1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "xfs_metafile.h" 39 #include "xfs_rtgroup.h" 40 #include "scrub/stats.h" 41 42 static DEFINE_MUTEX(xfs_uuid_table_mutex); 43 static int xfs_uuid_table_size; 44 static uuid_t *xfs_uuid_table; 45 46 void 47 xfs_uuid_table_free(void) 48 { 49 if (xfs_uuid_table_size == 0) 50 return; 51 kfree(xfs_uuid_table); 52 xfs_uuid_table = NULL; 53 xfs_uuid_table_size = 0; 54 } 55 56 /* 57 * See if the UUID is unique among mounted XFS filesystems. 58 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 59 */ 60 STATIC int 61 xfs_uuid_mount( 62 struct xfs_mount *mp) 63 { 64 uuid_t *uuid = &mp->m_sb.sb_uuid; 65 int hole, i; 66 67 /* Publish UUID in struct super_block */ 68 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 69 70 if (xfs_has_nouuid(mp)) 71 return 0; 72 73 if (uuid_is_null(uuid)) { 74 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 75 return -EINVAL; 76 } 77 78 mutex_lock(&xfs_uuid_table_mutex); 79 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 80 if (uuid_is_null(&xfs_uuid_table[i])) { 81 hole = i; 82 continue; 83 } 84 if (uuid_equal(uuid, &xfs_uuid_table[i])) 85 goto out_duplicate; 86 } 87 88 if (hole < 0) { 89 xfs_uuid_table = krealloc(xfs_uuid_table, 90 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 91 GFP_KERNEL | __GFP_NOFAIL); 92 hole = xfs_uuid_table_size++; 93 } 94 xfs_uuid_table[hole] = *uuid; 95 mutex_unlock(&xfs_uuid_table_mutex); 96 97 return 0; 98 99 out_duplicate: 100 mutex_unlock(&xfs_uuid_table_mutex); 101 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 102 return -EINVAL; 103 } 104 105 STATIC void 106 xfs_uuid_unmount( 107 struct xfs_mount *mp) 108 { 109 uuid_t *uuid = &mp->m_sb.sb_uuid; 110 int i; 111 112 if (xfs_has_nouuid(mp)) 113 return; 114 115 mutex_lock(&xfs_uuid_table_mutex); 116 for (i = 0; i < xfs_uuid_table_size; i++) { 117 if (uuid_is_null(&xfs_uuid_table[i])) 118 continue; 119 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 120 continue; 121 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 122 break; 123 } 124 ASSERT(i < xfs_uuid_table_size); 125 mutex_unlock(&xfs_uuid_table_mutex); 126 } 127 128 /* 129 * Check size of device based on the (data/realtime) block count. 130 * Note: this check is used by the growfs code as well as mount. 131 */ 132 int 133 xfs_sb_validate_fsb_count( 134 xfs_sb_t *sbp, 135 uint64_t nblocks) 136 { 137 uint64_t max_bytes; 138 139 ASSERT(sbp->sb_blocklog >= BBSHIFT); 140 141 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 142 return -EFBIG; 143 144 /* Limited by ULONG_MAX of page cache index */ 145 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 146 return -EFBIG; 147 return 0; 148 } 149 150 /* 151 * xfs_readsb 152 * 153 * Does the initial read of the superblock. 154 */ 155 int 156 xfs_readsb( 157 struct xfs_mount *mp, 158 int flags) 159 { 160 unsigned int sector_size; 161 struct xfs_buf *bp; 162 struct xfs_sb *sbp = &mp->m_sb; 163 int error; 164 int loud = !(flags & XFS_MFSI_QUIET); 165 const struct xfs_buf_ops *buf_ops; 166 167 ASSERT(mp->m_sb_bp == NULL); 168 ASSERT(mp->m_ddev_targp != NULL); 169 170 /* 171 * For the initial read, we must guess at the sector 172 * size based on the block device. It's enough to 173 * get the sb_sectsize out of the superblock and 174 * then reread with the proper length. 175 * We don't verify it yet, because it may not be complete. 176 */ 177 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 178 buf_ops = NULL; 179 180 /* 181 * Allocate a (locked) buffer to hold the superblock. This will be kept 182 * around at all times to optimize access to the superblock. Therefore, 183 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 184 * elevated. 185 */ 186 reread: 187 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 188 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 189 buf_ops); 190 if (error) { 191 if (loud) 192 xfs_warn(mp, "SB validate failed with error %d.", error); 193 /* bad CRC means corrupted metadata */ 194 if (error == -EFSBADCRC) 195 error = -EFSCORRUPTED; 196 return error; 197 } 198 199 /* 200 * Initialize the mount structure from the superblock. 201 */ 202 xfs_sb_from_disk(sbp, bp->b_addr); 203 204 /* 205 * If we haven't validated the superblock, do so now before we try 206 * to check the sector size and reread the superblock appropriately. 207 */ 208 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 209 if (loud) 210 xfs_warn(mp, "Invalid superblock magic number"); 211 error = -EINVAL; 212 goto release_buf; 213 } 214 215 /* 216 * We must be able to do sector-sized and sector-aligned IO. 217 */ 218 if (sector_size > sbp->sb_sectsize) { 219 if (loud) 220 xfs_warn(mp, "device supports %u byte sectors (not %u)", 221 sector_size, sbp->sb_sectsize); 222 error = -ENOSYS; 223 goto release_buf; 224 } 225 226 if (buf_ops == NULL) { 227 /* 228 * Re-read the superblock so the buffer is correctly sized, 229 * and properly verified. 230 */ 231 xfs_buf_relse(bp); 232 sector_size = sbp->sb_sectsize; 233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 234 goto reread; 235 } 236 237 mp->m_features |= xfs_sb_version_to_features(sbp); 238 xfs_reinit_percpu_counters(mp); 239 240 /* 241 * If logged xattrs are enabled after log recovery finishes, then set 242 * the opstate so that log recovery will work properly. 243 */ 244 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 245 xfs_set_using_logged_xattrs(mp); 246 247 /* no need to be quiet anymore, so reset the buf ops */ 248 bp->b_ops = &xfs_sb_buf_ops; 249 250 mp->m_sb_bp = bp; 251 xfs_buf_unlock(bp); 252 return 0; 253 254 release_buf: 255 xfs_buf_relse(bp); 256 return error; 257 } 258 259 /* 260 * If the sunit/swidth change would move the precomputed root inode value, we 261 * must reject the ondisk change because repair will stumble over that. 262 * However, we allow the mount to proceed because we never rejected this 263 * combination before. Returns true to update the sb, false otherwise. 264 */ 265 static inline int 266 xfs_check_new_dalign( 267 struct xfs_mount *mp, 268 int new_dalign, 269 bool *update_sb) 270 { 271 struct xfs_sb *sbp = &mp->m_sb; 272 xfs_ino_t calc_ino; 273 274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 276 277 if (sbp->sb_rootino == calc_ino) { 278 *update_sb = true; 279 return 0; 280 } 281 282 xfs_warn(mp, 283 "Cannot change stripe alignment; would require moving root inode."); 284 285 /* 286 * XXX: Next time we add a new incompat feature, this should start 287 * returning -EINVAL to fail the mount. Until then, spit out a warning 288 * that we're ignoring the administrator's instructions. 289 */ 290 xfs_warn(mp, "Skipping superblock stripe alignment update."); 291 *update_sb = false; 292 return 0; 293 } 294 295 /* 296 * If we were provided with new sunit/swidth values as mount options, make sure 297 * that they pass basic alignment and superblock feature checks, and convert 298 * them into the same units (FSB) that everything else expects. This step 299 * /must/ be done before computing the inode geometry. 300 */ 301 STATIC int 302 xfs_validate_new_dalign( 303 struct xfs_mount *mp) 304 { 305 if (mp->m_dalign == 0) 306 return 0; 307 308 /* 309 * If stripe unit and stripe width are not multiples 310 * of the fs blocksize turn off alignment. 311 */ 312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 314 xfs_warn(mp, 315 "alignment check failed: sunit/swidth vs. blocksize(%d)", 316 mp->m_sb.sb_blocksize); 317 return -EINVAL; 318 } 319 320 /* 321 * Convert the stripe unit and width to FSBs. 322 */ 323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 325 xfs_warn(mp, 326 "alignment check failed: sunit/swidth vs. agsize(%d)", 327 mp->m_sb.sb_agblocks); 328 return -EINVAL; 329 } 330 331 if (!mp->m_dalign) { 332 xfs_warn(mp, 333 "alignment check failed: sunit(%d) less than bsize(%d)", 334 mp->m_dalign, mp->m_sb.sb_blocksize); 335 return -EINVAL; 336 } 337 338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 339 340 if (!xfs_has_dalign(mp)) { 341 xfs_warn(mp, 342 "cannot change alignment: superblock does not support data alignment"); 343 return -EINVAL; 344 } 345 346 return 0; 347 } 348 349 /* Update alignment values based on mount options and sb values. */ 350 STATIC int 351 xfs_update_alignment( 352 struct xfs_mount *mp) 353 { 354 struct xfs_sb *sbp = &mp->m_sb; 355 356 if (mp->m_dalign) { 357 bool update_sb; 358 int error; 359 360 if (sbp->sb_unit == mp->m_dalign && 361 sbp->sb_width == mp->m_swidth) 362 return 0; 363 364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 365 if (error || !update_sb) 366 return error; 367 368 sbp->sb_unit = mp->m_dalign; 369 sbp->sb_width = mp->m_swidth; 370 mp->m_update_sb = true; 371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 372 mp->m_dalign = sbp->sb_unit; 373 mp->m_swidth = sbp->sb_width; 374 } 375 376 return 0; 377 } 378 379 /* 380 * precalculate the low space thresholds for dynamic speculative preallocation. 381 */ 382 void 383 xfs_set_low_space_thresholds( 384 struct xfs_mount *mp) 385 { 386 uint64_t dblocks = mp->m_sb.sb_dblocks; 387 uint64_t rtexts = mp->m_sb.sb_rextents; 388 int i; 389 390 do_div(dblocks, 100); 391 do_div(rtexts, 100); 392 393 for (i = 0; i < XFS_LOWSP_MAX; i++) { 394 mp->m_low_space[i] = dblocks * (i + 1); 395 mp->m_low_rtexts[i] = rtexts * (i + 1); 396 } 397 } 398 399 /* 400 * Check that the data (and log if separate) is an ok size. 401 */ 402 STATIC int 403 xfs_check_sizes( 404 struct xfs_mount *mp) 405 { 406 struct xfs_buf *bp; 407 xfs_daddr_t d; 408 int error; 409 410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 412 xfs_warn(mp, "filesystem size mismatch detected"); 413 return -EFBIG; 414 } 415 error = xfs_buf_read_uncached(mp->m_ddev_targp, 416 d - XFS_FSS_TO_BB(mp, 1), 417 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 418 if (error) { 419 xfs_warn(mp, "last sector read failed"); 420 return error; 421 } 422 xfs_buf_relse(bp); 423 424 if (mp->m_logdev_targp == mp->m_ddev_targp) 425 return 0; 426 427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 429 xfs_warn(mp, "log size mismatch detected"); 430 return -EFBIG; 431 } 432 error = xfs_buf_read_uncached(mp->m_logdev_targp, 433 d - XFS_FSB_TO_BB(mp, 1), 434 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 435 if (error) { 436 xfs_warn(mp, "log device read failed"); 437 return error; 438 } 439 xfs_buf_relse(bp); 440 return 0; 441 } 442 443 /* 444 * Clear the quotaflags in memory and in the superblock. 445 */ 446 int 447 xfs_mount_reset_sbqflags( 448 struct xfs_mount *mp) 449 { 450 mp->m_qflags = 0; 451 452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 453 if (mp->m_sb.sb_qflags == 0) 454 return 0; 455 spin_lock(&mp->m_sb_lock); 456 mp->m_sb.sb_qflags = 0; 457 spin_unlock(&mp->m_sb_lock); 458 459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 460 return 0; 461 462 return xfs_sync_sb(mp, false); 463 } 464 465 uint64_t 466 xfs_default_resblks(xfs_mount_t *mp) 467 { 468 uint64_t resblks; 469 470 /* 471 * We default to 5% or 8192 fsbs of space reserved, whichever is 472 * smaller. This is intended to cover concurrent allocation 473 * transactions when we initially hit enospc. These each require a 4 474 * block reservation. Hence by default we cover roughly 2000 concurrent 475 * allocation reservations. 476 */ 477 resblks = mp->m_sb.sb_dblocks; 478 do_div(resblks, 20); 479 resblks = min_t(uint64_t, resblks, 8192); 480 return resblks; 481 } 482 483 /* Ensure the summary counts are correct. */ 484 STATIC int 485 xfs_check_summary_counts( 486 struct xfs_mount *mp) 487 { 488 int error = 0; 489 490 /* 491 * The AG0 superblock verifier rejects in-progress filesystems, 492 * so we should never see the flag set this far into mounting. 493 */ 494 if (mp->m_sb.sb_inprogress) { 495 xfs_err(mp, "sb_inprogress set after log recovery??"); 496 WARN_ON(1); 497 return -EFSCORRUPTED; 498 } 499 500 /* 501 * Now the log is mounted, we know if it was an unclean shutdown or 502 * not. If it was, with the first phase of recovery has completed, we 503 * have consistent AG blocks on disk. We have not recovered EFIs yet, 504 * but they are recovered transactionally in the second recovery phase 505 * later. 506 * 507 * If the log was clean when we mounted, we can check the summary 508 * counters. If any of them are obviously incorrect, we can recompute 509 * them from the AGF headers in the next step. 510 */ 511 if (xfs_is_clean(mp) && 512 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 513 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 514 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 515 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 516 517 /* 518 * We can safely re-initialise incore superblock counters from the 519 * per-ag data. These may not be correct if the filesystem was not 520 * cleanly unmounted, so we waited for recovery to finish before doing 521 * this. 522 * 523 * If the filesystem was cleanly unmounted or the previous check did 524 * not flag anything weird, then we can trust the values in the 525 * superblock to be correct and we don't need to do anything here. 526 * Otherwise, recalculate the summary counters. 527 */ 528 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 529 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 530 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 531 if (error) 532 return error; 533 } 534 535 /* 536 * Older kernels misused sb_frextents to reflect both incore 537 * reservations made by running transactions and the actual count of 538 * free rt extents in the ondisk metadata. Transactions committed 539 * during runtime can therefore contain a superblock update that 540 * undercounts the number of free rt extents tracked in the rt bitmap. 541 * A clean unmount record will have the correct frextents value since 542 * there can be no other transactions running at that point. 543 * 544 * If we're mounting the rt volume after recovering the log, recompute 545 * frextents from the rtbitmap file to fix the inconsistency. 546 */ 547 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 548 error = xfs_rtalloc_reinit_frextents(mp); 549 if (error) 550 return error; 551 } 552 553 return 0; 554 } 555 556 static void 557 xfs_unmount_check( 558 struct xfs_mount *mp) 559 { 560 if (xfs_is_shutdown(mp)) 561 return; 562 563 if (percpu_counter_sum(&mp->m_ifree) > 564 percpu_counter_sum(&mp->m_icount)) { 565 xfs_alert(mp, "ifree/icount mismatch at unmount"); 566 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 567 } 568 } 569 570 /* 571 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 572 * internal inode structures can be sitting in the CIL and AIL at this point, 573 * so we need to unpin them, write them back and/or reclaim them before unmount 574 * can proceed. In other words, callers are required to have inactivated all 575 * inodes. 576 * 577 * An inode cluster that has been freed can have its buffer still pinned in 578 * memory because the transaction is still sitting in a iclog. The stale inodes 579 * on that buffer will be pinned to the buffer until the transaction hits the 580 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 581 * may never see the pinned buffer, so nothing will push out the iclog and 582 * unpin the buffer. 583 * 584 * Hence we need to force the log to unpin everything first. However, log 585 * forces don't wait for the discards they issue to complete, so we have to 586 * explicitly wait for them to complete here as well. 587 * 588 * Then we can tell the world we are unmounting so that error handling knows 589 * that the filesystem is going away and we should error out anything that we 590 * have been retrying in the background. This will prevent never-ending 591 * retries in AIL pushing from hanging the unmount. 592 * 593 * Finally, we can push the AIL to clean all the remaining dirty objects, then 594 * reclaim the remaining inodes that are still in memory at this point in time. 595 */ 596 static void 597 xfs_unmount_flush_inodes( 598 struct xfs_mount *mp) 599 { 600 xfs_log_force(mp, XFS_LOG_SYNC); 601 xfs_extent_busy_wait_all(mp); 602 flush_workqueue(xfs_discard_wq); 603 604 xfs_set_unmounting(mp); 605 606 xfs_ail_push_all_sync(mp->m_ail); 607 xfs_inodegc_stop(mp); 608 cancel_delayed_work_sync(&mp->m_reclaim_work); 609 xfs_reclaim_inodes(mp); 610 xfs_health_unmount(mp); 611 } 612 613 static void 614 xfs_mount_setup_inode_geom( 615 struct xfs_mount *mp) 616 { 617 struct xfs_ino_geometry *igeo = M_IGEO(mp); 618 619 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 620 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 621 622 xfs_ialloc_setup_geometry(mp); 623 } 624 625 /* Mount the metadata directory tree root. */ 626 STATIC int 627 xfs_mount_setup_metadir( 628 struct xfs_mount *mp) 629 { 630 int error; 631 632 /* Load the metadata directory root inode into memory. */ 633 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, 634 &mp->m_metadirip); 635 if (error) 636 xfs_warn(mp, "Failed to load metadir root directory, error %d", 637 error); 638 return error; 639 } 640 641 /* Compute maximum possible height for per-AG btree types for this fs. */ 642 static inline void 643 xfs_agbtree_compute_maxlevels( 644 struct xfs_mount *mp) 645 { 646 unsigned int levels; 647 648 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 649 levels = max(levels, mp->m_rmap_maxlevels); 650 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 651 } 652 653 /* 654 * This function does the following on an initial mount of a file system: 655 * - reads the superblock from disk and init the mount struct 656 * - if we're a 32-bit kernel, do a size check on the superblock 657 * so we don't mount terabyte filesystems 658 * - init mount struct realtime fields 659 * - allocate inode hash table for fs 660 * - init directory manager 661 * - perform recovery and init the log manager 662 */ 663 int 664 xfs_mountfs( 665 struct xfs_mount *mp) 666 { 667 struct xfs_sb *sbp = &(mp->m_sb); 668 struct xfs_inode *rip; 669 struct xfs_ino_geometry *igeo = M_IGEO(mp); 670 uint quotamount = 0; 671 uint quotaflags = 0; 672 int error = 0; 673 674 xfs_sb_mount_common(mp, sbp); 675 676 /* 677 * Check for a mismatched features2 values. Older kernels read & wrote 678 * into the wrong sb offset for sb_features2 on some platforms due to 679 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 680 * which made older superblock reading/writing routines swap it as a 681 * 64-bit value. 682 * 683 * For backwards compatibility, we make both slots equal. 684 * 685 * If we detect a mismatched field, we OR the set bits into the existing 686 * features2 field in case it has already been modified; we don't want 687 * to lose any features. We then update the bad location with the ORed 688 * value so that older kernels will see any features2 flags. The 689 * superblock writeback code ensures the new sb_features2 is copied to 690 * sb_bad_features2 before it is logged or written to disk. 691 */ 692 if (xfs_sb_has_mismatched_features2(sbp)) { 693 xfs_warn(mp, "correcting sb_features alignment problem"); 694 sbp->sb_features2 |= sbp->sb_bad_features2; 695 mp->m_update_sb = true; 696 } 697 698 699 /* always use v2 inodes by default now */ 700 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 701 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 702 mp->m_features |= XFS_FEAT_NLINK; 703 mp->m_update_sb = true; 704 } 705 706 /* 707 * If we were given new sunit/swidth options, do some basic validation 708 * checks and convert the incore dalign and swidth values to the 709 * same units (FSB) that everything else uses. This /must/ happen 710 * before computing the inode geometry. 711 */ 712 error = xfs_validate_new_dalign(mp); 713 if (error) 714 goto out; 715 716 xfs_alloc_compute_maxlevels(mp); 717 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 718 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 719 xfs_mount_setup_inode_geom(mp); 720 xfs_rmapbt_compute_maxlevels(mp); 721 xfs_refcountbt_compute_maxlevels(mp); 722 723 xfs_agbtree_compute_maxlevels(mp); 724 725 /* 726 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 727 * is NOT aligned turn off m_dalign since allocator alignment is within 728 * an ag, therefore ag has to be aligned at stripe boundary. Note that 729 * we must compute the free space and rmap btree geometry before doing 730 * this. 731 */ 732 error = xfs_update_alignment(mp); 733 if (error) 734 goto out; 735 736 /* enable fail_at_unmount as default */ 737 mp->m_fail_unmount = true; 738 739 super_set_sysfs_name_id(mp->m_super); 740 741 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 742 NULL, mp->m_super->s_id); 743 if (error) 744 goto out; 745 746 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 747 &mp->m_kobj, "stats"); 748 if (error) 749 goto out_remove_sysfs; 750 751 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 752 753 error = xfs_error_sysfs_init(mp); 754 if (error) 755 goto out_remove_scrub_stats; 756 757 error = xfs_errortag_init(mp); 758 if (error) 759 goto out_remove_error_sysfs; 760 761 error = xfs_uuid_mount(mp); 762 if (error) 763 goto out_remove_errortag; 764 765 /* 766 * Update the preferred write size based on the information from the 767 * on-disk superblock. 768 */ 769 mp->m_allocsize_log = 770 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 771 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 772 773 /* set the low space thresholds for dynamic preallocation */ 774 xfs_set_low_space_thresholds(mp); 775 776 /* 777 * If enabled, sparse inode chunk alignment is expected to match the 778 * cluster size. Full inode chunk alignment must match the chunk size, 779 * but that is checked on sb read verification... 780 */ 781 if (xfs_has_sparseinodes(mp) && 782 mp->m_sb.sb_spino_align != 783 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 784 xfs_warn(mp, 785 "Sparse inode block alignment (%u) must match cluster size (%llu).", 786 mp->m_sb.sb_spino_align, 787 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 788 error = -EINVAL; 789 goto out_remove_uuid; 790 } 791 792 /* 793 * Check that the data (and log if separate) is an ok size. 794 */ 795 error = xfs_check_sizes(mp); 796 if (error) 797 goto out_remove_uuid; 798 799 /* 800 * Initialize realtime fields in the mount structure 801 */ 802 error = xfs_rtmount_init(mp); 803 if (error) { 804 xfs_warn(mp, "RT mount failed"); 805 goto out_remove_uuid; 806 } 807 808 /* 809 * Copies the low order bits of the timestamp and the randomly 810 * set "sequence" number out of a UUID. 811 */ 812 mp->m_fixedfsid[0] = 813 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 814 get_unaligned_be16(&sbp->sb_uuid.b[4]); 815 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 816 817 error = xfs_da_mount(mp); 818 if (error) { 819 xfs_warn(mp, "Failed dir/attr init: %d", error); 820 goto out_remove_uuid; 821 } 822 823 /* 824 * Initialize the precomputed transaction reservations values. 825 */ 826 xfs_trans_init(mp); 827 828 /* 829 * Allocate and initialize the per-ag data. 830 */ 831 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 832 mp->m_sb.sb_dblocks, &mp->m_maxagi); 833 if (error) { 834 xfs_warn(mp, "Failed per-ag init: %d", error); 835 goto out_free_dir; 836 } 837 838 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, 839 mp->m_sb.sb_rextents); 840 if (error) { 841 xfs_warn(mp, "Failed rtgroup init: %d", error); 842 goto out_free_perag; 843 } 844 845 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 846 xfs_warn(mp, "no log defined"); 847 error = -EFSCORRUPTED; 848 goto out_free_rtgroup; 849 } 850 851 error = xfs_inodegc_register_shrinker(mp); 852 if (error) 853 goto out_fail_wait; 854 855 /* 856 * If we're resuming quota status, pick up the preliminary qflags from 857 * the ondisk superblock so that we know if we should recover dquots. 858 */ 859 if (xfs_is_resuming_quotaon(mp)) 860 xfs_qm_resume_quotaon(mp); 861 862 /* 863 * Log's mount-time initialization. The first part of recovery can place 864 * some items on the AIL, to be handled when recovery is finished or 865 * cancelled. 866 */ 867 error = xfs_log_mount(mp, mp->m_logdev_targp, 868 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 869 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 870 if (error) { 871 xfs_warn(mp, "log mount failed"); 872 goto out_inodegc_shrinker; 873 } 874 875 /* 876 * If we're resuming quota status and recovered the log, re-sample the 877 * qflags from the ondisk superblock now that we've recovered it, just 878 * in case someone shut down enforcement just before a crash. 879 */ 880 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log)) 881 xfs_qm_resume_quotaon(mp); 882 883 /* 884 * If logged xattrs are still enabled after log recovery finishes, then 885 * they'll be available until unmount. Otherwise, turn them off. 886 */ 887 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 888 xfs_set_using_logged_xattrs(mp); 889 else 890 xfs_clear_using_logged_xattrs(mp); 891 892 /* Enable background inode inactivation workers. */ 893 xfs_inodegc_start(mp); 894 xfs_blockgc_start(mp); 895 896 /* 897 * Now that we've recovered any pending superblock feature bit 898 * additions, we can finish setting up the attr2 behaviour for the 899 * mount. The noattr2 option overrides the superblock flag, so only 900 * check the superblock feature flag if the mount option is not set. 901 */ 902 if (xfs_has_noattr2(mp)) { 903 mp->m_features &= ~XFS_FEAT_ATTR2; 904 } else if (!xfs_has_attr2(mp) && 905 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 906 mp->m_features |= XFS_FEAT_ATTR2; 907 } 908 909 if (xfs_has_metadir(mp)) { 910 error = xfs_mount_setup_metadir(mp); 911 if (error) 912 goto out_free_metadir; 913 } 914 915 /* 916 * Get and sanity-check the root inode. 917 * Save the pointer to it in the mount structure. 918 */ 919 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 920 XFS_ILOCK_EXCL, &rip); 921 if (error) { 922 xfs_warn(mp, 923 "Failed to read root inode 0x%llx, error %d", 924 sbp->sb_rootino, -error); 925 goto out_free_metadir; 926 } 927 928 ASSERT(rip != NULL); 929 930 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 931 xfs_warn(mp, "corrupted root inode %llu: not a directory", 932 (unsigned long long)rip->i_ino); 933 xfs_iunlock(rip, XFS_ILOCK_EXCL); 934 error = -EFSCORRUPTED; 935 goto out_rele_rip; 936 } 937 mp->m_rootip = rip; /* save it */ 938 939 xfs_iunlock(rip, XFS_ILOCK_EXCL); 940 941 /* 942 * Initialize realtime inode pointers in the mount structure 943 */ 944 error = xfs_rtmount_inodes(mp); 945 if (error) { 946 /* 947 * Free up the root inode. 948 */ 949 xfs_warn(mp, "failed to read RT inodes"); 950 goto out_rele_rip; 951 } 952 953 /* Make sure the summary counts are ok. */ 954 error = xfs_check_summary_counts(mp); 955 if (error) 956 goto out_rtunmount; 957 958 /* 959 * If this is a read-only mount defer the superblock updates until 960 * the next remount into writeable mode. Otherwise we would never 961 * perform the update e.g. for the root filesystem. 962 */ 963 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 964 error = xfs_sync_sb(mp, false); 965 if (error) { 966 xfs_warn(mp, "failed to write sb changes"); 967 goto out_rtunmount; 968 } 969 } 970 971 /* 972 * Initialise the XFS quota management subsystem for this mount 973 */ 974 if (XFS_IS_QUOTA_ON(mp)) { 975 error = xfs_qm_newmount(mp, "amount, "aflags); 976 if (error) 977 goto out_rtunmount; 978 } else { 979 /* 980 * If a file system had quotas running earlier, but decided to 981 * mount without -o uquota/pquota/gquota options, revoke the 982 * quotachecked license. 983 */ 984 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 985 xfs_notice(mp, "resetting quota flags"); 986 error = xfs_mount_reset_sbqflags(mp); 987 if (error) 988 goto out_rtunmount; 989 } 990 } 991 992 /* 993 * Finish recovering the file system. This part needed to be delayed 994 * until after the root and real-time bitmap inodes were consistently 995 * read in. Temporarily create per-AG space reservations for metadata 996 * btree shape changes because space freeing transactions (for inode 997 * inactivation) require the per-AG reservation in lieu of reserving 998 * blocks. 999 */ 1000 error = xfs_fs_reserve_ag_blocks(mp); 1001 if (error && error == -ENOSPC) 1002 xfs_warn(mp, 1003 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 1004 error = xfs_log_mount_finish(mp); 1005 xfs_fs_unreserve_ag_blocks(mp); 1006 if (error) { 1007 xfs_warn(mp, "log mount finish failed"); 1008 goto out_rtunmount; 1009 } 1010 1011 /* 1012 * Now the log is fully replayed, we can transition to full read-only 1013 * mode for read-only mounts. This will sync all the metadata and clean 1014 * the log so that the recovery we just performed does not have to be 1015 * replayed again on the next mount. 1016 * 1017 * We use the same quiesce mechanism as the rw->ro remount, as they are 1018 * semantically identical operations. 1019 */ 1020 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 1021 xfs_log_clean(mp); 1022 1023 /* 1024 * Complete the quota initialisation, post-log-replay component. 1025 */ 1026 if (quotamount) { 1027 ASSERT(mp->m_qflags == 0); 1028 mp->m_qflags = quotaflags; 1029 1030 xfs_qm_mount_quotas(mp); 1031 } 1032 1033 /* 1034 * Now we are mounted, reserve a small amount of unused space for 1035 * privileged transactions. This is needed so that transaction 1036 * space required for critical operations can dip into this pool 1037 * when at ENOSPC. This is needed for operations like create with 1038 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1039 * are not allowed to use this reserved space. 1040 * 1041 * This may drive us straight to ENOSPC on mount, but that implies 1042 * we were already there on the last unmount. Warn if this occurs. 1043 */ 1044 if (!xfs_is_readonly(mp)) { 1045 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp)); 1046 if (error) 1047 xfs_warn(mp, 1048 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1049 1050 /* Reserve AG blocks for future btree expansion. */ 1051 error = xfs_fs_reserve_ag_blocks(mp); 1052 if (error && error != -ENOSPC) 1053 goto out_agresv; 1054 } 1055 1056 return 0; 1057 1058 out_agresv: 1059 xfs_fs_unreserve_ag_blocks(mp); 1060 xfs_qm_unmount_quotas(mp); 1061 out_rtunmount: 1062 xfs_rtunmount_inodes(mp); 1063 out_rele_rip: 1064 xfs_irele(rip); 1065 /* Clean out dquots that might be in memory after quotacheck. */ 1066 xfs_qm_unmount(mp); 1067 out_free_metadir: 1068 if (mp->m_metadirip) 1069 xfs_irele(mp->m_metadirip); 1070 1071 /* 1072 * Inactivate all inodes that might still be in memory after a log 1073 * intent recovery failure so that reclaim can free them. Metadata 1074 * inodes and the root directory shouldn't need inactivation, but the 1075 * mount failed for some reason, so pull down all the state and flee. 1076 */ 1077 xfs_inodegc_flush(mp); 1078 1079 /* 1080 * Flush all inode reclamation work and flush the log. 1081 * We have to do this /after/ rtunmount and qm_unmount because those 1082 * two will have scheduled delayed reclaim for the rt/quota inodes. 1083 * 1084 * This is slightly different from the unmountfs call sequence 1085 * because we could be tearing down a partially set up mount. In 1086 * particular, if log_mount_finish fails we bail out without calling 1087 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1088 * quota inodes. 1089 */ 1090 xfs_unmount_flush_inodes(mp); 1091 xfs_log_mount_cancel(mp); 1092 out_inodegc_shrinker: 1093 shrinker_free(mp->m_inodegc_shrinker); 1094 out_fail_wait: 1095 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1096 xfs_buftarg_drain(mp->m_logdev_targp); 1097 xfs_buftarg_drain(mp->m_ddev_targp); 1098 out_free_rtgroup: 1099 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1100 out_free_perag: 1101 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1102 out_free_dir: 1103 xfs_da_unmount(mp); 1104 out_remove_uuid: 1105 xfs_uuid_unmount(mp); 1106 out_remove_errortag: 1107 xfs_errortag_del(mp); 1108 out_remove_error_sysfs: 1109 xfs_error_sysfs_del(mp); 1110 out_remove_scrub_stats: 1111 xchk_stats_unregister(mp->m_scrub_stats); 1112 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1113 out_remove_sysfs: 1114 xfs_sysfs_del(&mp->m_kobj); 1115 out: 1116 return error; 1117 } 1118 1119 /* 1120 * This flushes out the inodes,dquots and the superblock, unmounts the 1121 * log and makes sure that incore structures are freed. 1122 */ 1123 void 1124 xfs_unmountfs( 1125 struct xfs_mount *mp) 1126 { 1127 int error; 1128 1129 /* 1130 * Perform all on-disk metadata updates required to inactivate inodes 1131 * that the VFS evicted earlier in the unmount process. Freeing inodes 1132 * and discarding CoW fork preallocations can cause shape changes to 1133 * the free inode and refcount btrees, respectively, so we must finish 1134 * this before we discard the metadata space reservations. Metadata 1135 * inodes and the root directory do not require inactivation. 1136 */ 1137 xfs_inodegc_flush(mp); 1138 1139 xfs_blockgc_stop(mp); 1140 xfs_fs_unreserve_ag_blocks(mp); 1141 xfs_qm_unmount_quotas(mp); 1142 xfs_rtunmount_inodes(mp); 1143 xfs_irele(mp->m_rootip); 1144 if (mp->m_metadirip) 1145 xfs_irele(mp->m_metadirip); 1146 1147 xfs_unmount_flush_inodes(mp); 1148 1149 xfs_qm_unmount(mp); 1150 1151 /* 1152 * Unreserve any blocks we have so that when we unmount we don't account 1153 * the reserved free space as used. This is really only necessary for 1154 * lazy superblock counting because it trusts the incore superblock 1155 * counters to be absolutely correct on clean unmount. 1156 * 1157 * We don't bother correcting this elsewhere for lazy superblock 1158 * counting because on mount of an unclean filesystem we reconstruct the 1159 * correct counter value and this is irrelevant. 1160 * 1161 * For non-lazy counter filesystems, this doesn't matter at all because 1162 * we only every apply deltas to the superblock and hence the incore 1163 * value does not matter.... 1164 */ 1165 error = xfs_reserve_blocks(mp, 0); 1166 if (error) 1167 xfs_warn(mp, "Unable to free reserved block pool. " 1168 "Freespace may not be correct on next mount."); 1169 xfs_unmount_check(mp); 1170 1171 /* 1172 * Indicate that it's ok to clear log incompat bits before cleaning 1173 * the log and writing the unmount record. 1174 */ 1175 xfs_set_done_with_log_incompat(mp); 1176 xfs_log_unmount(mp); 1177 xfs_da_unmount(mp); 1178 xfs_uuid_unmount(mp); 1179 1180 #if defined(DEBUG) 1181 xfs_errortag_clearall(mp); 1182 #endif 1183 shrinker_free(mp->m_inodegc_shrinker); 1184 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1185 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1186 xfs_errortag_del(mp); 1187 xfs_error_sysfs_del(mp); 1188 xchk_stats_unregister(mp->m_scrub_stats); 1189 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1190 xfs_sysfs_del(&mp->m_kobj); 1191 } 1192 1193 /* 1194 * Determine whether modifications can proceed. The caller specifies the minimum 1195 * freeze level for which modifications should not be allowed. This allows 1196 * certain operations to proceed while the freeze sequence is in progress, if 1197 * necessary. 1198 */ 1199 bool 1200 xfs_fs_writable( 1201 struct xfs_mount *mp, 1202 int level) 1203 { 1204 ASSERT(level > SB_UNFROZEN); 1205 if ((mp->m_super->s_writers.frozen >= level) || 1206 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1207 return false; 1208 1209 return true; 1210 } 1211 1212 void 1213 xfs_add_freecounter( 1214 struct xfs_mount *mp, 1215 struct percpu_counter *counter, 1216 uint64_t delta) 1217 { 1218 bool has_resv_pool = (counter == &mp->m_fdblocks); 1219 uint64_t res_used; 1220 1221 /* 1222 * If the reserve pool is depleted, put blocks back into it first. 1223 * Most of the time the pool is full. 1224 */ 1225 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) { 1226 percpu_counter_add(counter, delta); 1227 return; 1228 } 1229 1230 spin_lock(&mp->m_sb_lock); 1231 res_used = mp->m_resblks - mp->m_resblks_avail; 1232 if (res_used > delta) { 1233 mp->m_resblks_avail += delta; 1234 } else { 1235 delta -= res_used; 1236 mp->m_resblks_avail = mp->m_resblks; 1237 percpu_counter_add(counter, delta); 1238 } 1239 spin_unlock(&mp->m_sb_lock); 1240 } 1241 1242 int 1243 xfs_dec_freecounter( 1244 struct xfs_mount *mp, 1245 struct percpu_counter *counter, 1246 uint64_t delta, 1247 bool rsvd) 1248 { 1249 int64_t lcounter; 1250 uint64_t set_aside = 0; 1251 s32 batch; 1252 bool has_resv_pool; 1253 1254 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1255 has_resv_pool = (counter == &mp->m_fdblocks); 1256 if (rsvd) 1257 ASSERT(has_resv_pool); 1258 1259 /* 1260 * Taking blocks away, need to be more accurate the closer we 1261 * are to zero. 1262 * 1263 * If the counter has a value of less than 2 * max batch size, 1264 * then make everything serialise as we are real close to 1265 * ENOSPC. 1266 */ 1267 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1268 XFS_FDBLOCKS_BATCH) < 0) 1269 batch = 1; 1270 else 1271 batch = XFS_FDBLOCKS_BATCH; 1272 1273 /* 1274 * Set aside allocbt blocks because these blocks are tracked as free 1275 * space but not available for allocation. Technically this means that a 1276 * single reservation cannot consume all remaining free space, but the 1277 * ratio of allocbt blocks to usable free blocks should be rather small. 1278 * The tradeoff without this is that filesystems that maintain high 1279 * perag block reservations can over reserve physical block availability 1280 * and fail physical allocation, which leads to much more serious 1281 * problems (i.e. transaction abort, pagecache discards, etc.) than 1282 * slightly premature -ENOSPC. 1283 */ 1284 if (has_resv_pool) 1285 set_aside = xfs_fdblocks_unavailable(mp); 1286 percpu_counter_add_batch(counter, -((int64_t)delta), batch); 1287 if (__percpu_counter_compare(counter, set_aside, 1288 XFS_FDBLOCKS_BATCH) >= 0) { 1289 /* we had space! */ 1290 return 0; 1291 } 1292 1293 /* 1294 * lock up the sb for dipping into reserves before releasing the space 1295 * that took us to ENOSPC. 1296 */ 1297 spin_lock(&mp->m_sb_lock); 1298 percpu_counter_add(counter, delta); 1299 if (!has_resv_pool || !rsvd) 1300 goto fdblocks_enospc; 1301 1302 lcounter = (long long)mp->m_resblks_avail - delta; 1303 if (lcounter >= 0) { 1304 mp->m_resblks_avail = lcounter; 1305 spin_unlock(&mp->m_sb_lock); 1306 return 0; 1307 } 1308 xfs_warn_once(mp, 1309 "Reserve blocks depleted! Consider increasing reserve pool size."); 1310 1311 fdblocks_enospc: 1312 spin_unlock(&mp->m_sb_lock); 1313 return -ENOSPC; 1314 } 1315 1316 /* 1317 * Used to free the superblock along various error paths. 1318 */ 1319 void 1320 xfs_freesb( 1321 struct xfs_mount *mp) 1322 { 1323 struct xfs_buf *bp = mp->m_sb_bp; 1324 1325 xfs_buf_lock(bp); 1326 mp->m_sb_bp = NULL; 1327 xfs_buf_relse(bp); 1328 } 1329 1330 /* 1331 * If the underlying (data/log/rt) device is readonly, there are some 1332 * operations that cannot proceed. 1333 */ 1334 int 1335 xfs_dev_is_read_only( 1336 struct xfs_mount *mp, 1337 char *message) 1338 { 1339 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1340 xfs_readonly_buftarg(mp->m_logdev_targp) || 1341 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1342 xfs_notice(mp, "%s required on read-only device.", message); 1343 xfs_notice(mp, "write access unavailable, cannot proceed."); 1344 return -EROFS; 1345 } 1346 return 0; 1347 } 1348 1349 /* Force the summary counters to be recalculated at next mount. */ 1350 void 1351 xfs_force_summary_recalc( 1352 struct xfs_mount *mp) 1353 { 1354 if (!xfs_has_lazysbcount(mp)) 1355 return; 1356 1357 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1358 } 1359 1360 /* 1361 * Enable a log incompat feature flag in the primary superblock. The caller 1362 * cannot have any other transactions in progress. 1363 */ 1364 int 1365 xfs_add_incompat_log_feature( 1366 struct xfs_mount *mp, 1367 uint32_t feature) 1368 { 1369 struct xfs_dsb *dsb; 1370 int error; 1371 1372 ASSERT(hweight32(feature) == 1); 1373 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1374 1375 /* 1376 * Force the log to disk and kick the background AIL thread to reduce 1377 * the chances that the bwrite will stall waiting for the AIL to unpin 1378 * the primary superblock buffer. This isn't a data integrity 1379 * operation, so we don't need a synchronous push. 1380 */ 1381 error = xfs_log_force(mp, XFS_LOG_SYNC); 1382 if (error) 1383 return error; 1384 xfs_ail_push_all(mp->m_ail); 1385 1386 /* 1387 * Lock the primary superblock buffer to serialize all callers that 1388 * are trying to set feature bits. 1389 */ 1390 xfs_buf_lock(mp->m_sb_bp); 1391 xfs_buf_hold(mp->m_sb_bp); 1392 1393 if (xfs_is_shutdown(mp)) { 1394 error = -EIO; 1395 goto rele; 1396 } 1397 1398 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1399 goto rele; 1400 1401 /* 1402 * Write the primary superblock to disk immediately, because we need 1403 * the log_incompat bit to be set in the primary super now to protect 1404 * the log items that we're going to commit later. 1405 */ 1406 dsb = mp->m_sb_bp->b_addr; 1407 xfs_sb_to_disk(dsb, &mp->m_sb); 1408 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1409 error = xfs_bwrite(mp->m_sb_bp); 1410 if (error) 1411 goto shutdown; 1412 1413 /* 1414 * Add the feature bits to the incore superblock before we unlock the 1415 * buffer. 1416 */ 1417 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1418 xfs_buf_relse(mp->m_sb_bp); 1419 1420 /* Log the superblock to disk. */ 1421 return xfs_sync_sb(mp, false); 1422 shutdown: 1423 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1424 rele: 1425 xfs_buf_relse(mp->m_sb_bp); 1426 return error; 1427 } 1428 1429 /* 1430 * Clear all the log incompat flags from the superblock. 1431 * 1432 * The caller cannot be in a transaction, must ensure that the log does not 1433 * contain any log items protected by any log incompat bit, and must ensure 1434 * that there are no other threads that depend on the state of the log incompat 1435 * feature flags in the primary super. 1436 * 1437 * Returns true if the superblock is dirty. 1438 */ 1439 bool 1440 xfs_clear_incompat_log_features( 1441 struct xfs_mount *mp) 1442 { 1443 bool ret = false; 1444 1445 if (!xfs_has_crc(mp) || 1446 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1447 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1448 xfs_is_shutdown(mp) || 1449 !xfs_is_done_with_log_incompat(mp)) 1450 return false; 1451 1452 /* 1453 * Update the incore superblock. We synchronize on the primary super 1454 * buffer lock to be consistent with the add function, though at least 1455 * in theory this shouldn't be necessary. 1456 */ 1457 xfs_buf_lock(mp->m_sb_bp); 1458 xfs_buf_hold(mp->m_sb_bp); 1459 1460 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1461 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1462 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1463 ret = true; 1464 } 1465 1466 xfs_buf_relse(mp->m_sb_bp); 1467 return ret; 1468 } 1469 1470 /* 1471 * Update the in-core delayed block counter. 1472 * 1473 * We prefer to update the counter without having to take a spinlock for every 1474 * counter update (i.e. batching). Each change to delayed allocation 1475 * reservations can change can easily exceed the default percpu counter 1476 * batching, so we use a larger batch factor here. 1477 * 1478 * Note that we don't currently have any callers requiring fast summation 1479 * (e.g. percpu_counter_read) so we can use a big batch value here. 1480 */ 1481 #define XFS_DELALLOC_BATCH (4096) 1482 void 1483 xfs_mod_delalloc( 1484 struct xfs_inode *ip, 1485 int64_t data_delta, 1486 int64_t ind_delta) 1487 { 1488 struct xfs_mount *mp = ip->i_mount; 1489 1490 if (XFS_IS_REALTIME_INODE(ip)) { 1491 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1492 xfs_blen_to_rtbxlen(mp, data_delta), 1493 XFS_DELALLOC_BATCH); 1494 if (!ind_delta) 1495 return; 1496 data_delta = 0; 1497 } 1498 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1499 XFS_DELALLOC_BATCH); 1500 } 1501