributed per cpu 1883 * counter for contended fields (e.g. free block count). 1884 * 1885 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1886 * hence needs to be accurately read when we are running low on space. Hence 1887 * there is a method to enable and disable the per-cpu counters based on how 1888 * much "stuff" is available in them. 1889 * 1890 * Basically, a counter is enabled if there is enough free resource to justify 1891 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1892 * ENOSPC), then we disable the counters to synchronise all callers and 1893 * re-distribute the available resources. 1894 * 1895 * If, once we redistributed the available resources, we still get a failure, 1896 * we disable the per-cpu counter and go through the slow path. 1897 * 1898 * The slow path is the current xfs_mod_incore_sb() function. This means that 1899 * when we disable a per-cpu counter, we need to drain it's resources back to 1900 * the global superblock. We do this after disabling the counter to prevent 1901 * more threads from queueing up on the counter. 1902 * 1903 * Essentially, this means that we still need a lock in the fast path to enable 1904 * synchronisation between the global counters and the per-cpu counters. This 1905 * is not a problem because the lock will be local to a CPU almost all the time 1906 * and have little contention except when we get to ENOSPC conditions. 1907 * 1908 * Basically, this lock becomes a barrier that enables us to lock out the fast 1909 * path while we do things like enabling and disabling counters and 1910 * synchronising the counters. 1911 * 1912 * Locking rules: 1913 * 1914 * 1. m_sb_lock before picking up per-cpu locks 1915 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1916 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1917 * 4. modifying per-cpu counters requires holding per-cpu lock 1918 * 5. modifying global counters requires holding m_sb_lock 1919 * 6. enabling or disabling a counter requires holding the m_sb_lock 1920 * and _none_ of the per-cpu locks. 1921 * 1922 * Disabled counters are only ever re-enabled by a balance operation 1923 * that results in more free resources per CPU than a given threshold. 1924 * To ensure counters don't remain disabled, they are rebalanced when 1925 * the global resource goes above a higher threshold (i.e. some hysteresis 1926 * is present to prevent thrashing). 1927 */ 1928 1929 #ifdef CONFIG_HOTPLUG_CPU 1930 /* 1931 * hot-plug CPU notifier support. 1932 * 1933 * We need a notifier per filesystem as we need to be able to identify 1934 * the filesystem to balance the counters out. This is achieved by 1935 * having a notifier block embedded in the xfs_mount_t and doing pointer 1936 * magic to get the mount pointer from the notifier block address. 1937 */ 1938 STATIC int 1939 xfs_icsb_cpu_notify( 1940 struct notifier_block *nfb, 1941 unsigned long action, 1942 void *hcpu) 1943 { 1944 xfs_icsb_cnts_t *cntp; 1945 xfs_mount_t *mp; 1946 1947 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1948 cntp = (xfs_icsb_cnts_t *) 1949 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1950 switch (action) { 1951 case CPU_UP_PREPARE: 1952 case CPU_UP_PREPARE_FROZEN: 1953 /* Easy Case - initialize the area and locks, and 1954 * then rebalance when online does everything else for us. */ 1955 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1956 break; 1957 case CPU_ONLINE: 1958 case CPU_ONLINE_FROZEN: 1959 xfs_icsb_lock(mp); 1960 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1961 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1962 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1963 xfs_icsb_unlock(mp); 1964 break; 1965 case CPU_DEAD: 1966 case CPU_DEAD_FROZEN: 1967 /* Disable all the counters, then fold the dead cpu's 1968 * count into the total on the global superblock and 1969 * re-enable the counters. */ 1970 xfs_icsb_lock(mp); 1971 spin_lock(&mp->m_sb_lock); 1972 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1973 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1974 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1975 1976 mp->m_sb.sb_icount += cntp->icsb_icount; 1977 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1978 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1979 1980 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1981 1982 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1983 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1984 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1985 spin_unlock(&mp->m_sb_lock); 1986 xfs_icsb_unlock(mp); 1987 break; 1988 } 1989 1990 return NOTIFY_OK; 1991 } 1992 #endif /* CONFIG_HOTPLUG_CPU */ 1993 1994 int 1995 xfs_icsb_init_counters( 1996 xfs_mount_t *mp) 1997 { 1998 xfs_icsb_cnts_t *cntp; 1999 int i; 2000 2001 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2002 if (mp->m_sb_cnts == NULL) 2003 return -ENOMEM; 2004 2005 #ifdef CONFIG_HOTPLUG_CPU 2006 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2007 mp->m_icsb_notifier.priority = 0; 2008 register_hotcpu_notifier(&mp->m_icsb_notifier); 2009 #endif /* CONFIG_HOTPLUG_CPU */ 2010 2011 for_each_online_cpu(i) { 2012 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2013 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2014 } 2015 2016 mutex_init(&mp->m_icsb_mutex); 2017 2018 /* 2019 * start with all counters disabled so that the 2020 * initial balance kicks us off correctly 2021 */ 2022 mp->m_icsb_counters = -1; 2023 return 0; 2024 } 2025 2026 void 2027 xfs_icsb_reinit_counters( 2028 xfs_mount_t *mp) 2029 { 2030 xfs_icsb_lock(mp); 2031 /* 2032 * start with all counters disabled so that the 2033 * initial balance kicks us off correctly 2034 */ 2035 mp->m_icsb_counters = -1; 2036 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2037 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2038 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2039 xfs_icsb_unlock(mp); 2040 } 2041 2042 void 2043 xfs_icsb_destroy_counters( 2044 xfs_mount_t *mp) 2045 { 2046 if (mp->m_sb_cnts) { 2047 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2048 free_percpu(mp->m_sb_cnts); 2049 } 2050 mutex_destroy(&mp->m_icsb_mutex); 2051 } 2052 2053 STATIC_INLINE void 2054 xfs_icsb_lock_cntr( 2055 xfs_icsb_cnts_t *icsbp) 2056 { 2057 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2058 ndelay(1000); 2059 } 2060 } 2061 2062 STATIC_INLINE void 2063 xfs_icsb_unlock_cntr( 2064 xfs_icsb_cnts_t *icsbp) 2065 { 2066 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2067 } 2068 2069 2070 STATIC_INLINE void 2071 xfs_icsb_lock_all_counters( 2072 xfs_mount_t *mp) 2073 { 2074 xfs_icsb_cnts_t *cntp; 2075 int i; 2076 2077 for_each_online_cpu(i) { 2078 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2079 xfs_icsb_lock_cntr(cntp); 2080 } 2081 } 2082 2083 STATIC_INLINE void 2084 xfs_icsb_unlock_all_counters( 2085 xfs_mount_t *mp) 2086 { 2087 xfs_icsb_cnts_t *cntp; 2088 int i; 2089 2090 for_each_online_cpu(i) { 2091 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2092 xfs_icsb_unlock_cntr(cntp); 2093 } 2094 } 2095 2096 STATIC void 2097 xfs_icsb_count( 2098 xfs_mount_t *mp, 2099 xfs_icsb_cnts_t *cnt, 2100 int flags) 2101 { 2102 xfs_icsb_cnts_t *cntp; 2103 int i; 2104 2105 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2106 2107 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2108 xfs_icsb_lock_all_counters(mp); 2109 2110 for_each_online_cpu(i) { 2111 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2112 cnt->icsb_icount += cntp->icsb_icount; 2113 cnt->icsb_ifree += cntp->icsb_ifree; 2114 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2115 } 2116 2117 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2118 xfs_icsb_unlock_all_counters(mp); 2119 } 2120 2121 STATIC int 2122 xfs_icsb_counter_disabled( 2123 xfs_mount_t *mp, 2124 xfs_sb_field_t field) 2125 { 2126 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2127 return test_bit(field, &mp->m_icsb_counters); 2128 } 2129 2130 STATIC void 2131 xfs_icsb_disable_counter( 2132 xfs_mount_t *mp, 2133 xfs_sb_field_t field) 2134 { 2135 xfs_icsb_cnts_t cnt; 2136 2137 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2138 2139 /* 2140 * If we are already disabled, then there is nothing to do 2141 * here. We check before locking all the counters to avoid 2142 * the expensive lock operation when being called in the 2143 * slow path and the counter is already disabled. This is 2144 * safe because the only time we set or clear this state is under 2145 * the m_icsb_mutex. 2146 */ 2147 if (xfs_icsb_counter_disabled(mp, field)) 2148 return; 2149 2150 xfs_icsb_lock_all_counters(mp); 2151 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2152 /* drain back to superblock */ 2153 2154 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2155 switch(field) { 2156 case XFS_SBS_ICOUNT: 2157 mp->m_sb.sb_icount = cnt.icsb_icount; 2158 break; 2159 case XFS_SBS_IFREE: 2160 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2161 break; 2162 case XFS_SBS_FDBLOCKS: 2163 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2164 break; 2165 default: 2166 BUG(); 2167 } 2168 } 2169 2170 xfs_icsb_unlock_all_counters(mp); 2171 } 2172 2173 STATIC void 2174 xfs_icsb_enable_counter( 2175 xfs_mount_t *mp, 2176 xfs_sb_field_t field, 2177 uint64_t count, 2178 uint64_t resid) 2179 { 2180 xfs_icsb_cnts_t *cntp; 2181 int i; 2182 2183 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2184 2185 xfs_icsb_lock_all_counters(mp); 2186 for_each_online_cpu(i) { 2187 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2188 switch (field) { 2189 case XFS_SBS_ICOUNT: 2190 cntp->icsb_icount = count + resid; 2191 break; 2192 case XFS_SBS_IFREE: 2193 cntp->icsb_ifree = count + resid; 2194 break; 2195 case XFS_SBS_FDBLOCKS: 2196 cntp->icsb_fdblocks = count + resid; 2197 break; 2198 default: 2199 BUG(); 2200 break; 2201 } 2202 resid = 0; 2203 } 2204 clear_bit(field, &mp->m_icsb_counters); 2205 xfs_icsb_unlock_all_counters(mp); 2206 } 2207 2208 void 2209 xfs_icsb_sync_counters_locked( 2210 xfs_mount_t *mp, 2211 int flags) 2212 { 2213 xfs_icsb_cnts_t cnt; 2214 2215 xfs_icsb_count(mp, &cnt, flags); 2216 2217 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2218 mp->m_sb.sb_icount = cnt.icsb_icount; 2219 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2220 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2221 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2222 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2223 } 2224 2225 /* 2226 * Accurate update of per-cpu counters to incore superblock 2227 */ 2228 void 2229 xfs_icsb_sync_counters( 2230 xfs_mount_t *mp, 2231 int flags) 2232 { 2233 spin_lock(&mp->m_sb_lock); 2234 xfs_icsb_sync_counters_locked(mp, flags); 2235 spin_unlock(&mp->m_sb_lock); 2236 } 2237 2238 /* 2239 * Balance and enable/disable counters as necessary. 2240 * 2241 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2242 * chosen to be the same number as single on disk allocation chunk per CPU, and 2243 * free blocks is something far enough zero that we aren't going thrash when we 2244 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2245 * prevent looping endlessly when xfs_alloc_space asks for more than will 2246 * be distributed to a single CPU but each CPU has enough blocks to be 2247 * reenabled. 2248 * 2249 * Note that we can be called when counters are already disabled. 2250 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2251 * prevent locking every per-cpu counter needlessly. 2252 */ 2253 2254 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2255 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2256 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2257 STATIC void 2258 xfs_icsb_balance_counter_locked( 2259 xfs_mount_t *mp, 2260 xfs_sb_field_t field, 2261 int min_per_cpu) 2262 { 2263 uint64_t count, resid; 2264 int weight = num_online_cpus(); 2265 uint64_t min = (uint64_t)min_per_cpu; 2266 2267 /* disable counter and sync counter */ 2268 xfs_icsb_disable_counter(mp, field); 2269 2270 /* update counters - first CPU gets residual*/ 2271 switch (field) { 2272 case XFS_SBS_ICOUNT: 2273 count = mp->m_sb.sb_icount; 2274 resid = do_div(count, weight); 2275 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2276 return; 2277 break; 2278 case XFS_SBS_IFREE: 2279 count = mp->m_sb.sb_ifree; 2280 resid = do_div(count, weight); 2281 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2282 return; 2283 break; 2284 case XFS_SBS_FDBLOCKS: 2285 count = mp->m_sb.sb_fdblocks; 2286 resid = do_div(count, weight); 2287 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2288 return; 2289 break; 2290 default: 2291 BUG(); 2292 count = resid = 0; /* quiet, gcc */ 2293 break; 2294 } 2295 2296 xfs_icsb_enable_counter(mp, field, count, resid); 2297 } 2298 2299 STATIC void 2300 xfs_icsb_balance_counter( 2301 xfs_mount_t *mp, 2302 xfs_sb_field_t fields, 2303 int min_per_cpu) 2304 { 2305 spin_lock(&mp->m_sb_lock); 2306 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2307 spin_unlock(&mp->m_sb_lock); 2308 } 2309 2310 STATIC int 2311 xfs_icsb_modify_counters( 2312 xfs_mount_t *mp, 2313 xfs_sb_field_t field, 2314 int64_t delta, 2315 int rsvd) 2316 { 2317 xfs_icsb_cnts_t *icsbp; 2318 long long lcounter; /* long counter for 64 bit fields */ 2319 int cpu, ret = 0; 2320 2321 might_sleep(); 2322 again: 2323 cpu = get_cpu(); 2324 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2325 2326 /* 2327 * if the counter is disabled, go to slow path 2328 */ 2329 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2330 goto slow_path; 2331 xfs_icsb_lock_cntr(icsbp); 2332 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2333 xfs_icsb_unlock_cntr(icsbp); 2334 goto slow_path; 2335 } 2336 2337 switch (field) { 2338 case XFS_SBS_ICOUNT: 2339 lcounter = icsbp->icsb_icount; 2340 lcounter += delta; 2341 if (unlikely(lcounter < 0)) 2342 goto balance_counter; 2343 icsbp->icsb_icount = lcounter; 2344 break; 2345 2346 case XFS_SBS_IFREE: 2347 lcounter = icsbp->icsb_ifree; 2348 lcounter += delta; 2349 if (unlikely(lcounter < 0)) 2350 goto balance_counter; 2351 icsbp->icsb_ifree = lcounter; 2352 break; 2353 2354 case XFS_SBS_FDBLOCKS: 2355 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2356 2357 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2358 lcounter += delta; 2359 if (unlikely(lcounter < 0)) 2360 goto balance_counter; 2361 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2362 break; 2363 default: 2364 BUG(); 2365 break; 2366 } 2367 xfs_icsb_unlock_cntr(icsbp); 2368 put_cpu(); 2369 return 0; 2370 2371 slow_path: 2372 put_cpu(); 2373 2374 /* 2375 * serialise with a mutex so we don't burn lots of cpu on 2376 * the superblock lock. We still need to hold the superblock 2377 * lock, however, when we modify the global structures. 2378 */ 2379 xfs_icsb_lock(mp); 2380 2381 /* 2382 * Now running atomically. 2383 * 2384 * If the counter is enabled, someone has beaten us to rebalancing. 2385 * Drop the lock and try again in the fast path.... 2386 */ 2387 if (!(xfs_icsb_counter_disabled(mp, field))) { 2388 xfs_icsb_unlock(mp); 2389 goto again; 2390 } 2391 2392 /* 2393 * The counter is currently disabled. Because we are 2394 * running atomically here, we know a rebalance cannot 2395 * be in progress. Hence we can go straight to operating 2396 * on the global superblock. We do not call xfs_mod_incore_sb() 2397 * here even though we need to get the m_sb_lock. Doing so 2398 * will cause us to re-enter this function and deadlock. 2399 * Hence we get the m_sb_lock ourselves and then call 2400 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2401 * directly on the global counters. 2402 */ 2403 spin_lock(&mp->m_sb_lock); 2404 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2405 spin_unlock(&mp->m_sb_lock); 2406 2407 /* 2408 * Now that we've modified the global superblock, we 2409 * may be able to re-enable the distributed counters 2410 * (e.g. lots of space just got freed). After that 2411 * we are done. 2412 */ 2413 if (ret != ENOSPC) 2414 xfs_icsb_balance_counter(mp, field, 0); 2415 xfs_icsb_unlock(mp); 2416 return ret; 2417 2418 balance_counter: 2419 xfs_icsb_unlock_cntr(icsbp); 2420 put_cpu(); 2421 2422 /* 2423 * We may have multiple threads here if multiple per-cpu 2424 * counters run dry at the same time. This will mean we can 2425 * do more balances than strictly necessary but it is not 2426 * the common slowpath case. 2427 */ 2428 xfs_icsb_lock(mp); 2429 2430 /* 2431 * running atomically. 2432 * 2433 * This will leave the counter in the correct state for future 2434 * accesses. After the rebalance, we simply try again and our retry 2435 * will either succeed through the fast path or slow path without 2436 * another balance operation being required. 2437 */ 2438 xfs_icsb_balance_counter(mp, field, delta); 2439 xfs_icsb_unlock(mp); 2440 goto again; 2441 } 2442 2443 #endif 2444