xref: /linux/fs/xfs/xfs_mount.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 
48 STATIC int	xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int	xfs_uuid_mount(xfs_mount_t *);
50 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
51 
52 
53 #ifdef HAVE_PERCPU_SB
54 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55 						int);
56 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57 						int);
58 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 						int64_t, int);
60 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61 
62 #else
63 
64 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
67 
68 #endif
69 
70 static const struct {
71 	short offset;
72 	short type;	/* 0 = integer
73 			 * 1 = binary / string (no translation)
74 			 */
75 } xfs_sb_info[] = {
76     { offsetof(xfs_sb_t, sb_magicnum),   0 },
77     { offsetof(xfs_sb_t, sb_blocksize),  0 },
78     { offsetof(xfs_sb_t, sb_dblocks),    0 },
79     { offsetof(xfs_sb_t, sb_rblocks),    0 },
80     { offsetof(xfs_sb_t, sb_rextents),   0 },
81     { offsetof(xfs_sb_t, sb_uuid),       1 },
82     { offsetof(xfs_sb_t, sb_logstart),   0 },
83     { offsetof(xfs_sb_t, sb_rootino),    0 },
84     { offsetof(xfs_sb_t, sb_rbmino),     0 },
85     { offsetof(xfs_sb_t, sb_rsumino),    0 },
86     { offsetof(xfs_sb_t, sb_rextsize),   0 },
87     { offsetof(xfs_sb_t, sb_agblocks),   0 },
88     { offsetof(xfs_sb_t, sb_agcount),    0 },
89     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
90     { offsetof(xfs_sb_t, sb_logblocks),  0 },
91     { offsetof(xfs_sb_t, sb_versionnum), 0 },
92     { offsetof(xfs_sb_t, sb_sectsize),   0 },
93     { offsetof(xfs_sb_t, sb_inodesize),  0 },
94     { offsetof(xfs_sb_t, sb_inopblock),  0 },
95     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
96     { offsetof(xfs_sb_t, sb_blocklog),   0 },
97     { offsetof(xfs_sb_t, sb_sectlog),    0 },
98     { offsetof(xfs_sb_t, sb_inodelog),   0 },
99     { offsetof(xfs_sb_t, sb_inopblog),   0 },
100     { offsetof(xfs_sb_t, sb_agblklog),   0 },
101     { offsetof(xfs_sb_t, sb_rextslog),   0 },
102     { offsetof(xfs_sb_t, sb_inprogress), 0 },
103     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
104     { offsetof(xfs_sb_t, sb_icount),     0 },
105     { offsetof(xfs_sb_t, sb_ifree),      0 },
106     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
107     { offsetof(xfs_sb_t, sb_frextents),  0 },
108     { offsetof(xfs_sb_t, sb_uquotino),   0 },
109     { offsetof(xfs_sb_t, sb_gquotino),   0 },
110     { offsetof(xfs_sb_t, sb_qflags),     0 },
111     { offsetof(xfs_sb_t, sb_flags),      0 },
112     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
113     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114     { offsetof(xfs_sb_t, sb_unit),	 0 },
115     { offsetof(xfs_sb_t, sb_width),	 0 },
116     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
117     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118     { offsetof(xfs_sb_t, sb_logsectsize),0 },
119     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
120     { offsetof(xfs_sb_t, sb_features2),	 0 },
121     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122     { sizeof(xfs_sb_t),			 0 }
123 };
124 
125 /*
126  * Free up the resources associated with a mount structure.  Assume that
127  * the structure was initially zeroed, so we can tell which fields got
128  * initialized.
129  */
130 STATIC void
131 xfs_free_perag(
132 	xfs_mount_t	*mp)
133 {
134 	if (mp->m_perag) {
135 		int	agno;
136 
137 		for (agno = 0; agno < mp->m_maxagi; agno++)
138 			if (mp->m_perag[agno].pagb_list)
139 				kmem_free(mp->m_perag[agno].pagb_list);
140 		kmem_free(mp->m_perag);
141 	}
142 }
143 
144 /*
145  * Check size of device based on the (data/realtime) block count.
146  * Note: this check is used by the growfs code as well as mount.
147  */
148 int
149 xfs_sb_validate_fsb_count(
150 	xfs_sb_t	*sbp,
151 	__uint64_t	nblocks)
152 {
153 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
154 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
155 
156 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
157 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
158 		return E2BIG;
159 #else                  /* Limited by UINT_MAX of sectors */
160 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
161 		return E2BIG;
162 #endif
163 	return 0;
164 }
165 
166 /*
167  * Check the validity of the SB found.
168  */
169 STATIC int
170 xfs_mount_validate_sb(
171 	xfs_mount_t	*mp,
172 	xfs_sb_t	*sbp,
173 	int		flags)
174 {
175 	/*
176 	 * If the log device and data device have the
177 	 * same device number, the log is internal.
178 	 * Consequently, the sb_logstart should be non-zero.  If
179 	 * we have a zero sb_logstart in this case, we may be trying to mount
180 	 * a volume filesystem in a non-volume manner.
181 	 */
182 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
183 		xfs_fs_mount_cmn_err(flags, "bad magic number");
184 		return XFS_ERROR(EWRONGFS);
185 	}
186 
187 	if (!xfs_sb_good_version(sbp)) {
188 		xfs_fs_mount_cmn_err(flags, "bad version");
189 		return XFS_ERROR(EWRONGFS);
190 	}
191 
192 	if (unlikely(
193 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
194 		xfs_fs_mount_cmn_err(flags,
195 			"filesystem is marked as having an external log; "
196 			"specify logdev on the\nmount command line.");
197 		return XFS_ERROR(EINVAL);
198 	}
199 
200 	if (unlikely(
201 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
202 		xfs_fs_mount_cmn_err(flags,
203 			"filesystem is marked as having an internal log; "
204 			"do not specify logdev on\nthe mount command line.");
205 		return XFS_ERROR(EINVAL);
206 	}
207 
208 	/*
209 	 * More sanity checking. These were stolen directly from
210 	 * xfs_repair.
211 	 */
212 	if (unlikely(
213 	    sbp->sb_agcount <= 0					||
214 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
215 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
216 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
217 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
218 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
219 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
220 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
221 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
222 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
223 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
224 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
225 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
226 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
227 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
228 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
229 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
230 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
231 		return XFS_ERROR(EFSCORRUPTED);
232 	}
233 
234 	/*
235 	 * Sanity check AG count, size fields against data size field
236 	 */
237 	if (unlikely(
238 	    sbp->sb_dblocks == 0 ||
239 	    sbp->sb_dblocks >
240 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
241 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
242 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
243 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
244 		return XFS_ERROR(EFSCORRUPTED);
245 	}
246 
247 	/*
248 	 * Until this is fixed only page-sized or smaller data blocks work.
249 	 */
250 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
251 		xfs_fs_mount_cmn_err(flags,
252 			"file system with blocksize %d bytes",
253 			sbp->sb_blocksize);
254 		xfs_fs_mount_cmn_err(flags,
255 			"only pagesize (%ld) or less will currently work.",
256 			PAGE_SIZE);
257 		return XFS_ERROR(ENOSYS);
258 	}
259 
260 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
261 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
262 		xfs_fs_mount_cmn_err(flags,
263 			"file system too large to be mounted on this system.");
264 		return XFS_ERROR(E2BIG);
265 	}
266 
267 	if (unlikely(sbp->sb_inprogress)) {
268 		xfs_fs_mount_cmn_err(flags, "file system busy");
269 		return XFS_ERROR(EFSCORRUPTED);
270 	}
271 
272 	/*
273 	 * Version 1 directory format has never worked on Linux.
274 	 */
275 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
276 		xfs_fs_mount_cmn_err(flags,
277 			"file system using version 1 directory format");
278 		return XFS_ERROR(ENOSYS);
279 	}
280 
281 	return 0;
282 }
283 
284 STATIC void
285 xfs_initialize_perag_icache(
286 	xfs_perag_t	*pag)
287 {
288 	if (!pag->pag_ici_init) {
289 		rwlock_init(&pag->pag_ici_lock);
290 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
291 		pag->pag_ici_init = 1;
292 	}
293 }
294 
295 xfs_agnumber_t
296 xfs_initialize_perag(
297 	xfs_mount_t	*mp,
298 	xfs_agnumber_t	agcount)
299 {
300 	xfs_agnumber_t	index, max_metadata;
301 	xfs_perag_t	*pag;
302 	xfs_agino_t	agino;
303 	xfs_ino_t	ino;
304 	xfs_sb_t	*sbp = &mp->m_sb;
305 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
306 
307 	/* Check to see if the filesystem can overflow 32 bit inodes */
308 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
309 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
310 
311 	/* Clear the mount flag if no inode can overflow 32 bits
312 	 * on this filesystem, or if specifically requested..
313 	 */
314 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
315 		mp->m_flags |= XFS_MOUNT_32BITINODES;
316 	} else {
317 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
318 	}
319 
320 	/* If we can overflow then setup the ag headers accordingly */
321 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
322 		/* Calculate how much should be reserved for inodes to
323 		 * meet the max inode percentage.
324 		 */
325 		if (mp->m_maxicount) {
326 			__uint64_t	icount;
327 
328 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
329 			do_div(icount, 100);
330 			icount += sbp->sb_agblocks - 1;
331 			do_div(icount, sbp->sb_agblocks);
332 			max_metadata = icount;
333 		} else {
334 			max_metadata = agcount;
335 		}
336 		for (index = 0; index < agcount; index++) {
337 			ino = XFS_AGINO_TO_INO(mp, index, agino);
338 			if (ino > max_inum) {
339 				index++;
340 				break;
341 			}
342 
343 			/* This ag is preferred for inodes */
344 			pag = &mp->m_perag[index];
345 			pag->pagi_inodeok = 1;
346 			if (index < max_metadata)
347 				pag->pagf_metadata = 1;
348 			xfs_initialize_perag_icache(pag);
349 		}
350 	} else {
351 		/* Setup default behavior for smaller filesystems */
352 		for (index = 0; index < agcount; index++) {
353 			pag = &mp->m_perag[index];
354 			pag->pagi_inodeok = 1;
355 			xfs_initialize_perag_icache(pag);
356 		}
357 	}
358 	return index;
359 }
360 
361 void
362 xfs_sb_from_disk(
363 	xfs_sb_t	*to,
364 	xfs_dsb_t	*from)
365 {
366 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
367 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
368 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
369 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
370 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
371 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
372 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
373 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
374 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
375 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
376 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
377 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
378 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
379 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
380 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
381 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
382 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
383 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
384 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
385 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
386 	to->sb_blocklog = from->sb_blocklog;
387 	to->sb_sectlog = from->sb_sectlog;
388 	to->sb_inodelog = from->sb_inodelog;
389 	to->sb_inopblog = from->sb_inopblog;
390 	to->sb_agblklog = from->sb_agblklog;
391 	to->sb_rextslog = from->sb_rextslog;
392 	to->sb_inprogress = from->sb_inprogress;
393 	to->sb_imax_pct = from->sb_imax_pct;
394 	to->sb_icount = be64_to_cpu(from->sb_icount);
395 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
396 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
397 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
398 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
399 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
400 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
401 	to->sb_flags = from->sb_flags;
402 	to->sb_shared_vn = from->sb_shared_vn;
403 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
404 	to->sb_unit = be32_to_cpu(from->sb_unit);
405 	to->sb_width = be32_to_cpu(from->sb_width);
406 	to->sb_dirblklog = from->sb_dirblklog;
407 	to->sb_logsectlog = from->sb_logsectlog;
408 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
409 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
410 	to->sb_features2 = be32_to_cpu(from->sb_features2);
411 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
412 }
413 
414 /*
415  * Copy in core superblock to ondisk one.
416  *
417  * The fields argument is mask of superblock fields to copy.
418  */
419 void
420 xfs_sb_to_disk(
421 	xfs_dsb_t	*to,
422 	xfs_sb_t	*from,
423 	__int64_t	fields)
424 {
425 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
426 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
427 	xfs_sb_field_t	f;
428 	int		first;
429 	int		size;
430 
431 	ASSERT(fields);
432 	if (!fields)
433 		return;
434 
435 	while (fields) {
436 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
437 		first = xfs_sb_info[f].offset;
438 		size = xfs_sb_info[f + 1].offset - first;
439 
440 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
441 
442 		if (size == 1 || xfs_sb_info[f].type == 1) {
443 			memcpy(to_ptr + first, from_ptr + first, size);
444 		} else {
445 			switch (size) {
446 			case 2:
447 				*(__be16 *)(to_ptr + first) =
448 					cpu_to_be16(*(__u16 *)(from_ptr + first));
449 				break;
450 			case 4:
451 				*(__be32 *)(to_ptr + first) =
452 					cpu_to_be32(*(__u32 *)(from_ptr + first));
453 				break;
454 			case 8:
455 				*(__be64 *)(to_ptr + first) =
456 					cpu_to_be64(*(__u64 *)(from_ptr + first));
457 				break;
458 			default:
459 				ASSERT(0);
460 			}
461 		}
462 
463 		fields &= ~(1LL << f);
464 	}
465 }
466 
467 /*
468  * xfs_readsb
469  *
470  * Does the initial read of the superblock.
471  */
472 int
473 xfs_readsb(xfs_mount_t *mp, int flags)
474 {
475 	unsigned int	sector_size;
476 	unsigned int	extra_flags;
477 	xfs_buf_t	*bp;
478 	int		error;
479 
480 	ASSERT(mp->m_sb_bp == NULL);
481 	ASSERT(mp->m_ddev_targp != NULL);
482 
483 	/*
484 	 * Allocate a (locked) buffer to hold the superblock.
485 	 * This will be kept around at all times to optimize
486 	 * access to the superblock.
487 	 */
488 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
489 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
490 
491 	bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
492 				BTOBB(sector_size), extra_flags);
493 	if (!bp || XFS_BUF_ISERROR(bp)) {
494 		xfs_fs_mount_cmn_err(flags, "SB read failed");
495 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
496 		goto fail;
497 	}
498 	ASSERT(XFS_BUF_ISBUSY(bp));
499 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
500 
501 	/*
502 	 * Initialize the mount structure from the superblock.
503 	 * But first do some basic consistency checking.
504 	 */
505 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
506 
507 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
508 	if (error) {
509 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
510 		goto fail;
511 	}
512 
513 	/*
514 	 * We must be able to do sector-sized and sector-aligned IO.
515 	 */
516 	if (sector_size > mp->m_sb.sb_sectsize) {
517 		xfs_fs_mount_cmn_err(flags,
518 			"device supports only %u byte sectors (not %u)",
519 			sector_size, mp->m_sb.sb_sectsize);
520 		error = ENOSYS;
521 		goto fail;
522 	}
523 
524 	/*
525 	 * If device sector size is smaller than the superblock size,
526 	 * re-read the superblock so the buffer is correctly sized.
527 	 */
528 	if (sector_size < mp->m_sb.sb_sectsize) {
529 		XFS_BUF_UNMANAGE(bp);
530 		xfs_buf_relse(bp);
531 		sector_size = mp->m_sb.sb_sectsize;
532 		bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
533 					BTOBB(sector_size), extra_flags);
534 		if (!bp || XFS_BUF_ISERROR(bp)) {
535 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
536 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
537 			goto fail;
538 		}
539 		ASSERT(XFS_BUF_ISBUSY(bp));
540 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
541 	}
542 
543 	/* Initialize per-cpu counters */
544 	xfs_icsb_reinit_counters(mp);
545 
546 	mp->m_sb_bp = bp;
547 	xfs_buf_relse(bp);
548 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
549 	return 0;
550 
551  fail:
552 	if (bp) {
553 		XFS_BUF_UNMANAGE(bp);
554 		xfs_buf_relse(bp);
555 	}
556 	return error;
557 }
558 
559 
560 /*
561  * xfs_mount_common
562  *
563  * Mount initialization code establishing various mount
564  * fields from the superblock associated with the given
565  * mount structure
566  */
567 STATIC void
568 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
569 {
570 	int	i;
571 
572 	mp->m_agfrotor = mp->m_agirotor = 0;
573 	spin_lock_init(&mp->m_agirotor_lock);
574 	mp->m_maxagi = mp->m_sb.sb_agcount;
575 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
576 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
577 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
578 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
579 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
580 	mp->m_litino = sbp->sb_inodesize -
581 		((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
582 	mp->m_blockmask = sbp->sb_blocksize - 1;
583 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
584 	mp->m_blockwmask = mp->m_blockwsize - 1;
585 	INIT_LIST_HEAD(&mp->m_del_inodes);
586 
587 	/*
588 	 * Setup for attributes, in case they get created.
589 	 * This value is for inodes getting attributes for the first time,
590 	 * the per-inode value is for old attribute values.
591 	 */
592 	ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
593 	switch (sbp->sb_inodesize) {
594 	case 256:
595 		mp->m_attroffset = XFS_LITINO(mp) -
596 				   XFS_BMDR_SPACE_CALC(MINABTPTRS);
597 		break;
598 	case 512:
599 	case 1024:
600 	case 2048:
601 		mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
602 		break;
603 	default:
604 		ASSERT(0);
605 	}
606 	ASSERT(mp->m_attroffset < XFS_LITINO(mp));
607 
608 	for (i = 0; i < 2; i++) {
609 		mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
610 			xfs_alloc, i == 0);
611 		mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
612 			xfs_alloc, i == 0);
613 	}
614 	for (i = 0; i < 2; i++) {
615 		mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
616 			xfs_bmbt, i == 0);
617 		mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
618 			xfs_bmbt, i == 0);
619 	}
620 	for (i = 0; i < 2; i++) {
621 		mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
622 			xfs_inobt, i == 0);
623 		mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
624 			xfs_inobt, i == 0);
625 	}
626 
627 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
628 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
629 					sbp->sb_inopblock);
630 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
631 }
632 
633 /*
634  * xfs_initialize_perag_data
635  *
636  * Read in each per-ag structure so we can count up the number of
637  * allocated inodes, free inodes and used filesystem blocks as this
638  * information is no longer persistent in the superblock. Once we have
639  * this information, write it into the in-core superblock structure.
640  */
641 STATIC int
642 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
643 {
644 	xfs_agnumber_t	index;
645 	xfs_perag_t	*pag;
646 	xfs_sb_t	*sbp = &mp->m_sb;
647 	uint64_t	ifree = 0;
648 	uint64_t	ialloc = 0;
649 	uint64_t	bfree = 0;
650 	uint64_t	bfreelst = 0;
651 	uint64_t	btree = 0;
652 	int		error;
653 
654 	for (index = 0; index < agcount; index++) {
655 		/*
656 		 * read the agf, then the agi. This gets us
657 		 * all the inforamtion we need and populates the
658 		 * per-ag structures for us.
659 		 */
660 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
661 		if (error)
662 			return error;
663 
664 		error = xfs_ialloc_pagi_init(mp, NULL, index);
665 		if (error)
666 			return error;
667 		pag = &mp->m_perag[index];
668 		ifree += pag->pagi_freecount;
669 		ialloc += pag->pagi_count;
670 		bfree += pag->pagf_freeblks;
671 		bfreelst += pag->pagf_flcount;
672 		btree += pag->pagf_btreeblks;
673 	}
674 	/*
675 	 * Overwrite incore superblock counters with just-read data
676 	 */
677 	spin_lock(&mp->m_sb_lock);
678 	sbp->sb_ifree = ifree;
679 	sbp->sb_icount = ialloc;
680 	sbp->sb_fdblocks = bfree + bfreelst + btree;
681 	spin_unlock(&mp->m_sb_lock);
682 
683 	/* Fixup the per-cpu counters as well. */
684 	xfs_icsb_reinit_counters(mp);
685 
686 	return 0;
687 }
688 
689 /*
690  * Update alignment values based on mount options and sb values
691  */
692 STATIC int
693 xfs_update_alignment(xfs_mount_t *mp, __uint64_t *update_flags)
694 {
695 	xfs_sb_t	*sbp = &(mp->m_sb);
696 
697 	if (mp->m_dalign) {
698 		/*
699 		 * If stripe unit and stripe width are not multiples
700 		 * of the fs blocksize turn off alignment.
701 		 */
702 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
703 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
704 			if (mp->m_flags & XFS_MOUNT_RETERR) {
705 				cmn_err(CE_WARN,
706 					"XFS: alignment check 1 failed");
707 				return XFS_ERROR(EINVAL);
708 			}
709 			mp->m_dalign = mp->m_swidth = 0;
710 		} else {
711 			/*
712 			 * Convert the stripe unit and width to FSBs.
713 			 */
714 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
715 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
716 				if (mp->m_flags & XFS_MOUNT_RETERR) {
717 					return XFS_ERROR(EINVAL);
718 				}
719 				xfs_fs_cmn_err(CE_WARN, mp,
720 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
721 					mp->m_dalign, mp->m_swidth,
722 					sbp->sb_agblocks);
723 
724 				mp->m_dalign = 0;
725 				mp->m_swidth = 0;
726 			} else if (mp->m_dalign) {
727 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
728 			} else {
729 				if (mp->m_flags & XFS_MOUNT_RETERR) {
730 					xfs_fs_cmn_err(CE_WARN, mp,
731 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
732                                         	mp->m_dalign,
733 						mp->m_blockmask +1);
734 					return XFS_ERROR(EINVAL);
735 				}
736 				mp->m_swidth = 0;
737 			}
738 		}
739 
740 		/*
741 		 * Update superblock with new values
742 		 * and log changes
743 		 */
744 		if (xfs_sb_version_hasdalign(sbp)) {
745 			if (sbp->sb_unit != mp->m_dalign) {
746 				sbp->sb_unit = mp->m_dalign;
747 				*update_flags |= XFS_SB_UNIT;
748 			}
749 			if (sbp->sb_width != mp->m_swidth) {
750 				sbp->sb_width = mp->m_swidth;
751 				*update_flags |= XFS_SB_WIDTH;
752 			}
753 		}
754 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
755 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
756 			mp->m_dalign = sbp->sb_unit;
757 			mp->m_swidth = sbp->sb_width;
758 	}
759 
760 	return 0;
761 }
762 
763 /*
764  * Set the maximum inode count for this filesystem
765  */
766 STATIC void
767 xfs_set_maxicount(xfs_mount_t *mp)
768 {
769 	xfs_sb_t	*sbp = &(mp->m_sb);
770 	__uint64_t	icount;
771 
772 	if (sbp->sb_imax_pct) {
773 		/*
774 		 * Make sure the maximum inode count is a multiple
775 		 * of the units we allocate inodes in.
776 		 */
777 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
778 		do_div(icount, 100);
779 		do_div(icount, mp->m_ialloc_blks);
780 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
781 				   sbp->sb_inopblog;
782 	} else {
783 		mp->m_maxicount = 0;
784 	}
785 }
786 
787 /*
788  * Set the default minimum read and write sizes unless
789  * already specified in a mount option.
790  * We use smaller I/O sizes when the file system
791  * is being used for NFS service (wsync mount option).
792  */
793 STATIC void
794 xfs_set_rw_sizes(xfs_mount_t *mp)
795 {
796 	xfs_sb_t	*sbp = &(mp->m_sb);
797 	int		readio_log, writeio_log;
798 
799 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
800 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
801 			readio_log = XFS_WSYNC_READIO_LOG;
802 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
803 		} else {
804 			readio_log = XFS_READIO_LOG_LARGE;
805 			writeio_log = XFS_WRITEIO_LOG_LARGE;
806 		}
807 	} else {
808 		readio_log = mp->m_readio_log;
809 		writeio_log = mp->m_writeio_log;
810 	}
811 
812 	if (sbp->sb_blocklog > readio_log) {
813 		mp->m_readio_log = sbp->sb_blocklog;
814 	} else {
815 		mp->m_readio_log = readio_log;
816 	}
817 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
818 	if (sbp->sb_blocklog > writeio_log) {
819 		mp->m_writeio_log = sbp->sb_blocklog;
820 	} else {
821 		mp->m_writeio_log = writeio_log;
822 	}
823 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
824 }
825 
826 /*
827  * Set whether we're using inode alignment.
828  */
829 STATIC void
830 xfs_set_inoalignment(xfs_mount_t *mp)
831 {
832 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
833 	    mp->m_sb.sb_inoalignmt >=
834 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
835 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
836 	else
837 		mp->m_inoalign_mask = 0;
838 	/*
839 	 * If we are using stripe alignment, check whether
840 	 * the stripe unit is a multiple of the inode alignment
841 	 */
842 	if (mp->m_dalign && mp->m_inoalign_mask &&
843 	    !(mp->m_dalign & mp->m_inoalign_mask))
844 		mp->m_sinoalign = mp->m_dalign;
845 	else
846 		mp->m_sinoalign = 0;
847 }
848 
849 /*
850  * Check that the data (and log if separate) are an ok size.
851  */
852 STATIC int
853 xfs_check_sizes(xfs_mount_t *mp)
854 {
855 	xfs_buf_t	*bp;
856 	xfs_daddr_t	d;
857 	int		error;
858 
859 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
860 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
861 		cmn_err(CE_WARN, "XFS: size check 1 failed");
862 		return XFS_ERROR(E2BIG);
863 	}
864 	error = xfs_read_buf(mp, mp->m_ddev_targp,
865 			     d - XFS_FSS_TO_BB(mp, 1),
866 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
867 	if (!error) {
868 		xfs_buf_relse(bp);
869 	} else {
870 		cmn_err(CE_WARN, "XFS: size check 2 failed");
871 		if (error == ENOSPC)
872 			error = XFS_ERROR(E2BIG);
873 		return error;
874 	}
875 
876 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
877 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
878 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
879 			cmn_err(CE_WARN, "XFS: size check 3 failed");
880 			return XFS_ERROR(E2BIG);
881 		}
882 		error = xfs_read_buf(mp, mp->m_logdev_targp,
883 				     d - XFS_FSB_TO_BB(mp, 1),
884 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
885 		if (!error) {
886 			xfs_buf_relse(bp);
887 		} else {
888 			cmn_err(CE_WARN, "XFS: size check 3 failed");
889 			if (error == ENOSPC)
890 				error = XFS_ERROR(E2BIG);
891 			return error;
892 		}
893 	}
894 	return 0;
895 }
896 
897 /*
898  * xfs_mountfs
899  *
900  * This function does the following on an initial mount of a file system:
901  *	- reads the superblock from disk and init the mount struct
902  *	- if we're a 32-bit kernel, do a size check on the superblock
903  *		so we don't mount terabyte filesystems
904  *	- init mount struct realtime fields
905  *	- allocate inode hash table for fs
906  *	- init directory manager
907  *	- perform recovery and init the log manager
908  */
909 int
910 xfs_mountfs(
911 	xfs_mount_t	*mp)
912 {
913 	xfs_sb_t	*sbp = &(mp->m_sb);
914 	xfs_inode_t	*rip;
915 	__uint64_t	resblks;
916 	__int64_t	update_flags = 0LL;
917 	uint		quotamount, quotaflags;
918 	int		uuid_mounted = 0;
919 	int		error = 0;
920 
921 	xfs_mount_common(mp, sbp);
922 
923 	/*
924 	 * Check for a mismatched features2 values.  Older kernels
925 	 * read & wrote into the wrong sb offset for sb_features2
926 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
927 	 * when sb_features2 was added, which made older superblock
928 	 * reading/writing routines swap it as a 64-bit value.
929 	 *
930 	 * For backwards compatibility, we make both slots equal.
931 	 *
932 	 * If we detect a mismatched field, we OR the set bits into the
933 	 * existing features2 field in case it has already been modified; we
934 	 * don't want to lose any features.  We then update the bad location
935 	 * with the ORed value so that older kernels will see any features2
936 	 * flags, and mark the two fields as needing updates once the
937 	 * transaction subsystem is online.
938 	 */
939 	if (xfs_sb_has_mismatched_features2(sbp)) {
940 		cmn_err(CE_WARN,
941 			"XFS: correcting sb_features alignment problem");
942 		sbp->sb_features2 |= sbp->sb_bad_features2;
943 		sbp->sb_bad_features2 = sbp->sb_features2;
944 		update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
945 
946 		/*
947 		 * Re-check for ATTR2 in case it was found in bad_features2
948 		 * slot.
949 		 */
950 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
951 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
952 			mp->m_flags |= XFS_MOUNT_ATTR2;
953 	}
954 
955 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
956 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
957 		xfs_sb_version_removeattr2(&mp->m_sb);
958 		update_flags |= XFS_SB_FEATURES2;
959 
960 		/* update sb_versionnum for the clearing of the morebits */
961 		if (!sbp->sb_features2)
962 			update_flags |= XFS_SB_VERSIONNUM;
963 	}
964 
965 	/*
966 	 * Check if sb_agblocks is aligned at stripe boundary
967 	 * If sb_agblocks is NOT aligned turn off m_dalign since
968 	 * allocator alignment is within an ag, therefore ag has
969 	 * to be aligned at stripe boundary.
970 	 */
971 	error = xfs_update_alignment(mp, &update_flags);
972 	if (error)
973 		goto error1;
974 
975 	xfs_alloc_compute_maxlevels(mp);
976 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
977 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
978 	xfs_ialloc_compute_maxlevels(mp);
979 
980 	xfs_set_maxicount(mp);
981 
982 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
983 
984 	/*
985 	 * XFS uses the uuid from the superblock as the unique
986 	 * identifier for fsid.  We can not use the uuid from the volume
987 	 * since a single partition filesystem is identical to a single
988 	 * partition volume/filesystem.
989 	 */
990 	if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
991 		if (xfs_uuid_mount(mp)) {
992 			error = XFS_ERROR(EINVAL);
993 			goto error1;
994 		}
995 		uuid_mounted=1;
996 	}
997 
998 	/*
999 	 * Set the minimum read and write sizes
1000 	 */
1001 	xfs_set_rw_sizes(mp);
1002 
1003 	/*
1004 	 * Set the inode cluster size.
1005 	 * This may still be overridden by the file system
1006 	 * block size if it is larger than the chosen cluster size.
1007 	 */
1008 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1009 
1010 	/*
1011 	 * Set inode alignment fields
1012 	 */
1013 	xfs_set_inoalignment(mp);
1014 
1015 	/*
1016 	 * Check that the data (and log if separate) are an ok size.
1017 	 */
1018 	error = xfs_check_sizes(mp);
1019 	if (error)
1020 		goto error1;
1021 
1022 	/*
1023 	 * Initialize realtime fields in the mount structure
1024 	 */
1025 	error = xfs_rtmount_init(mp);
1026 	if (error) {
1027 		cmn_err(CE_WARN, "XFS: RT mount failed");
1028 		goto error1;
1029 	}
1030 
1031 	/*
1032 	 *  Copies the low order bits of the timestamp and the randomly
1033 	 *  set "sequence" number out of a UUID.
1034 	 */
1035 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1036 
1037 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1038 
1039 	xfs_dir_mount(mp);
1040 
1041 	/*
1042 	 * Initialize the attribute manager's entries.
1043 	 */
1044 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1045 
1046 	/*
1047 	 * Initialize the precomputed transaction reservations values.
1048 	 */
1049 	xfs_trans_init(mp);
1050 
1051 	/*
1052 	 * Allocate and initialize the per-ag data.
1053 	 */
1054 	init_rwsem(&mp->m_peraglock);
1055 	mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1056 				  KM_MAYFAIL);
1057 	if (!mp->m_perag)
1058 		goto error1;
1059 
1060 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1061 
1062 	/*
1063 	 * log's mount-time initialization. Perform 1st part recovery if needed
1064 	 */
1065 	if (likely(sbp->sb_logblocks > 0)) {	/* check for volume case */
1066 		error = xfs_log_mount(mp, mp->m_logdev_targp,
1067 				      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1068 				      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1069 		if (error) {
1070 			cmn_err(CE_WARN, "XFS: log mount failed");
1071 			goto error2;
1072 		}
1073 	} else {	/* No log has been defined */
1074 		cmn_err(CE_WARN, "XFS: no log defined");
1075 		XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1076 		error = XFS_ERROR(EFSCORRUPTED);
1077 		goto error2;
1078 	}
1079 
1080 	/*
1081 	 * Now the log is mounted, we know if it was an unclean shutdown or
1082 	 * not. If it was, with the first phase of recovery has completed, we
1083 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1084 	 * but they are recovered transactionally in the second recovery phase
1085 	 * later.
1086 	 *
1087 	 * Hence we can safely re-initialise incore superblock counters from
1088 	 * the per-ag data. These may not be correct if the filesystem was not
1089 	 * cleanly unmounted, so we need to wait for recovery to finish before
1090 	 * doing this.
1091 	 *
1092 	 * If the filesystem was cleanly unmounted, then we can trust the
1093 	 * values in the superblock to be correct and we don't need to do
1094 	 * anything here.
1095 	 *
1096 	 * If we are currently making the filesystem, the initialisation will
1097 	 * fail as the perag data is in an undefined state.
1098 	 */
1099 
1100 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1101 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1102 	     !mp->m_sb.sb_inprogress) {
1103 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1104 		if (error) {
1105 			goto error2;
1106 		}
1107 	}
1108 	/*
1109 	 * Get and sanity-check the root inode.
1110 	 * Save the pointer to it in the mount structure.
1111 	 */
1112 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1113 	if (error) {
1114 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1115 		goto error3;
1116 	}
1117 
1118 	ASSERT(rip != NULL);
1119 
1120 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1121 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1122 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1123 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1124 			(unsigned long long)rip->i_ino);
1125 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1126 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1127 				 mp);
1128 		error = XFS_ERROR(EFSCORRUPTED);
1129 		goto error4;
1130 	}
1131 	mp->m_rootip = rip;	/* save it */
1132 
1133 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1134 
1135 	/*
1136 	 * Initialize realtime inode pointers in the mount structure
1137 	 */
1138 	error = xfs_rtmount_inodes(mp);
1139 	if (error) {
1140 		/*
1141 		 * Free up the root inode.
1142 		 */
1143 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1144 		goto error4;
1145 	}
1146 
1147 	/*
1148 	 * If fs is not mounted readonly, then update the superblock changes.
1149 	 */
1150 	if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1151 		error = xfs_mount_log_sb(mp, update_flags);
1152 		if (error) {
1153 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1154 			goto error4;
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * Initialise the XFS quota management subsystem for this mount
1160 	 */
1161 	error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1162 	if (error)
1163 		goto error4;
1164 
1165 	/*
1166 	 * Finish recovering the file system.  This part needed to be
1167 	 * delayed until after the root and real-time bitmap inodes
1168 	 * were consistently read in.
1169 	 */
1170 	error = xfs_log_mount_finish(mp);
1171 	if (error) {
1172 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1173 		goto error4;
1174 	}
1175 
1176 	/*
1177 	 * Complete the quota initialisation, post-log-replay component.
1178 	 */
1179 	error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1180 	if (error)
1181 		goto error4;
1182 
1183 	/*
1184 	 * Now we are mounted, reserve a small amount of unused space for
1185 	 * privileged transactions. This is needed so that transaction
1186 	 * space required for critical operations can dip into this pool
1187 	 * when at ENOSPC. This is needed for operations like create with
1188 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1189 	 * are not allowed to use this reserved space.
1190 	 *
1191 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1192 	 * This may drive us straight to ENOSPC on mount, but that implies
1193 	 * we were already there on the last unmount. Warn if this occurs.
1194 	 */
1195 	resblks = mp->m_sb.sb_dblocks;
1196 	do_div(resblks, 20);
1197 	resblks = min_t(__uint64_t, resblks, 1024);
1198 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1199 	if (error)
1200 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1201 				"Continuing without a reserve pool.");
1202 
1203 	return 0;
1204 
1205  error4:
1206 	/*
1207 	 * Free up the root inode.
1208 	 */
1209 	IRELE(rip);
1210  error3:
1211 	xfs_log_unmount_dealloc(mp);
1212  error2:
1213 	xfs_free_perag(mp);
1214  error1:
1215 	if (uuid_mounted)
1216 		uuid_table_remove(&mp->m_sb.sb_uuid);
1217 	return error;
1218 }
1219 
1220 /*
1221  * This flushes out the inodes,dquots and the superblock, unmounts the
1222  * log and makes sure that incore structures are freed.
1223  */
1224 void
1225 xfs_unmountfs(
1226 	struct xfs_mount	*mp)
1227 {
1228 	__uint64_t		resblks;
1229 	int			error;
1230 
1231 	IRELE(mp->m_rootip);
1232 
1233 	/*
1234 	 * We can potentially deadlock here if we have an inode cluster
1235 	 * that has been freed has it's buffer still pinned in memory because
1236 	 * the transaction is still sitting in a iclog. The stale inodes
1237 	 * on that buffer will have their flush locks held until the
1238 	 * transaction hits the disk and the callbacks run. the inode
1239 	 * flush takes the flush lock unconditionally and with nothing to
1240 	 * push out the iclog we will never get that unlocked. hence we
1241 	 * need to force the log first.
1242 	 */
1243 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1244 	xfs_iflush_all(mp);
1245 
1246 	XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1247 
1248 	/*
1249 	 * Flush out the log synchronously so that we know for sure
1250 	 * that nothing is pinned.  This is important because bflush()
1251 	 * will skip pinned buffers.
1252 	 */
1253 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1254 
1255 	xfs_binval(mp->m_ddev_targp);
1256 	if (mp->m_rtdev_targp) {
1257 		xfs_binval(mp->m_rtdev_targp);
1258 	}
1259 
1260 	/*
1261 	 * Unreserve any blocks we have so that when we unmount we don't account
1262 	 * the reserved free space as used. This is really only necessary for
1263 	 * lazy superblock counting because it trusts the incore superblock
1264 	 * counters to be aboslutely correct on clean unmount.
1265 	 *
1266 	 * We don't bother correcting this elsewhere for lazy superblock
1267 	 * counting because on mount of an unclean filesystem we reconstruct the
1268 	 * correct counter value and this is irrelevant.
1269 	 *
1270 	 * For non-lazy counter filesystems, this doesn't matter at all because
1271 	 * we only every apply deltas to the superblock and hence the incore
1272 	 * value does not matter....
1273 	 */
1274 	resblks = 0;
1275 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1276 	if (error)
1277 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1278 				"Freespace may not be correct on next mount.");
1279 
1280 	error = xfs_log_sbcount(mp, 1);
1281 	if (error)
1282 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1283 				"Freespace may not be correct on next mount.");
1284 	xfs_unmountfs_writesb(mp);
1285 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1286 	xfs_log_unmount(mp);			/* Done! No more fs ops. */
1287 
1288 	/*
1289 	 * All inodes from this mount point should be freed.
1290 	 */
1291 	ASSERT(mp->m_inodes == NULL);
1292 
1293 	if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1294 		uuid_table_remove(&mp->m_sb.sb_uuid);
1295 
1296 #if defined(DEBUG)
1297 	xfs_errortag_clearall(mp, 0);
1298 #endif
1299 	xfs_free_perag(mp);
1300 	if (mp->m_quotainfo)
1301 		XFS_QM_DONE(mp);
1302 }
1303 
1304 STATIC void
1305 xfs_unmountfs_wait(xfs_mount_t *mp)
1306 {
1307 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1308 		xfs_wait_buftarg(mp->m_logdev_targp);
1309 	if (mp->m_rtdev_targp)
1310 		xfs_wait_buftarg(mp->m_rtdev_targp);
1311 	xfs_wait_buftarg(mp->m_ddev_targp);
1312 }
1313 
1314 int
1315 xfs_fs_writable(xfs_mount_t *mp)
1316 {
1317 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1318 		(mp->m_flags & XFS_MOUNT_RDONLY));
1319 }
1320 
1321 /*
1322  * xfs_log_sbcount
1323  *
1324  * Called either periodically to keep the on disk superblock values
1325  * roughly up to date or from unmount to make sure the values are
1326  * correct on a clean unmount.
1327  *
1328  * Note this code can be called during the process of freezing, so
1329  * we may need to use the transaction allocator which does not not
1330  * block when the transaction subsystem is in its frozen state.
1331  */
1332 int
1333 xfs_log_sbcount(
1334 	xfs_mount_t	*mp,
1335 	uint		sync)
1336 {
1337 	xfs_trans_t	*tp;
1338 	int		error;
1339 
1340 	if (!xfs_fs_writable(mp))
1341 		return 0;
1342 
1343 	xfs_icsb_sync_counters(mp, 0);
1344 
1345 	/*
1346 	 * we don't need to do this if we are updating the superblock
1347 	 * counters on every modification.
1348 	 */
1349 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1350 		return 0;
1351 
1352 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1353 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1354 					XFS_DEFAULT_LOG_COUNT);
1355 	if (error) {
1356 		xfs_trans_cancel(tp, 0);
1357 		return error;
1358 	}
1359 
1360 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1361 	if (sync)
1362 		xfs_trans_set_sync(tp);
1363 	error = xfs_trans_commit(tp, 0);
1364 	return error;
1365 }
1366 
1367 STATIC void
1368 xfs_mark_shared_ro(
1369 	xfs_mount_t	*mp,
1370 	xfs_buf_t	*bp)
1371 {
1372 	xfs_dsb_t	*sb = XFS_BUF_TO_SBP(bp);
1373 	__uint16_t	version;
1374 
1375 	if (!(sb->sb_flags & XFS_SBF_READONLY))
1376 		sb->sb_flags |= XFS_SBF_READONLY;
1377 
1378 	version = be16_to_cpu(sb->sb_versionnum);
1379 	if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1380 	    !(version & XFS_SB_VERSION_SHAREDBIT))
1381 		version |= XFS_SB_VERSION_SHAREDBIT;
1382 	sb->sb_versionnum = cpu_to_be16(version);
1383 }
1384 
1385 int
1386 xfs_unmountfs_writesb(xfs_mount_t *mp)
1387 {
1388 	xfs_buf_t	*sbp;
1389 	int		error = 0;
1390 
1391 	/*
1392 	 * skip superblock write if fs is read-only, or
1393 	 * if we are doing a forced umount.
1394 	 */
1395 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1396 		XFS_FORCED_SHUTDOWN(mp))) {
1397 
1398 		sbp = xfs_getsb(mp, 0);
1399 
1400 		/*
1401 		 * mark shared-readonly if desired
1402 		 */
1403 		if (mp->m_mk_sharedro)
1404 			xfs_mark_shared_ro(mp, sbp);
1405 
1406 		XFS_BUF_UNDONE(sbp);
1407 		XFS_BUF_UNREAD(sbp);
1408 		XFS_BUF_UNDELAYWRITE(sbp);
1409 		XFS_BUF_WRITE(sbp);
1410 		XFS_BUF_UNASYNC(sbp);
1411 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1412 		xfsbdstrat(mp, sbp);
1413 		error = xfs_iowait(sbp);
1414 		if (error)
1415 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1416 					  mp, sbp, XFS_BUF_ADDR(sbp));
1417 		if (error && mp->m_mk_sharedro)
1418 			xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1419 		xfs_buf_relse(sbp);
1420 	}
1421 	return error;
1422 }
1423 
1424 /*
1425  * xfs_mod_sb() can be used to copy arbitrary changes to the
1426  * in-core superblock into the superblock buffer to be logged.
1427  * It does not provide the higher level of locking that is
1428  * needed to protect the in-core superblock from concurrent
1429  * access.
1430  */
1431 void
1432 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1433 {
1434 	xfs_buf_t	*bp;
1435 	int		first;
1436 	int		last;
1437 	xfs_mount_t	*mp;
1438 	xfs_sb_field_t	f;
1439 
1440 	ASSERT(fields);
1441 	if (!fields)
1442 		return;
1443 	mp = tp->t_mountp;
1444 	bp = xfs_trans_getsb(tp, mp, 0);
1445 	first = sizeof(xfs_sb_t);
1446 	last = 0;
1447 
1448 	/* translate/copy */
1449 
1450 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1451 
1452 	/* find modified range */
1453 
1454 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1455 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1456 	first = xfs_sb_info[f].offset;
1457 
1458 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1459 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1460 	last = xfs_sb_info[f + 1].offset - 1;
1461 
1462 	xfs_trans_log_buf(tp, bp, first, last);
1463 }
1464 
1465 
1466 /*
1467  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1468  * a delta to a specified field in the in-core superblock.  Simply
1469  * switch on the field indicated and apply the delta to that field.
1470  * Fields are not allowed to dip below zero, so if the delta would
1471  * do this do not apply it and return EINVAL.
1472  *
1473  * The m_sb_lock must be held when this routine is called.
1474  */
1475 int
1476 xfs_mod_incore_sb_unlocked(
1477 	xfs_mount_t	*mp,
1478 	xfs_sb_field_t	field,
1479 	int64_t		delta,
1480 	int		rsvd)
1481 {
1482 	int		scounter;	/* short counter for 32 bit fields */
1483 	long long	lcounter;	/* long counter for 64 bit fields */
1484 	long long	res_used, rem;
1485 
1486 	/*
1487 	 * With the in-core superblock spin lock held, switch
1488 	 * on the indicated field.  Apply the delta to the
1489 	 * proper field.  If the fields value would dip below
1490 	 * 0, then do not apply the delta and return EINVAL.
1491 	 */
1492 	switch (field) {
1493 	case XFS_SBS_ICOUNT:
1494 		lcounter = (long long)mp->m_sb.sb_icount;
1495 		lcounter += delta;
1496 		if (lcounter < 0) {
1497 			ASSERT(0);
1498 			return XFS_ERROR(EINVAL);
1499 		}
1500 		mp->m_sb.sb_icount = lcounter;
1501 		return 0;
1502 	case XFS_SBS_IFREE:
1503 		lcounter = (long long)mp->m_sb.sb_ifree;
1504 		lcounter += delta;
1505 		if (lcounter < 0) {
1506 			ASSERT(0);
1507 			return XFS_ERROR(EINVAL);
1508 		}
1509 		mp->m_sb.sb_ifree = lcounter;
1510 		return 0;
1511 	case XFS_SBS_FDBLOCKS:
1512 		lcounter = (long long)
1513 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1514 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1515 
1516 		if (delta > 0) {		/* Putting blocks back */
1517 			if (res_used > delta) {
1518 				mp->m_resblks_avail += delta;
1519 			} else {
1520 				rem = delta - res_used;
1521 				mp->m_resblks_avail = mp->m_resblks;
1522 				lcounter += rem;
1523 			}
1524 		} else {				/* Taking blocks away */
1525 
1526 			lcounter += delta;
1527 
1528 		/*
1529 		 * If were out of blocks, use any available reserved blocks if
1530 		 * were allowed to.
1531 		 */
1532 
1533 			if (lcounter < 0) {
1534 				if (rsvd) {
1535 					lcounter = (long long)mp->m_resblks_avail + delta;
1536 					if (lcounter < 0) {
1537 						return XFS_ERROR(ENOSPC);
1538 					}
1539 					mp->m_resblks_avail = lcounter;
1540 					return 0;
1541 				} else {	/* not reserved */
1542 					return XFS_ERROR(ENOSPC);
1543 				}
1544 			}
1545 		}
1546 
1547 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1548 		return 0;
1549 	case XFS_SBS_FREXTENTS:
1550 		lcounter = (long long)mp->m_sb.sb_frextents;
1551 		lcounter += delta;
1552 		if (lcounter < 0) {
1553 			return XFS_ERROR(ENOSPC);
1554 		}
1555 		mp->m_sb.sb_frextents = lcounter;
1556 		return 0;
1557 	case XFS_SBS_DBLOCKS:
1558 		lcounter = (long long)mp->m_sb.sb_dblocks;
1559 		lcounter += delta;
1560 		if (lcounter < 0) {
1561 			ASSERT(0);
1562 			return XFS_ERROR(EINVAL);
1563 		}
1564 		mp->m_sb.sb_dblocks = lcounter;
1565 		return 0;
1566 	case XFS_SBS_AGCOUNT:
1567 		scounter = mp->m_sb.sb_agcount;
1568 		scounter += delta;
1569 		if (scounter < 0) {
1570 			ASSERT(0);
1571 			return XFS_ERROR(EINVAL);
1572 		}
1573 		mp->m_sb.sb_agcount = scounter;
1574 		return 0;
1575 	case XFS_SBS_IMAX_PCT:
1576 		scounter = mp->m_sb.sb_imax_pct;
1577 		scounter += delta;
1578 		if (scounter < 0) {
1579 			ASSERT(0);
1580 			return XFS_ERROR(EINVAL);
1581 		}
1582 		mp->m_sb.sb_imax_pct = scounter;
1583 		return 0;
1584 	case XFS_SBS_REXTSIZE:
1585 		scounter = mp->m_sb.sb_rextsize;
1586 		scounter += delta;
1587 		if (scounter < 0) {
1588 			ASSERT(0);
1589 			return XFS_ERROR(EINVAL);
1590 		}
1591 		mp->m_sb.sb_rextsize = scounter;
1592 		return 0;
1593 	case XFS_SBS_RBMBLOCKS:
1594 		scounter = mp->m_sb.sb_rbmblocks;
1595 		scounter += delta;
1596 		if (scounter < 0) {
1597 			ASSERT(0);
1598 			return XFS_ERROR(EINVAL);
1599 		}
1600 		mp->m_sb.sb_rbmblocks = scounter;
1601 		return 0;
1602 	case XFS_SBS_RBLOCKS:
1603 		lcounter = (long long)mp->m_sb.sb_rblocks;
1604 		lcounter += delta;
1605 		if (lcounter < 0) {
1606 			ASSERT(0);
1607 			return XFS_ERROR(EINVAL);
1608 		}
1609 		mp->m_sb.sb_rblocks = lcounter;
1610 		return 0;
1611 	case XFS_SBS_REXTENTS:
1612 		lcounter = (long long)mp->m_sb.sb_rextents;
1613 		lcounter += delta;
1614 		if (lcounter < 0) {
1615 			ASSERT(0);
1616 			return XFS_ERROR(EINVAL);
1617 		}
1618 		mp->m_sb.sb_rextents = lcounter;
1619 		return 0;
1620 	case XFS_SBS_REXTSLOG:
1621 		scounter = mp->m_sb.sb_rextslog;
1622 		scounter += delta;
1623 		if (scounter < 0) {
1624 			ASSERT(0);
1625 			return XFS_ERROR(EINVAL);
1626 		}
1627 		mp->m_sb.sb_rextslog = scounter;
1628 		return 0;
1629 	default:
1630 		ASSERT(0);
1631 		return XFS_ERROR(EINVAL);
1632 	}
1633 }
1634 
1635 /*
1636  * xfs_mod_incore_sb() is used to change a field in the in-core
1637  * superblock structure by the specified delta.  This modification
1638  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1639  * routine to do the work.
1640  */
1641 int
1642 xfs_mod_incore_sb(
1643 	xfs_mount_t	*mp,
1644 	xfs_sb_field_t	field,
1645 	int64_t		delta,
1646 	int		rsvd)
1647 {
1648 	int	status;
1649 
1650 	/* check for per-cpu counters */
1651 	switch (field) {
1652 #ifdef HAVE_PERCPU_SB
1653 	case XFS_SBS_ICOUNT:
1654 	case XFS_SBS_IFREE:
1655 	case XFS_SBS_FDBLOCKS:
1656 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1657 			status = xfs_icsb_modify_counters(mp, field,
1658 							delta, rsvd);
1659 			break;
1660 		}
1661 		/* FALLTHROUGH */
1662 #endif
1663 	default:
1664 		spin_lock(&mp->m_sb_lock);
1665 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1666 		spin_unlock(&mp->m_sb_lock);
1667 		break;
1668 	}
1669 
1670 	return status;
1671 }
1672 
1673 /*
1674  * xfs_mod_incore_sb_batch() is used to change more than one field
1675  * in the in-core superblock structure at a time.  This modification
1676  * is protected by a lock internal to this module.  The fields and
1677  * changes to those fields are specified in the array of xfs_mod_sb
1678  * structures passed in.
1679  *
1680  * Either all of the specified deltas will be applied or none of
1681  * them will.  If any modified field dips below 0, then all modifications
1682  * will be backed out and EINVAL will be returned.
1683  */
1684 int
1685 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1686 {
1687 	int		status=0;
1688 	xfs_mod_sb_t	*msbp;
1689 
1690 	/*
1691 	 * Loop through the array of mod structures and apply each
1692 	 * individually.  If any fail, then back out all those
1693 	 * which have already been applied.  Do all of this within
1694 	 * the scope of the m_sb_lock so that all of the changes will
1695 	 * be atomic.
1696 	 */
1697 	spin_lock(&mp->m_sb_lock);
1698 	msbp = &msb[0];
1699 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1700 		/*
1701 		 * Apply the delta at index n.  If it fails, break
1702 		 * from the loop so we'll fall into the undo loop
1703 		 * below.
1704 		 */
1705 		switch (msbp->msb_field) {
1706 #ifdef HAVE_PERCPU_SB
1707 		case XFS_SBS_ICOUNT:
1708 		case XFS_SBS_IFREE:
1709 		case XFS_SBS_FDBLOCKS:
1710 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1711 				spin_unlock(&mp->m_sb_lock);
1712 				status = xfs_icsb_modify_counters(mp,
1713 							msbp->msb_field,
1714 							msbp->msb_delta, rsvd);
1715 				spin_lock(&mp->m_sb_lock);
1716 				break;
1717 			}
1718 			/* FALLTHROUGH */
1719 #endif
1720 		default:
1721 			status = xfs_mod_incore_sb_unlocked(mp,
1722 						msbp->msb_field,
1723 						msbp->msb_delta, rsvd);
1724 			break;
1725 		}
1726 
1727 		if (status != 0) {
1728 			break;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * If we didn't complete the loop above, then back out
1734 	 * any changes made to the superblock.  If you add code
1735 	 * between the loop above and here, make sure that you
1736 	 * preserve the value of status. Loop back until
1737 	 * we step below the beginning of the array.  Make sure
1738 	 * we don't touch anything back there.
1739 	 */
1740 	if (status != 0) {
1741 		msbp--;
1742 		while (msbp >= msb) {
1743 			switch (msbp->msb_field) {
1744 #ifdef HAVE_PERCPU_SB
1745 			case XFS_SBS_ICOUNT:
1746 			case XFS_SBS_IFREE:
1747 			case XFS_SBS_FDBLOCKS:
1748 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1749 					spin_unlock(&mp->m_sb_lock);
1750 					status = xfs_icsb_modify_counters(mp,
1751 							msbp->msb_field,
1752 							-(msbp->msb_delta),
1753 							rsvd);
1754 					spin_lock(&mp->m_sb_lock);
1755 					break;
1756 				}
1757 				/* FALLTHROUGH */
1758 #endif
1759 			default:
1760 				status = xfs_mod_incore_sb_unlocked(mp,
1761 							msbp->msb_field,
1762 							-(msbp->msb_delta),
1763 							rsvd);
1764 				break;
1765 			}
1766 			ASSERT(status == 0);
1767 			msbp--;
1768 		}
1769 	}
1770 	spin_unlock(&mp->m_sb_lock);
1771 	return status;
1772 }
1773 
1774 /*
1775  * xfs_getsb() is called to obtain the buffer for the superblock.
1776  * The buffer is returned locked and read in from disk.
1777  * The buffer should be released with a call to xfs_brelse().
1778  *
1779  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1780  * the superblock buffer if it can be locked without sleeping.
1781  * If it can't then we'll return NULL.
1782  */
1783 xfs_buf_t *
1784 xfs_getsb(
1785 	xfs_mount_t	*mp,
1786 	int		flags)
1787 {
1788 	xfs_buf_t	*bp;
1789 
1790 	ASSERT(mp->m_sb_bp != NULL);
1791 	bp = mp->m_sb_bp;
1792 	if (flags & XFS_BUF_TRYLOCK) {
1793 		if (!XFS_BUF_CPSEMA(bp)) {
1794 			return NULL;
1795 		}
1796 	} else {
1797 		XFS_BUF_PSEMA(bp, PRIBIO);
1798 	}
1799 	XFS_BUF_HOLD(bp);
1800 	ASSERT(XFS_BUF_ISDONE(bp));
1801 	return bp;
1802 }
1803 
1804 /*
1805  * Used to free the superblock along various error paths.
1806  */
1807 void
1808 xfs_freesb(
1809 	xfs_mount_t	*mp)
1810 {
1811 	xfs_buf_t	*bp;
1812 
1813 	/*
1814 	 * Use xfs_getsb() so that the buffer will be locked
1815 	 * when we call xfs_buf_relse().
1816 	 */
1817 	bp = xfs_getsb(mp, 0);
1818 	XFS_BUF_UNMANAGE(bp);
1819 	xfs_buf_relse(bp);
1820 	mp->m_sb_bp = NULL;
1821 }
1822 
1823 /*
1824  * See if the UUID is unique among mounted XFS filesystems.
1825  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1826  */
1827 STATIC int
1828 xfs_uuid_mount(
1829 	xfs_mount_t	*mp)
1830 {
1831 	if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1832 		cmn_err(CE_WARN,
1833 			"XFS: Filesystem %s has nil UUID - can't mount",
1834 			mp->m_fsname);
1835 		return -1;
1836 	}
1837 	if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1838 		cmn_err(CE_WARN,
1839 			"XFS: Filesystem %s has duplicate UUID - can't mount",
1840 			mp->m_fsname);
1841 		return -1;
1842 	}
1843 	return 0;
1844 }
1845 
1846 /*
1847  * Used to log changes to the superblock unit and width fields which could
1848  * be altered by the mount options, as well as any potential sb_features2
1849  * fixup. Only the first superblock is updated.
1850  */
1851 STATIC int
1852 xfs_mount_log_sb(
1853 	xfs_mount_t	*mp,
1854 	__int64_t	fields)
1855 {
1856 	xfs_trans_t	*tp;
1857 	int		error;
1858 
1859 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1860 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1861 			 XFS_SB_VERSIONNUM));
1862 
1863 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1864 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1865 				XFS_DEFAULT_LOG_COUNT);
1866 	if (error) {
1867 		xfs_trans_cancel(tp, 0);
1868 		return error;
1869 	}
1870 	xfs_mod_sb(tp, fields);
1871 	error = xfs_trans_commit(tp, 0);
1872 	return error;
1873 }
1874 
1875 
1876 #ifdef HAVE_PERCPU_SB
1877 /*
1878  * Per-cpu incore superblock counters
1879  *
1880  * Simple concept, difficult implementation
1881  *
1882  * Basically, replace the incore superblock counters with a distributed per cpu
1883  * counter for contended fields (e.g.  free block count).
1884  *
1885  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1886  * hence needs to be accurately read when we are running low on space. Hence
1887  * there is a method to enable and disable the per-cpu counters based on how
1888  * much "stuff" is available in them.
1889  *
1890  * Basically, a counter is enabled if there is enough free resource to justify
1891  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1892  * ENOSPC), then we disable the counters to synchronise all callers and
1893  * re-distribute the available resources.
1894  *
1895  * If, once we redistributed the available resources, we still get a failure,
1896  * we disable the per-cpu counter and go through the slow path.
1897  *
1898  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1899  * when we disable a per-cpu counter, we need to drain it's resources back to
1900  * the global superblock. We do this after disabling the counter to prevent
1901  * more threads from queueing up on the counter.
1902  *
1903  * Essentially, this means that we still need a lock in the fast path to enable
1904  * synchronisation between the global counters and the per-cpu counters. This
1905  * is not a problem because the lock will be local to a CPU almost all the time
1906  * and have little contention except when we get to ENOSPC conditions.
1907  *
1908  * Basically, this lock becomes a barrier that enables us to lock out the fast
1909  * path while we do things like enabling and disabling counters and
1910  * synchronising the counters.
1911  *
1912  * Locking rules:
1913  *
1914  * 	1. m_sb_lock before picking up per-cpu locks
1915  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1916  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1917  * 	4. modifying per-cpu counters requires holding per-cpu lock
1918  * 	5. modifying global counters requires holding m_sb_lock
1919  *	6. enabling or disabling a counter requires holding the m_sb_lock
1920  *	   and _none_ of the per-cpu locks.
1921  *
1922  * Disabled counters are only ever re-enabled by a balance operation
1923  * that results in more free resources per CPU than a given threshold.
1924  * To ensure counters don't remain disabled, they are rebalanced when
1925  * the global resource goes above a higher threshold (i.e. some hysteresis
1926  * is present to prevent thrashing).
1927  */
1928 
1929 #ifdef CONFIG_HOTPLUG_CPU
1930 /*
1931  * hot-plug CPU notifier support.
1932  *
1933  * We need a notifier per filesystem as we need to be able to identify
1934  * the filesystem to balance the counters out. This is achieved by
1935  * having a notifier block embedded in the xfs_mount_t and doing pointer
1936  * magic to get the mount pointer from the notifier block address.
1937  */
1938 STATIC int
1939 xfs_icsb_cpu_notify(
1940 	struct notifier_block *nfb,
1941 	unsigned long action,
1942 	void *hcpu)
1943 {
1944 	xfs_icsb_cnts_t *cntp;
1945 	xfs_mount_t	*mp;
1946 
1947 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1948 	cntp = (xfs_icsb_cnts_t *)
1949 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1950 	switch (action) {
1951 	case CPU_UP_PREPARE:
1952 	case CPU_UP_PREPARE_FROZEN:
1953 		/* Easy Case - initialize the area and locks, and
1954 		 * then rebalance when online does everything else for us. */
1955 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1956 		break;
1957 	case CPU_ONLINE:
1958 	case CPU_ONLINE_FROZEN:
1959 		xfs_icsb_lock(mp);
1960 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1961 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1962 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1963 		xfs_icsb_unlock(mp);
1964 		break;
1965 	case CPU_DEAD:
1966 	case CPU_DEAD_FROZEN:
1967 		/* Disable all the counters, then fold the dead cpu's
1968 		 * count into the total on the global superblock and
1969 		 * re-enable the counters. */
1970 		xfs_icsb_lock(mp);
1971 		spin_lock(&mp->m_sb_lock);
1972 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1973 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1974 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1975 
1976 		mp->m_sb.sb_icount += cntp->icsb_icount;
1977 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1978 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1979 
1980 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1981 
1982 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1983 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1984 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1985 		spin_unlock(&mp->m_sb_lock);
1986 		xfs_icsb_unlock(mp);
1987 		break;
1988 	}
1989 
1990 	return NOTIFY_OK;
1991 }
1992 #endif /* CONFIG_HOTPLUG_CPU */
1993 
1994 int
1995 xfs_icsb_init_counters(
1996 	xfs_mount_t	*mp)
1997 {
1998 	xfs_icsb_cnts_t *cntp;
1999 	int		i;
2000 
2001 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2002 	if (mp->m_sb_cnts == NULL)
2003 		return -ENOMEM;
2004 
2005 #ifdef CONFIG_HOTPLUG_CPU
2006 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2007 	mp->m_icsb_notifier.priority = 0;
2008 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2009 #endif /* CONFIG_HOTPLUG_CPU */
2010 
2011 	for_each_online_cpu(i) {
2012 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2013 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2014 	}
2015 
2016 	mutex_init(&mp->m_icsb_mutex);
2017 
2018 	/*
2019 	 * start with all counters disabled so that the
2020 	 * initial balance kicks us off correctly
2021 	 */
2022 	mp->m_icsb_counters = -1;
2023 	return 0;
2024 }
2025 
2026 void
2027 xfs_icsb_reinit_counters(
2028 	xfs_mount_t	*mp)
2029 {
2030 	xfs_icsb_lock(mp);
2031 	/*
2032 	 * start with all counters disabled so that the
2033 	 * initial balance kicks us off correctly
2034 	 */
2035 	mp->m_icsb_counters = -1;
2036 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2037 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2038 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2039 	xfs_icsb_unlock(mp);
2040 }
2041 
2042 void
2043 xfs_icsb_destroy_counters(
2044 	xfs_mount_t	*mp)
2045 {
2046 	if (mp->m_sb_cnts) {
2047 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2048 		free_percpu(mp->m_sb_cnts);
2049 	}
2050 	mutex_destroy(&mp->m_icsb_mutex);
2051 }
2052 
2053 STATIC_INLINE void
2054 xfs_icsb_lock_cntr(
2055 	xfs_icsb_cnts_t	*icsbp)
2056 {
2057 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2058 		ndelay(1000);
2059 	}
2060 }
2061 
2062 STATIC_INLINE void
2063 xfs_icsb_unlock_cntr(
2064 	xfs_icsb_cnts_t	*icsbp)
2065 {
2066 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2067 }
2068 
2069 
2070 STATIC_INLINE void
2071 xfs_icsb_lock_all_counters(
2072 	xfs_mount_t	*mp)
2073 {
2074 	xfs_icsb_cnts_t *cntp;
2075 	int		i;
2076 
2077 	for_each_online_cpu(i) {
2078 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2079 		xfs_icsb_lock_cntr(cntp);
2080 	}
2081 }
2082 
2083 STATIC_INLINE void
2084 xfs_icsb_unlock_all_counters(
2085 	xfs_mount_t	*mp)
2086 {
2087 	xfs_icsb_cnts_t *cntp;
2088 	int		i;
2089 
2090 	for_each_online_cpu(i) {
2091 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2092 		xfs_icsb_unlock_cntr(cntp);
2093 	}
2094 }
2095 
2096 STATIC void
2097 xfs_icsb_count(
2098 	xfs_mount_t	*mp,
2099 	xfs_icsb_cnts_t	*cnt,
2100 	int		flags)
2101 {
2102 	xfs_icsb_cnts_t *cntp;
2103 	int		i;
2104 
2105 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2106 
2107 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2108 		xfs_icsb_lock_all_counters(mp);
2109 
2110 	for_each_online_cpu(i) {
2111 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2112 		cnt->icsb_icount += cntp->icsb_icount;
2113 		cnt->icsb_ifree += cntp->icsb_ifree;
2114 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2115 	}
2116 
2117 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2118 		xfs_icsb_unlock_all_counters(mp);
2119 }
2120 
2121 STATIC int
2122 xfs_icsb_counter_disabled(
2123 	xfs_mount_t	*mp,
2124 	xfs_sb_field_t	field)
2125 {
2126 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2127 	return test_bit(field, &mp->m_icsb_counters);
2128 }
2129 
2130 STATIC void
2131 xfs_icsb_disable_counter(
2132 	xfs_mount_t	*mp,
2133 	xfs_sb_field_t	field)
2134 {
2135 	xfs_icsb_cnts_t	cnt;
2136 
2137 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2138 
2139 	/*
2140 	 * If we are already disabled, then there is nothing to do
2141 	 * here. We check before locking all the counters to avoid
2142 	 * the expensive lock operation when being called in the
2143 	 * slow path and the counter is already disabled. This is
2144 	 * safe because the only time we set or clear this state is under
2145 	 * the m_icsb_mutex.
2146 	 */
2147 	if (xfs_icsb_counter_disabled(mp, field))
2148 		return;
2149 
2150 	xfs_icsb_lock_all_counters(mp);
2151 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2152 		/* drain back to superblock */
2153 
2154 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2155 		switch(field) {
2156 		case XFS_SBS_ICOUNT:
2157 			mp->m_sb.sb_icount = cnt.icsb_icount;
2158 			break;
2159 		case XFS_SBS_IFREE:
2160 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2161 			break;
2162 		case XFS_SBS_FDBLOCKS:
2163 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2164 			break;
2165 		default:
2166 			BUG();
2167 		}
2168 	}
2169 
2170 	xfs_icsb_unlock_all_counters(mp);
2171 }
2172 
2173 STATIC void
2174 xfs_icsb_enable_counter(
2175 	xfs_mount_t	*mp,
2176 	xfs_sb_field_t	field,
2177 	uint64_t	count,
2178 	uint64_t	resid)
2179 {
2180 	xfs_icsb_cnts_t	*cntp;
2181 	int		i;
2182 
2183 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2184 
2185 	xfs_icsb_lock_all_counters(mp);
2186 	for_each_online_cpu(i) {
2187 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2188 		switch (field) {
2189 		case XFS_SBS_ICOUNT:
2190 			cntp->icsb_icount = count + resid;
2191 			break;
2192 		case XFS_SBS_IFREE:
2193 			cntp->icsb_ifree = count + resid;
2194 			break;
2195 		case XFS_SBS_FDBLOCKS:
2196 			cntp->icsb_fdblocks = count + resid;
2197 			break;
2198 		default:
2199 			BUG();
2200 			break;
2201 		}
2202 		resid = 0;
2203 	}
2204 	clear_bit(field, &mp->m_icsb_counters);
2205 	xfs_icsb_unlock_all_counters(mp);
2206 }
2207 
2208 void
2209 xfs_icsb_sync_counters_locked(
2210 	xfs_mount_t	*mp,
2211 	int		flags)
2212 {
2213 	xfs_icsb_cnts_t	cnt;
2214 
2215 	xfs_icsb_count(mp, &cnt, flags);
2216 
2217 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2218 		mp->m_sb.sb_icount = cnt.icsb_icount;
2219 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2220 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2221 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2222 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2223 }
2224 
2225 /*
2226  * Accurate update of per-cpu counters to incore superblock
2227  */
2228 void
2229 xfs_icsb_sync_counters(
2230 	xfs_mount_t	*mp,
2231 	int		flags)
2232 {
2233 	spin_lock(&mp->m_sb_lock);
2234 	xfs_icsb_sync_counters_locked(mp, flags);
2235 	spin_unlock(&mp->m_sb_lock);
2236 }
2237 
2238 /*
2239  * Balance and enable/disable counters as necessary.
2240  *
2241  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2242  * chosen to be the same number as single on disk allocation chunk per CPU, and
2243  * free blocks is something far enough zero that we aren't going thrash when we
2244  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2245  * prevent looping endlessly when xfs_alloc_space asks for more than will
2246  * be distributed to a single CPU but each CPU has enough blocks to be
2247  * reenabled.
2248  *
2249  * Note that we can be called when counters are already disabled.
2250  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2251  * prevent locking every per-cpu counter needlessly.
2252  */
2253 
2254 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2255 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2256 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2257 STATIC void
2258 xfs_icsb_balance_counter_locked(
2259 	xfs_mount_t	*mp,
2260 	xfs_sb_field_t  field,
2261 	int		min_per_cpu)
2262 {
2263 	uint64_t	count, resid;
2264 	int		weight = num_online_cpus();
2265 	uint64_t	min = (uint64_t)min_per_cpu;
2266 
2267 	/* disable counter and sync counter */
2268 	xfs_icsb_disable_counter(mp, field);
2269 
2270 	/* update counters  - first CPU gets residual*/
2271 	switch (field) {
2272 	case XFS_SBS_ICOUNT:
2273 		count = mp->m_sb.sb_icount;
2274 		resid = do_div(count, weight);
2275 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2276 			return;
2277 		break;
2278 	case XFS_SBS_IFREE:
2279 		count = mp->m_sb.sb_ifree;
2280 		resid = do_div(count, weight);
2281 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2282 			return;
2283 		break;
2284 	case XFS_SBS_FDBLOCKS:
2285 		count = mp->m_sb.sb_fdblocks;
2286 		resid = do_div(count, weight);
2287 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2288 			return;
2289 		break;
2290 	default:
2291 		BUG();
2292 		count = resid = 0;	/* quiet, gcc */
2293 		break;
2294 	}
2295 
2296 	xfs_icsb_enable_counter(mp, field, count, resid);
2297 }
2298 
2299 STATIC void
2300 xfs_icsb_balance_counter(
2301 	xfs_mount_t	*mp,
2302 	xfs_sb_field_t  fields,
2303 	int		min_per_cpu)
2304 {
2305 	spin_lock(&mp->m_sb_lock);
2306 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2307 	spin_unlock(&mp->m_sb_lock);
2308 }
2309 
2310 STATIC int
2311 xfs_icsb_modify_counters(
2312 	xfs_mount_t	*mp,
2313 	xfs_sb_field_t	field,
2314 	int64_t		delta,
2315 	int		rsvd)
2316 {
2317 	xfs_icsb_cnts_t	*icsbp;
2318 	long long	lcounter;	/* long counter for 64 bit fields */
2319 	int		cpu, ret = 0;
2320 
2321 	might_sleep();
2322 again:
2323 	cpu = get_cpu();
2324 	icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2325 
2326 	/*
2327 	 * if the counter is disabled, go to slow path
2328 	 */
2329 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2330 		goto slow_path;
2331 	xfs_icsb_lock_cntr(icsbp);
2332 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2333 		xfs_icsb_unlock_cntr(icsbp);
2334 		goto slow_path;
2335 	}
2336 
2337 	switch (field) {
2338 	case XFS_SBS_ICOUNT:
2339 		lcounter = icsbp->icsb_icount;
2340 		lcounter += delta;
2341 		if (unlikely(lcounter < 0))
2342 			goto balance_counter;
2343 		icsbp->icsb_icount = lcounter;
2344 		break;
2345 
2346 	case XFS_SBS_IFREE:
2347 		lcounter = icsbp->icsb_ifree;
2348 		lcounter += delta;
2349 		if (unlikely(lcounter < 0))
2350 			goto balance_counter;
2351 		icsbp->icsb_ifree = lcounter;
2352 		break;
2353 
2354 	case XFS_SBS_FDBLOCKS:
2355 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2356 
2357 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2358 		lcounter += delta;
2359 		if (unlikely(lcounter < 0))
2360 			goto balance_counter;
2361 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2362 		break;
2363 	default:
2364 		BUG();
2365 		break;
2366 	}
2367 	xfs_icsb_unlock_cntr(icsbp);
2368 	put_cpu();
2369 	return 0;
2370 
2371 slow_path:
2372 	put_cpu();
2373 
2374 	/*
2375 	 * serialise with a mutex so we don't burn lots of cpu on
2376 	 * the superblock lock. We still need to hold the superblock
2377 	 * lock, however, when we modify the global structures.
2378 	 */
2379 	xfs_icsb_lock(mp);
2380 
2381 	/*
2382 	 * Now running atomically.
2383 	 *
2384 	 * If the counter is enabled, someone has beaten us to rebalancing.
2385 	 * Drop the lock and try again in the fast path....
2386 	 */
2387 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2388 		xfs_icsb_unlock(mp);
2389 		goto again;
2390 	}
2391 
2392 	/*
2393 	 * The counter is currently disabled. Because we are
2394 	 * running atomically here, we know a rebalance cannot
2395 	 * be in progress. Hence we can go straight to operating
2396 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2397 	 * here even though we need to get the m_sb_lock. Doing so
2398 	 * will cause us to re-enter this function and deadlock.
2399 	 * Hence we get the m_sb_lock ourselves and then call
2400 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2401 	 * directly on the global counters.
2402 	 */
2403 	spin_lock(&mp->m_sb_lock);
2404 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2405 	spin_unlock(&mp->m_sb_lock);
2406 
2407 	/*
2408 	 * Now that we've modified the global superblock, we
2409 	 * may be able to re-enable the distributed counters
2410 	 * (e.g. lots of space just got freed). After that
2411 	 * we are done.
2412 	 */
2413 	if (ret != ENOSPC)
2414 		xfs_icsb_balance_counter(mp, field, 0);
2415 	xfs_icsb_unlock(mp);
2416 	return ret;
2417 
2418 balance_counter:
2419 	xfs_icsb_unlock_cntr(icsbp);
2420 	put_cpu();
2421 
2422 	/*
2423 	 * We may have multiple threads here if multiple per-cpu
2424 	 * counters run dry at the same time. This will mean we can
2425 	 * do more balances than strictly necessary but it is not
2426 	 * the common slowpath case.
2427 	 */
2428 	xfs_icsb_lock(mp);
2429 
2430 	/*
2431 	 * running atomically.
2432 	 *
2433 	 * This will leave the counter in the correct state for future
2434 	 * accesses. After the rebalance, we simply try again and our retry
2435 	 * will either succeed through the fast path or slow path without
2436 	 * another balance operation being required.
2437 	 */
2438 	xfs_icsb_balance_counter(mp, field, delta);
2439 	xfs_icsb_unlock(mp);
2440 	goto again;
2441 }
2442 
2443 #endif
2444