1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 38 static DEFINE_MUTEX(xfs_uuid_table_mutex); 39 static int xfs_uuid_table_size; 40 static uuid_t *xfs_uuid_table; 41 42 void 43 xfs_uuid_table_free(void) 44 { 45 if (xfs_uuid_table_size == 0) 46 return; 47 kmem_free(xfs_uuid_table); 48 xfs_uuid_table = NULL; 49 xfs_uuid_table_size = 0; 50 } 51 52 /* 53 * See if the UUID is unique among mounted XFS filesystems. 54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 55 */ 56 STATIC int 57 xfs_uuid_mount( 58 struct xfs_mount *mp) 59 { 60 uuid_t *uuid = &mp->m_sb.sb_uuid; 61 int hole, i; 62 63 /* Publish UUID in struct super_block */ 64 uuid_copy(&mp->m_super->s_uuid, uuid); 65 66 if (xfs_has_nouuid(mp)) 67 return 0; 68 69 if (uuid_is_null(uuid)) { 70 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 71 return -EINVAL; 72 } 73 74 mutex_lock(&xfs_uuid_table_mutex); 75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 76 if (uuid_is_null(&xfs_uuid_table[i])) { 77 hole = i; 78 continue; 79 } 80 if (uuid_equal(uuid, &xfs_uuid_table[i])) 81 goto out_duplicate; 82 } 83 84 if (hole < 0) { 85 xfs_uuid_table = krealloc(xfs_uuid_table, 86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 87 GFP_KERNEL | __GFP_NOFAIL); 88 hole = xfs_uuid_table_size++; 89 } 90 xfs_uuid_table[hole] = *uuid; 91 mutex_unlock(&xfs_uuid_table_mutex); 92 93 return 0; 94 95 out_duplicate: 96 mutex_unlock(&xfs_uuid_table_mutex); 97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 98 return -EINVAL; 99 } 100 101 STATIC void 102 xfs_uuid_unmount( 103 struct xfs_mount *mp) 104 { 105 uuid_t *uuid = &mp->m_sb.sb_uuid; 106 int i; 107 108 if (xfs_has_nouuid(mp)) 109 return; 110 111 mutex_lock(&xfs_uuid_table_mutex); 112 for (i = 0; i < xfs_uuid_table_size; i++) { 113 if (uuid_is_null(&xfs_uuid_table[i])) 114 continue; 115 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 116 continue; 117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 118 break; 119 } 120 ASSERT(i < xfs_uuid_table_size); 121 mutex_unlock(&xfs_uuid_table_mutex); 122 } 123 124 /* 125 * Check size of device based on the (data/realtime) block count. 126 * Note: this check is used by the growfs code as well as mount. 127 */ 128 int 129 xfs_sb_validate_fsb_count( 130 xfs_sb_t *sbp, 131 uint64_t nblocks) 132 { 133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 134 ASSERT(sbp->sb_blocklog >= BBSHIFT); 135 136 /* Limited by ULONG_MAX of page cache index */ 137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 138 return -EFBIG; 139 return 0; 140 } 141 142 /* 143 * xfs_readsb 144 * 145 * Does the initial read of the superblock. 146 */ 147 int 148 xfs_readsb( 149 struct xfs_mount *mp, 150 int flags) 151 { 152 unsigned int sector_size; 153 struct xfs_buf *bp; 154 struct xfs_sb *sbp = &mp->m_sb; 155 int error; 156 int loud = !(flags & XFS_MFSI_QUIET); 157 const struct xfs_buf_ops *buf_ops; 158 159 ASSERT(mp->m_sb_bp == NULL); 160 ASSERT(mp->m_ddev_targp != NULL); 161 162 /* 163 * For the initial read, we must guess at the sector 164 * size based on the block device. It's enough to 165 * get the sb_sectsize out of the superblock and 166 * then reread with the proper length. 167 * We don't verify it yet, because it may not be complete. 168 */ 169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 170 buf_ops = NULL; 171 172 /* 173 * Allocate a (locked) buffer to hold the superblock. This will be kept 174 * around at all times to optimize access to the superblock. Therefore, 175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 176 * elevated. 177 */ 178 reread: 179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 180 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 181 buf_ops); 182 if (error) { 183 if (loud) 184 xfs_warn(mp, "SB validate failed with error %d.", error); 185 /* bad CRC means corrupted metadata */ 186 if (error == -EFSBADCRC) 187 error = -EFSCORRUPTED; 188 return error; 189 } 190 191 /* 192 * Initialize the mount structure from the superblock. 193 */ 194 xfs_sb_from_disk(sbp, bp->b_addr); 195 196 /* 197 * If we haven't validated the superblock, do so now before we try 198 * to check the sector size and reread the superblock appropriately. 199 */ 200 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 201 if (loud) 202 xfs_warn(mp, "Invalid superblock magic number"); 203 error = -EINVAL; 204 goto release_buf; 205 } 206 207 /* 208 * We must be able to do sector-sized and sector-aligned IO. 209 */ 210 if (sector_size > sbp->sb_sectsize) { 211 if (loud) 212 xfs_warn(mp, "device supports %u byte sectors (not %u)", 213 sector_size, sbp->sb_sectsize); 214 error = -ENOSYS; 215 goto release_buf; 216 } 217 218 if (buf_ops == NULL) { 219 /* 220 * Re-read the superblock so the buffer is correctly sized, 221 * and properly verified. 222 */ 223 xfs_buf_relse(bp); 224 sector_size = sbp->sb_sectsize; 225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 226 goto reread; 227 } 228 229 mp->m_features |= xfs_sb_version_to_features(sbp); 230 xfs_reinit_percpu_counters(mp); 231 232 /* no need to be quiet anymore, so reset the buf ops */ 233 bp->b_ops = &xfs_sb_buf_ops; 234 235 mp->m_sb_bp = bp; 236 xfs_buf_unlock(bp); 237 return 0; 238 239 release_buf: 240 xfs_buf_relse(bp); 241 return error; 242 } 243 244 /* 245 * If the sunit/swidth change would move the precomputed root inode value, we 246 * must reject the ondisk change because repair will stumble over that. 247 * However, we allow the mount to proceed because we never rejected this 248 * combination before. Returns true to update the sb, false otherwise. 249 */ 250 static inline int 251 xfs_check_new_dalign( 252 struct xfs_mount *mp, 253 int new_dalign, 254 bool *update_sb) 255 { 256 struct xfs_sb *sbp = &mp->m_sb; 257 xfs_ino_t calc_ino; 258 259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 261 262 if (sbp->sb_rootino == calc_ino) { 263 *update_sb = true; 264 return 0; 265 } 266 267 xfs_warn(mp, 268 "Cannot change stripe alignment; would require moving root inode."); 269 270 /* 271 * XXX: Next time we add a new incompat feature, this should start 272 * returning -EINVAL to fail the mount. Until then, spit out a warning 273 * that we're ignoring the administrator's instructions. 274 */ 275 xfs_warn(mp, "Skipping superblock stripe alignment update."); 276 *update_sb = false; 277 return 0; 278 } 279 280 /* 281 * If we were provided with new sunit/swidth values as mount options, make sure 282 * that they pass basic alignment and superblock feature checks, and convert 283 * them into the same units (FSB) that everything else expects. This step 284 * /must/ be done before computing the inode geometry. 285 */ 286 STATIC int 287 xfs_validate_new_dalign( 288 struct xfs_mount *mp) 289 { 290 if (mp->m_dalign == 0) 291 return 0; 292 293 /* 294 * If stripe unit and stripe width are not multiples 295 * of the fs blocksize turn off alignment. 296 */ 297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 299 xfs_warn(mp, 300 "alignment check failed: sunit/swidth vs. blocksize(%d)", 301 mp->m_sb.sb_blocksize); 302 return -EINVAL; 303 } else { 304 /* 305 * Convert the stripe unit and width to FSBs. 306 */ 307 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 308 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 309 xfs_warn(mp, 310 "alignment check failed: sunit/swidth vs. agsize(%d)", 311 mp->m_sb.sb_agblocks); 312 return -EINVAL; 313 } else if (mp->m_dalign) { 314 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 315 } else { 316 xfs_warn(mp, 317 "alignment check failed: sunit(%d) less than bsize(%d)", 318 mp->m_dalign, mp->m_sb.sb_blocksize); 319 return -EINVAL; 320 } 321 } 322 323 if (!xfs_has_dalign(mp)) { 324 xfs_warn(mp, 325 "cannot change alignment: superblock does not support data alignment"); 326 return -EINVAL; 327 } 328 329 return 0; 330 } 331 332 /* Update alignment values based on mount options and sb values. */ 333 STATIC int 334 xfs_update_alignment( 335 struct xfs_mount *mp) 336 { 337 struct xfs_sb *sbp = &mp->m_sb; 338 339 if (mp->m_dalign) { 340 bool update_sb; 341 int error; 342 343 if (sbp->sb_unit == mp->m_dalign && 344 sbp->sb_width == mp->m_swidth) 345 return 0; 346 347 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 348 if (error || !update_sb) 349 return error; 350 351 sbp->sb_unit = mp->m_dalign; 352 sbp->sb_width = mp->m_swidth; 353 mp->m_update_sb = true; 354 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 355 mp->m_dalign = sbp->sb_unit; 356 mp->m_swidth = sbp->sb_width; 357 } 358 359 return 0; 360 } 361 362 /* 363 * precalculate the low space thresholds for dynamic speculative preallocation. 364 */ 365 void 366 xfs_set_low_space_thresholds( 367 struct xfs_mount *mp) 368 { 369 uint64_t dblocks = mp->m_sb.sb_dblocks; 370 uint64_t rtexts = mp->m_sb.sb_rextents; 371 int i; 372 373 do_div(dblocks, 100); 374 do_div(rtexts, 100); 375 376 for (i = 0; i < XFS_LOWSP_MAX; i++) { 377 mp->m_low_space[i] = dblocks * (i + 1); 378 mp->m_low_rtexts[i] = rtexts * (i + 1); 379 } 380 } 381 382 /* 383 * Check that the data (and log if separate) is an ok size. 384 */ 385 STATIC int 386 xfs_check_sizes( 387 struct xfs_mount *mp) 388 { 389 struct xfs_buf *bp; 390 xfs_daddr_t d; 391 int error; 392 393 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 394 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 395 xfs_warn(mp, "filesystem size mismatch detected"); 396 return -EFBIG; 397 } 398 error = xfs_buf_read_uncached(mp->m_ddev_targp, 399 d - XFS_FSS_TO_BB(mp, 1), 400 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 401 if (error) { 402 xfs_warn(mp, "last sector read failed"); 403 return error; 404 } 405 xfs_buf_relse(bp); 406 407 if (mp->m_logdev_targp == mp->m_ddev_targp) 408 return 0; 409 410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 412 xfs_warn(mp, "log size mismatch detected"); 413 return -EFBIG; 414 } 415 error = xfs_buf_read_uncached(mp->m_logdev_targp, 416 d - XFS_FSB_TO_BB(mp, 1), 417 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 418 if (error) { 419 xfs_warn(mp, "log device read failed"); 420 return error; 421 } 422 xfs_buf_relse(bp); 423 return 0; 424 } 425 426 /* 427 * Clear the quotaflags in memory and in the superblock. 428 */ 429 int 430 xfs_mount_reset_sbqflags( 431 struct xfs_mount *mp) 432 { 433 mp->m_qflags = 0; 434 435 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 436 if (mp->m_sb.sb_qflags == 0) 437 return 0; 438 spin_lock(&mp->m_sb_lock); 439 mp->m_sb.sb_qflags = 0; 440 spin_unlock(&mp->m_sb_lock); 441 442 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 443 return 0; 444 445 return xfs_sync_sb(mp, false); 446 } 447 448 uint64_t 449 xfs_default_resblks(xfs_mount_t *mp) 450 { 451 uint64_t resblks; 452 453 /* 454 * We default to 5% or 8192 fsbs of space reserved, whichever is 455 * smaller. This is intended to cover concurrent allocation 456 * transactions when we initially hit enospc. These each require a 4 457 * block reservation. Hence by default we cover roughly 2000 concurrent 458 * allocation reservations. 459 */ 460 resblks = mp->m_sb.sb_dblocks; 461 do_div(resblks, 20); 462 resblks = min_t(uint64_t, resblks, 8192); 463 return resblks; 464 } 465 466 /* Ensure the summary counts are correct. */ 467 STATIC int 468 xfs_check_summary_counts( 469 struct xfs_mount *mp) 470 { 471 int error = 0; 472 473 /* 474 * The AG0 superblock verifier rejects in-progress filesystems, 475 * so we should never see the flag set this far into mounting. 476 */ 477 if (mp->m_sb.sb_inprogress) { 478 xfs_err(mp, "sb_inprogress set after log recovery??"); 479 WARN_ON(1); 480 return -EFSCORRUPTED; 481 } 482 483 /* 484 * Now the log is mounted, we know if it was an unclean shutdown or 485 * not. If it was, with the first phase of recovery has completed, we 486 * have consistent AG blocks on disk. We have not recovered EFIs yet, 487 * but they are recovered transactionally in the second recovery phase 488 * later. 489 * 490 * If the log was clean when we mounted, we can check the summary 491 * counters. If any of them are obviously incorrect, we can recompute 492 * them from the AGF headers in the next step. 493 */ 494 if (xfs_is_clean(mp) && 495 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 496 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 497 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 498 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 499 500 /* 501 * We can safely re-initialise incore superblock counters from the 502 * per-ag data. These may not be correct if the filesystem was not 503 * cleanly unmounted, so we waited for recovery to finish before doing 504 * this. 505 * 506 * If the filesystem was cleanly unmounted or the previous check did 507 * not flag anything weird, then we can trust the values in the 508 * superblock to be correct and we don't need to do anything here. 509 * Otherwise, recalculate the summary counters. 510 */ 511 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 512 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 513 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 514 if (error) 515 return error; 516 } 517 518 /* 519 * Older kernels misused sb_frextents to reflect both incore 520 * reservations made by running transactions and the actual count of 521 * free rt extents in the ondisk metadata. Transactions committed 522 * during runtime can therefore contain a superblock update that 523 * undercounts the number of free rt extents tracked in the rt bitmap. 524 * A clean unmount record will have the correct frextents value since 525 * there can be no other transactions running at that point. 526 * 527 * If we're mounting the rt volume after recovering the log, recompute 528 * frextents from the rtbitmap file to fix the inconsistency. 529 */ 530 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 531 error = xfs_rtalloc_reinit_frextents(mp); 532 if (error) 533 return error; 534 } 535 536 return 0; 537 } 538 539 /* 540 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 541 * internal inode structures can be sitting in the CIL and AIL at this point, 542 * so we need to unpin them, write them back and/or reclaim them before unmount 543 * can proceed. In other words, callers are required to have inactivated all 544 * inodes. 545 * 546 * An inode cluster that has been freed can have its buffer still pinned in 547 * memory because the transaction is still sitting in a iclog. The stale inodes 548 * on that buffer will be pinned to the buffer until the transaction hits the 549 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 550 * may never see the pinned buffer, so nothing will push out the iclog and 551 * unpin the buffer. 552 * 553 * Hence we need to force the log to unpin everything first. However, log 554 * forces don't wait for the discards they issue to complete, so we have to 555 * explicitly wait for them to complete here as well. 556 * 557 * Then we can tell the world we are unmounting so that error handling knows 558 * that the filesystem is going away and we should error out anything that we 559 * have been retrying in the background. This will prevent never-ending 560 * retries in AIL pushing from hanging the unmount. 561 * 562 * Finally, we can push the AIL to clean all the remaining dirty objects, then 563 * reclaim the remaining inodes that are still in memory at this point in time. 564 */ 565 static void 566 xfs_unmount_flush_inodes( 567 struct xfs_mount *mp) 568 { 569 xfs_log_force(mp, XFS_LOG_SYNC); 570 xfs_extent_busy_wait_all(mp); 571 flush_workqueue(xfs_discard_wq); 572 573 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 574 575 xfs_ail_push_all_sync(mp->m_ail); 576 xfs_inodegc_stop(mp); 577 cancel_delayed_work_sync(&mp->m_reclaim_work); 578 xfs_reclaim_inodes(mp); 579 xfs_health_unmount(mp); 580 } 581 582 static void 583 xfs_mount_setup_inode_geom( 584 struct xfs_mount *mp) 585 { 586 struct xfs_ino_geometry *igeo = M_IGEO(mp); 587 588 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 589 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 590 591 xfs_ialloc_setup_geometry(mp); 592 } 593 594 /* Compute maximum possible height for per-AG btree types for this fs. */ 595 static inline void 596 xfs_agbtree_compute_maxlevels( 597 struct xfs_mount *mp) 598 { 599 unsigned int levels; 600 601 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 602 levels = max(levels, mp->m_rmap_maxlevels); 603 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 604 } 605 606 /* 607 * This function does the following on an initial mount of a file system: 608 * - reads the superblock from disk and init the mount struct 609 * - if we're a 32-bit kernel, do a size check on the superblock 610 * so we don't mount terabyte filesystems 611 * - init mount struct realtime fields 612 * - allocate inode hash table for fs 613 * - init directory manager 614 * - perform recovery and init the log manager 615 */ 616 int 617 xfs_mountfs( 618 struct xfs_mount *mp) 619 { 620 struct xfs_sb *sbp = &(mp->m_sb); 621 struct xfs_inode *rip; 622 struct xfs_ino_geometry *igeo = M_IGEO(mp); 623 uint64_t resblks; 624 uint quotamount = 0; 625 uint quotaflags = 0; 626 int error = 0; 627 628 xfs_sb_mount_common(mp, sbp); 629 630 /* 631 * Check for a mismatched features2 values. Older kernels read & wrote 632 * into the wrong sb offset for sb_features2 on some platforms due to 633 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 634 * which made older superblock reading/writing routines swap it as a 635 * 64-bit value. 636 * 637 * For backwards compatibility, we make both slots equal. 638 * 639 * If we detect a mismatched field, we OR the set bits into the existing 640 * features2 field in case it has already been modified; we don't want 641 * to lose any features. We then update the bad location with the ORed 642 * value so that older kernels will see any features2 flags. The 643 * superblock writeback code ensures the new sb_features2 is copied to 644 * sb_bad_features2 before it is logged or written to disk. 645 */ 646 if (xfs_sb_has_mismatched_features2(sbp)) { 647 xfs_warn(mp, "correcting sb_features alignment problem"); 648 sbp->sb_features2 |= sbp->sb_bad_features2; 649 mp->m_update_sb = true; 650 } 651 652 653 /* always use v2 inodes by default now */ 654 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 655 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 656 mp->m_features |= XFS_FEAT_NLINK; 657 mp->m_update_sb = true; 658 } 659 660 /* 661 * If we were given new sunit/swidth options, do some basic validation 662 * checks and convert the incore dalign and swidth values to the 663 * same units (FSB) that everything else uses. This /must/ happen 664 * before computing the inode geometry. 665 */ 666 error = xfs_validate_new_dalign(mp); 667 if (error) 668 goto out; 669 670 xfs_alloc_compute_maxlevels(mp); 671 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 672 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 673 xfs_mount_setup_inode_geom(mp); 674 xfs_rmapbt_compute_maxlevels(mp); 675 xfs_refcountbt_compute_maxlevels(mp); 676 677 xfs_agbtree_compute_maxlevels(mp); 678 679 /* 680 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 681 * is NOT aligned turn off m_dalign since allocator alignment is within 682 * an ag, therefore ag has to be aligned at stripe boundary. Note that 683 * we must compute the free space and rmap btree geometry before doing 684 * this. 685 */ 686 error = xfs_update_alignment(mp); 687 if (error) 688 goto out; 689 690 /* enable fail_at_unmount as default */ 691 mp->m_fail_unmount = true; 692 693 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 694 NULL, mp->m_super->s_id); 695 if (error) 696 goto out; 697 698 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 699 &mp->m_kobj, "stats"); 700 if (error) 701 goto out_remove_sysfs; 702 703 error = xfs_error_sysfs_init(mp); 704 if (error) 705 goto out_del_stats; 706 707 error = xfs_errortag_init(mp); 708 if (error) 709 goto out_remove_error_sysfs; 710 711 error = xfs_uuid_mount(mp); 712 if (error) 713 goto out_remove_errortag; 714 715 /* 716 * Update the preferred write size based on the information from the 717 * on-disk superblock. 718 */ 719 mp->m_allocsize_log = 720 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 721 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 722 723 /* set the low space thresholds for dynamic preallocation */ 724 xfs_set_low_space_thresholds(mp); 725 726 /* 727 * If enabled, sparse inode chunk alignment is expected to match the 728 * cluster size. Full inode chunk alignment must match the chunk size, 729 * but that is checked on sb read verification... 730 */ 731 if (xfs_has_sparseinodes(mp) && 732 mp->m_sb.sb_spino_align != 733 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 734 xfs_warn(mp, 735 "Sparse inode block alignment (%u) must match cluster size (%llu).", 736 mp->m_sb.sb_spino_align, 737 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 738 error = -EINVAL; 739 goto out_remove_uuid; 740 } 741 742 /* 743 * Check that the data (and log if separate) is an ok size. 744 */ 745 error = xfs_check_sizes(mp); 746 if (error) 747 goto out_remove_uuid; 748 749 /* 750 * Initialize realtime fields in the mount structure 751 */ 752 error = xfs_rtmount_init(mp); 753 if (error) { 754 xfs_warn(mp, "RT mount failed"); 755 goto out_remove_uuid; 756 } 757 758 /* 759 * Copies the low order bits of the timestamp and the randomly 760 * set "sequence" number out of a UUID. 761 */ 762 mp->m_fixedfsid[0] = 763 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 764 get_unaligned_be16(&sbp->sb_uuid.b[4]); 765 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 766 767 error = xfs_da_mount(mp); 768 if (error) { 769 xfs_warn(mp, "Failed dir/attr init: %d", error); 770 goto out_remove_uuid; 771 } 772 773 /* 774 * Initialize the precomputed transaction reservations values. 775 */ 776 xfs_trans_init(mp); 777 778 /* 779 * Allocate and initialize the per-ag data. 780 */ 781 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 782 if (error) { 783 xfs_warn(mp, "Failed per-ag init: %d", error); 784 goto out_free_dir; 785 } 786 787 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 788 xfs_warn(mp, "no log defined"); 789 error = -EFSCORRUPTED; 790 goto out_free_perag; 791 } 792 793 error = xfs_inodegc_register_shrinker(mp); 794 if (error) 795 goto out_fail_wait; 796 797 /* 798 * Log's mount-time initialization. The first part of recovery can place 799 * some items on the AIL, to be handled when recovery is finished or 800 * cancelled. 801 */ 802 error = xfs_log_mount(mp, mp->m_logdev_targp, 803 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 804 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 805 if (error) { 806 xfs_warn(mp, "log mount failed"); 807 goto out_inodegc_shrinker; 808 } 809 810 /* Enable background inode inactivation workers. */ 811 xfs_inodegc_start(mp); 812 xfs_blockgc_start(mp); 813 814 /* 815 * Now that we've recovered any pending superblock feature bit 816 * additions, we can finish setting up the attr2 behaviour for the 817 * mount. The noattr2 option overrides the superblock flag, so only 818 * check the superblock feature flag if the mount option is not set. 819 */ 820 if (xfs_has_noattr2(mp)) { 821 mp->m_features &= ~XFS_FEAT_ATTR2; 822 } else if (!xfs_has_attr2(mp) && 823 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 824 mp->m_features |= XFS_FEAT_ATTR2; 825 } 826 827 /* 828 * Get and sanity-check the root inode. 829 * Save the pointer to it in the mount structure. 830 */ 831 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 832 XFS_ILOCK_EXCL, &rip); 833 if (error) { 834 xfs_warn(mp, 835 "Failed to read root inode 0x%llx, error %d", 836 sbp->sb_rootino, -error); 837 goto out_log_dealloc; 838 } 839 840 ASSERT(rip != NULL); 841 842 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 843 xfs_warn(mp, "corrupted root inode %llu: not a directory", 844 (unsigned long long)rip->i_ino); 845 xfs_iunlock(rip, XFS_ILOCK_EXCL); 846 error = -EFSCORRUPTED; 847 goto out_rele_rip; 848 } 849 mp->m_rootip = rip; /* save it */ 850 851 xfs_iunlock(rip, XFS_ILOCK_EXCL); 852 853 /* 854 * Initialize realtime inode pointers in the mount structure 855 */ 856 error = xfs_rtmount_inodes(mp); 857 if (error) { 858 /* 859 * Free up the root inode. 860 */ 861 xfs_warn(mp, "failed to read RT inodes"); 862 goto out_rele_rip; 863 } 864 865 /* Make sure the summary counts are ok. */ 866 error = xfs_check_summary_counts(mp); 867 if (error) 868 goto out_rtunmount; 869 870 /* 871 * If this is a read-only mount defer the superblock updates until 872 * the next remount into writeable mode. Otherwise we would never 873 * perform the update e.g. for the root filesystem. 874 */ 875 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 876 error = xfs_sync_sb(mp, false); 877 if (error) { 878 xfs_warn(mp, "failed to write sb changes"); 879 goto out_rtunmount; 880 } 881 } 882 883 /* 884 * Initialise the XFS quota management subsystem for this mount 885 */ 886 if (XFS_IS_QUOTA_ON(mp)) { 887 error = xfs_qm_newmount(mp, "amount, "aflags); 888 if (error) 889 goto out_rtunmount; 890 } else { 891 /* 892 * If a file system had quotas running earlier, but decided to 893 * mount without -o uquota/pquota/gquota options, revoke the 894 * quotachecked license. 895 */ 896 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 897 xfs_notice(mp, "resetting quota flags"); 898 error = xfs_mount_reset_sbqflags(mp); 899 if (error) 900 goto out_rtunmount; 901 } 902 } 903 904 /* 905 * Finish recovering the file system. This part needed to be delayed 906 * until after the root and real-time bitmap inodes were consistently 907 * read in. Temporarily create per-AG space reservations for metadata 908 * btree shape changes because space freeing transactions (for inode 909 * inactivation) require the per-AG reservation in lieu of reserving 910 * blocks. 911 */ 912 error = xfs_fs_reserve_ag_blocks(mp); 913 if (error && error == -ENOSPC) 914 xfs_warn(mp, 915 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 916 error = xfs_log_mount_finish(mp); 917 xfs_fs_unreserve_ag_blocks(mp); 918 if (error) { 919 xfs_warn(mp, "log mount finish failed"); 920 goto out_rtunmount; 921 } 922 923 /* 924 * Now the log is fully replayed, we can transition to full read-only 925 * mode for read-only mounts. This will sync all the metadata and clean 926 * the log so that the recovery we just performed does not have to be 927 * replayed again on the next mount. 928 * 929 * We use the same quiesce mechanism as the rw->ro remount, as they are 930 * semantically identical operations. 931 */ 932 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 933 xfs_log_clean(mp); 934 935 /* 936 * Complete the quota initialisation, post-log-replay component. 937 */ 938 if (quotamount) { 939 ASSERT(mp->m_qflags == 0); 940 mp->m_qflags = quotaflags; 941 942 xfs_qm_mount_quotas(mp); 943 } 944 945 /* 946 * Now we are mounted, reserve a small amount of unused space for 947 * privileged transactions. This is needed so that transaction 948 * space required for critical operations can dip into this pool 949 * when at ENOSPC. This is needed for operations like create with 950 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 951 * are not allowed to use this reserved space. 952 * 953 * This may drive us straight to ENOSPC on mount, but that implies 954 * we were already there on the last unmount. Warn if this occurs. 955 */ 956 if (!xfs_is_readonly(mp)) { 957 resblks = xfs_default_resblks(mp); 958 error = xfs_reserve_blocks(mp, &resblks, NULL); 959 if (error) 960 xfs_warn(mp, 961 "Unable to allocate reserve blocks. Continuing without reserve pool."); 962 963 /* Reserve AG blocks for future btree expansion. */ 964 error = xfs_fs_reserve_ag_blocks(mp); 965 if (error && error != -ENOSPC) 966 goto out_agresv; 967 } 968 969 return 0; 970 971 out_agresv: 972 xfs_fs_unreserve_ag_blocks(mp); 973 xfs_qm_unmount_quotas(mp); 974 out_rtunmount: 975 xfs_rtunmount_inodes(mp); 976 out_rele_rip: 977 xfs_irele(rip); 978 /* Clean out dquots that might be in memory after quotacheck. */ 979 xfs_qm_unmount(mp); 980 981 /* 982 * Inactivate all inodes that might still be in memory after a log 983 * intent recovery failure so that reclaim can free them. Metadata 984 * inodes and the root directory shouldn't need inactivation, but the 985 * mount failed for some reason, so pull down all the state and flee. 986 */ 987 xfs_inodegc_flush(mp); 988 989 /* 990 * Flush all inode reclamation work and flush the log. 991 * We have to do this /after/ rtunmount and qm_unmount because those 992 * two will have scheduled delayed reclaim for the rt/quota inodes. 993 * 994 * This is slightly different from the unmountfs call sequence 995 * because we could be tearing down a partially set up mount. In 996 * particular, if log_mount_finish fails we bail out without calling 997 * qm_unmount_quotas and therefore rely on qm_unmount to release the 998 * quota inodes. 999 */ 1000 xfs_unmount_flush_inodes(mp); 1001 out_log_dealloc: 1002 xfs_log_mount_cancel(mp); 1003 out_inodegc_shrinker: 1004 unregister_shrinker(&mp->m_inodegc_shrinker); 1005 out_fail_wait: 1006 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1007 xfs_buftarg_drain(mp->m_logdev_targp); 1008 xfs_buftarg_drain(mp->m_ddev_targp); 1009 out_free_perag: 1010 xfs_free_perag(mp); 1011 out_free_dir: 1012 xfs_da_unmount(mp); 1013 out_remove_uuid: 1014 xfs_uuid_unmount(mp); 1015 out_remove_errortag: 1016 xfs_errortag_del(mp); 1017 out_remove_error_sysfs: 1018 xfs_error_sysfs_del(mp); 1019 out_del_stats: 1020 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1021 out_remove_sysfs: 1022 xfs_sysfs_del(&mp->m_kobj); 1023 out: 1024 return error; 1025 } 1026 1027 /* 1028 * This flushes out the inodes,dquots and the superblock, unmounts the 1029 * log and makes sure that incore structures are freed. 1030 */ 1031 void 1032 xfs_unmountfs( 1033 struct xfs_mount *mp) 1034 { 1035 uint64_t resblks; 1036 int error; 1037 1038 /* 1039 * Perform all on-disk metadata updates required to inactivate inodes 1040 * that the VFS evicted earlier in the unmount process. Freeing inodes 1041 * and discarding CoW fork preallocations can cause shape changes to 1042 * the free inode and refcount btrees, respectively, so we must finish 1043 * this before we discard the metadata space reservations. Metadata 1044 * inodes and the root directory do not require inactivation. 1045 */ 1046 xfs_inodegc_flush(mp); 1047 1048 xfs_blockgc_stop(mp); 1049 xfs_fs_unreserve_ag_blocks(mp); 1050 xfs_qm_unmount_quotas(mp); 1051 xfs_rtunmount_inodes(mp); 1052 xfs_irele(mp->m_rootip); 1053 1054 xfs_unmount_flush_inodes(mp); 1055 1056 xfs_qm_unmount(mp); 1057 1058 /* 1059 * Unreserve any blocks we have so that when we unmount we don't account 1060 * the reserved free space as used. This is really only necessary for 1061 * lazy superblock counting because it trusts the incore superblock 1062 * counters to be absolutely correct on clean unmount. 1063 * 1064 * We don't bother correcting this elsewhere for lazy superblock 1065 * counting because on mount of an unclean filesystem we reconstruct the 1066 * correct counter value and this is irrelevant. 1067 * 1068 * For non-lazy counter filesystems, this doesn't matter at all because 1069 * we only every apply deltas to the superblock and hence the incore 1070 * value does not matter.... 1071 */ 1072 resblks = 0; 1073 error = xfs_reserve_blocks(mp, &resblks, NULL); 1074 if (error) 1075 xfs_warn(mp, "Unable to free reserved block pool. " 1076 "Freespace may not be correct on next mount."); 1077 1078 xfs_log_unmount(mp); 1079 xfs_da_unmount(mp); 1080 xfs_uuid_unmount(mp); 1081 1082 #if defined(DEBUG) 1083 xfs_errortag_clearall(mp); 1084 #endif 1085 unregister_shrinker(&mp->m_inodegc_shrinker); 1086 xfs_free_perag(mp); 1087 1088 xfs_errortag_del(mp); 1089 xfs_error_sysfs_del(mp); 1090 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1091 xfs_sysfs_del(&mp->m_kobj); 1092 } 1093 1094 /* 1095 * Determine whether modifications can proceed. The caller specifies the minimum 1096 * freeze level for which modifications should not be allowed. This allows 1097 * certain operations to proceed while the freeze sequence is in progress, if 1098 * necessary. 1099 */ 1100 bool 1101 xfs_fs_writable( 1102 struct xfs_mount *mp, 1103 int level) 1104 { 1105 ASSERT(level > SB_UNFROZEN); 1106 if ((mp->m_super->s_writers.frozen >= level) || 1107 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1108 return false; 1109 1110 return true; 1111 } 1112 1113 /* Adjust m_fdblocks or m_frextents. */ 1114 int 1115 xfs_mod_freecounter( 1116 struct xfs_mount *mp, 1117 struct percpu_counter *counter, 1118 int64_t delta, 1119 bool rsvd) 1120 { 1121 int64_t lcounter; 1122 long long res_used; 1123 uint64_t set_aside = 0; 1124 s32 batch; 1125 bool has_resv_pool; 1126 1127 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1128 has_resv_pool = (counter == &mp->m_fdblocks); 1129 if (rsvd) 1130 ASSERT(has_resv_pool); 1131 1132 if (delta > 0) { 1133 /* 1134 * If the reserve pool is depleted, put blocks back into it 1135 * first. Most of the time the pool is full. 1136 */ 1137 if (likely(!has_resv_pool || 1138 mp->m_resblks == mp->m_resblks_avail)) { 1139 percpu_counter_add(counter, delta); 1140 return 0; 1141 } 1142 1143 spin_lock(&mp->m_sb_lock); 1144 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1145 1146 if (res_used > delta) { 1147 mp->m_resblks_avail += delta; 1148 } else { 1149 delta -= res_used; 1150 mp->m_resblks_avail = mp->m_resblks; 1151 percpu_counter_add(counter, delta); 1152 } 1153 spin_unlock(&mp->m_sb_lock); 1154 return 0; 1155 } 1156 1157 /* 1158 * Taking blocks away, need to be more accurate the closer we 1159 * are to zero. 1160 * 1161 * If the counter has a value of less than 2 * max batch size, 1162 * then make everything serialise as we are real close to 1163 * ENOSPC. 1164 */ 1165 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1166 XFS_FDBLOCKS_BATCH) < 0) 1167 batch = 1; 1168 else 1169 batch = XFS_FDBLOCKS_BATCH; 1170 1171 /* 1172 * Set aside allocbt blocks because these blocks are tracked as free 1173 * space but not available for allocation. Technically this means that a 1174 * single reservation cannot consume all remaining free space, but the 1175 * ratio of allocbt blocks to usable free blocks should be rather small. 1176 * The tradeoff without this is that filesystems that maintain high 1177 * perag block reservations can over reserve physical block availability 1178 * and fail physical allocation, which leads to much more serious 1179 * problems (i.e. transaction abort, pagecache discards, etc.) than 1180 * slightly premature -ENOSPC. 1181 */ 1182 if (has_resv_pool) 1183 set_aside = xfs_fdblocks_unavailable(mp); 1184 percpu_counter_add_batch(counter, delta, batch); 1185 if (__percpu_counter_compare(counter, set_aside, 1186 XFS_FDBLOCKS_BATCH) >= 0) { 1187 /* we had space! */ 1188 return 0; 1189 } 1190 1191 /* 1192 * lock up the sb for dipping into reserves before releasing the space 1193 * that took us to ENOSPC. 1194 */ 1195 spin_lock(&mp->m_sb_lock); 1196 percpu_counter_add(counter, -delta); 1197 if (!has_resv_pool || !rsvd) 1198 goto fdblocks_enospc; 1199 1200 lcounter = (long long)mp->m_resblks_avail + delta; 1201 if (lcounter >= 0) { 1202 mp->m_resblks_avail = lcounter; 1203 spin_unlock(&mp->m_sb_lock); 1204 return 0; 1205 } 1206 xfs_warn_once(mp, 1207 "Reserve blocks depleted! Consider increasing reserve pool size."); 1208 1209 fdblocks_enospc: 1210 spin_unlock(&mp->m_sb_lock); 1211 return -ENOSPC; 1212 } 1213 1214 /* 1215 * Used to free the superblock along various error paths. 1216 */ 1217 void 1218 xfs_freesb( 1219 struct xfs_mount *mp) 1220 { 1221 struct xfs_buf *bp = mp->m_sb_bp; 1222 1223 xfs_buf_lock(bp); 1224 mp->m_sb_bp = NULL; 1225 xfs_buf_relse(bp); 1226 } 1227 1228 /* 1229 * If the underlying (data/log/rt) device is readonly, there are some 1230 * operations that cannot proceed. 1231 */ 1232 int 1233 xfs_dev_is_read_only( 1234 struct xfs_mount *mp, 1235 char *message) 1236 { 1237 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1238 xfs_readonly_buftarg(mp->m_logdev_targp) || 1239 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1240 xfs_notice(mp, "%s required on read-only device.", message); 1241 xfs_notice(mp, "write access unavailable, cannot proceed."); 1242 return -EROFS; 1243 } 1244 return 0; 1245 } 1246 1247 /* Force the summary counters to be recalculated at next mount. */ 1248 void 1249 xfs_force_summary_recalc( 1250 struct xfs_mount *mp) 1251 { 1252 if (!xfs_has_lazysbcount(mp)) 1253 return; 1254 1255 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1256 } 1257 1258 /* 1259 * Enable a log incompat feature flag in the primary superblock. The caller 1260 * cannot have any other transactions in progress. 1261 */ 1262 int 1263 xfs_add_incompat_log_feature( 1264 struct xfs_mount *mp, 1265 uint32_t feature) 1266 { 1267 struct xfs_dsb *dsb; 1268 int error; 1269 1270 ASSERT(hweight32(feature) == 1); 1271 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1272 1273 /* 1274 * Force the log to disk and kick the background AIL thread to reduce 1275 * the chances that the bwrite will stall waiting for the AIL to unpin 1276 * the primary superblock buffer. This isn't a data integrity 1277 * operation, so we don't need a synchronous push. 1278 */ 1279 error = xfs_log_force(mp, XFS_LOG_SYNC); 1280 if (error) 1281 return error; 1282 xfs_ail_push_all(mp->m_ail); 1283 1284 /* 1285 * Lock the primary superblock buffer to serialize all callers that 1286 * are trying to set feature bits. 1287 */ 1288 xfs_buf_lock(mp->m_sb_bp); 1289 xfs_buf_hold(mp->m_sb_bp); 1290 1291 if (xfs_is_shutdown(mp)) { 1292 error = -EIO; 1293 goto rele; 1294 } 1295 1296 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1297 goto rele; 1298 1299 /* 1300 * Write the primary superblock to disk immediately, because we need 1301 * the log_incompat bit to be set in the primary super now to protect 1302 * the log items that we're going to commit later. 1303 */ 1304 dsb = mp->m_sb_bp->b_addr; 1305 xfs_sb_to_disk(dsb, &mp->m_sb); 1306 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1307 error = xfs_bwrite(mp->m_sb_bp); 1308 if (error) 1309 goto shutdown; 1310 1311 /* 1312 * Add the feature bits to the incore superblock before we unlock the 1313 * buffer. 1314 */ 1315 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1316 xfs_buf_relse(mp->m_sb_bp); 1317 1318 /* Log the superblock to disk. */ 1319 return xfs_sync_sb(mp, false); 1320 shutdown: 1321 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1322 rele: 1323 xfs_buf_relse(mp->m_sb_bp); 1324 return error; 1325 } 1326 1327 /* 1328 * Clear all the log incompat flags from the superblock. 1329 * 1330 * The caller cannot be in a transaction, must ensure that the log does not 1331 * contain any log items protected by any log incompat bit, and must ensure 1332 * that there are no other threads that depend on the state of the log incompat 1333 * feature flags in the primary super. 1334 * 1335 * Returns true if the superblock is dirty. 1336 */ 1337 bool 1338 xfs_clear_incompat_log_features( 1339 struct xfs_mount *mp) 1340 { 1341 bool ret = false; 1342 1343 if (!xfs_has_crc(mp) || 1344 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1345 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1346 xfs_is_shutdown(mp)) 1347 return false; 1348 1349 /* 1350 * Update the incore superblock. We synchronize on the primary super 1351 * buffer lock to be consistent with the add function, though at least 1352 * in theory this shouldn't be necessary. 1353 */ 1354 xfs_buf_lock(mp->m_sb_bp); 1355 xfs_buf_hold(mp->m_sb_bp); 1356 1357 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1358 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1359 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1360 ret = true; 1361 } 1362 1363 xfs_buf_relse(mp->m_sb_bp); 1364 return ret; 1365 } 1366 1367 /* 1368 * Update the in-core delayed block counter. 1369 * 1370 * We prefer to update the counter without having to take a spinlock for every 1371 * counter update (i.e. batching). Each change to delayed allocation 1372 * reservations can change can easily exceed the default percpu counter 1373 * batching, so we use a larger batch factor here. 1374 * 1375 * Note that we don't currently have any callers requiring fast summation 1376 * (e.g. percpu_counter_read) so we can use a big batch value here. 1377 */ 1378 #define XFS_DELALLOC_BATCH (4096) 1379 void 1380 xfs_mod_delalloc( 1381 struct xfs_mount *mp, 1382 int64_t delta) 1383 { 1384 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1385 XFS_DELALLOC_BATCH); 1386 } 1387