xref: /linux/fs/xfs/xfs_mount.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
49 
50 
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
54 
55 void
56 xfs_uuid_table_free(void)
57 {
58 	if (xfs_uuid_table_size == 0)
59 		return;
60 	kmem_free(xfs_uuid_table);
61 	xfs_uuid_table = NULL;
62 	xfs_uuid_table_size = 0;
63 }
64 
65 /*
66  * See if the UUID is unique among mounted XFS filesystems.
67  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68  */
69 STATIC int
70 xfs_uuid_mount(
71 	struct xfs_mount	*mp)
72 {
73 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
74 	int			hole, i;
75 
76 	/* Publish UUID in struct super_block */
77 	uuid_copy(&mp->m_super->s_uuid, uuid);
78 
79 	if (mp->m_flags & XFS_MOUNT_NOUUID)
80 		return 0;
81 
82 	if (uuid_is_null(uuid)) {
83 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 		return -EINVAL;
85 	}
86 
87 	mutex_lock(&xfs_uuid_table_mutex);
88 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 		if (uuid_is_null(&xfs_uuid_table[i])) {
90 			hole = i;
91 			continue;
92 		}
93 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 			goto out_duplicate;
95 	}
96 
97 	if (hole < 0) {
98 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 			KM_SLEEP);
101 		hole = xfs_uuid_table_size++;
102 	}
103 	xfs_uuid_table[hole] = *uuid;
104 	mutex_unlock(&xfs_uuid_table_mutex);
105 
106 	return 0;
107 
108  out_duplicate:
109 	mutex_unlock(&xfs_uuid_table_mutex);
110 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 	return -EINVAL;
112 }
113 
114 STATIC void
115 xfs_uuid_unmount(
116 	struct xfs_mount	*mp)
117 {
118 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
119 	int			i;
120 
121 	if (mp->m_flags & XFS_MOUNT_NOUUID)
122 		return;
123 
124 	mutex_lock(&xfs_uuid_table_mutex);
125 	for (i = 0; i < xfs_uuid_table_size; i++) {
126 		if (uuid_is_null(&xfs_uuid_table[i]))
127 			continue;
128 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 			continue;
130 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 		break;
132 	}
133 	ASSERT(i < xfs_uuid_table_size);
134 	mutex_unlock(&xfs_uuid_table_mutex);
135 }
136 
137 
138 STATIC void
139 __xfs_free_perag(
140 	struct rcu_head	*head)
141 {
142 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143 
144 	ASSERT(atomic_read(&pag->pag_ref) == 0);
145 	kmem_free(pag);
146 }
147 
148 /*
149  * Free up the per-ag resources associated with the mount structure.
150  */
151 STATIC void
152 xfs_free_perag(
153 	xfs_mount_t	*mp)
154 {
155 	xfs_agnumber_t	agno;
156 	struct xfs_perag *pag;
157 
158 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 		spin_lock(&mp->m_perag_lock);
160 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 		spin_unlock(&mp->m_perag_lock);
162 		ASSERT(pag);
163 		ASSERT(atomic_read(&pag->pag_ref) == 0);
164 		xfs_buf_hash_destroy(pag);
165 		call_rcu(&pag->rcu_head, __xfs_free_perag);
166 	}
167 }
168 
169 /*
170  * Check size of device based on the (data/realtime) block count.
171  * Note: this check is used by the growfs code as well as mount.
172  */
173 int
174 xfs_sb_validate_fsb_count(
175 	xfs_sb_t	*sbp,
176 	__uint64_t	nblocks)
177 {
178 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
179 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
180 
181 	/* Limited by ULONG_MAX of page cache index */
182 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
183 		return -EFBIG;
184 	return 0;
185 }
186 
187 int
188 xfs_initialize_perag(
189 	xfs_mount_t	*mp,
190 	xfs_agnumber_t	agcount,
191 	xfs_agnumber_t	*maxagi)
192 {
193 	xfs_agnumber_t	index;
194 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
195 	xfs_perag_t	*pag;
196 	int		error = -ENOMEM;
197 
198 	/*
199 	 * Walk the current per-ag tree so we don't try to initialise AGs
200 	 * that already exist (growfs case). Allocate and insert all the
201 	 * AGs we don't find ready for initialisation.
202 	 */
203 	for (index = 0; index < agcount; index++) {
204 		pag = xfs_perag_get(mp, index);
205 		if (pag) {
206 			xfs_perag_put(pag);
207 			continue;
208 		}
209 
210 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
211 		if (!pag)
212 			goto out_unwind_new_pags;
213 		pag->pag_agno = index;
214 		pag->pag_mount = mp;
215 		spin_lock_init(&pag->pag_ici_lock);
216 		mutex_init(&pag->pag_ici_reclaim_lock);
217 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
218 		if (xfs_buf_hash_init(pag))
219 			goto out_free_pag;
220 		init_waitqueue_head(&pag->pagb_wait);
221 
222 		if (radix_tree_preload(GFP_NOFS))
223 			goto out_hash_destroy;
224 
225 		spin_lock(&mp->m_perag_lock);
226 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
227 			BUG();
228 			spin_unlock(&mp->m_perag_lock);
229 			radix_tree_preload_end();
230 			error = -EEXIST;
231 			goto out_hash_destroy;
232 		}
233 		spin_unlock(&mp->m_perag_lock);
234 		radix_tree_preload_end();
235 		/* first new pag is fully initialized */
236 		if (first_initialised == NULLAGNUMBER)
237 			first_initialised = index;
238 	}
239 
240 	index = xfs_set_inode_alloc(mp, agcount);
241 
242 	if (maxagi)
243 		*maxagi = index;
244 
245 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
246 	return 0;
247 
248 out_hash_destroy:
249 	xfs_buf_hash_destroy(pag);
250 out_free_pag:
251 	kmem_free(pag);
252 out_unwind_new_pags:
253 	/* unwind any prior newly initialized pags */
254 	for (index = first_initialised; index < agcount; index++) {
255 		pag = radix_tree_delete(&mp->m_perag_tree, index);
256 		if (!pag)
257 			break;
258 		xfs_buf_hash_destroy(pag);
259 		kmem_free(pag);
260 	}
261 	return error;
262 }
263 
264 /*
265  * xfs_readsb
266  *
267  * Does the initial read of the superblock.
268  */
269 int
270 xfs_readsb(
271 	struct xfs_mount *mp,
272 	int		flags)
273 {
274 	unsigned int	sector_size;
275 	struct xfs_buf	*bp;
276 	struct xfs_sb	*sbp = &mp->m_sb;
277 	int		error;
278 	int		loud = !(flags & XFS_MFSI_QUIET);
279 	const struct xfs_buf_ops *buf_ops;
280 
281 	ASSERT(mp->m_sb_bp == NULL);
282 	ASSERT(mp->m_ddev_targp != NULL);
283 
284 	/*
285 	 * For the initial read, we must guess at the sector
286 	 * size based on the block device.  It's enough to
287 	 * get the sb_sectsize out of the superblock and
288 	 * then reread with the proper length.
289 	 * We don't verify it yet, because it may not be complete.
290 	 */
291 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
292 	buf_ops = NULL;
293 
294 	/*
295 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
296 	 * around at all times to optimize access to the superblock. Therefore,
297 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
298 	 * elevated.
299 	 */
300 reread:
301 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
303 				      buf_ops);
304 	if (error) {
305 		if (loud)
306 			xfs_warn(mp, "SB validate failed with error %d.", error);
307 		/* bad CRC means corrupted metadata */
308 		if (error == -EFSBADCRC)
309 			error = -EFSCORRUPTED;
310 		return error;
311 	}
312 
313 	/*
314 	 * Initialize the mount structure from the superblock.
315 	 */
316 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
317 
318 	/*
319 	 * If we haven't validated the superblock, do so now before we try
320 	 * to check the sector size and reread the superblock appropriately.
321 	 */
322 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
323 		if (loud)
324 			xfs_warn(mp, "Invalid superblock magic number");
325 		error = -EINVAL;
326 		goto release_buf;
327 	}
328 
329 	/*
330 	 * We must be able to do sector-sized and sector-aligned IO.
331 	 */
332 	if (sector_size > sbp->sb_sectsize) {
333 		if (loud)
334 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
335 				sector_size, sbp->sb_sectsize);
336 		error = -ENOSYS;
337 		goto release_buf;
338 	}
339 
340 	if (buf_ops == NULL) {
341 		/*
342 		 * Re-read the superblock so the buffer is correctly sized,
343 		 * and properly verified.
344 		 */
345 		xfs_buf_relse(bp);
346 		sector_size = sbp->sb_sectsize;
347 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
348 		goto reread;
349 	}
350 
351 	xfs_reinit_percpu_counters(mp);
352 
353 	/* no need to be quiet anymore, so reset the buf ops */
354 	bp->b_ops = &xfs_sb_buf_ops;
355 
356 	mp->m_sb_bp = bp;
357 	xfs_buf_unlock(bp);
358 	return 0;
359 
360 release_buf:
361 	xfs_buf_relse(bp);
362 	return error;
363 }
364 
365 /*
366  * Update alignment values based on mount options and sb values
367  */
368 STATIC int
369 xfs_update_alignment(xfs_mount_t *mp)
370 {
371 	xfs_sb_t	*sbp = &(mp->m_sb);
372 
373 	if (mp->m_dalign) {
374 		/*
375 		 * If stripe unit and stripe width are not multiples
376 		 * of the fs blocksize turn off alignment.
377 		 */
378 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
379 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
380 			xfs_warn(mp,
381 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
382 				sbp->sb_blocksize);
383 			return -EINVAL;
384 		} else {
385 			/*
386 			 * Convert the stripe unit and width to FSBs.
387 			 */
388 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
389 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
390 				xfs_warn(mp,
391 			"alignment check failed: sunit/swidth vs. agsize(%d)",
392 					 sbp->sb_agblocks);
393 				return -EINVAL;
394 			} else if (mp->m_dalign) {
395 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
396 			} else {
397 				xfs_warn(mp,
398 			"alignment check failed: sunit(%d) less than bsize(%d)",
399 					 mp->m_dalign, sbp->sb_blocksize);
400 				return -EINVAL;
401 			}
402 		}
403 
404 		/*
405 		 * Update superblock with new values
406 		 * and log changes
407 		 */
408 		if (xfs_sb_version_hasdalign(sbp)) {
409 			if (sbp->sb_unit != mp->m_dalign) {
410 				sbp->sb_unit = mp->m_dalign;
411 				mp->m_update_sb = true;
412 			}
413 			if (sbp->sb_width != mp->m_swidth) {
414 				sbp->sb_width = mp->m_swidth;
415 				mp->m_update_sb = true;
416 			}
417 		} else {
418 			xfs_warn(mp,
419 	"cannot change alignment: superblock does not support data alignment");
420 			return -EINVAL;
421 		}
422 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
423 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
424 			mp->m_dalign = sbp->sb_unit;
425 			mp->m_swidth = sbp->sb_width;
426 	}
427 
428 	return 0;
429 }
430 
431 /*
432  * Set the maximum inode count for this filesystem
433  */
434 STATIC void
435 xfs_set_maxicount(xfs_mount_t *mp)
436 {
437 	xfs_sb_t	*sbp = &(mp->m_sb);
438 	__uint64_t	icount;
439 
440 	if (sbp->sb_imax_pct) {
441 		/*
442 		 * Make sure the maximum inode count is a multiple
443 		 * of the units we allocate inodes in.
444 		 */
445 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
446 		do_div(icount, 100);
447 		do_div(icount, mp->m_ialloc_blks);
448 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
449 				   sbp->sb_inopblog;
450 	} else {
451 		mp->m_maxicount = 0;
452 	}
453 }
454 
455 /*
456  * Set the default minimum read and write sizes unless
457  * already specified in a mount option.
458  * We use smaller I/O sizes when the file system
459  * is being used for NFS service (wsync mount option).
460  */
461 STATIC void
462 xfs_set_rw_sizes(xfs_mount_t *mp)
463 {
464 	xfs_sb_t	*sbp = &(mp->m_sb);
465 	int		readio_log, writeio_log;
466 
467 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
468 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
469 			readio_log = XFS_WSYNC_READIO_LOG;
470 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
471 		} else {
472 			readio_log = XFS_READIO_LOG_LARGE;
473 			writeio_log = XFS_WRITEIO_LOG_LARGE;
474 		}
475 	} else {
476 		readio_log = mp->m_readio_log;
477 		writeio_log = mp->m_writeio_log;
478 	}
479 
480 	if (sbp->sb_blocklog > readio_log) {
481 		mp->m_readio_log = sbp->sb_blocklog;
482 	} else {
483 		mp->m_readio_log = readio_log;
484 	}
485 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
486 	if (sbp->sb_blocklog > writeio_log) {
487 		mp->m_writeio_log = sbp->sb_blocklog;
488 	} else {
489 		mp->m_writeio_log = writeio_log;
490 	}
491 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 }
493 
494 /*
495  * precalculate the low space thresholds for dynamic speculative preallocation.
496  */
497 void
498 xfs_set_low_space_thresholds(
499 	struct xfs_mount	*mp)
500 {
501 	int i;
502 
503 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
504 		__uint64_t space = mp->m_sb.sb_dblocks;
505 
506 		do_div(space, 100);
507 		mp->m_low_space[i] = space * (i + 1);
508 	}
509 }
510 
511 
512 /*
513  * Set whether we're using inode alignment.
514  */
515 STATIC void
516 xfs_set_inoalignment(xfs_mount_t *mp)
517 {
518 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
519 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
520 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
521 	else
522 		mp->m_inoalign_mask = 0;
523 	/*
524 	 * If we are using stripe alignment, check whether
525 	 * the stripe unit is a multiple of the inode alignment
526 	 */
527 	if (mp->m_dalign && mp->m_inoalign_mask &&
528 	    !(mp->m_dalign & mp->m_inoalign_mask))
529 		mp->m_sinoalign = mp->m_dalign;
530 	else
531 		mp->m_sinoalign = 0;
532 }
533 
534 /*
535  * Check that the data (and log if separate) is an ok size.
536  */
537 STATIC int
538 xfs_check_sizes(
539 	struct xfs_mount *mp)
540 {
541 	struct xfs_buf	*bp;
542 	xfs_daddr_t	d;
543 	int		error;
544 
545 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
546 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
547 		xfs_warn(mp, "filesystem size mismatch detected");
548 		return -EFBIG;
549 	}
550 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
551 					d - XFS_FSS_TO_BB(mp, 1),
552 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
553 	if (error) {
554 		xfs_warn(mp, "last sector read failed");
555 		return error;
556 	}
557 	xfs_buf_relse(bp);
558 
559 	if (mp->m_logdev_targp == mp->m_ddev_targp)
560 		return 0;
561 
562 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
563 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
564 		xfs_warn(mp, "log size mismatch detected");
565 		return -EFBIG;
566 	}
567 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
568 					d - XFS_FSB_TO_BB(mp, 1),
569 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
570 	if (error) {
571 		xfs_warn(mp, "log device read failed");
572 		return error;
573 	}
574 	xfs_buf_relse(bp);
575 	return 0;
576 }
577 
578 /*
579  * Clear the quotaflags in memory and in the superblock.
580  */
581 int
582 xfs_mount_reset_sbqflags(
583 	struct xfs_mount	*mp)
584 {
585 	mp->m_qflags = 0;
586 
587 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
588 	if (mp->m_sb.sb_qflags == 0)
589 		return 0;
590 	spin_lock(&mp->m_sb_lock);
591 	mp->m_sb.sb_qflags = 0;
592 	spin_unlock(&mp->m_sb_lock);
593 
594 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
595 		return 0;
596 
597 	return xfs_sync_sb(mp, false);
598 }
599 
600 __uint64_t
601 xfs_default_resblks(xfs_mount_t *mp)
602 {
603 	__uint64_t resblks;
604 
605 	/*
606 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
607 	 * smaller.  This is intended to cover concurrent allocation
608 	 * transactions when we initially hit enospc. These each require a 4
609 	 * block reservation. Hence by default we cover roughly 2000 concurrent
610 	 * allocation reservations.
611 	 */
612 	resblks = mp->m_sb.sb_dblocks;
613 	do_div(resblks, 20);
614 	resblks = min_t(__uint64_t, resblks, 8192);
615 	return resblks;
616 }
617 
618 /*
619  * This function does the following on an initial mount of a file system:
620  *	- reads the superblock from disk and init the mount struct
621  *	- if we're a 32-bit kernel, do a size check on the superblock
622  *		so we don't mount terabyte filesystems
623  *	- init mount struct realtime fields
624  *	- allocate inode hash table for fs
625  *	- init directory manager
626  *	- perform recovery and init the log manager
627  */
628 int
629 xfs_mountfs(
630 	struct xfs_mount	*mp)
631 {
632 	struct xfs_sb		*sbp = &(mp->m_sb);
633 	struct xfs_inode	*rip;
634 	__uint64_t		resblks;
635 	uint			quotamount = 0;
636 	uint			quotaflags = 0;
637 	int			error = 0;
638 
639 	xfs_sb_mount_common(mp, sbp);
640 
641 	/*
642 	 * Check for a mismatched features2 values.  Older kernels read & wrote
643 	 * into the wrong sb offset for sb_features2 on some platforms due to
644 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
645 	 * which made older superblock reading/writing routines swap it as a
646 	 * 64-bit value.
647 	 *
648 	 * For backwards compatibility, we make both slots equal.
649 	 *
650 	 * If we detect a mismatched field, we OR the set bits into the existing
651 	 * features2 field in case it has already been modified; we don't want
652 	 * to lose any features.  We then update the bad location with the ORed
653 	 * value so that older kernels will see any features2 flags. The
654 	 * superblock writeback code ensures the new sb_features2 is copied to
655 	 * sb_bad_features2 before it is logged or written to disk.
656 	 */
657 	if (xfs_sb_has_mismatched_features2(sbp)) {
658 		xfs_warn(mp, "correcting sb_features alignment problem");
659 		sbp->sb_features2 |= sbp->sb_bad_features2;
660 		mp->m_update_sb = true;
661 
662 		/*
663 		 * Re-check for ATTR2 in case it was found in bad_features2
664 		 * slot.
665 		 */
666 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
667 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
668 			mp->m_flags |= XFS_MOUNT_ATTR2;
669 	}
670 
671 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
672 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
673 		xfs_sb_version_removeattr2(&mp->m_sb);
674 		mp->m_update_sb = true;
675 
676 		/* update sb_versionnum for the clearing of the morebits */
677 		if (!sbp->sb_features2)
678 			mp->m_update_sb = true;
679 	}
680 
681 	/* always use v2 inodes by default now */
682 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
683 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
684 		mp->m_update_sb = true;
685 	}
686 
687 	/*
688 	 * Check if sb_agblocks is aligned at stripe boundary
689 	 * If sb_agblocks is NOT aligned turn off m_dalign since
690 	 * allocator alignment is within an ag, therefore ag has
691 	 * to be aligned at stripe boundary.
692 	 */
693 	error = xfs_update_alignment(mp);
694 	if (error)
695 		goto out;
696 
697 	xfs_alloc_compute_maxlevels(mp);
698 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
699 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
700 	xfs_ialloc_compute_maxlevels(mp);
701 	xfs_rmapbt_compute_maxlevels(mp);
702 	xfs_refcountbt_compute_maxlevels(mp);
703 
704 	xfs_set_maxicount(mp);
705 
706 	/* enable fail_at_unmount as default */
707 	mp->m_fail_unmount = 1;
708 
709 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 	if (error)
711 		goto out;
712 
713 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 			       &mp->m_kobj, "stats");
715 	if (error)
716 		goto out_remove_sysfs;
717 
718 	error = xfs_error_sysfs_init(mp);
719 	if (error)
720 		goto out_del_stats;
721 
722 
723 	error = xfs_uuid_mount(mp);
724 	if (error)
725 		goto out_remove_error_sysfs;
726 
727 	/*
728 	 * Set the minimum read and write sizes
729 	 */
730 	xfs_set_rw_sizes(mp);
731 
732 	/* set the low space thresholds for dynamic preallocation */
733 	xfs_set_low_space_thresholds(mp);
734 
735 	/*
736 	 * Set the inode cluster size.
737 	 * This may still be overridden by the file system
738 	 * block size if it is larger than the chosen cluster size.
739 	 *
740 	 * For v5 filesystems, scale the cluster size with the inode size to
741 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
742 	 * has set the inode alignment value appropriately for larger cluster
743 	 * sizes.
744 	 */
745 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
746 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
747 		int	new_size = mp->m_inode_cluster_size;
748 
749 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
750 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
751 			mp->m_inode_cluster_size = new_size;
752 	}
753 
754 	/*
755 	 * If enabled, sparse inode chunk alignment is expected to match the
756 	 * cluster size. Full inode chunk alignment must match the chunk size,
757 	 * but that is checked on sb read verification...
758 	 */
759 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
760 	    mp->m_sb.sb_spino_align !=
761 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
762 		xfs_warn(mp,
763 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
764 			 mp->m_sb.sb_spino_align,
765 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
766 		error = -EINVAL;
767 		goto out_remove_uuid;
768 	}
769 
770 	/*
771 	 * Set inode alignment fields
772 	 */
773 	xfs_set_inoalignment(mp);
774 
775 	/*
776 	 * Check that the data (and log if separate) is an ok size.
777 	 */
778 	error = xfs_check_sizes(mp);
779 	if (error)
780 		goto out_remove_uuid;
781 
782 	/*
783 	 * Initialize realtime fields in the mount structure
784 	 */
785 	error = xfs_rtmount_init(mp);
786 	if (error) {
787 		xfs_warn(mp, "RT mount failed");
788 		goto out_remove_uuid;
789 	}
790 
791 	/*
792 	 *  Copies the low order bits of the timestamp and the randomly
793 	 *  set "sequence" number out of a UUID.
794 	 */
795 	mp->m_fixedfsid[0] =
796 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
797 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
798 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
799 
800 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
801 
802 	error = xfs_da_mount(mp);
803 	if (error) {
804 		xfs_warn(mp, "Failed dir/attr init: %d", error);
805 		goto out_remove_uuid;
806 	}
807 
808 	/*
809 	 * Initialize the precomputed transaction reservations values.
810 	 */
811 	xfs_trans_init(mp);
812 
813 	/*
814 	 * Allocate and initialize the per-ag data.
815 	 */
816 	spin_lock_init(&mp->m_perag_lock);
817 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
818 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
819 	if (error) {
820 		xfs_warn(mp, "Failed per-ag init: %d", error);
821 		goto out_free_dir;
822 	}
823 
824 	if (!sbp->sb_logblocks) {
825 		xfs_warn(mp, "no log defined");
826 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
827 		error = -EFSCORRUPTED;
828 		goto out_free_perag;
829 	}
830 
831 	/*
832 	 * Log's mount-time initialization. The first part of recovery can place
833 	 * some items on the AIL, to be handled when recovery is finished or
834 	 * cancelled.
835 	 */
836 	error = xfs_log_mount(mp, mp->m_logdev_targp,
837 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
838 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
839 	if (error) {
840 		xfs_warn(mp, "log mount failed");
841 		goto out_fail_wait;
842 	}
843 
844 	/*
845 	 * Now the log is mounted, we know if it was an unclean shutdown or
846 	 * not. If it was, with the first phase of recovery has completed, we
847 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
848 	 * but they are recovered transactionally in the second recovery phase
849 	 * later.
850 	 *
851 	 * Hence we can safely re-initialise incore superblock counters from
852 	 * the per-ag data. These may not be correct if the filesystem was not
853 	 * cleanly unmounted, so we need to wait for recovery to finish before
854 	 * doing this.
855 	 *
856 	 * If the filesystem was cleanly unmounted, then we can trust the
857 	 * values in the superblock to be correct and we don't need to do
858 	 * anything here.
859 	 *
860 	 * If we are currently making the filesystem, the initialisation will
861 	 * fail as the perag data is in an undefined state.
862 	 */
863 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
864 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
865 	     !mp->m_sb.sb_inprogress) {
866 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
867 		if (error)
868 			goto out_log_dealloc;
869 	}
870 
871 	/*
872 	 * Get and sanity-check the root inode.
873 	 * Save the pointer to it in the mount structure.
874 	 */
875 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
876 	if (error) {
877 		xfs_warn(mp, "failed to read root inode");
878 		goto out_log_dealloc;
879 	}
880 
881 	ASSERT(rip != NULL);
882 
883 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
884 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
885 			(unsigned long long)rip->i_ino);
886 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
887 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
888 				 mp);
889 		error = -EFSCORRUPTED;
890 		goto out_rele_rip;
891 	}
892 	mp->m_rootip = rip;	/* save it */
893 
894 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
895 
896 	/*
897 	 * Initialize realtime inode pointers in the mount structure
898 	 */
899 	error = xfs_rtmount_inodes(mp);
900 	if (error) {
901 		/*
902 		 * Free up the root inode.
903 		 */
904 		xfs_warn(mp, "failed to read RT inodes");
905 		goto out_rele_rip;
906 	}
907 
908 	/*
909 	 * If this is a read-only mount defer the superblock updates until
910 	 * the next remount into writeable mode.  Otherwise we would never
911 	 * perform the update e.g. for the root filesystem.
912 	 */
913 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
914 		error = xfs_sync_sb(mp, false);
915 		if (error) {
916 			xfs_warn(mp, "failed to write sb changes");
917 			goto out_rtunmount;
918 		}
919 	}
920 
921 	/*
922 	 * Initialise the XFS quota management subsystem for this mount
923 	 */
924 	if (XFS_IS_QUOTA_RUNNING(mp)) {
925 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
926 		if (error)
927 			goto out_rtunmount;
928 	} else {
929 		ASSERT(!XFS_IS_QUOTA_ON(mp));
930 
931 		/*
932 		 * If a file system had quotas running earlier, but decided to
933 		 * mount without -o uquota/pquota/gquota options, revoke the
934 		 * quotachecked license.
935 		 */
936 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
937 			xfs_notice(mp, "resetting quota flags");
938 			error = xfs_mount_reset_sbqflags(mp);
939 			if (error)
940 				goto out_rtunmount;
941 		}
942 	}
943 
944 	/*
945 	 * During the second phase of log recovery, we need iget and
946 	 * iput to behave like they do for an active filesystem.
947 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
948 	 * of inodes before we're done replaying log items on those
949 	 * inodes.
950 	 */
951 	mp->m_super->s_flags |= MS_ACTIVE;
952 
953 	/*
954 	 * Finish recovering the file system.  This part needed to be delayed
955 	 * until after the root and real-time bitmap inodes were consistently
956 	 * read in.
957 	 */
958 	error = xfs_log_mount_finish(mp);
959 	if (error) {
960 		xfs_warn(mp, "log mount finish failed");
961 		goto out_rtunmount;
962 	}
963 
964 	/*
965 	 * Now the log is fully replayed, we can transition to full read-only
966 	 * mode for read-only mounts. This will sync all the metadata and clean
967 	 * the log so that the recovery we just performed does not have to be
968 	 * replayed again on the next mount.
969 	 *
970 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
971 	 * semantically identical operations.
972 	 */
973 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
974 							XFS_MOUNT_RDONLY) {
975 		xfs_quiesce_attr(mp);
976 	}
977 
978 	/*
979 	 * Complete the quota initialisation, post-log-replay component.
980 	 */
981 	if (quotamount) {
982 		ASSERT(mp->m_qflags == 0);
983 		mp->m_qflags = quotaflags;
984 
985 		xfs_qm_mount_quotas(mp);
986 	}
987 
988 	/*
989 	 * Now we are mounted, reserve a small amount of unused space for
990 	 * privileged transactions. This is needed so that transaction
991 	 * space required for critical operations can dip into this pool
992 	 * when at ENOSPC. This is needed for operations like create with
993 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
994 	 * are not allowed to use this reserved space.
995 	 *
996 	 * This may drive us straight to ENOSPC on mount, but that implies
997 	 * we were already there on the last unmount. Warn if this occurs.
998 	 */
999 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1000 		resblks = xfs_default_resblks(mp);
1001 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1002 		if (error)
1003 			xfs_warn(mp,
1004 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1005 
1006 		/* Recover any CoW blocks that never got remapped. */
1007 		error = xfs_reflink_recover_cow(mp);
1008 		if (error) {
1009 			xfs_err(mp,
1010 	"Error %d recovering leftover CoW allocations.", error);
1011 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1012 			goto out_quota;
1013 		}
1014 
1015 		/* Reserve AG blocks for future btree expansion. */
1016 		error = xfs_fs_reserve_ag_blocks(mp);
1017 		if (error && error != -ENOSPC)
1018 			goto out_agresv;
1019 	}
1020 
1021 	return 0;
1022 
1023  out_agresv:
1024 	xfs_fs_unreserve_ag_blocks(mp);
1025  out_quota:
1026 	xfs_qm_unmount_quotas(mp);
1027  out_rtunmount:
1028 	mp->m_super->s_flags &= ~MS_ACTIVE;
1029 	xfs_rtunmount_inodes(mp);
1030  out_rele_rip:
1031 	IRELE(rip);
1032 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1033 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1034  out_log_dealloc:
1035 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1036 	xfs_log_mount_cancel(mp);
1037  out_fail_wait:
1038 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1039 		xfs_wait_buftarg(mp->m_logdev_targp);
1040 	xfs_wait_buftarg(mp->m_ddev_targp);
1041  out_free_perag:
1042 	xfs_free_perag(mp);
1043  out_free_dir:
1044 	xfs_da_unmount(mp);
1045  out_remove_uuid:
1046 	xfs_uuid_unmount(mp);
1047  out_remove_error_sysfs:
1048 	xfs_error_sysfs_del(mp);
1049  out_del_stats:
1050 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1051  out_remove_sysfs:
1052 	xfs_sysfs_del(&mp->m_kobj);
1053  out:
1054 	return error;
1055 }
1056 
1057 /*
1058  * This flushes out the inodes,dquots and the superblock, unmounts the
1059  * log and makes sure that incore structures are freed.
1060  */
1061 void
1062 xfs_unmountfs(
1063 	struct xfs_mount	*mp)
1064 {
1065 	__uint64_t		resblks;
1066 	int			error;
1067 
1068 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1069 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1070 
1071 	xfs_fs_unreserve_ag_blocks(mp);
1072 	xfs_qm_unmount_quotas(mp);
1073 	xfs_rtunmount_inodes(mp);
1074 	IRELE(mp->m_rootip);
1075 
1076 	/*
1077 	 * We can potentially deadlock here if we have an inode cluster
1078 	 * that has been freed has its buffer still pinned in memory because
1079 	 * the transaction is still sitting in a iclog. The stale inodes
1080 	 * on that buffer will have their flush locks held until the
1081 	 * transaction hits the disk and the callbacks run. the inode
1082 	 * flush takes the flush lock unconditionally and with nothing to
1083 	 * push out the iclog we will never get that unlocked. hence we
1084 	 * need to force the log first.
1085 	 */
1086 	xfs_log_force(mp, XFS_LOG_SYNC);
1087 
1088 	/*
1089 	 * Wait for all busy extents to be freed, including completion of
1090 	 * any discard operation.
1091 	 */
1092 	xfs_extent_busy_wait_all(mp);
1093 	flush_workqueue(xfs_discard_wq);
1094 
1095 	/*
1096 	 * We now need to tell the world we are unmounting. This will allow
1097 	 * us to detect that the filesystem is going away and we should error
1098 	 * out anything that we have been retrying in the background. This will
1099 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1100 	 */
1101 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1102 
1103 	/*
1104 	 * Flush all pending changes from the AIL.
1105 	 */
1106 	xfs_ail_push_all_sync(mp->m_ail);
1107 
1108 	/*
1109 	 * And reclaim all inodes.  At this point there should be no dirty
1110 	 * inodes and none should be pinned or locked, but use synchronous
1111 	 * reclaim just to be sure. We can stop background inode reclaim
1112 	 * here as well if it is still running.
1113 	 */
1114 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1115 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1116 
1117 	xfs_qm_unmount(mp);
1118 
1119 	/*
1120 	 * Unreserve any blocks we have so that when we unmount we don't account
1121 	 * the reserved free space as used. This is really only necessary for
1122 	 * lazy superblock counting because it trusts the incore superblock
1123 	 * counters to be absolutely correct on clean unmount.
1124 	 *
1125 	 * We don't bother correcting this elsewhere for lazy superblock
1126 	 * counting because on mount of an unclean filesystem we reconstruct the
1127 	 * correct counter value and this is irrelevant.
1128 	 *
1129 	 * For non-lazy counter filesystems, this doesn't matter at all because
1130 	 * we only every apply deltas to the superblock and hence the incore
1131 	 * value does not matter....
1132 	 */
1133 	resblks = 0;
1134 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1135 	if (error)
1136 		xfs_warn(mp, "Unable to free reserved block pool. "
1137 				"Freespace may not be correct on next mount.");
1138 
1139 	error = xfs_log_sbcount(mp);
1140 	if (error)
1141 		xfs_warn(mp, "Unable to update superblock counters. "
1142 				"Freespace may not be correct on next mount.");
1143 
1144 
1145 	xfs_log_unmount(mp);
1146 	xfs_da_unmount(mp);
1147 	xfs_uuid_unmount(mp);
1148 
1149 #if defined(DEBUG)
1150 	xfs_errortag_clearall(mp, 0);
1151 #endif
1152 	xfs_free_perag(mp);
1153 
1154 	xfs_error_sysfs_del(mp);
1155 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1156 	xfs_sysfs_del(&mp->m_kobj);
1157 }
1158 
1159 /*
1160  * Determine whether modifications can proceed. The caller specifies the minimum
1161  * freeze level for which modifications should not be allowed. This allows
1162  * certain operations to proceed while the freeze sequence is in progress, if
1163  * necessary.
1164  */
1165 bool
1166 xfs_fs_writable(
1167 	struct xfs_mount	*mp,
1168 	int			level)
1169 {
1170 	ASSERT(level > SB_UNFROZEN);
1171 	if ((mp->m_super->s_writers.frozen >= level) ||
1172 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1173 		return false;
1174 
1175 	return true;
1176 }
1177 
1178 /*
1179  * xfs_log_sbcount
1180  *
1181  * Sync the superblock counters to disk.
1182  *
1183  * Note this code can be called during the process of freezing, so we use the
1184  * transaction allocator that does not block when the transaction subsystem is
1185  * in its frozen state.
1186  */
1187 int
1188 xfs_log_sbcount(xfs_mount_t *mp)
1189 {
1190 	/* allow this to proceed during the freeze sequence... */
1191 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1192 		return 0;
1193 
1194 	/*
1195 	 * we don't need to do this if we are updating the superblock
1196 	 * counters on every modification.
1197 	 */
1198 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1199 		return 0;
1200 
1201 	return xfs_sync_sb(mp, true);
1202 }
1203 
1204 /*
1205  * Deltas for the inode count are +/-64, hence we use a large batch size
1206  * of 128 so we don't need to take the counter lock on every update.
1207  */
1208 #define XFS_ICOUNT_BATCH	128
1209 int
1210 xfs_mod_icount(
1211 	struct xfs_mount	*mp,
1212 	int64_t			delta)
1213 {
1214 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1215 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1216 		ASSERT(0);
1217 		percpu_counter_add(&mp->m_icount, -delta);
1218 		return -EINVAL;
1219 	}
1220 	return 0;
1221 }
1222 
1223 int
1224 xfs_mod_ifree(
1225 	struct xfs_mount	*mp,
1226 	int64_t			delta)
1227 {
1228 	percpu_counter_add(&mp->m_ifree, delta);
1229 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1230 		ASSERT(0);
1231 		percpu_counter_add(&mp->m_ifree, -delta);
1232 		return -EINVAL;
1233 	}
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Deltas for the block count can vary from 1 to very large, but lock contention
1239  * only occurs on frequent small block count updates such as in the delayed
1240  * allocation path for buffered writes (page a time updates). Hence we set
1241  * a large batch count (1024) to minimise global counter updates except when
1242  * we get near to ENOSPC and we have to be very accurate with our updates.
1243  */
1244 #define XFS_FDBLOCKS_BATCH	1024
1245 int
1246 xfs_mod_fdblocks(
1247 	struct xfs_mount	*mp,
1248 	int64_t			delta,
1249 	bool			rsvd)
1250 {
1251 	int64_t			lcounter;
1252 	long long		res_used;
1253 	s32			batch;
1254 
1255 	if (delta > 0) {
1256 		/*
1257 		 * If the reserve pool is depleted, put blocks back into it
1258 		 * first. Most of the time the pool is full.
1259 		 */
1260 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1261 			percpu_counter_add(&mp->m_fdblocks, delta);
1262 			return 0;
1263 		}
1264 
1265 		spin_lock(&mp->m_sb_lock);
1266 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1267 
1268 		if (res_used > delta) {
1269 			mp->m_resblks_avail += delta;
1270 		} else {
1271 			delta -= res_used;
1272 			mp->m_resblks_avail = mp->m_resblks;
1273 			percpu_counter_add(&mp->m_fdblocks, delta);
1274 		}
1275 		spin_unlock(&mp->m_sb_lock);
1276 		return 0;
1277 	}
1278 
1279 	/*
1280 	 * Taking blocks away, need to be more accurate the closer we
1281 	 * are to zero.
1282 	 *
1283 	 * If the counter has a value of less than 2 * max batch size,
1284 	 * then make everything serialise as we are real close to
1285 	 * ENOSPC.
1286 	 */
1287 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1288 				     XFS_FDBLOCKS_BATCH) < 0)
1289 		batch = 1;
1290 	else
1291 		batch = XFS_FDBLOCKS_BATCH;
1292 
1293 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1294 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1295 				     XFS_FDBLOCKS_BATCH) >= 0) {
1296 		/* we had space! */
1297 		return 0;
1298 	}
1299 
1300 	/*
1301 	 * lock up the sb for dipping into reserves before releasing the space
1302 	 * that took us to ENOSPC.
1303 	 */
1304 	spin_lock(&mp->m_sb_lock);
1305 	percpu_counter_add(&mp->m_fdblocks, -delta);
1306 	if (!rsvd)
1307 		goto fdblocks_enospc;
1308 
1309 	lcounter = (long long)mp->m_resblks_avail + delta;
1310 	if (lcounter >= 0) {
1311 		mp->m_resblks_avail = lcounter;
1312 		spin_unlock(&mp->m_sb_lock);
1313 		return 0;
1314 	}
1315 	printk_once(KERN_WARNING
1316 		"Filesystem \"%s\": reserve blocks depleted! "
1317 		"Consider increasing reserve pool size.",
1318 		mp->m_fsname);
1319 fdblocks_enospc:
1320 	spin_unlock(&mp->m_sb_lock);
1321 	return -ENOSPC;
1322 }
1323 
1324 int
1325 xfs_mod_frextents(
1326 	struct xfs_mount	*mp,
1327 	int64_t			delta)
1328 {
1329 	int64_t			lcounter;
1330 	int			ret = 0;
1331 
1332 	spin_lock(&mp->m_sb_lock);
1333 	lcounter = mp->m_sb.sb_frextents + delta;
1334 	if (lcounter < 0)
1335 		ret = -ENOSPC;
1336 	else
1337 		mp->m_sb.sb_frextents = lcounter;
1338 	spin_unlock(&mp->m_sb_lock);
1339 	return ret;
1340 }
1341 
1342 /*
1343  * xfs_getsb() is called to obtain the buffer for the superblock.
1344  * The buffer is returned locked and read in from disk.
1345  * The buffer should be released with a call to xfs_brelse().
1346  *
1347  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1348  * the superblock buffer if it can be locked without sleeping.
1349  * If it can't then we'll return NULL.
1350  */
1351 struct xfs_buf *
1352 xfs_getsb(
1353 	struct xfs_mount	*mp,
1354 	int			flags)
1355 {
1356 	struct xfs_buf		*bp = mp->m_sb_bp;
1357 
1358 	if (!xfs_buf_trylock(bp)) {
1359 		if (flags & XBF_TRYLOCK)
1360 			return NULL;
1361 		xfs_buf_lock(bp);
1362 	}
1363 
1364 	xfs_buf_hold(bp);
1365 	ASSERT(bp->b_flags & XBF_DONE);
1366 	return bp;
1367 }
1368 
1369 /*
1370  * Used to free the superblock along various error paths.
1371  */
1372 void
1373 xfs_freesb(
1374 	struct xfs_mount	*mp)
1375 {
1376 	struct xfs_buf		*bp = mp->m_sb_bp;
1377 
1378 	xfs_buf_lock(bp);
1379 	mp->m_sb_bp = NULL;
1380 	xfs_buf_relse(bp);
1381 }
1382 
1383 /*
1384  * If the underlying (data/log/rt) device is readonly, there are some
1385  * operations that cannot proceed.
1386  */
1387 int
1388 xfs_dev_is_read_only(
1389 	struct xfs_mount	*mp,
1390 	char			*message)
1391 {
1392 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1393 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1394 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1395 		xfs_notice(mp, "%s required on read-only device.", message);
1396 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1397 		return -EROFS;
1398 	}
1399 	return 0;
1400 }
1401