1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_btree.h" 35 #include "xfs_ialloc.h" 36 #include "xfs_alloc.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_bmap.h" 39 #include "xfs_error.h" 40 #include "xfs_rw.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 47 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 56 #else 57 58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 60 #endif 61 62 static const struct { 63 short offset; 64 short type; /* 0 = integer 65 * 1 = binary / string (no translation) 66 */ 67 } xfs_sb_info[] = { 68 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 69 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 70 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 71 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 72 { offsetof(xfs_sb_t, sb_rextents), 0 }, 73 { offsetof(xfs_sb_t, sb_uuid), 1 }, 74 { offsetof(xfs_sb_t, sb_logstart), 0 }, 75 { offsetof(xfs_sb_t, sb_rootino), 0 }, 76 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 77 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 78 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 79 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_agcount), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 84 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 85 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 86 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 87 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 88 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 89 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 90 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 92 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 93 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 94 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 95 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 96 { offsetof(xfs_sb_t, sb_icount), 0 }, 97 { offsetof(xfs_sb_t, sb_ifree), 0 }, 98 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 99 { offsetof(xfs_sb_t, sb_frextents), 0 }, 100 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 101 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 102 { offsetof(xfs_sb_t, sb_qflags), 0 }, 103 { offsetof(xfs_sb_t, sb_flags), 0 }, 104 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 106 { offsetof(xfs_sb_t, sb_unit), 0 }, 107 { offsetof(xfs_sb_t, sb_width), 0 }, 108 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 109 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 110 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 111 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 112 { offsetof(xfs_sb_t, sb_features2), 0 }, 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 114 { sizeof(xfs_sb_t), 0 } 115 }; 116 117 static DEFINE_MUTEX(xfs_uuid_table_mutex); 118 static int xfs_uuid_table_size; 119 static uuid_t *xfs_uuid_table; 120 121 /* 122 * See if the UUID is unique among mounted XFS filesystems. 123 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 124 */ 125 STATIC int 126 xfs_uuid_mount( 127 struct xfs_mount *mp) 128 { 129 uuid_t *uuid = &mp->m_sb.sb_uuid; 130 int hole, i; 131 132 if (mp->m_flags & XFS_MOUNT_NOUUID) 133 return 0; 134 135 if (uuid_is_nil(uuid)) { 136 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 137 return XFS_ERROR(EINVAL); 138 } 139 140 mutex_lock(&xfs_uuid_table_mutex); 141 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 142 if (uuid_is_nil(&xfs_uuid_table[i])) { 143 hole = i; 144 continue; 145 } 146 if (uuid_equal(uuid, &xfs_uuid_table[i])) 147 goto out_duplicate; 148 } 149 150 if (hole < 0) { 151 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 152 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 153 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 154 KM_SLEEP); 155 hole = xfs_uuid_table_size++; 156 } 157 xfs_uuid_table[hole] = *uuid; 158 mutex_unlock(&xfs_uuid_table_mutex); 159 160 return 0; 161 162 out_duplicate: 163 mutex_unlock(&xfs_uuid_table_mutex); 164 xfs_warn(mp, "Filesystem has duplicate UUID - can't mount"); 165 return XFS_ERROR(EINVAL); 166 } 167 168 STATIC void 169 xfs_uuid_unmount( 170 struct xfs_mount *mp) 171 { 172 uuid_t *uuid = &mp->m_sb.sb_uuid; 173 int i; 174 175 if (mp->m_flags & XFS_MOUNT_NOUUID) 176 return; 177 178 mutex_lock(&xfs_uuid_table_mutex); 179 for (i = 0; i < xfs_uuid_table_size; i++) { 180 if (uuid_is_nil(&xfs_uuid_table[i])) 181 continue; 182 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 183 continue; 184 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 185 break; 186 } 187 ASSERT(i < xfs_uuid_table_size); 188 mutex_unlock(&xfs_uuid_table_mutex); 189 } 190 191 192 /* 193 * Reference counting access wrappers to the perag structures. 194 * Because we never free per-ag structures, the only thing we 195 * have to protect against changes is the tree structure itself. 196 */ 197 struct xfs_perag * 198 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 199 { 200 struct xfs_perag *pag; 201 int ref = 0; 202 203 rcu_read_lock(); 204 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 205 if (pag) { 206 ASSERT(atomic_read(&pag->pag_ref) >= 0); 207 ref = atomic_inc_return(&pag->pag_ref); 208 } 209 rcu_read_unlock(); 210 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 211 return pag; 212 } 213 214 /* 215 * search from @first to find the next perag with the given tag set. 216 */ 217 struct xfs_perag * 218 xfs_perag_get_tag( 219 struct xfs_mount *mp, 220 xfs_agnumber_t first, 221 int tag) 222 { 223 struct xfs_perag *pag; 224 int found; 225 int ref; 226 227 rcu_read_lock(); 228 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 229 (void **)&pag, first, 1, tag); 230 if (found <= 0) { 231 rcu_read_unlock(); 232 return NULL; 233 } 234 ref = atomic_inc_return(&pag->pag_ref); 235 rcu_read_unlock(); 236 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 237 return pag; 238 } 239 240 void 241 xfs_perag_put(struct xfs_perag *pag) 242 { 243 int ref; 244 245 ASSERT(atomic_read(&pag->pag_ref) > 0); 246 ref = atomic_dec_return(&pag->pag_ref); 247 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 248 } 249 250 STATIC void 251 __xfs_free_perag( 252 struct rcu_head *head) 253 { 254 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 255 256 ASSERT(atomic_read(&pag->pag_ref) == 0); 257 kmem_free(pag); 258 } 259 260 /* 261 * Free up the per-ag resources associated with the mount structure. 262 */ 263 STATIC void 264 xfs_free_perag( 265 xfs_mount_t *mp) 266 { 267 xfs_agnumber_t agno; 268 struct xfs_perag *pag; 269 270 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 271 spin_lock(&mp->m_perag_lock); 272 pag = radix_tree_delete(&mp->m_perag_tree, agno); 273 spin_unlock(&mp->m_perag_lock); 274 ASSERT(pag); 275 ASSERT(atomic_read(&pag->pag_ref) == 0); 276 call_rcu(&pag->rcu_head, __xfs_free_perag); 277 } 278 } 279 280 /* 281 * Check size of device based on the (data/realtime) block count. 282 * Note: this check is used by the growfs code as well as mount. 283 */ 284 int 285 xfs_sb_validate_fsb_count( 286 xfs_sb_t *sbp, 287 __uint64_t nblocks) 288 { 289 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 290 ASSERT(sbp->sb_blocklog >= BBSHIFT); 291 292 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 293 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 294 return EFBIG; 295 #else /* Limited by UINT_MAX of sectors */ 296 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 297 return EFBIG; 298 #endif 299 return 0; 300 } 301 302 /* 303 * Check the validity of the SB found. 304 */ 305 STATIC int 306 xfs_mount_validate_sb( 307 xfs_mount_t *mp, 308 xfs_sb_t *sbp, 309 int flags) 310 { 311 int loud = !(flags & XFS_MFSI_QUIET); 312 313 /* 314 * If the log device and data device have the 315 * same device number, the log is internal. 316 * Consequently, the sb_logstart should be non-zero. If 317 * we have a zero sb_logstart in this case, we may be trying to mount 318 * a volume filesystem in a non-volume manner. 319 */ 320 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 321 if (loud) 322 xfs_warn(mp, "bad magic number"); 323 return XFS_ERROR(EWRONGFS); 324 } 325 326 if (!xfs_sb_good_version(sbp)) { 327 if (loud) 328 xfs_warn(mp, "bad version"); 329 return XFS_ERROR(EWRONGFS); 330 } 331 332 if (unlikely( 333 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 334 if (loud) 335 xfs_warn(mp, 336 "filesystem is marked as having an external log; " 337 "specify logdev on the mount command line."); 338 return XFS_ERROR(EINVAL); 339 } 340 341 if (unlikely( 342 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 343 if (loud) 344 xfs_warn(mp, 345 "filesystem is marked as having an internal log; " 346 "do not specify logdev on the mount command line."); 347 return XFS_ERROR(EINVAL); 348 } 349 350 /* 351 * More sanity checking. Most of these were stolen directly from 352 * xfs_repair. 353 */ 354 if (unlikely( 355 sbp->sb_agcount <= 0 || 356 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 357 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 358 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 359 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 360 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 361 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 362 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 363 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 364 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 365 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 366 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 367 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 368 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 369 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 370 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 371 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 372 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 373 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 374 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 375 sbp->sb_dblocks == 0 || 376 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 377 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) { 378 if (loud) 379 XFS_CORRUPTION_ERROR("SB sanity check failed", 380 XFS_ERRLEVEL_LOW, mp, sbp); 381 return XFS_ERROR(EFSCORRUPTED); 382 } 383 384 /* 385 * Until this is fixed only page-sized or smaller data blocks work. 386 */ 387 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 388 if (loud) { 389 xfs_warn(mp, 390 "File system with blocksize %d bytes. " 391 "Only pagesize (%ld) or less will currently work.", 392 sbp->sb_blocksize, PAGE_SIZE); 393 } 394 return XFS_ERROR(ENOSYS); 395 } 396 397 /* 398 * Currently only very few inode sizes are supported. 399 */ 400 switch (sbp->sb_inodesize) { 401 case 256: 402 case 512: 403 case 1024: 404 case 2048: 405 break; 406 default: 407 if (loud) 408 xfs_warn(mp, "inode size of %d bytes not supported", 409 sbp->sb_inodesize); 410 return XFS_ERROR(ENOSYS); 411 } 412 413 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 414 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 415 if (loud) 416 xfs_warn(mp, 417 "file system too large to be mounted on this system."); 418 return XFS_ERROR(EFBIG); 419 } 420 421 if (unlikely(sbp->sb_inprogress)) { 422 if (loud) 423 xfs_warn(mp, "file system busy"); 424 return XFS_ERROR(EFSCORRUPTED); 425 } 426 427 /* 428 * Version 1 directory format has never worked on Linux. 429 */ 430 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 431 if (loud) 432 xfs_warn(mp, 433 "file system using version 1 directory format"); 434 return XFS_ERROR(ENOSYS); 435 } 436 437 return 0; 438 } 439 440 int 441 xfs_initialize_perag( 442 xfs_mount_t *mp, 443 xfs_agnumber_t agcount, 444 xfs_agnumber_t *maxagi) 445 { 446 xfs_agnumber_t index, max_metadata; 447 xfs_agnumber_t first_initialised = 0; 448 xfs_perag_t *pag; 449 xfs_agino_t agino; 450 xfs_ino_t ino; 451 xfs_sb_t *sbp = &mp->m_sb; 452 int error = -ENOMEM; 453 454 /* 455 * Walk the current per-ag tree so we don't try to initialise AGs 456 * that already exist (growfs case). Allocate and insert all the 457 * AGs we don't find ready for initialisation. 458 */ 459 for (index = 0; index < agcount; index++) { 460 pag = xfs_perag_get(mp, index); 461 if (pag) { 462 xfs_perag_put(pag); 463 continue; 464 } 465 if (!first_initialised) 466 first_initialised = index; 467 468 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 469 if (!pag) 470 goto out_unwind; 471 pag->pag_agno = index; 472 pag->pag_mount = mp; 473 spin_lock_init(&pag->pag_ici_lock); 474 mutex_init(&pag->pag_ici_reclaim_lock); 475 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 476 spin_lock_init(&pag->pag_buf_lock); 477 pag->pag_buf_tree = RB_ROOT; 478 479 if (radix_tree_preload(GFP_NOFS)) 480 goto out_unwind; 481 482 spin_lock(&mp->m_perag_lock); 483 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 484 BUG(); 485 spin_unlock(&mp->m_perag_lock); 486 radix_tree_preload_end(); 487 error = -EEXIST; 488 goto out_unwind; 489 } 490 spin_unlock(&mp->m_perag_lock); 491 radix_tree_preload_end(); 492 } 493 494 /* 495 * If we mount with the inode64 option, or no inode overflows 496 * the legacy 32-bit address space clear the inode32 option. 497 */ 498 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 499 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 500 501 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 502 mp->m_flags |= XFS_MOUNT_32BITINODES; 503 else 504 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 505 506 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 507 /* 508 * Calculate how much should be reserved for inodes to meet 509 * the max inode percentage. 510 */ 511 if (mp->m_maxicount) { 512 __uint64_t icount; 513 514 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 515 do_div(icount, 100); 516 icount += sbp->sb_agblocks - 1; 517 do_div(icount, sbp->sb_agblocks); 518 max_metadata = icount; 519 } else { 520 max_metadata = agcount; 521 } 522 523 for (index = 0; index < agcount; index++) { 524 ino = XFS_AGINO_TO_INO(mp, index, agino); 525 if (ino > XFS_MAXINUMBER_32) { 526 index++; 527 break; 528 } 529 530 pag = xfs_perag_get(mp, index); 531 pag->pagi_inodeok = 1; 532 if (index < max_metadata) 533 pag->pagf_metadata = 1; 534 xfs_perag_put(pag); 535 } 536 } else { 537 for (index = 0; index < agcount; index++) { 538 pag = xfs_perag_get(mp, index); 539 pag->pagi_inodeok = 1; 540 xfs_perag_put(pag); 541 } 542 } 543 544 if (maxagi) 545 *maxagi = index; 546 return 0; 547 548 out_unwind: 549 kmem_free(pag); 550 for (; index > first_initialised; index--) { 551 pag = radix_tree_delete(&mp->m_perag_tree, index); 552 kmem_free(pag); 553 } 554 return error; 555 } 556 557 void 558 xfs_sb_from_disk( 559 xfs_sb_t *to, 560 xfs_dsb_t *from) 561 { 562 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 563 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 564 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 565 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 566 to->sb_rextents = be64_to_cpu(from->sb_rextents); 567 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 568 to->sb_logstart = be64_to_cpu(from->sb_logstart); 569 to->sb_rootino = be64_to_cpu(from->sb_rootino); 570 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 571 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 572 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 573 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 574 to->sb_agcount = be32_to_cpu(from->sb_agcount); 575 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 576 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 577 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 578 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 579 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 580 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 581 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 582 to->sb_blocklog = from->sb_blocklog; 583 to->sb_sectlog = from->sb_sectlog; 584 to->sb_inodelog = from->sb_inodelog; 585 to->sb_inopblog = from->sb_inopblog; 586 to->sb_agblklog = from->sb_agblklog; 587 to->sb_rextslog = from->sb_rextslog; 588 to->sb_inprogress = from->sb_inprogress; 589 to->sb_imax_pct = from->sb_imax_pct; 590 to->sb_icount = be64_to_cpu(from->sb_icount); 591 to->sb_ifree = be64_to_cpu(from->sb_ifree); 592 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 593 to->sb_frextents = be64_to_cpu(from->sb_frextents); 594 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 595 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 596 to->sb_qflags = be16_to_cpu(from->sb_qflags); 597 to->sb_flags = from->sb_flags; 598 to->sb_shared_vn = from->sb_shared_vn; 599 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 600 to->sb_unit = be32_to_cpu(from->sb_unit); 601 to->sb_width = be32_to_cpu(from->sb_width); 602 to->sb_dirblklog = from->sb_dirblklog; 603 to->sb_logsectlog = from->sb_logsectlog; 604 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 605 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 606 to->sb_features2 = be32_to_cpu(from->sb_features2); 607 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 608 } 609 610 /* 611 * Copy in core superblock to ondisk one. 612 * 613 * The fields argument is mask of superblock fields to copy. 614 */ 615 void 616 xfs_sb_to_disk( 617 xfs_dsb_t *to, 618 xfs_sb_t *from, 619 __int64_t fields) 620 { 621 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 622 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 623 xfs_sb_field_t f; 624 int first; 625 int size; 626 627 ASSERT(fields); 628 if (!fields) 629 return; 630 631 while (fields) { 632 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 633 first = xfs_sb_info[f].offset; 634 size = xfs_sb_info[f + 1].offset - first; 635 636 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 637 638 if (size == 1 || xfs_sb_info[f].type == 1) { 639 memcpy(to_ptr + first, from_ptr + first, size); 640 } else { 641 switch (size) { 642 case 2: 643 *(__be16 *)(to_ptr + first) = 644 cpu_to_be16(*(__u16 *)(from_ptr + first)); 645 break; 646 case 4: 647 *(__be32 *)(to_ptr + first) = 648 cpu_to_be32(*(__u32 *)(from_ptr + first)); 649 break; 650 case 8: 651 *(__be64 *)(to_ptr + first) = 652 cpu_to_be64(*(__u64 *)(from_ptr + first)); 653 break; 654 default: 655 ASSERT(0); 656 } 657 } 658 659 fields &= ~(1LL << f); 660 } 661 } 662 663 /* 664 * xfs_readsb 665 * 666 * Does the initial read of the superblock. 667 */ 668 int 669 xfs_readsb(xfs_mount_t *mp, int flags) 670 { 671 unsigned int sector_size; 672 xfs_buf_t *bp; 673 int error; 674 int loud = !(flags & XFS_MFSI_QUIET); 675 676 ASSERT(mp->m_sb_bp == NULL); 677 ASSERT(mp->m_ddev_targp != NULL); 678 679 /* 680 * Allocate a (locked) buffer to hold the superblock. 681 * This will be kept around at all times to optimize 682 * access to the superblock. 683 */ 684 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 685 686 reread: 687 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp, 688 XFS_SB_DADDR, sector_size, 0); 689 if (!bp) { 690 if (loud) 691 xfs_warn(mp, "SB buffer read failed"); 692 return EIO; 693 } 694 695 /* 696 * Initialize the mount structure from the superblock. 697 * But first do some basic consistency checking. 698 */ 699 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 700 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 701 if (error) { 702 if (loud) 703 xfs_warn(mp, "SB validate failed"); 704 goto release_buf; 705 } 706 707 /* 708 * We must be able to do sector-sized and sector-aligned IO. 709 */ 710 if (sector_size > mp->m_sb.sb_sectsize) { 711 if (loud) 712 xfs_warn(mp, "device supports %u byte sectors (not %u)", 713 sector_size, mp->m_sb.sb_sectsize); 714 error = ENOSYS; 715 goto release_buf; 716 } 717 718 /* 719 * If device sector size is smaller than the superblock size, 720 * re-read the superblock so the buffer is correctly sized. 721 */ 722 if (sector_size < mp->m_sb.sb_sectsize) { 723 xfs_buf_relse(bp); 724 sector_size = mp->m_sb.sb_sectsize; 725 goto reread; 726 } 727 728 /* Initialize per-cpu counters */ 729 xfs_icsb_reinit_counters(mp); 730 731 mp->m_sb_bp = bp; 732 xfs_buf_unlock(bp); 733 return 0; 734 735 release_buf: 736 xfs_buf_relse(bp); 737 return error; 738 } 739 740 741 /* 742 * xfs_mount_common 743 * 744 * Mount initialization code establishing various mount 745 * fields from the superblock associated with the given 746 * mount structure 747 */ 748 STATIC void 749 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 750 { 751 mp->m_agfrotor = mp->m_agirotor = 0; 752 spin_lock_init(&mp->m_agirotor_lock); 753 mp->m_maxagi = mp->m_sb.sb_agcount; 754 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 755 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 756 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 757 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 758 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 759 mp->m_blockmask = sbp->sb_blocksize - 1; 760 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 761 mp->m_blockwmask = mp->m_blockwsize - 1; 762 763 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 764 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 765 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 766 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 767 768 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 769 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 770 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 771 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 772 773 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 774 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 775 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 776 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 777 778 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 779 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 780 sbp->sb_inopblock); 781 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 782 } 783 784 /* 785 * xfs_initialize_perag_data 786 * 787 * Read in each per-ag structure so we can count up the number of 788 * allocated inodes, free inodes and used filesystem blocks as this 789 * information is no longer persistent in the superblock. Once we have 790 * this information, write it into the in-core superblock structure. 791 */ 792 STATIC int 793 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 794 { 795 xfs_agnumber_t index; 796 xfs_perag_t *pag; 797 xfs_sb_t *sbp = &mp->m_sb; 798 uint64_t ifree = 0; 799 uint64_t ialloc = 0; 800 uint64_t bfree = 0; 801 uint64_t bfreelst = 0; 802 uint64_t btree = 0; 803 int error; 804 805 for (index = 0; index < agcount; index++) { 806 /* 807 * read the agf, then the agi. This gets us 808 * all the information we need and populates the 809 * per-ag structures for us. 810 */ 811 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 812 if (error) 813 return error; 814 815 error = xfs_ialloc_pagi_init(mp, NULL, index); 816 if (error) 817 return error; 818 pag = xfs_perag_get(mp, index); 819 ifree += pag->pagi_freecount; 820 ialloc += pag->pagi_count; 821 bfree += pag->pagf_freeblks; 822 bfreelst += pag->pagf_flcount; 823 btree += pag->pagf_btreeblks; 824 xfs_perag_put(pag); 825 } 826 /* 827 * Overwrite incore superblock counters with just-read data 828 */ 829 spin_lock(&mp->m_sb_lock); 830 sbp->sb_ifree = ifree; 831 sbp->sb_icount = ialloc; 832 sbp->sb_fdblocks = bfree + bfreelst + btree; 833 spin_unlock(&mp->m_sb_lock); 834 835 /* Fixup the per-cpu counters as well. */ 836 xfs_icsb_reinit_counters(mp); 837 838 return 0; 839 } 840 841 /* 842 * Update alignment values based on mount options and sb values 843 */ 844 STATIC int 845 xfs_update_alignment(xfs_mount_t *mp) 846 { 847 xfs_sb_t *sbp = &(mp->m_sb); 848 849 if (mp->m_dalign) { 850 /* 851 * If stripe unit and stripe width are not multiples 852 * of the fs blocksize turn off alignment. 853 */ 854 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 855 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 856 if (mp->m_flags & XFS_MOUNT_RETERR) { 857 xfs_warn(mp, "alignment check failed: " 858 "(sunit/swidth vs. blocksize)"); 859 return XFS_ERROR(EINVAL); 860 } 861 mp->m_dalign = mp->m_swidth = 0; 862 } else { 863 /* 864 * Convert the stripe unit and width to FSBs. 865 */ 866 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 867 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 868 if (mp->m_flags & XFS_MOUNT_RETERR) { 869 xfs_warn(mp, "alignment check failed: " 870 "(sunit/swidth vs. ag size)"); 871 return XFS_ERROR(EINVAL); 872 } 873 xfs_warn(mp, 874 "stripe alignment turned off: sunit(%d)/swidth(%d) " 875 "incompatible with agsize(%d)", 876 mp->m_dalign, mp->m_swidth, 877 sbp->sb_agblocks); 878 879 mp->m_dalign = 0; 880 mp->m_swidth = 0; 881 } else if (mp->m_dalign) { 882 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 883 } else { 884 if (mp->m_flags & XFS_MOUNT_RETERR) { 885 xfs_warn(mp, "alignment check failed: " 886 "sunit(%d) less than bsize(%d)", 887 mp->m_dalign, 888 mp->m_blockmask +1); 889 return XFS_ERROR(EINVAL); 890 } 891 mp->m_swidth = 0; 892 } 893 } 894 895 /* 896 * Update superblock with new values 897 * and log changes 898 */ 899 if (xfs_sb_version_hasdalign(sbp)) { 900 if (sbp->sb_unit != mp->m_dalign) { 901 sbp->sb_unit = mp->m_dalign; 902 mp->m_update_flags |= XFS_SB_UNIT; 903 } 904 if (sbp->sb_width != mp->m_swidth) { 905 sbp->sb_width = mp->m_swidth; 906 mp->m_update_flags |= XFS_SB_WIDTH; 907 } 908 } 909 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 910 xfs_sb_version_hasdalign(&mp->m_sb)) { 911 mp->m_dalign = sbp->sb_unit; 912 mp->m_swidth = sbp->sb_width; 913 } 914 915 return 0; 916 } 917 918 /* 919 * Set the maximum inode count for this filesystem 920 */ 921 STATIC void 922 xfs_set_maxicount(xfs_mount_t *mp) 923 { 924 xfs_sb_t *sbp = &(mp->m_sb); 925 __uint64_t icount; 926 927 if (sbp->sb_imax_pct) { 928 /* 929 * Make sure the maximum inode count is a multiple 930 * of the units we allocate inodes in. 931 */ 932 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 933 do_div(icount, 100); 934 do_div(icount, mp->m_ialloc_blks); 935 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 936 sbp->sb_inopblog; 937 } else { 938 mp->m_maxicount = 0; 939 } 940 } 941 942 /* 943 * Set the default minimum read and write sizes unless 944 * already specified in a mount option. 945 * We use smaller I/O sizes when the file system 946 * is being used for NFS service (wsync mount option). 947 */ 948 STATIC void 949 xfs_set_rw_sizes(xfs_mount_t *mp) 950 { 951 xfs_sb_t *sbp = &(mp->m_sb); 952 int readio_log, writeio_log; 953 954 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 955 if (mp->m_flags & XFS_MOUNT_WSYNC) { 956 readio_log = XFS_WSYNC_READIO_LOG; 957 writeio_log = XFS_WSYNC_WRITEIO_LOG; 958 } else { 959 readio_log = XFS_READIO_LOG_LARGE; 960 writeio_log = XFS_WRITEIO_LOG_LARGE; 961 } 962 } else { 963 readio_log = mp->m_readio_log; 964 writeio_log = mp->m_writeio_log; 965 } 966 967 if (sbp->sb_blocklog > readio_log) { 968 mp->m_readio_log = sbp->sb_blocklog; 969 } else { 970 mp->m_readio_log = readio_log; 971 } 972 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 973 if (sbp->sb_blocklog > writeio_log) { 974 mp->m_writeio_log = sbp->sb_blocklog; 975 } else { 976 mp->m_writeio_log = writeio_log; 977 } 978 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 979 } 980 981 /* 982 * precalculate the low space thresholds for dynamic speculative preallocation. 983 */ 984 void 985 xfs_set_low_space_thresholds( 986 struct xfs_mount *mp) 987 { 988 int i; 989 990 for (i = 0; i < XFS_LOWSP_MAX; i++) { 991 __uint64_t space = mp->m_sb.sb_dblocks; 992 993 do_div(space, 100); 994 mp->m_low_space[i] = space * (i + 1); 995 } 996 } 997 998 999 /* 1000 * Set whether we're using inode alignment. 1001 */ 1002 STATIC void 1003 xfs_set_inoalignment(xfs_mount_t *mp) 1004 { 1005 if (xfs_sb_version_hasalign(&mp->m_sb) && 1006 mp->m_sb.sb_inoalignmt >= 1007 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1008 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1009 else 1010 mp->m_inoalign_mask = 0; 1011 /* 1012 * If we are using stripe alignment, check whether 1013 * the stripe unit is a multiple of the inode alignment 1014 */ 1015 if (mp->m_dalign && mp->m_inoalign_mask && 1016 !(mp->m_dalign & mp->m_inoalign_mask)) 1017 mp->m_sinoalign = mp->m_dalign; 1018 else 1019 mp->m_sinoalign = 0; 1020 } 1021 1022 /* 1023 * Check that the data (and log if separate) are an ok size. 1024 */ 1025 STATIC int 1026 xfs_check_sizes(xfs_mount_t *mp) 1027 { 1028 xfs_buf_t *bp; 1029 xfs_daddr_t d; 1030 1031 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1032 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1033 xfs_warn(mp, "filesystem size mismatch detected"); 1034 return XFS_ERROR(EFBIG); 1035 } 1036 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp, 1037 d - XFS_FSS_TO_BB(mp, 1), 1038 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0); 1039 if (!bp) { 1040 xfs_warn(mp, "last sector read failed"); 1041 return EIO; 1042 } 1043 xfs_buf_relse(bp); 1044 1045 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1046 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1047 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1048 xfs_warn(mp, "log size mismatch detected"); 1049 return XFS_ERROR(EFBIG); 1050 } 1051 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp, 1052 d - XFS_FSB_TO_BB(mp, 1), 1053 XFS_FSB_TO_B(mp, 1), 0); 1054 if (!bp) { 1055 xfs_warn(mp, "log device read failed"); 1056 return EIO; 1057 } 1058 xfs_buf_relse(bp); 1059 } 1060 return 0; 1061 } 1062 1063 /* 1064 * Clear the quotaflags in memory and in the superblock. 1065 */ 1066 int 1067 xfs_mount_reset_sbqflags( 1068 struct xfs_mount *mp) 1069 { 1070 int error; 1071 struct xfs_trans *tp; 1072 1073 mp->m_qflags = 0; 1074 1075 /* 1076 * It is OK to look at sb_qflags here in mount path, 1077 * without m_sb_lock. 1078 */ 1079 if (mp->m_sb.sb_qflags == 0) 1080 return 0; 1081 spin_lock(&mp->m_sb_lock); 1082 mp->m_sb.sb_qflags = 0; 1083 spin_unlock(&mp->m_sb_lock); 1084 1085 /* 1086 * If the fs is readonly, let the incore superblock run 1087 * with quotas off but don't flush the update out to disk 1088 */ 1089 if (mp->m_flags & XFS_MOUNT_RDONLY) 1090 return 0; 1091 1092 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1093 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1094 XFS_DEFAULT_LOG_COUNT); 1095 if (error) { 1096 xfs_trans_cancel(tp, 0); 1097 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1098 return error; 1099 } 1100 1101 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1102 return xfs_trans_commit(tp, 0); 1103 } 1104 1105 __uint64_t 1106 xfs_default_resblks(xfs_mount_t *mp) 1107 { 1108 __uint64_t resblks; 1109 1110 /* 1111 * We default to 5% or 8192 fsbs of space reserved, whichever is 1112 * smaller. This is intended to cover concurrent allocation 1113 * transactions when we initially hit enospc. These each require a 4 1114 * block reservation. Hence by default we cover roughly 2000 concurrent 1115 * allocation reservations. 1116 */ 1117 resblks = mp->m_sb.sb_dblocks; 1118 do_div(resblks, 20); 1119 resblks = min_t(__uint64_t, resblks, 8192); 1120 return resblks; 1121 } 1122 1123 /* 1124 * This function does the following on an initial mount of a file system: 1125 * - reads the superblock from disk and init the mount struct 1126 * - if we're a 32-bit kernel, do a size check on the superblock 1127 * so we don't mount terabyte filesystems 1128 * - init mount struct realtime fields 1129 * - allocate inode hash table for fs 1130 * - init directory manager 1131 * - perform recovery and init the log manager 1132 */ 1133 int 1134 xfs_mountfs( 1135 xfs_mount_t *mp) 1136 { 1137 xfs_sb_t *sbp = &(mp->m_sb); 1138 xfs_inode_t *rip; 1139 __uint64_t resblks; 1140 uint quotamount = 0; 1141 uint quotaflags = 0; 1142 int error = 0; 1143 1144 xfs_mount_common(mp, sbp); 1145 1146 /* 1147 * Check for a mismatched features2 values. Older kernels 1148 * read & wrote into the wrong sb offset for sb_features2 1149 * on some platforms due to xfs_sb_t not being 64bit size aligned 1150 * when sb_features2 was added, which made older superblock 1151 * reading/writing routines swap it as a 64-bit value. 1152 * 1153 * For backwards compatibility, we make both slots equal. 1154 * 1155 * If we detect a mismatched field, we OR the set bits into the 1156 * existing features2 field in case it has already been modified; we 1157 * don't want to lose any features. We then update the bad location 1158 * with the ORed value so that older kernels will see any features2 1159 * flags, and mark the two fields as needing updates once the 1160 * transaction subsystem is online. 1161 */ 1162 if (xfs_sb_has_mismatched_features2(sbp)) { 1163 xfs_warn(mp, "correcting sb_features alignment problem"); 1164 sbp->sb_features2 |= sbp->sb_bad_features2; 1165 sbp->sb_bad_features2 = sbp->sb_features2; 1166 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1167 1168 /* 1169 * Re-check for ATTR2 in case it was found in bad_features2 1170 * slot. 1171 */ 1172 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1173 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1174 mp->m_flags |= XFS_MOUNT_ATTR2; 1175 } 1176 1177 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1178 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1179 xfs_sb_version_removeattr2(&mp->m_sb); 1180 mp->m_update_flags |= XFS_SB_FEATURES2; 1181 1182 /* update sb_versionnum for the clearing of the morebits */ 1183 if (!sbp->sb_features2) 1184 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1185 } 1186 1187 /* 1188 * Check if sb_agblocks is aligned at stripe boundary 1189 * If sb_agblocks is NOT aligned turn off m_dalign since 1190 * allocator alignment is within an ag, therefore ag has 1191 * to be aligned at stripe boundary. 1192 */ 1193 error = xfs_update_alignment(mp); 1194 if (error) 1195 goto out; 1196 1197 xfs_alloc_compute_maxlevels(mp); 1198 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1199 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1200 xfs_ialloc_compute_maxlevels(mp); 1201 1202 xfs_set_maxicount(mp); 1203 1204 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1205 1206 error = xfs_uuid_mount(mp); 1207 if (error) 1208 goto out; 1209 1210 /* 1211 * Set the minimum read and write sizes 1212 */ 1213 xfs_set_rw_sizes(mp); 1214 1215 /* set the low space thresholds for dynamic preallocation */ 1216 xfs_set_low_space_thresholds(mp); 1217 1218 /* 1219 * Set the inode cluster size. 1220 * This may still be overridden by the file system 1221 * block size if it is larger than the chosen cluster size. 1222 */ 1223 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1224 1225 /* 1226 * Set inode alignment fields 1227 */ 1228 xfs_set_inoalignment(mp); 1229 1230 /* 1231 * Check that the data (and log if separate) are an ok size. 1232 */ 1233 error = xfs_check_sizes(mp); 1234 if (error) 1235 goto out_remove_uuid; 1236 1237 /* 1238 * Initialize realtime fields in the mount structure 1239 */ 1240 error = xfs_rtmount_init(mp); 1241 if (error) { 1242 xfs_warn(mp, "RT mount failed"); 1243 goto out_remove_uuid; 1244 } 1245 1246 /* 1247 * Copies the low order bits of the timestamp and the randomly 1248 * set "sequence" number out of a UUID. 1249 */ 1250 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1251 1252 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1253 1254 xfs_dir_mount(mp); 1255 1256 /* 1257 * Initialize the attribute manager's entries. 1258 */ 1259 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1260 1261 /* 1262 * Initialize the precomputed transaction reservations values. 1263 */ 1264 xfs_trans_init(mp); 1265 1266 /* 1267 * Allocate and initialize the per-ag data. 1268 */ 1269 spin_lock_init(&mp->m_perag_lock); 1270 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1271 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1272 if (error) { 1273 xfs_warn(mp, "Failed per-ag init: %d", error); 1274 goto out_remove_uuid; 1275 } 1276 1277 if (!sbp->sb_logblocks) { 1278 xfs_warn(mp, "no log defined"); 1279 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1280 error = XFS_ERROR(EFSCORRUPTED); 1281 goto out_free_perag; 1282 } 1283 1284 /* 1285 * log's mount-time initialization. Perform 1st part recovery if needed 1286 */ 1287 error = xfs_log_mount(mp, mp->m_logdev_targp, 1288 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1289 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1290 if (error) { 1291 xfs_warn(mp, "log mount failed"); 1292 goto out_free_perag; 1293 } 1294 1295 /* 1296 * Now the log is mounted, we know if it was an unclean shutdown or 1297 * not. If it was, with the first phase of recovery has completed, we 1298 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1299 * but they are recovered transactionally in the second recovery phase 1300 * later. 1301 * 1302 * Hence we can safely re-initialise incore superblock counters from 1303 * the per-ag data. These may not be correct if the filesystem was not 1304 * cleanly unmounted, so we need to wait for recovery to finish before 1305 * doing this. 1306 * 1307 * If the filesystem was cleanly unmounted, then we can trust the 1308 * values in the superblock to be correct and we don't need to do 1309 * anything here. 1310 * 1311 * If we are currently making the filesystem, the initialisation will 1312 * fail as the perag data is in an undefined state. 1313 */ 1314 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1315 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1316 !mp->m_sb.sb_inprogress) { 1317 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1318 if (error) 1319 goto out_free_perag; 1320 } 1321 1322 /* 1323 * Get and sanity-check the root inode. 1324 * Save the pointer to it in the mount structure. 1325 */ 1326 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1327 if (error) { 1328 xfs_warn(mp, "failed to read root inode"); 1329 goto out_log_dealloc; 1330 } 1331 1332 ASSERT(rip != NULL); 1333 1334 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 1335 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1336 (unsigned long long)rip->i_ino); 1337 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1338 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1339 mp); 1340 error = XFS_ERROR(EFSCORRUPTED); 1341 goto out_rele_rip; 1342 } 1343 mp->m_rootip = rip; /* save it */ 1344 1345 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1346 1347 /* 1348 * Initialize realtime inode pointers in the mount structure 1349 */ 1350 error = xfs_rtmount_inodes(mp); 1351 if (error) { 1352 /* 1353 * Free up the root inode. 1354 */ 1355 xfs_warn(mp, "failed to read RT inodes"); 1356 goto out_rele_rip; 1357 } 1358 1359 /* 1360 * If this is a read-only mount defer the superblock updates until 1361 * the next remount into writeable mode. Otherwise we would never 1362 * perform the update e.g. for the root filesystem. 1363 */ 1364 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1365 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1366 if (error) { 1367 xfs_warn(mp, "failed to write sb changes"); 1368 goto out_rtunmount; 1369 } 1370 } 1371 1372 /* 1373 * Initialise the XFS quota management subsystem for this mount 1374 */ 1375 if (XFS_IS_QUOTA_RUNNING(mp)) { 1376 error = xfs_qm_newmount(mp, "amount, "aflags); 1377 if (error) 1378 goto out_rtunmount; 1379 } else { 1380 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1381 1382 /* 1383 * If a file system had quotas running earlier, but decided to 1384 * mount without -o uquota/pquota/gquota options, revoke the 1385 * quotachecked license. 1386 */ 1387 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1388 xfs_notice(mp, "resetting quota flags"); 1389 error = xfs_mount_reset_sbqflags(mp); 1390 if (error) 1391 return error; 1392 } 1393 } 1394 1395 /* 1396 * Finish recovering the file system. This part needed to be 1397 * delayed until after the root and real-time bitmap inodes 1398 * were consistently read in. 1399 */ 1400 error = xfs_log_mount_finish(mp); 1401 if (error) { 1402 xfs_warn(mp, "log mount finish failed"); 1403 goto out_rtunmount; 1404 } 1405 1406 /* 1407 * Complete the quota initialisation, post-log-replay component. 1408 */ 1409 if (quotamount) { 1410 ASSERT(mp->m_qflags == 0); 1411 mp->m_qflags = quotaflags; 1412 1413 xfs_qm_mount_quotas(mp); 1414 } 1415 1416 /* 1417 * Now we are mounted, reserve a small amount of unused space for 1418 * privileged transactions. This is needed so that transaction 1419 * space required for critical operations can dip into this pool 1420 * when at ENOSPC. This is needed for operations like create with 1421 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1422 * are not allowed to use this reserved space. 1423 * 1424 * This may drive us straight to ENOSPC on mount, but that implies 1425 * we were already there on the last unmount. Warn if this occurs. 1426 */ 1427 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1428 resblks = xfs_default_resblks(mp); 1429 error = xfs_reserve_blocks(mp, &resblks, NULL); 1430 if (error) 1431 xfs_warn(mp, 1432 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1433 } 1434 1435 return 0; 1436 1437 out_rtunmount: 1438 xfs_rtunmount_inodes(mp); 1439 out_rele_rip: 1440 IRELE(rip); 1441 out_log_dealloc: 1442 xfs_log_unmount(mp); 1443 out_free_perag: 1444 xfs_free_perag(mp); 1445 out_remove_uuid: 1446 xfs_uuid_unmount(mp); 1447 out: 1448 return error; 1449 } 1450 1451 /* 1452 * This flushes out the inodes,dquots and the superblock, unmounts the 1453 * log and makes sure that incore structures are freed. 1454 */ 1455 void 1456 xfs_unmountfs( 1457 struct xfs_mount *mp) 1458 { 1459 __uint64_t resblks; 1460 int error; 1461 1462 xfs_qm_unmount_quotas(mp); 1463 xfs_rtunmount_inodes(mp); 1464 IRELE(mp->m_rootip); 1465 1466 /* 1467 * We can potentially deadlock here if we have an inode cluster 1468 * that has been freed has its buffer still pinned in memory because 1469 * the transaction is still sitting in a iclog. The stale inodes 1470 * on that buffer will have their flush locks held until the 1471 * transaction hits the disk and the callbacks run. the inode 1472 * flush takes the flush lock unconditionally and with nothing to 1473 * push out the iclog we will never get that unlocked. hence we 1474 * need to force the log first. 1475 */ 1476 xfs_log_force(mp, XFS_LOG_SYNC); 1477 1478 /* 1479 * Do a delwri reclaim pass first so that as many dirty inodes are 1480 * queued up for IO as possible. Then flush the buffers before making 1481 * a synchronous path to catch all the remaining inodes are reclaimed. 1482 * This makes the reclaim process as quick as possible by avoiding 1483 * synchronous writeout and blocking on inodes already in the delwri 1484 * state as much as possible. 1485 */ 1486 xfs_reclaim_inodes(mp, 0); 1487 XFS_bflush(mp->m_ddev_targp); 1488 xfs_reclaim_inodes(mp, SYNC_WAIT); 1489 1490 xfs_qm_unmount(mp); 1491 1492 /* 1493 * Flush out the log synchronously so that we know for sure 1494 * that nothing is pinned. This is important because bflush() 1495 * will skip pinned buffers. 1496 */ 1497 xfs_log_force(mp, XFS_LOG_SYNC); 1498 1499 xfs_binval(mp->m_ddev_targp); 1500 if (mp->m_rtdev_targp) { 1501 xfs_binval(mp->m_rtdev_targp); 1502 } 1503 1504 /* 1505 * Unreserve any blocks we have so that when we unmount we don't account 1506 * the reserved free space as used. This is really only necessary for 1507 * lazy superblock counting because it trusts the incore superblock 1508 * counters to be absolutely correct on clean unmount. 1509 * 1510 * We don't bother correcting this elsewhere for lazy superblock 1511 * counting because on mount of an unclean filesystem we reconstruct the 1512 * correct counter value and this is irrelevant. 1513 * 1514 * For non-lazy counter filesystems, this doesn't matter at all because 1515 * we only every apply deltas to the superblock and hence the incore 1516 * value does not matter.... 1517 */ 1518 resblks = 0; 1519 error = xfs_reserve_blocks(mp, &resblks, NULL); 1520 if (error) 1521 xfs_warn(mp, "Unable to free reserved block pool. " 1522 "Freespace may not be correct on next mount."); 1523 1524 error = xfs_log_sbcount(mp); 1525 if (error) 1526 xfs_warn(mp, "Unable to update superblock counters. " 1527 "Freespace may not be correct on next mount."); 1528 xfs_unmountfs_writesb(mp); 1529 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1530 xfs_log_unmount_write(mp); 1531 xfs_log_unmount(mp); 1532 xfs_uuid_unmount(mp); 1533 1534 #if defined(DEBUG) 1535 xfs_errortag_clearall(mp, 0); 1536 #endif 1537 xfs_free_perag(mp); 1538 } 1539 1540 STATIC void 1541 xfs_unmountfs_wait(xfs_mount_t *mp) 1542 { 1543 if (mp->m_logdev_targp != mp->m_ddev_targp) 1544 xfs_wait_buftarg(mp->m_logdev_targp); 1545 if (mp->m_rtdev_targp) 1546 xfs_wait_buftarg(mp->m_rtdev_targp); 1547 xfs_wait_buftarg(mp->m_ddev_targp); 1548 } 1549 1550 int 1551 xfs_fs_writable(xfs_mount_t *mp) 1552 { 1553 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1554 (mp->m_flags & XFS_MOUNT_RDONLY)); 1555 } 1556 1557 /* 1558 * xfs_log_sbcount 1559 * 1560 * Sync the superblock counters to disk. 1561 * 1562 * Note this code can be called during the process of freezing, so 1563 * we may need to use the transaction allocator which does not 1564 * block when the transaction subsystem is in its frozen state. 1565 */ 1566 int 1567 xfs_log_sbcount(xfs_mount_t *mp) 1568 { 1569 xfs_trans_t *tp; 1570 int error; 1571 1572 if (!xfs_fs_writable(mp)) 1573 return 0; 1574 1575 xfs_icsb_sync_counters(mp, 0); 1576 1577 /* 1578 * we don't need to do this if we are updating the superblock 1579 * counters on every modification. 1580 */ 1581 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1582 return 0; 1583 1584 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1585 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1586 XFS_DEFAULT_LOG_COUNT); 1587 if (error) { 1588 xfs_trans_cancel(tp, 0); 1589 return error; 1590 } 1591 1592 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1593 xfs_trans_set_sync(tp); 1594 error = xfs_trans_commit(tp, 0); 1595 return error; 1596 } 1597 1598 int 1599 xfs_unmountfs_writesb(xfs_mount_t *mp) 1600 { 1601 xfs_buf_t *sbp; 1602 int error = 0; 1603 1604 /* 1605 * skip superblock write if fs is read-only, or 1606 * if we are doing a forced umount. 1607 */ 1608 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1609 XFS_FORCED_SHUTDOWN(mp))) { 1610 1611 sbp = xfs_getsb(mp, 0); 1612 1613 XFS_BUF_UNDONE(sbp); 1614 XFS_BUF_UNREAD(sbp); 1615 XFS_BUF_UNDELAYWRITE(sbp); 1616 XFS_BUF_WRITE(sbp); 1617 XFS_BUF_UNASYNC(sbp); 1618 ASSERT(sbp->b_target == mp->m_ddev_targp); 1619 xfsbdstrat(mp, sbp); 1620 error = xfs_buf_iowait(sbp); 1621 if (error) 1622 xfs_ioerror_alert("xfs_unmountfs_writesb", 1623 mp, sbp, XFS_BUF_ADDR(sbp)); 1624 xfs_buf_relse(sbp); 1625 } 1626 return error; 1627 } 1628 1629 /* 1630 * xfs_mod_sb() can be used to copy arbitrary changes to the 1631 * in-core superblock into the superblock buffer to be logged. 1632 * It does not provide the higher level of locking that is 1633 * needed to protect the in-core superblock from concurrent 1634 * access. 1635 */ 1636 void 1637 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1638 { 1639 xfs_buf_t *bp; 1640 int first; 1641 int last; 1642 xfs_mount_t *mp; 1643 xfs_sb_field_t f; 1644 1645 ASSERT(fields); 1646 if (!fields) 1647 return; 1648 mp = tp->t_mountp; 1649 bp = xfs_trans_getsb(tp, mp, 0); 1650 first = sizeof(xfs_sb_t); 1651 last = 0; 1652 1653 /* translate/copy */ 1654 1655 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1656 1657 /* find modified range */ 1658 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1659 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1660 last = xfs_sb_info[f + 1].offset - 1; 1661 1662 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1663 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1664 first = xfs_sb_info[f].offset; 1665 1666 xfs_trans_log_buf(tp, bp, first, last); 1667 } 1668 1669 1670 /* 1671 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1672 * a delta to a specified field in the in-core superblock. Simply 1673 * switch on the field indicated and apply the delta to that field. 1674 * Fields are not allowed to dip below zero, so if the delta would 1675 * do this do not apply it and return EINVAL. 1676 * 1677 * The m_sb_lock must be held when this routine is called. 1678 */ 1679 STATIC int 1680 xfs_mod_incore_sb_unlocked( 1681 xfs_mount_t *mp, 1682 xfs_sb_field_t field, 1683 int64_t delta, 1684 int rsvd) 1685 { 1686 int scounter; /* short counter for 32 bit fields */ 1687 long long lcounter; /* long counter for 64 bit fields */ 1688 long long res_used, rem; 1689 1690 /* 1691 * With the in-core superblock spin lock held, switch 1692 * on the indicated field. Apply the delta to the 1693 * proper field. If the fields value would dip below 1694 * 0, then do not apply the delta and return EINVAL. 1695 */ 1696 switch (field) { 1697 case XFS_SBS_ICOUNT: 1698 lcounter = (long long)mp->m_sb.sb_icount; 1699 lcounter += delta; 1700 if (lcounter < 0) { 1701 ASSERT(0); 1702 return XFS_ERROR(EINVAL); 1703 } 1704 mp->m_sb.sb_icount = lcounter; 1705 return 0; 1706 case XFS_SBS_IFREE: 1707 lcounter = (long long)mp->m_sb.sb_ifree; 1708 lcounter += delta; 1709 if (lcounter < 0) { 1710 ASSERT(0); 1711 return XFS_ERROR(EINVAL); 1712 } 1713 mp->m_sb.sb_ifree = lcounter; 1714 return 0; 1715 case XFS_SBS_FDBLOCKS: 1716 lcounter = (long long) 1717 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1718 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1719 1720 if (delta > 0) { /* Putting blocks back */ 1721 if (res_used > delta) { 1722 mp->m_resblks_avail += delta; 1723 } else { 1724 rem = delta - res_used; 1725 mp->m_resblks_avail = mp->m_resblks; 1726 lcounter += rem; 1727 } 1728 } else { /* Taking blocks away */ 1729 lcounter += delta; 1730 if (lcounter >= 0) { 1731 mp->m_sb.sb_fdblocks = lcounter + 1732 XFS_ALLOC_SET_ASIDE(mp); 1733 return 0; 1734 } 1735 1736 /* 1737 * We are out of blocks, use any available reserved 1738 * blocks if were allowed to. 1739 */ 1740 if (!rsvd) 1741 return XFS_ERROR(ENOSPC); 1742 1743 lcounter = (long long)mp->m_resblks_avail + delta; 1744 if (lcounter >= 0) { 1745 mp->m_resblks_avail = lcounter; 1746 return 0; 1747 } 1748 printk_once(KERN_WARNING 1749 "Filesystem \"%s\": reserve blocks depleted! " 1750 "Consider increasing reserve pool size.", 1751 mp->m_fsname); 1752 return XFS_ERROR(ENOSPC); 1753 } 1754 1755 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1756 return 0; 1757 case XFS_SBS_FREXTENTS: 1758 lcounter = (long long)mp->m_sb.sb_frextents; 1759 lcounter += delta; 1760 if (lcounter < 0) { 1761 return XFS_ERROR(ENOSPC); 1762 } 1763 mp->m_sb.sb_frextents = lcounter; 1764 return 0; 1765 case XFS_SBS_DBLOCKS: 1766 lcounter = (long long)mp->m_sb.sb_dblocks; 1767 lcounter += delta; 1768 if (lcounter < 0) { 1769 ASSERT(0); 1770 return XFS_ERROR(EINVAL); 1771 } 1772 mp->m_sb.sb_dblocks = lcounter; 1773 return 0; 1774 case XFS_SBS_AGCOUNT: 1775 scounter = mp->m_sb.sb_agcount; 1776 scounter += delta; 1777 if (scounter < 0) { 1778 ASSERT(0); 1779 return XFS_ERROR(EINVAL); 1780 } 1781 mp->m_sb.sb_agcount = scounter; 1782 return 0; 1783 case XFS_SBS_IMAX_PCT: 1784 scounter = mp->m_sb.sb_imax_pct; 1785 scounter += delta; 1786 if (scounter < 0) { 1787 ASSERT(0); 1788 return XFS_ERROR(EINVAL); 1789 } 1790 mp->m_sb.sb_imax_pct = scounter; 1791 return 0; 1792 case XFS_SBS_REXTSIZE: 1793 scounter = mp->m_sb.sb_rextsize; 1794 scounter += delta; 1795 if (scounter < 0) { 1796 ASSERT(0); 1797 return XFS_ERROR(EINVAL); 1798 } 1799 mp->m_sb.sb_rextsize = scounter; 1800 return 0; 1801 case XFS_SBS_RBMBLOCKS: 1802 scounter = mp->m_sb.sb_rbmblocks; 1803 scounter += delta; 1804 if (scounter < 0) { 1805 ASSERT(0); 1806 return XFS_ERROR(EINVAL); 1807 } 1808 mp->m_sb.sb_rbmblocks = scounter; 1809 return 0; 1810 case XFS_SBS_RBLOCKS: 1811 lcounter = (long long)mp->m_sb.sb_rblocks; 1812 lcounter += delta; 1813 if (lcounter < 0) { 1814 ASSERT(0); 1815 return XFS_ERROR(EINVAL); 1816 } 1817 mp->m_sb.sb_rblocks = lcounter; 1818 return 0; 1819 case XFS_SBS_REXTENTS: 1820 lcounter = (long long)mp->m_sb.sb_rextents; 1821 lcounter += delta; 1822 if (lcounter < 0) { 1823 ASSERT(0); 1824 return XFS_ERROR(EINVAL); 1825 } 1826 mp->m_sb.sb_rextents = lcounter; 1827 return 0; 1828 case XFS_SBS_REXTSLOG: 1829 scounter = mp->m_sb.sb_rextslog; 1830 scounter += delta; 1831 if (scounter < 0) { 1832 ASSERT(0); 1833 return XFS_ERROR(EINVAL); 1834 } 1835 mp->m_sb.sb_rextslog = scounter; 1836 return 0; 1837 default: 1838 ASSERT(0); 1839 return XFS_ERROR(EINVAL); 1840 } 1841 } 1842 1843 /* 1844 * xfs_mod_incore_sb() is used to change a field in the in-core 1845 * superblock structure by the specified delta. This modification 1846 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1847 * routine to do the work. 1848 */ 1849 int 1850 xfs_mod_incore_sb( 1851 struct xfs_mount *mp, 1852 xfs_sb_field_t field, 1853 int64_t delta, 1854 int rsvd) 1855 { 1856 int status; 1857 1858 #ifdef HAVE_PERCPU_SB 1859 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1860 #endif 1861 spin_lock(&mp->m_sb_lock); 1862 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1863 spin_unlock(&mp->m_sb_lock); 1864 1865 return status; 1866 } 1867 1868 /* 1869 * Change more than one field in the in-core superblock structure at a time. 1870 * 1871 * The fields and changes to those fields are specified in the array of 1872 * xfs_mod_sb structures passed in. Either all of the specified deltas 1873 * will be applied or none of them will. If any modified field dips below 0, 1874 * then all modifications will be backed out and EINVAL will be returned. 1875 * 1876 * Note that this function may not be used for the superblock values that 1877 * are tracked with the in-memory per-cpu counters - a direct call to 1878 * xfs_icsb_modify_counters is required for these. 1879 */ 1880 int 1881 xfs_mod_incore_sb_batch( 1882 struct xfs_mount *mp, 1883 xfs_mod_sb_t *msb, 1884 uint nmsb, 1885 int rsvd) 1886 { 1887 xfs_mod_sb_t *msbp; 1888 int error = 0; 1889 1890 /* 1891 * Loop through the array of mod structures and apply each individually. 1892 * If any fail, then back out all those which have already been applied. 1893 * Do all of this within the scope of the m_sb_lock so that all of the 1894 * changes will be atomic. 1895 */ 1896 spin_lock(&mp->m_sb_lock); 1897 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1898 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1899 msbp->msb_field > XFS_SBS_FDBLOCKS); 1900 1901 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1902 msbp->msb_delta, rsvd); 1903 if (error) 1904 goto unwind; 1905 } 1906 spin_unlock(&mp->m_sb_lock); 1907 return 0; 1908 1909 unwind: 1910 while (--msbp >= msb) { 1911 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1912 -msbp->msb_delta, rsvd); 1913 ASSERT(error == 0); 1914 } 1915 spin_unlock(&mp->m_sb_lock); 1916 return error; 1917 } 1918 1919 /* 1920 * xfs_getsb() is called to obtain the buffer for the superblock. 1921 * The buffer is returned locked and read in from disk. 1922 * The buffer should be released with a call to xfs_brelse(). 1923 * 1924 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1925 * the superblock buffer if it can be locked without sleeping. 1926 * If it can't then we'll return NULL. 1927 */ 1928 struct xfs_buf * 1929 xfs_getsb( 1930 struct xfs_mount *mp, 1931 int flags) 1932 { 1933 struct xfs_buf *bp = mp->m_sb_bp; 1934 1935 if (!xfs_buf_trylock(bp)) { 1936 if (flags & XBF_TRYLOCK) 1937 return NULL; 1938 xfs_buf_lock(bp); 1939 } 1940 1941 xfs_buf_hold(bp); 1942 ASSERT(XFS_BUF_ISDONE(bp)); 1943 return bp; 1944 } 1945 1946 /* 1947 * Used to free the superblock along various error paths. 1948 */ 1949 void 1950 xfs_freesb( 1951 struct xfs_mount *mp) 1952 { 1953 struct xfs_buf *bp = mp->m_sb_bp; 1954 1955 xfs_buf_lock(bp); 1956 mp->m_sb_bp = NULL; 1957 xfs_buf_relse(bp); 1958 } 1959 1960 /* 1961 * Used to log changes to the superblock unit and width fields which could 1962 * be altered by the mount options, as well as any potential sb_features2 1963 * fixup. Only the first superblock is updated. 1964 */ 1965 int 1966 xfs_mount_log_sb( 1967 xfs_mount_t *mp, 1968 __int64_t fields) 1969 { 1970 xfs_trans_t *tp; 1971 int error; 1972 1973 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1974 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1975 XFS_SB_VERSIONNUM)); 1976 1977 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1978 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1979 XFS_DEFAULT_LOG_COUNT); 1980 if (error) { 1981 xfs_trans_cancel(tp, 0); 1982 return error; 1983 } 1984 xfs_mod_sb(tp, fields); 1985 error = xfs_trans_commit(tp, 0); 1986 return error; 1987 } 1988 1989 /* 1990 * If the underlying (data/log/rt) device is readonly, there are some 1991 * operations that cannot proceed. 1992 */ 1993 int 1994 xfs_dev_is_read_only( 1995 struct xfs_mount *mp, 1996 char *message) 1997 { 1998 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1999 xfs_readonly_buftarg(mp->m_logdev_targp) || 2000 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2001 xfs_notice(mp, "%s required on read-only device.", message); 2002 xfs_notice(mp, "write access unavailable, cannot proceed."); 2003 return EROFS; 2004 } 2005 return 0; 2006 } 2007 2008 #ifdef HAVE_PERCPU_SB 2009 /* 2010 * Per-cpu incore superblock counters 2011 * 2012 * Simple concept, difficult implementation 2013 * 2014 * Basically, replace the incore superblock counters with a distributed per cpu 2015 * counter for contended fields (e.g. free block count). 2016 * 2017 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2018 * hence needs to be accurately read when we are running low on space. Hence 2019 * there is a method to enable and disable the per-cpu counters based on how 2020 * much "stuff" is available in them. 2021 * 2022 * Basically, a counter is enabled if there is enough free resource to justify 2023 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2024 * ENOSPC), then we disable the counters to synchronise all callers and 2025 * re-distribute the available resources. 2026 * 2027 * If, once we redistributed the available resources, we still get a failure, 2028 * we disable the per-cpu counter and go through the slow path. 2029 * 2030 * The slow path is the current xfs_mod_incore_sb() function. This means that 2031 * when we disable a per-cpu counter, we need to drain its resources back to 2032 * the global superblock. We do this after disabling the counter to prevent 2033 * more threads from queueing up on the counter. 2034 * 2035 * Essentially, this means that we still need a lock in the fast path to enable 2036 * synchronisation between the global counters and the per-cpu counters. This 2037 * is not a problem because the lock will be local to a CPU almost all the time 2038 * and have little contention except when we get to ENOSPC conditions. 2039 * 2040 * Basically, this lock becomes a barrier that enables us to lock out the fast 2041 * path while we do things like enabling and disabling counters and 2042 * synchronising the counters. 2043 * 2044 * Locking rules: 2045 * 2046 * 1. m_sb_lock before picking up per-cpu locks 2047 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2048 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2049 * 4. modifying per-cpu counters requires holding per-cpu lock 2050 * 5. modifying global counters requires holding m_sb_lock 2051 * 6. enabling or disabling a counter requires holding the m_sb_lock 2052 * and _none_ of the per-cpu locks. 2053 * 2054 * Disabled counters are only ever re-enabled by a balance operation 2055 * that results in more free resources per CPU than a given threshold. 2056 * To ensure counters don't remain disabled, they are rebalanced when 2057 * the global resource goes above a higher threshold (i.e. some hysteresis 2058 * is present to prevent thrashing). 2059 */ 2060 2061 #ifdef CONFIG_HOTPLUG_CPU 2062 /* 2063 * hot-plug CPU notifier support. 2064 * 2065 * We need a notifier per filesystem as we need to be able to identify 2066 * the filesystem to balance the counters out. This is achieved by 2067 * having a notifier block embedded in the xfs_mount_t and doing pointer 2068 * magic to get the mount pointer from the notifier block address. 2069 */ 2070 STATIC int 2071 xfs_icsb_cpu_notify( 2072 struct notifier_block *nfb, 2073 unsigned long action, 2074 void *hcpu) 2075 { 2076 xfs_icsb_cnts_t *cntp; 2077 xfs_mount_t *mp; 2078 2079 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2080 cntp = (xfs_icsb_cnts_t *) 2081 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2082 switch (action) { 2083 case CPU_UP_PREPARE: 2084 case CPU_UP_PREPARE_FROZEN: 2085 /* Easy Case - initialize the area and locks, and 2086 * then rebalance when online does everything else for us. */ 2087 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2088 break; 2089 case CPU_ONLINE: 2090 case CPU_ONLINE_FROZEN: 2091 xfs_icsb_lock(mp); 2092 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2093 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2094 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2095 xfs_icsb_unlock(mp); 2096 break; 2097 case CPU_DEAD: 2098 case CPU_DEAD_FROZEN: 2099 /* Disable all the counters, then fold the dead cpu's 2100 * count into the total on the global superblock and 2101 * re-enable the counters. */ 2102 xfs_icsb_lock(mp); 2103 spin_lock(&mp->m_sb_lock); 2104 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2105 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2106 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2107 2108 mp->m_sb.sb_icount += cntp->icsb_icount; 2109 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2110 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2111 2112 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2113 2114 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2115 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2116 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2117 spin_unlock(&mp->m_sb_lock); 2118 xfs_icsb_unlock(mp); 2119 break; 2120 } 2121 2122 return NOTIFY_OK; 2123 } 2124 #endif /* CONFIG_HOTPLUG_CPU */ 2125 2126 int 2127 xfs_icsb_init_counters( 2128 xfs_mount_t *mp) 2129 { 2130 xfs_icsb_cnts_t *cntp; 2131 int i; 2132 2133 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2134 if (mp->m_sb_cnts == NULL) 2135 return -ENOMEM; 2136 2137 #ifdef CONFIG_HOTPLUG_CPU 2138 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2139 mp->m_icsb_notifier.priority = 0; 2140 register_hotcpu_notifier(&mp->m_icsb_notifier); 2141 #endif /* CONFIG_HOTPLUG_CPU */ 2142 2143 for_each_online_cpu(i) { 2144 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2145 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2146 } 2147 2148 mutex_init(&mp->m_icsb_mutex); 2149 2150 /* 2151 * start with all counters disabled so that the 2152 * initial balance kicks us off correctly 2153 */ 2154 mp->m_icsb_counters = -1; 2155 return 0; 2156 } 2157 2158 void 2159 xfs_icsb_reinit_counters( 2160 xfs_mount_t *mp) 2161 { 2162 xfs_icsb_lock(mp); 2163 /* 2164 * start with all counters disabled so that the 2165 * initial balance kicks us off correctly 2166 */ 2167 mp->m_icsb_counters = -1; 2168 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2169 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2170 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2171 xfs_icsb_unlock(mp); 2172 } 2173 2174 void 2175 xfs_icsb_destroy_counters( 2176 xfs_mount_t *mp) 2177 { 2178 if (mp->m_sb_cnts) { 2179 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2180 free_percpu(mp->m_sb_cnts); 2181 } 2182 mutex_destroy(&mp->m_icsb_mutex); 2183 } 2184 2185 STATIC void 2186 xfs_icsb_lock_cntr( 2187 xfs_icsb_cnts_t *icsbp) 2188 { 2189 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2190 ndelay(1000); 2191 } 2192 } 2193 2194 STATIC void 2195 xfs_icsb_unlock_cntr( 2196 xfs_icsb_cnts_t *icsbp) 2197 { 2198 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2199 } 2200 2201 2202 STATIC void 2203 xfs_icsb_lock_all_counters( 2204 xfs_mount_t *mp) 2205 { 2206 xfs_icsb_cnts_t *cntp; 2207 int i; 2208 2209 for_each_online_cpu(i) { 2210 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2211 xfs_icsb_lock_cntr(cntp); 2212 } 2213 } 2214 2215 STATIC void 2216 xfs_icsb_unlock_all_counters( 2217 xfs_mount_t *mp) 2218 { 2219 xfs_icsb_cnts_t *cntp; 2220 int i; 2221 2222 for_each_online_cpu(i) { 2223 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2224 xfs_icsb_unlock_cntr(cntp); 2225 } 2226 } 2227 2228 STATIC void 2229 xfs_icsb_count( 2230 xfs_mount_t *mp, 2231 xfs_icsb_cnts_t *cnt, 2232 int flags) 2233 { 2234 xfs_icsb_cnts_t *cntp; 2235 int i; 2236 2237 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2238 2239 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2240 xfs_icsb_lock_all_counters(mp); 2241 2242 for_each_online_cpu(i) { 2243 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2244 cnt->icsb_icount += cntp->icsb_icount; 2245 cnt->icsb_ifree += cntp->icsb_ifree; 2246 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2247 } 2248 2249 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2250 xfs_icsb_unlock_all_counters(mp); 2251 } 2252 2253 STATIC int 2254 xfs_icsb_counter_disabled( 2255 xfs_mount_t *mp, 2256 xfs_sb_field_t field) 2257 { 2258 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2259 return test_bit(field, &mp->m_icsb_counters); 2260 } 2261 2262 STATIC void 2263 xfs_icsb_disable_counter( 2264 xfs_mount_t *mp, 2265 xfs_sb_field_t field) 2266 { 2267 xfs_icsb_cnts_t cnt; 2268 2269 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2270 2271 /* 2272 * If we are already disabled, then there is nothing to do 2273 * here. We check before locking all the counters to avoid 2274 * the expensive lock operation when being called in the 2275 * slow path and the counter is already disabled. This is 2276 * safe because the only time we set or clear this state is under 2277 * the m_icsb_mutex. 2278 */ 2279 if (xfs_icsb_counter_disabled(mp, field)) 2280 return; 2281 2282 xfs_icsb_lock_all_counters(mp); 2283 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2284 /* drain back to superblock */ 2285 2286 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2287 switch(field) { 2288 case XFS_SBS_ICOUNT: 2289 mp->m_sb.sb_icount = cnt.icsb_icount; 2290 break; 2291 case XFS_SBS_IFREE: 2292 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2293 break; 2294 case XFS_SBS_FDBLOCKS: 2295 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2296 break; 2297 default: 2298 BUG(); 2299 } 2300 } 2301 2302 xfs_icsb_unlock_all_counters(mp); 2303 } 2304 2305 STATIC void 2306 xfs_icsb_enable_counter( 2307 xfs_mount_t *mp, 2308 xfs_sb_field_t field, 2309 uint64_t count, 2310 uint64_t resid) 2311 { 2312 xfs_icsb_cnts_t *cntp; 2313 int i; 2314 2315 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2316 2317 xfs_icsb_lock_all_counters(mp); 2318 for_each_online_cpu(i) { 2319 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2320 switch (field) { 2321 case XFS_SBS_ICOUNT: 2322 cntp->icsb_icount = count + resid; 2323 break; 2324 case XFS_SBS_IFREE: 2325 cntp->icsb_ifree = count + resid; 2326 break; 2327 case XFS_SBS_FDBLOCKS: 2328 cntp->icsb_fdblocks = count + resid; 2329 break; 2330 default: 2331 BUG(); 2332 break; 2333 } 2334 resid = 0; 2335 } 2336 clear_bit(field, &mp->m_icsb_counters); 2337 xfs_icsb_unlock_all_counters(mp); 2338 } 2339 2340 void 2341 xfs_icsb_sync_counters_locked( 2342 xfs_mount_t *mp, 2343 int flags) 2344 { 2345 xfs_icsb_cnts_t cnt; 2346 2347 xfs_icsb_count(mp, &cnt, flags); 2348 2349 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2350 mp->m_sb.sb_icount = cnt.icsb_icount; 2351 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2352 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2353 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2354 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2355 } 2356 2357 /* 2358 * Accurate update of per-cpu counters to incore superblock 2359 */ 2360 void 2361 xfs_icsb_sync_counters( 2362 xfs_mount_t *mp, 2363 int flags) 2364 { 2365 spin_lock(&mp->m_sb_lock); 2366 xfs_icsb_sync_counters_locked(mp, flags); 2367 spin_unlock(&mp->m_sb_lock); 2368 } 2369 2370 /* 2371 * Balance and enable/disable counters as necessary. 2372 * 2373 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2374 * chosen to be the same number as single on disk allocation chunk per CPU, and 2375 * free blocks is something far enough zero that we aren't going thrash when we 2376 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2377 * prevent looping endlessly when xfs_alloc_space asks for more than will 2378 * be distributed to a single CPU but each CPU has enough blocks to be 2379 * reenabled. 2380 * 2381 * Note that we can be called when counters are already disabled. 2382 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2383 * prevent locking every per-cpu counter needlessly. 2384 */ 2385 2386 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2387 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2388 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2389 STATIC void 2390 xfs_icsb_balance_counter_locked( 2391 xfs_mount_t *mp, 2392 xfs_sb_field_t field, 2393 int min_per_cpu) 2394 { 2395 uint64_t count, resid; 2396 int weight = num_online_cpus(); 2397 uint64_t min = (uint64_t)min_per_cpu; 2398 2399 /* disable counter and sync counter */ 2400 xfs_icsb_disable_counter(mp, field); 2401 2402 /* update counters - first CPU gets residual*/ 2403 switch (field) { 2404 case XFS_SBS_ICOUNT: 2405 count = mp->m_sb.sb_icount; 2406 resid = do_div(count, weight); 2407 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2408 return; 2409 break; 2410 case XFS_SBS_IFREE: 2411 count = mp->m_sb.sb_ifree; 2412 resid = do_div(count, weight); 2413 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2414 return; 2415 break; 2416 case XFS_SBS_FDBLOCKS: 2417 count = mp->m_sb.sb_fdblocks; 2418 resid = do_div(count, weight); 2419 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2420 return; 2421 break; 2422 default: 2423 BUG(); 2424 count = resid = 0; /* quiet, gcc */ 2425 break; 2426 } 2427 2428 xfs_icsb_enable_counter(mp, field, count, resid); 2429 } 2430 2431 STATIC void 2432 xfs_icsb_balance_counter( 2433 xfs_mount_t *mp, 2434 xfs_sb_field_t fields, 2435 int min_per_cpu) 2436 { 2437 spin_lock(&mp->m_sb_lock); 2438 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2439 spin_unlock(&mp->m_sb_lock); 2440 } 2441 2442 int 2443 xfs_icsb_modify_counters( 2444 xfs_mount_t *mp, 2445 xfs_sb_field_t field, 2446 int64_t delta, 2447 int rsvd) 2448 { 2449 xfs_icsb_cnts_t *icsbp; 2450 long long lcounter; /* long counter for 64 bit fields */ 2451 int ret = 0; 2452 2453 might_sleep(); 2454 again: 2455 preempt_disable(); 2456 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2457 2458 /* 2459 * if the counter is disabled, go to slow path 2460 */ 2461 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2462 goto slow_path; 2463 xfs_icsb_lock_cntr(icsbp); 2464 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2465 xfs_icsb_unlock_cntr(icsbp); 2466 goto slow_path; 2467 } 2468 2469 switch (field) { 2470 case XFS_SBS_ICOUNT: 2471 lcounter = icsbp->icsb_icount; 2472 lcounter += delta; 2473 if (unlikely(lcounter < 0)) 2474 goto balance_counter; 2475 icsbp->icsb_icount = lcounter; 2476 break; 2477 2478 case XFS_SBS_IFREE: 2479 lcounter = icsbp->icsb_ifree; 2480 lcounter += delta; 2481 if (unlikely(lcounter < 0)) 2482 goto balance_counter; 2483 icsbp->icsb_ifree = lcounter; 2484 break; 2485 2486 case XFS_SBS_FDBLOCKS: 2487 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2488 2489 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2490 lcounter += delta; 2491 if (unlikely(lcounter < 0)) 2492 goto balance_counter; 2493 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2494 break; 2495 default: 2496 BUG(); 2497 break; 2498 } 2499 xfs_icsb_unlock_cntr(icsbp); 2500 preempt_enable(); 2501 return 0; 2502 2503 slow_path: 2504 preempt_enable(); 2505 2506 /* 2507 * serialise with a mutex so we don't burn lots of cpu on 2508 * the superblock lock. We still need to hold the superblock 2509 * lock, however, when we modify the global structures. 2510 */ 2511 xfs_icsb_lock(mp); 2512 2513 /* 2514 * Now running atomically. 2515 * 2516 * If the counter is enabled, someone has beaten us to rebalancing. 2517 * Drop the lock and try again in the fast path.... 2518 */ 2519 if (!(xfs_icsb_counter_disabled(mp, field))) { 2520 xfs_icsb_unlock(mp); 2521 goto again; 2522 } 2523 2524 /* 2525 * The counter is currently disabled. Because we are 2526 * running atomically here, we know a rebalance cannot 2527 * be in progress. Hence we can go straight to operating 2528 * on the global superblock. We do not call xfs_mod_incore_sb() 2529 * here even though we need to get the m_sb_lock. Doing so 2530 * will cause us to re-enter this function and deadlock. 2531 * Hence we get the m_sb_lock ourselves and then call 2532 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2533 * directly on the global counters. 2534 */ 2535 spin_lock(&mp->m_sb_lock); 2536 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2537 spin_unlock(&mp->m_sb_lock); 2538 2539 /* 2540 * Now that we've modified the global superblock, we 2541 * may be able to re-enable the distributed counters 2542 * (e.g. lots of space just got freed). After that 2543 * we are done. 2544 */ 2545 if (ret != ENOSPC) 2546 xfs_icsb_balance_counter(mp, field, 0); 2547 xfs_icsb_unlock(mp); 2548 return ret; 2549 2550 balance_counter: 2551 xfs_icsb_unlock_cntr(icsbp); 2552 preempt_enable(); 2553 2554 /* 2555 * We may have multiple threads here if multiple per-cpu 2556 * counters run dry at the same time. This will mean we can 2557 * do more balances than strictly necessary but it is not 2558 * the common slowpath case. 2559 */ 2560 xfs_icsb_lock(mp); 2561 2562 /* 2563 * running atomically. 2564 * 2565 * This will leave the counter in the correct state for future 2566 * accesses. After the rebalance, we simply try again and our retry 2567 * will either succeed through the fast path or slow path without 2568 * another balance operation being required. 2569 */ 2570 xfs_icsb_balance_counter(mp, field, delta); 2571 xfs_icsb_unlock(mp); 2572 goto again; 2573 } 2574 2575 #endif 2576