1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_sysfs.h" 45 #include "xfs_rmap_btree.h" 46 #include "xfs_refcount_btree.h" 47 #include "xfs_reflink.h" 48 #include "xfs_extent_busy.h" 49 50 51 static DEFINE_MUTEX(xfs_uuid_table_mutex); 52 static int xfs_uuid_table_size; 53 static uuid_t *xfs_uuid_table; 54 55 void 56 xfs_uuid_table_free(void) 57 { 58 if (xfs_uuid_table_size == 0) 59 return; 60 kmem_free(xfs_uuid_table); 61 xfs_uuid_table = NULL; 62 xfs_uuid_table_size = 0; 63 } 64 65 /* 66 * See if the UUID is unique among mounted XFS filesystems. 67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 68 */ 69 STATIC int 70 xfs_uuid_mount( 71 struct xfs_mount *mp) 72 { 73 uuid_t *uuid = &mp->m_sb.sb_uuid; 74 int hole, i; 75 76 /* Publish UUID in struct super_block */ 77 uuid_copy(&mp->m_super->s_uuid, uuid); 78 79 if (mp->m_flags & XFS_MOUNT_NOUUID) 80 return 0; 81 82 if (uuid_is_null(uuid)) { 83 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 84 return -EINVAL; 85 } 86 87 mutex_lock(&xfs_uuid_table_mutex); 88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 89 if (uuid_is_null(&xfs_uuid_table[i])) { 90 hole = i; 91 continue; 92 } 93 if (uuid_equal(uuid, &xfs_uuid_table[i])) 94 goto out_duplicate; 95 } 96 97 if (hole < 0) { 98 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 100 KM_SLEEP); 101 hole = xfs_uuid_table_size++; 102 } 103 xfs_uuid_table[hole] = *uuid; 104 mutex_unlock(&xfs_uuid_table_mutex); 105 106 return 0; 107 108 out_duplicate: 109 mutex_unlock(&xfs_uuid_table_mutex); 110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 111 return -EINVAL; 112 } 113 114 STATIC void 115 xfs_uuid_unmount( 116 struct xfs_mount *mp) 117 { 118 uuid_t *uuid = &mp->m_sb.sb_uuid; 119 int i; 120 121 if (mp->m_flags & XFS_MOUNT_NOUUID) 122 return; 123 124 mutex_lock(&xfs_uuid_table_mutex); 125 for (i = 0; i < xfs_uuid_table_size; i++) { 126 if (uuid_is_null(&xfs_uuid_table[i])) 127 continue; 128 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 129 continue; 130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 131 break; 132 } 133 ASSERT(i < xfs_uuid_table_size); 134 mutex_unlock(&xfs_uuid_table_mutex); 135 } 136 137 138 STATIC void 139 __xfs_free_perag( 140 struct rcu_head *head) 141 { 142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 143 144 ASSERT(atomic_read(&pag->pag_ref) == 0); 145 kmem_free(pag); 146 } 147 148 /* 149 * Free up the per-ag resources associated with the mount structure. 150 */ 151 STATIC void 152 xfs_free_perag( 153 xfs_mount_t *mp) 154 { 155 xfs_agnumber_t agno; 156 struct xfs_perag *pag; 157 158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 159 spin_lock(&mp->m_perag_lock); 160 pag = radix_tree_delete(&mp->m_perag_tree, agno); 161 spin_unlock(&mp->m_perag_lock); 162 ASSERT(pag); 163 ASSERT(atomic_read(&pag->pag_ref) == 0); 164 xfs_buf_hash_destroy(pag); 165 call_rcu(&pag->rcu_head, __xfs_free_perag); 166 } 167 } 168 169 /* 170 * Check size of device based on the (data/realtime) block count. 171 * Note: this check is used by the growfs code as well as mount. 172 */ 173 int 174 xfs_sb_validate_fsb_count( 175 xfs_sb_t *sbp, 176 __uint64_t nblocks) 177 { 178 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 179 ASSERT(sbp->sb_blocklog >= BBSHIFT); 180 181 /* Limited by ULONG_MAX of page cache index */ 182 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 183 return -EFBIG; 184 return 0; 185 } 186 187 int 188 xfs_initialize_perag( 189 xfs_mount_t *mp, 190 xfs_agnumber_t agcount, 191 xfs_agnumber_t *maxagi) 192 { 193 xfs_agnumber_t index; 194 xfs_agnumber_t first_initialised = NULLAGNUMBER; 195 xfs_perag_t *pag; 196 int error = -ENOMEM; 197 198 /* 199 * Walk the current per-ag tree so we don't try to initialise AGs 200 * that already exist (growfs case). Allocate and insert all the 201 * AGs we don't find ready for initialisation. 202 */ 203 for (index = 0; index < agcount; index++) { 204 pag = xfs_perag_get(mp, index); 205 if (pag) { 206 xfs_perag_put(pag); 207 continue; 208 } 209 210 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 211 if (!pag) 212 goto out_unwind_new_pags; 213 pag->pag_agno = index; 214 pag->pag_mount = mp; 215 spin_lock_init(&pag->pag_ici_lock); 216 mutex_init(&pag->pag_ici_reclaim_lock); 217 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 218 if (xfs_buf_hash_init(pag)) 219 goto out_free_pag; 220 init_waitqueue_head(&pag->pagb_wait); 221 222 if (radix_tree_preload(GFP_NOFS)) 223 goto out_hash_destroy; 224 225 spin_lock(&mp->m_perag_lock); 226 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 227 BUG(); 228 spin_unlock(&mp->m_perag_lock); 229 radix_tree_preload_end(); 230 error = -EEXIST; 231 goto out_hash_destroy; 232 } 233 spin_unlock(&mp->m_perag_lock); 234 radix_tree_preload_end(); 235 /* first new pag is fully initialized */ 236 if (first_initialised == NULLAGNUMBER) 237 first_initialised = index; 238 } 239 240 index = xfs_set_inode_alloc(mp, agcount); 241 242 if (maxagi) 243 *maxagi = index; 244 245 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 246 return 0; 247 248 out_hash_destroy: 249 xfs_buf_hash_destroy(pag); 250 out_free_pag: 251 kmem_free(pag); 252 out_unwind_new_pags: 253 /* unwind any prior newly initialized pags */ 254 for (index = first_initialised; index < agcount; index++) { 255 pag = radix_tree_delete(&mp->m_perag_tree, index); 256 if (!pag) 257 break; 258 xfs_buf_hash_destroy(pag); 259 kmem_free(pag); 260 } 261 return error; 262 } 263 264 /* 265 * xfs_readsb 266 * 267 * Does the initial read of the superblock. 268 */ 269 int 270 xfs_readsb( 271 struct xfs_mount *mp, 272 int flags) 273 { 274 unsigned int sector_size; 275 struct xfs_buf *bp; 276 struct xfs_sb *sbp = &mp->m_sb; 277 int error; 278 int loud = !(flags & XFS_MFSI_QUIET); 279 const struct xfs_buf_ops *buf_ops; 280 281 ASSERT(mp->m_sb_bp == NULL); 282 ASSERT(mp->m_ddev_targp != NULL); 283 284 /* 285 * For the initial read, we must guess at the sector 286 * size based on the block device. It's enough to 287 * get the sb_sectsize out of the superblock and 288 * then reread with the proper length. 289 * We don't verify it yet, because it may not be complete. 290 */ 291 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 292 buf_ops = NULL; 293 294 /* 295 * Allocate a (locked) buffer to hold the superblock. This will be kept 296 * around at all times to optimize access to the superblock. Therefore, 297 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 298 * elevated. 299 */ 300 reread: 301 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 302 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 303 buf_ops); 304 if (error) { 305 if (loud) 306 xfs_warn(mp, "SB validate failed with error %d.", error); 307 /* bad CRC means corrupted metadata */ 308 if (error == -EFSBADCRC) 309 error = -EFSCORRUPTED; 310 return error; 311 } 312 313 /* 314 * Initialize the mount structure from the superblock. 315 */ 316 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 317 318 /* 319 * If we haven't validated the superblock, do so now before we try 320 * to check the sector size and reread the superblock appropriately. 321 */ 322 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 323 if (loud) 324 xfs_warn(mp, "Invalid superblock magic number"); 325 error = -EINVAL; 326 goto release_buf; 327 } 328 329 /* 330 * We must be able to do sector-sized and sector-aligned IO. 331 */ 332 if (sector_size > sbp->sb_sectsize) { 333 if (loud) 334 xfs_warn(mp, "device supports %u byte sectors (not %u)", 335 sector_size, sbp->sb_sectsize); 336 error = -ENOSYS; 337 goto release_buf; 338 } 339 340 if (buf_ops == NULL) { 341 /* 342 * Re-read the superblock so the buffer is correctly sized, 343 * and properly verified. 344 */ 345 xfs_buf_relse(bp); 346 sector_size = sbp->sb_sectsize; 347 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 348 goto reread; 349 } 350 351 xfs_reinit_percpu_counters(mp); 352 353 /* no need to be quiet anymore, so reset the buf ops */ 354 bp->b_ops = &xfs_sb_buf_ops; 355 356 mp->m_sb_bp = bp; 357 xfs_buf_unlock(bp); 358 return 0; 359 360 release_buf: 361 xfs_buf_relse(bp); 362 return error; 363 } 364 365 /* 366 * Update alignment values based on mount options and sb values 367 */ 368 STATIC int 369 xfs_update_alignment(xfs_mount_t *mp) 370 { 371 xfs_sb_t *sbp = &(mp->m_sb); 372 373 if (mp->m_dalign) { 374 /* 375 * If stripe unit and stripe width are not multiples 376 * of the fs blocksize turn off alignment. 377 */ 378 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 379 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 380 xfs_warn(mp, 381 "alignment check failed: sunit/swidth vs. blocksize(%d)", 382 sbp->sb_blocksize); 383 return -EINVAL; 384 } else { 385 /* 386 * Convert the stripe unit and width to FSBs. 387 */ 388 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 389 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 390 xfs_warn(mp, 391 "alignment check failed: sunit/swidth vs. agsize(%d)", 392 sbp->sb_agblocks); 393 return -EINVAL; 394 } else if (mp->m_dalign) { 395 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 396 } else { 397 xfs_warn(mp, 398 "alignment check failed: sunit(%d) less than bsize(%d)", 399 mp->m_dalign, sbp->sb_blocksize); 400 return -EINVAL; 401 } 402 } 403 404 /* 405 * Update superblock with new values 406 * and log changes 407 */ 408 if (xfs_sb_version_hasdalign(sbp)) { 409 if (sbp->sb_unit != mp->m_dalign) { 410 sbp->sb_unit = mp->m_dalign; 411 mp->m_update_sb = true; 412 } 413 if (sbp->sb_width != mp->m_swidth) { 414 sbp->sb_width = mp->m_swidth; 415 mp->m_update_sb = true; 416 } 417 } else { 418 xfs_warn(mp, 419 "cannot change alignment: superblock does not support data alignment"); 420 return -EINVAL; 421 } 422 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 423 xfs_sb_version_hasdalign(&mp->m_sb)) { 424 mp->m_dalign = sbp->sb_unit; 425 mp->m_swidth = sbp->sb_width; 426 } 427 428 return 0; 429 } 430 431 /* 432 * Set the maximum inode count for this filesystem 433 */ 434 STATIC void 435 xfs_set_maxicount(xfs_mount_t *mp) 436 { 437 xfs_sb_t *sbp = &(mp->m_sb); 438 __uint64_t icount; 439 440 if (sbp->sb_imax_pct) { 441 /* 442 * Make sure the maximum inode count is a multiple 443 * of the units we allocate inodes in. 444 */ 445 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 446 do_div(icount, 100); 447 do_div(icount, mp->m_ialloc_blks); 448 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 449 sbp->sb_inopblog; 450 } else { 451 mp->m_maxicount = 0; 452 } 453 } 454 455 /* 456 * Set the default minimum read and write sizes unless 457 * already specified in a mount option. 458 * We use smaller I/O sizes when the file system 459 * is being used for NFS service (wsync mount option). 460 */ 461 STATIC void 462 xfs_set_rw_sizes(xfs_mount_t *mp) 463 { 464 xfs_sb_t *sbp = &(mp->m_sb); 465 int readio_log, writeio_log; 466 467 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 468 if (mp->m_flags & XFS_MOUNT_WSYNC) { 469 readio_log = XFS_WSYNC_READIO_LOG; 470 writeio_log = XFS_WSYNC_WRITEIO_LOG; 471 } else { 472 readio_log = XFS_READIO_LOG_LARGE; 473 writeio_log = XFS_WRITEIO_LOG_LARGE; 474 } 475 } else { 476 readio_log = mp->m_readio_log; 477 writeio_log = mp->m_writeio_log; 478 } 479 480 if (sbp->sb_blocklog > readio_log) { 481 mp->m_readio_log = sbp->sb_blocklog; 482 } else { 483 mp->m_readio_log = readio_log; 484 } 485 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 486 if (sbp->sb_blocklog > writeio_log) { 487 mp->m_writeio_log = sbp->sb_blocklog; 488 } else { 489 mp->m_writeio_log = writeio_log; 490 } 491 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 492 } 493 494 /* 495 * precalculate the low space thresholds for dynamic speculative preallocation. 496 */ 497 void 498 xfs_set_low_space_thresholds( 499 struct xfs_mount *mp) 500 { 501 int i; 502 503 for (i = 0; i < XFS_LOWSP_MAX; i++) { 504 __uint64_t space = mp->m_sb.sb_dblocks; 505 506 do_div(space, 100); 507 mp->m_low_space[i] = space * (i + 1); 508 } 509 } 510 511 512 /* 513 * Set whether we're using inode alignment. 514 */ 515 STATIC void 516 xfs_set_inoalignment(xfs_mount_t *mp) 517 { 518 if (xfs_sb_version_hasalign(&mp->m_sb) && 519 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 520 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 521 else 522 mp->m_inoalign_mask = 0; 523 /* 524 * If we are using stripe alignment, check whether 525 * the stripe unit is a multiple of the inode alignment 526 */ 527 if (mp->m_dalign && mp->m_inoalign_mask && 528 !(mp->m_dalign & mp->m_inoalign_mask)) 529 mp->m_sinoalign = mp->m_dalign; 530 else 531 mp->m_sinoalign = 0; 532 } 533 534 /* 535 * Check that the data (and log if separate) is an ok size. 536 */ 537 STATIC int 538 xfs_check_sizes( 539 struct xfs_mount *mp) 540 { 541 struct xfs_buf *bp; 542 xfs_daddr_t d; 543 int error; 544 545 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 546 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 547 xfs_warn(mp, "filesystem size mismatch detected"); 548 return -EFBIG; 549 } 550 error = xfs_buf_read_uncached(mp->m_ddev_targp, 551 d - XFS_FSS_TO_BB(mp, 1), 552 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 553 if (error) { 554 xfs_warn(mp, "last sector read failed"); 555 return error; 556 } 557 xfs_buf_relse(bp); 558 559 if (mp->m_logdev_targp == mp->m_ddev_targp) 560 return 0; 561 562 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 563 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 564 xfs_warn(mp, "log size mismatch detected"); 565 return -EFBIG; 566 } 567 error = xfs_buf_read_uncached(mp->m_logdev_targp, 568 d - XFS_FSB_TO_BB(mp, 1), 569 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 570 if (error) { 571 xfs_warn(mp, "log device read failed"); 572 return error; 573 } 574 xfs_buf_relse(bp); 575 return 0; 576 } 577 578 /* 579 * Clear the quotaflags in memory and in the superblock. 580 */ 581 int 582 xfs_mount_reset_sbqflags( 583 struct xfs_mount *mp) 584 { 585 mp->m_qflags = 0; 586 587 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 588 if (mp->m_sb.sb_qflags == 0) 589 return 0; 590 spin_lock(&mp->m_sb_lock); 591 mp->m_sb.sb_qflags = 0; 592 spin_unlock(&mp->m_sb_lock); 593 594 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 595 return 0; 596 597 return xfs_sync_sb(mp, false); 598 } 599 600 __uint64_t 601 xfs_default_resblks(xfs_mount_t *mp) 602 { 603 __uint64_t resblks; 604 605 /* 606 * We default to 5% or 8192 fsbs of space reserved, whichever is 607 * smaller. This is intended to cover concurrent allocation 608 * transactions when we initially hit enospc. These each require a 4 609 * block reservation. Hence by default we cover roughly 2000 concurrent 610 * allocation reservations. 611 */ 612 resblks = mp->m_sb.sb_dblocks; 613 do_div(resblks, 20); 614 resblks = min_t(__uint64_t, resblks, 8192); 615 return resblks; 616 } 617 618 /* 619 * This function does the following on an initial mount of a file system: 620 * - reads the superblock from disk and init the mount struct 621 * - if we're a 32-bit kernel, do a size check on the superblock 622 * so we don't mount terabyte filesystems 623 * - init mount struct realtime fields 624 * - allocate inode hash table for fs 625 * - init directory manager 626 * - perform recovery and init the log manager 627 */ 628 int 629 xfs_mountfs( 630 struct xfs_mount *mp) 631 { 632 struct xfs_sb *sbp = &(mp->m_sb); 633 struct xfs_inode *rip; 634 __uint64_t resblks; 635 uint quotamount = 0; 636 uint quotaflags = 0; 637 int error = 0; 638 639 xfs_sb_mount_common(mp, sbp); 640 641 /* 642 * Check for a mismatched features2 values. Older kernels read & wrote 643 * into the wrong sb offset for sb_features2 on some platforms due to 644 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 645 * which made older superblock reading/writing routines swap it as a 646 * 64-bit value. 647 * 648 * For backwards compatibility, we make both slots equal. 649 * 650 * If we detect a mismatched field, we OR the set bits into the existing 651 * features2 field in case it has already been modified; we don't want 652 * to lose any features. We then update the bad location with the ORed 653 * value so that older kernels will see any features2 flags. The 654 * superblock writeback code ensures the new sb_features2 is copied to 655 * sb_bad_features2 before it is logged or written to disk. 656 */ 657 if (xfs_sb_has_mismatched_features2(sbp)) { 658 xfs_warn(mp, "correcting sb_features alignment problem"); 659 sbp->sb_features2 |= sbp->sb_bad_features2; 660 mp->m_update_sb = true; 661 662 /* 663 * Re-check for ATTR2 in case it was found in bad_features2 664 * slot. 665 */ 666 if (xfs_sb_version_hasattr2(&mp->m_sb) && 667 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 668 mp->m_flags |= XFS_MOUNT_ATTR2; 669 } 670 671 if (xfs_sb_version_hasattr2(&mp->m_sb) && 672 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 673 xfs_sb_version_removeattr2(&mp->m_sb); 674 mp->m_update_sb = true; 675 676 /* update sb_versionnum for the clearing of the morebits */ 677 if (!sbp->sb_features2) 678 mp->m_update_sb = true; 679 } 680 681 /* always use v2 inodes by default now */ 682 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 683 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 684 mp->m_update_sb = true; 685 } 686 687 /* 688 * Check if sb_agblocks is aligned at stripe boundary 689 * If sb_agblocks is NOT aligned turn off m_dalign since 690 * allocator alignment is within an ag, therefore ag has 691 * to be aligned at stripe boundary. 692 */ 693 error = xfs_update_alignment(mp); 694 if (error) 695 goto out; 696 697 xfs_alloc_compute_maxlevels(mp); 698 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 699 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 700 xfs_ialloc_compute_maxlevels(mp); 701 xfs_rmapbt_compute_maxlevels(mp); 702 xfs_refcountbt_compute_maxlevels(mp); 703 704 xfs_set_maxicount(mp); 705 706 /* enable fail_at_unmount as default */ 707 mp->m_fail_unmount = 1; 708 709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 710 if (error) 711 goto out; 712 713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 714 &mp->m_kobj, "stats"); 715 if (error) 716 goto out_remove_sysfs; 717 718 error = xfs_error_sysfs_init(mp); 719 if (error) 720 goto out_del_stats; 721 722 723 error = xfs_uuid_mount(mp); 724 if (error) 725 goto out_remove_error_sysfs; 726 727 /* 728 * Set the minimum read and write sizes 729 */ 730 xfs_set_rw_sizes(mp); 731 732 /* set the low space thresholds for dynamic preallocation */ 733 xfs_set_low_space_thresholds(mp); 734 735 /* 736 * Set the inode cluster size. 737 * This may still be overridden by the file system 738 * block size if it is larger than the chosen cluster size. 739 * 740 * For v5 filesystems, scale the cluster size with the inode size to 741 * keep a constant ratio of inode per cluster buffer, but only if mkfs 742 * has set the inode alignment value appropriately for larger cluster 743 * sizes. 744 */ 745 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 746 if (xfs_sb_version_hascrc(&mp->m_sb)) { 747 int new_size = mp->m_inode_cluster_size; 748 749 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 750 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 751 mp->m_inode_cluster_size = new_size; 752 } 753 754 /* 755 * If enabled, sparse inode chunk alignment is expected to match the 756 * cluster size. Full inode chunk alignment must match the chunk size, 757 * but that is checked on sb read verification... 758 */ 759 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 760 mp->m_sb.sb_spino_align != 761 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 762 xfs_warn(mp, 763 "Sparse inode block alignment (%u) must match cluster size (%llu).", 764 mp->m_sb.sb_spino_align, 765 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 766 error = -EINVAL; 767 goto out_remove_uuid; 768 } 769 770 /* 771 * Set inode alignment fields 772 */ 773 xfs_set_inoalignment(mp); 774 775 /* 776 * Check that the data (and log if separate) is an ok size. 777 */ 778 error = xfs_check_sizes(mp); 779 if (error) 780 goto out_remove_uuid; 781 782 /* 783 * Initialize realtime fields in the mount structure 784 */ 785 error = xfs_rtmount_init(mp); 786 if (error) { 787 xfs_warn(mp, "RT mount failed"); 788 goto out_remove_uuid; 789 } 790 791 /* 792 * Copies the low order bits of the timestamp and the randomly 793 * set "sequence" number out of a UUID. 794 */ 795 mp->m_fixedfsid[0] = 796 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 797 get_unaligned_be16(&sbp->sb_uuid.b[4]); 798 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 799 800 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 801 802 error = xfs_da_mount(mp); 803 if (error) { 804 xfs_warn(mp, "Failed dir/attr init: %d", error); 805 goto out_remove_uuid; 806 } 807 808 /* 809 * Initialize the precomputed transaction reservations values. 810 */ 811 xfs_trans_init(mp); 812 813 /* 814 * Allocate and initialize the per-ag data. 815 */ 816 spin_lock_init(&mp->m_perag_lock); 817 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 818 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 819 if (error) { 820 xfs_warn(mp, "Failed per-ag init: %d", error); 821 goto out_free_dir; 822 } 823 824 if (!sbp->sb_logblocks) { 825 xfs_warn(mp, "no log defined"); 826 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 827 error = -EFSCORRUPTED; 828 goto out_free_perag; 829 } 830 831 /* 832 * Log's mount-time initialization. The first part of recovery can place 833 * some items on the AIL, to be handled when recovery is finished or 834 * cancelled. 835 */ 836 error = xfs_log_mount(mp, mp->m_logdev_targp, 837 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 838 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 839 if (error) { 840 xfs_warn(mp, "log mount failed"); 841 goto out_fail_wait; 842 } 843 844 /* 845 * Now the log is mounted, we know if it was an unclean shutdown or 846 * not. If it was, with the first phase of recovery has completed, we 847 * have consistent AG blocks on disk. We have not recovered EFIs yet, 848 * but they are recovered transactionally in the second recovery phase 849 * later. 850 * 851 * Hence we can safely re-initialise incore superblock counters from 852 * the per-ag data. These may not be correct if the filesystem was not 853 * cleanly unmounted, so we need to wait for recovery to finish before 854 * doing this. 855 * 856 * If the filesystem was cleanly unmounted, then we can trust the 857 * values in the superblock to be correct and we don't need to do 858 * anything here. 859 * 860 * If we are currently making the filesystem, the initialisation will 861 * fail as the perag data is in an undefined state. 862 */ 863 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 864 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 865 !mp->m_sb.sb_inprogress) { 866 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 867 if (error) 868 goto out_log_dealloc; 869 } 870 871 /* 872 * Get and sanity-check the root inode. 873 * Save the pointer to it in the mount structure. 874 */ 875 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 876 if (error) { 877 xfs_warn(mp, "failed to read root inode"); 878 goto out_log_dealloc; 879 } 880 881 ASSERT(rip != NULL); 882 883 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 884 xfs_warn(mp, "corrupted root inode %llu: not a directory", 885 (unsigned long long)rip->i_ino); 886 xfs_iunlock(rip, XFS_ILOCK_EXCL); 887 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 888 mp); 889 error = -EFSCORRUPTED; 890 goto out_rele_rip; 891 } 892 mp->m_rootip = rip; /* save it */ 893 894 xfs_iunlock(rip, XFS_ILOCK_EXCL); 895 896 /* 897 * Initialize realtime inode pointers in the mount structure 898 */ 899 error = xfs_rtmount_inodes(mp); 900 if (error) { 901 /* 902 * Free up the root inode. 903 */ 904 xfs_warn(mp, "failed to read RT inodes"); 905 goto out_rele_rip; 906 } 907 908 /* 909 * If this is a read-only mount defer the superblock updates until 910 * the next remount into writeable mode. Otherwise we would never 911 * perform the update e.g. for the root filesystem. 912 */ 913 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 914 error = xfs_sync_sb(mp, false); 915 if (error) { 916 xfs_warn(mp, "failed to write sb changes"); 917 goto out_rtunmount; 918 } 919 } 920 921 /* 922 * Initialise the XFS quota management subsystem for this mount 923 */ 924 if (XFS_IS_QUOTA_RUNNING(mp)) { 925 error = xfs_qm_newmount(mp, "amount, "aflags); 926 if (error) 927 goto out_rtunmount; 928 } else { 929 ASSERT(!XFS_IS_QUOTA_ON(mp)); 930 931 /* 932 * If a file system had quotas running earlier, but decided to 933 * mount without -o uquota/pquota/gquota options, revoke the 934 * quotachecked license. 935 */ 936 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 937 xfs_notice(mp, "resetting quota flags"); 938 error = xfs_mount_reset_sbqflags(mp); 939 if (error) 940 goto out_rtunmount; 941 } 942 } 943 944 /* 945 * During the second phase of log recovery, we need iget and 946 * iput to behave like they do for an active filesystem. 947 * xfs_fs_drop_inode needs to be able to prevent the deletion 948 * of inodes before we're done replaying log items on those 949 * inodes. 950 */ 951 mp->m_super->s_flags |= MS_ACTIVE; 952 953 /* 954 * Finish recovering the file system. This part needed to be delayed 955 * until after the root and real-time bitmap inodes were consistently 956 * read in. 957 */ 958 error = xfs_log_mount_finish(mp); 959 if (error) { 960 xfs_warn(mp, "log mount finish failed"); 961 goto out_rtunmount; 962 } 963 964 /* 965 * Now the log is fully replayed, we can transition to full read-only 966 * mode for read-only mounts. This will sync all the metadata and clean 967 * the log so that the recovery we just performed does not have to be 968 * replayed again on the next mount. 969 * 970 * We use the same quiesce mechanism as the rw->ro remount, as they are 971 * semantically identical operations. 972 */ 973 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 974 XFS_MOUNT_RDONLY) { 975 xfs_quiesce_attr(mp); 976 } 977 978 /* 979 * Complete the quota initialisation, post-log-replay component. 980 */ 981 if (quotamount) { 982 ASSERT(mp->m_qflags == 0); 983 mp->m_qflags = quotaflags; 984 985 xfs_qm_mount_quotas(mp); 986 } 987 988 /* 989 * Now we are mounted, reserve a small amount of unused space for 990 * privileged transactions. This is needed so that transaction 991 * space required for critical operations can dip into this pool 992 * when at ENOSPC. This is needed for operations like create with 993 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 994 * are not allowed to use this reserved space. 995 * 996 * This may drive us straight to ENOSPC on mount, but that implies 997 * we were already there on the last unmount. Warn if this occurs. 998 */ 999 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1000 resblks = xfs_default_resblks(mp); 1001 error = xfs_reserve_blocks(mp, &resblks, NULL); 1002 if (error) 1003 xfs_warn(mp, 1004 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1005 1006 /* Recover any CoW blocks that never got remapped. */ 1007 error = xfs_reflink_recover_cow(mp); 1008 if (error) { 1009 xfs_err(mp, 1010 "Error %d recovering leftover CoW allocations.", error); 1011 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1012 goto out_quota; 1013 } 1014 1015 /* Reserve AG blocks for future btree expansion. */ 1016 error = xfs_fs_reserve_ag_blocks(mp); 1017 if (error && error != -ENOSPC) 1018 goto out_agresv; 1019 } 1020 1021 return 0; 1022 1023 out_agresv: 1024 xfs_fs_unreserve_ag_blocks(mp); 1025 out_quota: 1026 xfs_qm_unmount_quotas(mp); 1027 out_rtunmount: 1028 mp->m_super->s_flags &= ~MS_ACTIVE; 1029 xfs_rtunmount_inodes(mp); 1030 out_rele_rip: 1031 IRELE(rip); 1032 cancel_delayed_work_sync(&mp->m_reclaim_work); 1033 xfs_reclaim_inodes(mp, SYNC_WAIT); 1034 out_log_dealloc: 1035 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1036 xfs_log_mount_cancel(mp); 1037 out_fail_wait: 1038 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1039 xfs_wait_buftarg(mp->m_logdev_targp); 1040 xfs_wait_buftarg(mp->m_ddev_targp); 1041 out_free_perag: 1042 xfs_free_perag(mp); 1043 out_free_dir: 1044 xfs_da_unmount(mp); 1045 out_remove_uuid: 1046 xfs_uuid_unmount(mp); 1047 out_remove_error_sysfs: 1048 xfs_error_sysfs_del(mp); 1049 out_del_stats: 1050 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1051 out_remove_sysfs: 1052 xfs_sysfs_del(&mp->m_kobj); 1053 out: 1054 return error; 1055 } 1056 1057 /* 1058 * This flushes out the inodes,dquots and the superblock, unmounts the 1059 * log and makes sure that incore structures are freed. 1060 */ 1061 void 1062 xfs_unmountfs( 1063 struct xfs_mount *mp) 1064 { 1065 __uint64_t resblks; 1066 int error; 1067 1068 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1069 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1070 1071 xfs_fs_unreserve_ag_blocks(mp); 1072 xfs_qm_unmount_quotas(mp); 1073 xfs_rtunmount_inodes(mp); 1074 IRELE(mp->m_rootip); 1075 1076 /* 1077 * We can potentially deadlock here if we have an inode cluster 1078 * that has been freed has its buffer still pinned in memory because 1079 * the transaction is still sitting in a iclog. The stale inodes 1080 * on that buffer will have their flush locks held until the 1081 * transaction hits the disk and the callbacks run. the inode 1082 * flush takes the flush lock unconditionally and with nothing to 1083 * push out the iclog we will never get that unlocked. hence we 1084 * need to force the log first. 1085 */ 1086 xfs_log_force(mp, XFS_LOG_SYNC); 1087 1088 /* 1089 * Wait for all busy extents to be freed, including completion of 1090 * any discard operation. 1091 */ 1092 xfs_extent_busy_wait_all(mp); 1093 flush_workqueue(xfs_discard_wq); 1094 1095 /* 1096 * We now need to tell the world we are unmounting. This will allow 1097 * us to detect that the filesystem is going away and we should error 1098 * out anything that we have been retrying in the background. This will 1099 * prevent neverending retries in AIL pushing from hanging the unmount. 1100 */ 1101 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1102 1103 /* 1104 * Flush all pending changes from the AIL. 1105 */ 1106 xfs_ail_push_all_sync(mp->m_ail); 1107 1108 /* 1109 * And reclaim all inodes. At this point there should be no dirty 1110 * inodes and none should be pinned or locked, but use synchronous 1111 * reclaim just to be sure. We can stop background inode reclaim 1112 * here as well if it is still running. 1113 */ 1114 cancel_delayed_work_sync(&mp->m_reclaim_work); 1115 xfs_reclaim_inodes(mp, SYNC_WAIT); 1116 1117 xfs_qm_unmount(mp); 1118 1119 /* 1120 * Unreserve any blocks we have so that when we unmount we don't account 1121 * the reserved free space as used. This is really only necessary for 1122 * lazy superblock counting because it trusts the incore superblock 1123 * counters to be absolutely correct on clean unmount. 1124 * 1125 * We don't bother correcting this elsewhere for lazy superblock 1126 * counting because on mount of an unclean filesystem we reconstruct the 1127 * correct counter value and this is irrelevant. 1128 * 1129 * For non-lazy counter filesystems, this doesn't matter at all because 1130 * we only every apply deltas to the superblock and hence the incore 1131 * value does not matter.... 1132 */ 1133 resblks = 0; 1134 error = xfs_reserve_blocks(mp, &resblks, NULL); 1135 if (error) 1136 xfs_warn(mp, "Unable to free reserved block pool. " 1137 "Freespace may not be correct on next mount."); 1138 1139 error = xfs_log_sbcount(mp); 1140 if (error) 1141 xfs_warn(mp, "Unable to update superblock counters. " 1142 "Freespace may not be correct on next mount."); 1143 1144 1145 xfs_log_unmount(mp); 1146 xfs_da_unmount(mp); 1147 xfs_uuid_unmount(mp); 1148 1149 #if defined(DEBUG) 1150 xfs_errortag_clearall(mp, 0); 1151 #endif 1152 xfs_free_perag(mp); 1153 1154 xfs_error_sysfs_del(mp); 1155 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1156 xfs_sysfs_del(&mp->m_kobj); 1157 } 1158 1159 /* 1160 * Determine whether modifications can proceed. The caller specifies the minimum 1161 * freeze level for which modifications should not be allowed. This allows 1162 * certain operations to proceed while the freeze sequence is in progress, if 1163 * necessary. 1164 */ 1165 bool 1166 xfs_fs_writable( 1167 struct xfs_mount *mp, 1168 int level) 1169 { 1170 ASSERT(level > SB_UNFROZEN); 1171 if ((mp->m_super->s_writers.frozen >= level) || 1172 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1173 return false; 1174 1175 return true; 1176 } 1177 1178 /* 1179 * xfs_log_sbcount 1180 * 1181 * Sync the superblock counters to disk. 1182 * 1183 * Note this code can be called during the process of freezing, so we use the 1184 * transaction allocator that does not block when the transaction subsystem is 1185 * in its frozen state. 1186 */ 1187 int 1188 xfs_log_sbcount(xfs_mount_t *mp) 1189 { 1190 /* allow this to proceed during the freeze sequence... */ 1191 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1192 return 0; 1193 1194 /* 1195 * we don't need to do this if we are updating the superblock 1196 * counters on every modification. 1197 */ 1198 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1199 return 0; 1200 1201 return xfs_sync_sb(mp, true); 1202 } 1203 1204 /* 1205 * Deltas for the inode count are +/-64, hence we use a large batch size 1206 * of 128 so we don't need to take the counter lock on every update. 1207 */ 1208 #define XFS_ICOUNT_BATCH 128 1209 int 1210 xfs_mod_icount( 1211 struct xfs_mount *mp, 1212 int64_t delta) 1213 { 1214 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1215 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1216 ASSERT(0); 1217 percpu_counter_add(&mp->m_icount, -delta); 1218 return -EINVAL; 1219 } 1220 return 0; 1221 } 1222 1223 int 1224 xfs_mod_ifree( 1225 struct xfs_mount *mp, 1226 int64_t delta) 1227 { 1228 percpu_counter_add(&mp->m_ifree, delta); 1229 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1230 ASSERT(0); 1231 percpu_counter_add(&mp->m_ifree, -delta); 1232 return -EINVAL; 1233 } 1234 return 0; 1235 } 1236 1237 /* 1238 * Deltas for the block count can vary from 1 to very large, but lock contention 1239 * only occurs on frequent small block count updates such as in the delayed 1240 * allocation path for buffered writes (page a time updates). Hence we set 1241 * a large batch count (1024) to minimise global counter updates except when 1242 * we get near to ENOSPC and we have to be very accurate with our updates. 1243 */ 1244 #define XFS_FDBLOCKS_BATCH 1024 1245 int 1246 xfs_mod_fdblocks( 1247 struct xfs_mount *mp, 1248 int64_t delta, 1249 bool rsvd) 1250 { 1251 int64_t lcounter; 1252 long long res_used; 1253 s32 batch; 1254 1255 if (delta > 0) { 1256 /* 1257 * If the reserve pool is depleted, put blocks back into it 1258 * first. Most of the time the pool is full. 1259 */ 1260 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1261 percpu_counter_add(&mp->m_fdblocks, delta); 1262 return 0; 1263 } 1264 1265 spin_lock(&mp->m_sb_lock); 1266 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1267 1268 if (res_used > delta) { 1269 mp->m_resblks_avail += delta; 1270 } else { 1271 delta -= res_used; 1272 mp->m_resblks_avail = mp->m_resblks; 1273 percpu_counter_add(&mp->m_fdblocks, delta); 1274 } 1275 spin_unlock(&mp->m_sb_lock); 1276 return 0; 1277 } 1278 1279 /* 1280 * Taking blocks away, need to be more accurate the closer we 1281 * are to zero. 1282 * 1283 * If the counter has a value of less than 2 * max batch size, 1284 * then make everything serialise as we are real close to 1285 * ENOSPC. 1286 */ 1287 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1288 XFS_FDBLOCKS_BATCH) < 0) 1289 batch = 1; 1290 else 1291 batch = XFS_FDBLOCKS_BATCH; 1292 1293 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1294 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1295 XFS_FDBLOCKS_BATCH) >= 0) { 1296 /* we had space! */ 1297 return 0; 1298 } 1299 1300 /* 1301 * lock up the sb for dipping into reserves before releasing the space 1302 * that took us to ENOSPC. 1303 */ 1304 spin_lock(&mp->m_sb_lock); 1305 percpu_counter_add(&mp->m_fdblocks, -delta); 1306 if (!rsvd) 1307 goto fdblocks_enospc; 1308 1309 lcounter = (long long)mp->m_resblks_avail + delta; 1310 if (lcounter >= 0) { 1311 mp->m_resblks_avail = lcounter; 1312 spin_unlock(&mp->m_sb_lock); 1313 return 0; 1314 } 1315 printk_once(KERN_WARNING 1316 "Filesystem \"%s\": reserve blocks depleted! " 1317 "Consider increasing reserve pool size.", 1318 mp->m_fsname); 1319 fdblocks_enospc: 1320 spin_unlock(&mp->m_sb_lock); 1321 return -ENOSPC; 1322 } 1323 1324 int 1325 xfs_mod_frextents( 1326 struct xfs_mount *mp, 1327 int64_t delta) 1328 { 1329 int64_t lcounter; 1330 int ret = 0; 1331 1332 spin_lock(&mp->m_sb_lock); 1333 lcounter = mp->m_sb.sb_frextents + delta; 1334 if (lcounter < 0) 1335 ret = -ENOSPC; 1336 else 1337 mp->m_sb.sb_frextents = lcounter; 1338 spin_unlock(&mp->m_sb_lock); 1339 return ret; 1340 } 1341 1342 /* 1343 * xfs_getsb() is called to obtain the buffer for the superblock. 1344 * The buffer is returned locked and read in from disk. 1345 * The buffer should be released with a call to xfs_brelse(). 1346 * 1347 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1348 * the superblock buffer if it can be locked without sleeping. 1349 * If it can't then we'll return NULL. 1350 */ 1351 struct xfs_buf * 1352 xfs_getsb( 1353 struct xfs_mount *mp, 1354 int flags) 1355 { 1356 struct xfs_buf *bp = mp->m_sb_bp; 1357 1358 if (!xfs_buf_trylock(bp)) { 1359 if (flags & XBF_TRYLOCK) 1360 return NULL; 1361 xfs_buf_lock(bp); 1362 } 1363 1364 xfs_buf_hold(bp); 1365 ASSERT(bp->b_flags & XBF_DONE); 1366 return bp; 1367 } 1368 1369 /* 1370 * Used to free the superblock along various error paths. 1371 */ 1372 void 1373 xfs_freesb( 1374 struct xfs_mount *mp) 1375 { 1376 struct xfs_buf *bp = mp->m_sb_bp; 1377 1378 xfs_buf_lock(bp); 1379 mp->m_sb_bp = NULL; 1380 xfs_buf_relse(bp); 1381 } 1382 1383 /* 1384 * If the underlying (data/log/rt) device is readonly, there are some 1385 * operations that cannot proceed. 1386 */ 1387 int 1388 xfs_dev_is_read_only( 1389 struct xfs_mount *mp, 1390 char *message) 1391 { 1392 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1393 xfs_readonly_buftarg(mp->m_logdev_targp) || 1394 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1395 xfs_notice(mp, "%s required on read-only device.", message); 1396 xfs_notice(mp, "write access unavailable, cannot proceed."); 1397 return -EROFS; 1398 } 1399 return 0; 1400 } 1401