1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_dir2.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_alloc.h" 22 #include "xfs_rtalloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_fsops.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_refcount_btree.h" 35 #include "xfs_reflink.h" 36 #include "xfs_extent_busy.h" 37 38 39 static DEFINE_MUTEX(xfs_uuid_table_mutex); 40 static int xfs_uuid_table_size; 41 static uuid_t *xfs_uuid_table; 42 43 void 44 xfs_uuid_table_free(void) 45 { 46 if (xfs_uuid_table_size == 0) 47 return; 48 kmem_free(xfs_uuid_table); 49 xfs_uuid_table = NULL; 50 xfs_uuid_table_size = 0; 51 } 52 53 /* 54 * See if the UUID is unique among mounted XFS filesystems. 55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 56 */ 57 STATIC int 58 xfs_uuid_mount( 59 struct xfs_mount *mp) 60 { 61 uuid_t *uuid = &mp->m_sb.sb_uuid; 62 int hole, i; 63 64 /* Publish UUID in struct super_block */ 65 uuid_copy(&mp->m_super->s_uuid, uuid); 66 67 if (mp->m_flags & XFS_MOUNT_NOUUID) 68 return 0; 69 70 if (uuid_is_null(uuid)) { 71 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 72 return -EINVAL; 73 } 74 75 mutex_lock(&xfs_uuid_table_mutex); 76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 77 if (uuid_is_null(&xfs_uuid_table[i])) { 78 hole = i; 79 continue; 80 } 81 if (uuid_equal(uuid, &xfs_uuid_table[i])) 82 goto out_duplicate; 83 } 84 85 if (hole < 0) { 86 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 88 KM_SLEEP); 89 hole = xfs_uuid_table_size++; 90 } 91 xfs_uuid_table[hole] = *uuid; 92 mutex_unlock(&xfs_uuid_table_mutex); 93 94 return 0; 95 96 out_duplicate: 97 mutex_unlock(&xfs_uuid_table_mutex); 98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 99 return -EINVAL; 100 } 101 102 STATIC void 103 xfs_uuid_unmount( 104 struct xfs_mount *mp) 105 { 106 uuid_t *uuid = &mp->m_sb.sb_uuid; 107 int i; 108 109 if (mp->m_flags & XFS_MOUNT_NOUUID) 110 return; 111 112 mutex_lock(&xfs_uuid_table_mutex); 113 for (i = 0; i < xfs_uuid_table_size; i++) { 114 if (uuid_is_null(&xfs_uuid_table[i])) 115 continue; 116 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 117 continue; 118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 119 break; 120 } 121 ASSERT(i < xfs_uuid_table_size); 122 mutex_unlock(&xfs_uuid_table_mutex); 123 } 124 125 126 STATIC void 127 __xfs_free_perag( 128 struct rcu_head *head) 129 { 130 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 131 132 ASSERT(atomic_read(&pag->pag_ref) == 0); 133 kmem_free(pag); 134 } 135 136 /* 137 * Free up the per-ag resources associated with the mount structure. 138 */ 139 STATIC void 140 xfs_free_perag( 141 xfs_mount_t *mp) 142 { 143 xfs_agnumber_t agno; 144 struct xfs_perag *pag; 145 146 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 147 spin_lock(&mp->m_perag_lock); 148 pag = radix_tree_delete(&mp->m_perag_tree, agno); 149 spin_unlock(&mp->m_perag_lock); 150 ASSERT(pag); 151 ASSERT(atomic_read(&pag->pag_ref) == 0); 152 xfs_buf_hash_destroy(pag); 153 mutex_destroy(&pag->pag_ici_reclaim_lock); 154 call_rcu(&pag->rcu_head, __xfs_free_perag); 155 } 156 } 157 158 /* 159 * Check size of device based on the (data/realtime) block count. 160 * Note: this check is used by the growfs code as well as mount. 161 */ 162 int 163 xfs_sb_validate_fsb_count( 164 xfs_sb_t *sbp, 165 uint64_t nblocks) 166 { 167 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 168 ASSERT(sbp->sb_blocklog >= BBSHIFT); 169 170 /* Limited by ULONG_MAX of page cache index */ 171 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 172 return -EFBIG; 173 return 0; 174 } 175 176 int 177 xfs_initialize_perag( 178 xfs_mount_t *mp, 179 xfs_agnumber_t agcount, 180 xfs_agnumber_t *maxagi) 181 { 182 xfs_agnumber_t index; 183 xfs_agnumber_t first_initialised = NULLAGNUMBER; 184 xfs_perag_t *pag; 185 int error = -ENOMEM; 186 187 /* 188 * Walk the current per-ag tree so we don't try to initialise AGs 189 * that already exist (growfs case). Allocate and insert all the 190 * AGs we don't find ready for initialisation. 191 */ 192 for (index = 0; index < agcount; index++) { 193 pag = xfs_perag_get(mp, index); 194 if (pag) { 195 xfs_perag_put(pag); 196 continue; 197 } 198 199 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 200 if (!pag) 201 goto out_unwind_new_pags; 202 pag->pag_agno = index; 203 pag->pag_mount = mp; 204 spin_lock_init(&pag->pag_ici_lock); 205 mutex_init(&pag->pag_ici_reclaim_lock); 206 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 207 if (xfs_buf_hash_init(pag)) 208 goto out_free_pag; 209 init_waitqueue_head(&pag->pagb_wait); 210 211 if (radix_tree_preload(GFP_NOFS)) 212 goto out_hash_destroy; 213 214 spin_lock(&mp->m_perag_lock); 215 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 216 BUG(); 217 spin_unlock(&mp->m_perag_lock); 218 radix_tree_preload_end(); 219 error = -EEXIST; 220 goto out_hash_destroy; 221 } 222 spin_unlock(&mp->m_perag_lock); 223 radix_tree_preload_end(); 224 /* first new pag is fully initialized */ 225 if (first_initialised == NULLAGNUMBER) 226 first_initialised = index; 227 } 228 229 index = xfs_set_inode_alloc(mp, agcount); 230 231 if (maxagi) 232 *maxagi = index; 233 234 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 235 return 0; 236 237 out_hash_destroy: 238 xfs_buf_hash_destroy(pag); 239 out_free_pag: 240 mutex_destroy(&pag->pag_ici_reclaim_lock); 241 kmem_free(pag); 242 out_unwind_new_pags: 243 /* unwind any prior newly initialized pags */ 244 for (index = first_initialised; index < agcount; index++) { 245 pag = radix_tree_delete(&mp->m_perag_tree, index); 246 if (!pag) 247 break; 248 xfs_buf_hash_destroy(pag); 249 mutex_destroy(&pag->pag_ici_reclaim_lock); 250 kmem_free(pag); 251 } 252 return error; 253 } 254 255 /* 256 * xfs_readsb 257 * 258 * Does the initial read of the superblock. 259 */ 260 int 261 xfs_readsb( 262 struct xfs_mount *mp, 263 int flags) 264 { 265 unsigned int sector_size; 266 struct xfs_buf *bp; 267 struct xfs_sb *sbp = &mp->m_sb; 268 int error; 269 int loud = !(flags & XFS_MFSI_QUIET); 270 const struct xfs_buf_ops *buf_ops; 271 272 ASSERT(mp->m_sb_bp == NULL); 273 ASSERT(mp->m_ddev_targp != NULL); 274 275 /* 276 * For the initial read, we must guess at the sector 277 * size based on the block device. It's enough to 278 * get the sb_sectsize out of the superblock and 279 * then reread with the proper length. 280 * We don't verify it yet, because it may not be complete. 281 */ 282 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 283 buf_ops = NULL; 284 285 /* 286 * Allocate a (locked) buffer to hold the superblock. This will be kept 287 * around at all times to optimize access to the superblock. Therefore, 288 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 289 * elevated. 290 */ 291 reread: 292 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 293 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 294 buf_ops); 295 if (error) { 296 if (loud) 297 xfs_warn(mp, "SB validate failed with error %d.", error); 298 /* bad CRC means corrupted metadata */ 299 if (error == -EFSBADCRC) 300 error = -EFSCORRUPTED; 301 return error; 302 } 303 304 /* 305 * Initialize the mount structure from the superblock. 306 */ 307 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 308 309 /* 310 * If we haven't validated the superblock, do so now before we try 311 * to check the sector size and reread the superblock appropriately. 312 */ 313 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 314 if (loud) 315 xfs_warn(mp, "Invalid superblock magic number"); 316 error = -EINVAL; 317 goto release_buf; 318 } 319 320 /* 321 * We must be able to do sector-sized and sector-aligned IO. 322 */ 323 if (sector_size > sbp->sb_sectsize) { 324 if (loud) 325 xfs_warn(mp, "device supports %u byte sectors (not %u)", 326 sector_size, sbp->sb_sectsize); 327 error = -ENOSYS; 328 goto release_buf; 329 } 330 331 if (buf_ops == NULL) { 332 /* 333 * Re-read the superblock so the buffer is correctly sized, 334 * and properly verified. 335 */ 336 xfs_buf_relse(bp); 337 sector_size = sbp->sb_sectsize; 338 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 339 goto reread; 340 } 341 342 xfs_reinit_percpu_counters(mp); 343 344 /* no need to be quiet anymore, so reset the buf ops */ 345 bp->b_ops = &xfs_sb_buf_ops; 346 347 mp->m_sb_bp = bp; 348 xfs_buf_unlock(bp); 349 return 0; 350 351 release_buf: 352 xfs_buf_relse(bp); 353 return error; 354 } 355 356 /* 357 * Update alignment values based on mount options and sb values 358 */ 359 STATIC int 360 xfs_update_alignment(xfs_mount_t *mp) 361 { 362 xfs_sb_t *sbp = &(mp->m_sb); 363 364 if (mp->m_dalign) { 365 /* 366 * If stripe unit and stripe width are not multiples 367 * of the fs blocksize turn off alignment. 368 */ 369 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 370 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 371 xfs_warn(mp, 372 "alignment check failed: sunit/swidth vs. blocksize(%d)", 373 sbp->sb_blocksize); 374 return -EINVAL; 375 } else { 376 /* 377 * Convert the stripe unit and width to FSBs. 378 */ 379 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 380 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 381 xfs_warn(mp, 382 "alignment check failed: sunit/swidth vs. agsize(%d)", 383 sbp->sb_agblocks); 384 return -EINVAL; 385 } else if (mp->m_dalign) { 386 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 387 } else { 388 xfs_warn(mp, 389 "alignment check failed: sunit(%d) less than bsize(%d)", 390 mp->m_dalign, sbp->sb_blocksize); 391 return -EINVAL; 392 } 393 } 394 395 /* 396 * Update superblock with new values 397 * and log changes 398 */ 399 if (xfs_sb_version_hasdalign(sbp)) { 400 if (sbp->sb_unit != mp->m_dalign) { 401 sbp->sb_unit = mp->m_dalign; 402 mp->m_update_sb = true; 403 } 404 if (sbp->sb_width != mp->m_swidth) { 405 sbp->sb_width = mp->m_swidth; 406 mp->m_update_sb = true; 407 } 408 } else { 409 xfs_warn(mp, 410 "cannot change alignment: superblock does not support data alignment"); 411 return -EINVAL; 412 } 413 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 414 xfs_sb_version_hasdalign(&mp->m_sb)) { 415 mp->m_dalign = sbp->sb_unit; 416 mp->m_swidth = sbp->sb_width; 417 } 418 419 return 0; 420 } 421 422 /* 423 * Set the maximum inode count for this filesystem 424 */ 425 STATIC void 426 xfs_set_maxicount(xfs_mount_t *mp) 427 { 428 xfs_sb_t *sbp = &(mp->m_sb); 429 uint64_t icount; 430 431 if (sbp->sb_imax_pct) { 432 /* 433 * Make sure the maximum inode count is a multiple 434 * of the units we allocate inodes in. 435 */ 436 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 437 do_div(icount, 100); 438 do_div(icount, mp->m_ialloc_blks); 439 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 440 sbp->sb_inopblog; 441 } else { 442 mp->m_maxicount = 0; 443 } 444 } 445 446 /* 447 * Set the default minimum read and write sizes unless 448 * already specified in a mount option. 449 * We use smaller I/O sizes when the file system 450 * is being used for NFS service (wsync mount option). 451 */ 452 STATIC void 453 xfs_set_rw_sizes(xfs_mount_t *mp) 454 { 455 xfs_sb_t *sbp = &(mp->m_sb); 456 int readio_log, writeio_log; 457 458 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 459 if (mp->m_flags & XFS_MOUNT_WSYNC) { 460 readio_log = XFS_WSYNC_READIO_LOG; 461 writeio_log = XFS_WSYNC_WRITEIO_LOG; 462 } else { 463 readio_log = XFS_READIO_LOG_LARGE; 464 writeio_log = XFS_WRITEIO_LOG_LARGE; 465 } 466 } else { 467 readio_log = mp->m_readio_log; 468 writeio_log = mp->m_writeio_log; 469 } 470 471 if (sbp->sb_blocklog > readio_log) { 472 mp->m_readio_log = sbp->sb_blocklog; 473 } else { 474 mp->m_readio_log = readio_log; 475 } 476 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 477 if (sbp->sb_blocklog > writeio_log) { 478 mp->m_writeio_log = sbp->sb_blocklog; 479 } else { 480 mp->m_writeio_log = writeio_log; 481 } 482 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 483 } 484 485 /* 486 * precalculate the low space thresholds for dynamic speculative preallocation. 487 */ 488 void 489 xfs_set_low_space_thresholds( 490 struct xfs_mount *mp) 491 { 492 int i; 493 494 for (i = 0; i < XFS_LOWSP_MAX; i++) { 495 uint64_t space = mp->m_sb.sb_dblocks; 496 497 do_div(space, 100); 498 mp->m_low_space[i] = space * (i + 1); 499 } 500 } 501 502 503 /* 504 * Set whether we're using inode alignment. 505 */ 506 STATIC void 507 xfs_set_inoalignment(xfs_mount_t *mp) 508 { 509 if (xfs_sb_version_hasalign(&mp->m_sb) && 510 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 511 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 512 else 513 mp->m_inoalign_mask = 0; 514 /* 515 * If we are using stripe alignment, check whether 516 * the stripe unit is a multiple of the inode alignment 517 */ 518 if (mp->m_dalign && mp->m_inoalign_mask && 519 !(mp->m_dalign & mp->m_inoalign_mask)) 520 mp->m_sinoalign = mp->m_dalign; 521 else 522 mp->m_sinoalign = 0; 523 } 524 525 /* 526 * Check that the data (and log if separate) is an ok size. 527 */ 528 STATIC int 529 xfs_check_sizes( 530 struct xfs_mount *mp) 531 { 532 struct xfs_buf *bp; 533 xfs_daddr_t d; 534 int error; 535 536 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 537 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 538 xfs_warn(mp, "filesystem size mismatch detected"); 539 return -EFBIG; 540 } 541 error = xfs_buf_read_uncached(mp->m_ddev_targp, 542 d - XFS_FSS_TO_BB(mp, 1), 543 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 544 if (error) { 545 xfs_warn(mp, "last sector read failed"); 546 return error; 547 } 548 xfs_buf_relse(bp); 549 550 if (mp->m_logdev_targp == mp->m_ddev_targp) 551 return 0; 552 553 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 554 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 555 xfs_warn(mp, "log size mismatch detected"); 556 return -EFBIG; 557 } 558 error = xfs_buf_read_uncached(mp->m_logdev_targp, 559 d - XFS_FSB_TO_BB(mp, 1), 560 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 561 if (error) { 562 xfs_warn(mp, "log device read failed"); 563 return error; 564 } 565 xfs_buf_relse(bp); 566 return 0; 567 } 568 569 /* 570 * Clear the quotaflags in memory and in the superblock. 571 */ 572 int 573 xfs_mount_reset_sbqflags( 574 struct xfs_mount *mp) 575 { 576 mp->m_qflags = 0; 577 578 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 579 if (mp->m_sb.sb_qflags == 0) 580 return 0; 581 spin_lock(&mp->m_sb_lock); 582 mp->m_sb.sb_qflags = 0; 583 spin_unlock(&mp->m_sb_lock); 584 585 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 586 return 0; 587 588 return xfs_sync_sb(mp, false); 589 } 590 591 uint64_t 592 xfs_default_resblks(xfs_mount_t *mp) 593 { 594 uint64_t resblks; 595 596 /* 597 * We default to 5% or 8192 fsbs of space reserved, whichever is 598 * smaller. This is intended to cover concurrent allocation 599 * transactions when we initially hit enospc. These each require a 4 600 * block reservation. Hence by default we cover roughly 2000 concurrent 601 * allocation reservations. 602 */ 603 resblks = mp->m_sb.sb_dblocks; 604 do_div(resblks, 20); 605 resblks = min_t(uint64_t, resblks, 8192); 606 return resblks; 607 } 608 609 /* 610 * This function does the following on an initial mount of a file system: 611 * - reads the superblock from disk and init the mount struct 612 * - if we're a 32-bit kernel, do a size check on the superblock 613 * so we don't mount terabyte filesystems 614 * - init mount struct realtime fields 615 * - allocate inode hash table for fs 616 * - init directory manager 617 * - perform recovery and init the log manager 618 */ 619 int 620 xfs_mountfs( 621 struct xfs_mount *mp) 622 { 623 struct xfs_sb *sbp = &(mp->m_sb); 624 struct xfs_inode *rip; 625 uint64_t resblks; 626 uint quotamount = 0; 627 uint quotaflags = 0; 628 int error = 0; 629 630 xfs_sb_mount_common(mp, sbp); 631 632 /* 633 * Check for a mismatched features2 values. Older kernels read & wrote 634 * into the wrong sb offset for sb_features2 on some platforms due to 635 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 636 * which made older superblock reading/writing routines swap it as a 637 * 64-bit value. 638 * 639 * For backwards compatibility, we make both slots equal. 640 * 641 * If we detect a mismatched field, we OR the set bits into the existing 642 * features2 field in case it has already been modified; we don't want 643 * to lose any features. We then update the bad location with the ORed 644 * value so that older kernels will see any features2 flags. The 645 * superblock writeback code ensures the new sb_features2 is copied to 646 * sb_bad_features2 before it is logged or written to disk. 647 */ 648 if (xfs_sb_has_mismatched_features2(sbp)) { 649 xfs_warn(mp, "correcting sb_features alignment problem"); 650 sbp->sb_features2 |= sbp->sb_bad_features2; 651 mp->m_update_sb = true; 652 653 /* 654 * Re-check for ATTR2 in case it was found in bad_features2 655 * slot. 656 */ 657 if (xfs_sb_version_hasattr2(&mp->m_sb) && 658 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 659 mp->m_flags |= XFS_MOUNT_ATTR2; 660 } 661 662 if (xfs_sb_version_hasattr2(&mp->m_sb) && 663 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 664 xfs_sb_version_removeattr2(&mp->m_sb); 665 mp->m_update_sb = true; 666 667 /* update sb_versionnum for the clearing of the morebits */ 668 if (!sbp->sb_features2) 669 mp->m_update_sb = true; 670 } 671 672 /* always use v2 inodes by default now */ 673 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 674 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 675 mp->m_update_sb = true; 676 } 677 678 /* 679 * Check if sb_agblocks is aligned at stripe boundary 680 * If sb_agblocks is NOT aligned turn off m_dalign since 681 * allocator alignment is within an ag, therefore ag has 682 * to be aligned at stripe boundary. 683 */ 684 error = xfs_update_alignment(mp); 685 if (error) 686 goto out; 687 688 xfs_alloc_compute_maxlevels(mp); 689 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 690 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 691 xfs_ialloc_compute_maxlevels(mp); 692 xfs_rmapbt_compute_maxlevels(mp); 693 xfs_refcountbt_compute_maxlevels(mp); 694 695 xfs_set_maxicount(mp); 696 697 /* enable fail_at_unmount as default */ 698 mp->m_fail_unmount = true; 699 700 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 701 if (error) 702 goto out; 703 704 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 705 &mp->m_kobj, "stats"); 706 if (error) 707 goto out_remove_sysfs; 708 709 error = xfs_error_sysfs_init(mp); 710 if (error) 711 goto out_del_stats; 712 713 error = xfs_errortag_init(mp); 714 if (error) 715 goto out_remove_error_sysfs; 716 717 error = xfs_uuid_mount(mp); 718 if (error) 719 goto out_remove_errortag; 720 721 /* 722 * Set the minimum read and write sizes 723 */ 724 xfs_set_rw_sizes(mp); 725 726 /* set the low space thresholds for dynamic preallocation */ 727 xfs_set_low_space_thresholds(mp); 728 729 /* 730 * Set the inode cluster size. 731 * This may still be overridden by the file system 732 * block size if it is larger than the chosen cluster size. 733 * 734 * For v5 filesystems, scale the cluster size with the inode size to 735 * keep a constant ratio of inode per cluster buffer, but only if mkfs 736 * has set the inode alignment value appropriately for larger cluster 737 * sizes. 738 */ 739 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 740 if (xfs_sb_version_hascrc(&mp->m_sb)) { 741 int new_size = mp->m_inode_cluster_size; 742 743 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 744 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 745 mp->m_inode_cluster_size = new_size; 746 } 747 748 /* 749 * If enabled, sparse inode chunk alignment is expected to match the 750 * cluster size. Full inode chunk alignment must match the chunk size, 751 * but that is checked on sb read verification... 752 */ 753 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 754 mp->m_sb.sb_spino_align != 755 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 756 xfs_warn(mp, 757 "Sparse inode block alignment (%u) must match cluster size (%llu).", 758 mp->m_sb.sb_spino_align, 759 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 760 error = -EINVAL; 761 goto out_remove_uuid; 762 } 763 764 /* 765 * Set inode alignment fields 766 */ 767 xfs_set_inoalignment(mp); 768 769 /* 770 * Check that the data (and log if separate) is an ok size. 771 */ 772 error = xfs_check_sizes(mp); 773 if (error) 774 goto out_remove_uuid; 775 776 /* 777 * Initialize realtime fields in the mount structure 778 */ 779 error = xfs_rtmount_init(mp); 780 if (error) { 781 xfs_warn(mp, "RT mount failed"); 782 goto out_remove_uuid; 783 } 784 785 /* 786 * Copies the low order bits of the timestamp and the randomly 787 * set "sequence" number out of a UUID. 788 */ 789 mp->m_fixedfsid[0] = 790 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 791 get_unaligned_be16(&sbp->sb_uuid.b[4]); 792 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 793 794 error = xfs_da_mount(mp); 795 if (error) { 796 xfs_warn(mp, "Failed dir/attr init: %d", error); 797 goto out_remove_uuid; 798 } 799 800 /* 801 * Initialize the precomputed transaction reservations values. 802 */ 803 xfs_trans_init(mp); 804 805 /* 806 * Allocate and initialize the per-ag data. 807 */ 808 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 809 if (error) { 810 xfs_warn(mp, "Failed per-ag init: %d", error); 811 goto out_free_dir; 812 } 813 814 if (!sbp->sb_logblocks) { 815 xfs_warn(mp, "no log defined"); 816 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 817 error = -EFSCORRUPTED; 818 goto out_free_perag; 819 } 820 821 /* 822 * Log's mount-time initialization. The first part of recovery can place 823 * some items on the AIL, to be handled when recovery is finished or 824 * cancelled. 825 */ 826 error = xfs_log_mount(mp, mp->m_logdev_targp, 827 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 828 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 829 if (error) { 830 xfs_warn(mp, "log mount failed"); 831 goto out_fail_wait; 832 } 833 834 /* 835 * Now the log is mounted, we know if it was an unclean shutdown or 836 * not. If it was, with the first phase of recovery has completed, we 837 * have consistent AG blocks on disk. We have not recovered EFIs yet, 838 * but they are recovered transactionally in the second recovery phase 839 * later. 840 * 841 * Hence we can safely re-initialise incore superblock counters from 842 * the per-ag data. These may not be correct if the filesystem was not 843 * cleanly unmounted, so we need to wait for recovery to finish before 844 * doing this. 845 * 846 * If the filesystem was cleanly unmounted, then we can trust the 847 * values in the superblock to be correct and we don't need to do 848 * anything here. 849 * 850 * If we are currently making the filesystem, the initialisation will 851 * fail as the perag data is in an undefined state. 852 */ 853 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 854 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 855 !mp->m_sb.sb_inprogress) { 856 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 857 if (error) 858 goto out_log_dealloc; 859 } 860 861 /* 862 * Get and sanity-check the root inode. 863 * Save the pointer to it in the mount structure. 864 */ 865 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 866 XFS_ILOCK_EXCL, &rip); 867 if (error) { 868 xfs_warn(mp, 869 "Failed to read root inode 0x%llx, error %d", 870 sbp->sb_rootino, -error); 871 goto out_log_dealloc; 872 } 873 874 ASSERT(rip != NULL); 875 876 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 877 xfs_warn(mp, "corrupted root inode %llu: not a directory", 878 (unsigned long long)rip->i_ino); 879 xfs_iunlock(rip, XFS_ILOCK_EXCL); 880 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 881 mp); 882 error = -EFSCORRUPTED; 883 goto out_rele_rip; 884 } 885 mp->m_rootip = rip; /* save it */ 886 887 xfs_iunlock(rip, XFS_ILOCK_EXCL); 888 889 /* 890 * Initialize realtime inode pointers in the mount structure 891 */ 892 error = xfs_rtmount_inodes(mp); 893 if (error) { 894 /* 895 * Free up the root inode. 896 */ 897 xfs_warn(mp, "failed to read RT inodes"); 898 goto out_rele_rip; 899 } 900 901 /* 902 * If this is a read-only mount defer the superblock updates until 903 * the next remount into writeable mode. Otherwise we would never 904 * perform the update e.g. for the root filesystem. 905 */ 906 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 907 error = xfs_sync_sb(mp, false); 908 if (error) { 909 xfs_warn(mp, "failed to write sb changes"); 910 goto out_rtunmount; 911 } 912 } 913 914 /* 915 * Initialise the XFS quota management subsystem for this mount 916 */ 917 if (XFS_IS_QUOTA_RUNNING(mp)) { 918 error = xfs_qm_newmount(mp, "amount, "aflags); 919 if (error) 920 goto out_rtunmount; 921 } else { 922 ASSERT(!XFS_IS_QUOTA_ON(mp)); 923 924 /* 925 * If a file system had quotas running earlier, but decided to 926 * mount without -o uquota/pquota/gquota options, revoke the 927 * quotachecked license. 928 */ 929 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 930 xfs_notice(mp, "resetting quota flags"); 931 error = xfs_mount_reset_sbqflags(mp); 932 if (error) 933 goto out_rtunmount; 934 } 935 } 936 937 /* 938 * Finish recovering the file system. This part needed to be delayed 939 * until after the root and real-time bitmap inodes were consistently 940 * read in. 941 */ 942 error = xfs_log_mount_finish(mp); 943 if (error) { 944 xfs_warn(mp, "log mount finish failed"); 945 goto out_rtunmount; 946 } 947 948 /* 949 * Now the log is fully replayed, we can transition to full read-only 950 * mode for read-only mounts. This will sync all the metadata and clean 951 * the log so that the recovery we just performed does not have to be 952 * replayed again on the next mount. 953 * 954 * We use the same quiesce mechanism as the rw->ro remount, as they are 955 * semantically identical operations. 956 */ 957 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 958 XFS_MOUNT_RDONLY) { 959 xfs_quiesce_attr(mp); 960 } 961 962 /* 963 * Complete the quota initialisation, post-log-replay component. 964 */ 965 if (quotamount) { 966 ASSERT(mp->m_qflags == 0); 967 mp->m_qflags = quotaflags; 968 969 xfs_qm_mount_quotas(mp); 970 } 971 972 /* 973 * Now we are mounted, reserve a small amount of unused space for 974 * privileged transactions. This is needed so that transaction 975 * space required for critical operations can dip into this pool 976 * when at ENOSPC. This is needed for operations like create with 977 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 978 * are not allowed to use this reserved space. 979 * 980 * This may drive us straight to ENOSPC on mount, but that implies 981 * we were already there on the last unmount. Warn if this occurs. 982 */ 983 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 984 resblks = xfs_default_resblks(mp); 985 error = xfs_reserve_blocks(mp, &resblks, NULL); 986 if (error) 987 xfs_warn(mp, 988 "Unable to allocate reserve blocks. Continuing without reserve pool."); 989 990 /* Recover any CoW blocks that never got remapped. */ 991 error = xfs_reflink_recover_cow(mp); 992 if (error) { 993 xfs_err(mp, 994 "Error %d recovering leftover CoW allocations.", error); 995 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 996 goto out_quota; 997 } 998 999 /* Reserve AG blocks for future btree expansion. */ 1000 error = xfs_fs_reserve_ag_blocks(mp); 1001 if (error && error != -ENOSPC) 1002 goto out_agresv; 1003 } 1004 1005 return 0; 1006 1007 out_agresv: 1008 xfs_fs_unreserve_ag_blocks(mp); 1009 out_quota: 1010 xfs_qm_unmount_quotas(mp); 1011 out_rtunmount: 1012 xfs_rtunmount_inodes(mp); 1013 out_rele_rip: 1014 IRELE(rip); 1015 /* Clean out dquots that might be in memory after quotacheck. */ 1016 xfs_qm_unmount(mp); 1017 /* 1018 * Cancel all delayed reclaim work and reclaim the inodes directly. 1019 * We have to do this /after/ rtunmount and qm_unmount because those 1020 * two will have scheduled delayed reclaim for the rt/quota inodes. 1021 * 1022 * This is slightly different from the unmountfs call sequence 1023 * because we could be tearing down a partially set up mount. In 1024 * particular, if log_mount_finish fails we bail out without calling 1025 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1026 * quota inodes. 1027 */ 1028 cancel_delayed_work_sync(&mp->m_reclaim_work); 1029 xfs_reclaim_inodes(mp, SYNC_WAIT); 1030 out_log_dealloc: 1031 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1032 xfs_log_mount_cancel(mp); 1033 out_fail_wait: 1034 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1035 xfs_wait_buftarg(mp->m_logdev_targp); 1036 xfs_wait_buftarg(mp->m_ddev_targp); 1037 out_free_perag: 1038 xfs_free_perag(mp); 1039 out_free_dir: 1040 xfs_da_unmount(mp); 1041 out_remove_uuid: 1042 xfs_uuid_unmount(mp); 1043 out_remove_errortag: 1044 xfs_errortag_del(mp); 1045 out_remove_error_sysfs: 1046 xfs_error_sysfs_del(mp); 1047 out_del_stats: 1048 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1049 out_remove_sysfs: 1050 xfs_sysfs_del(&mp->m_kobj); 1051 out: 1052 return error; 1053 } 1054 1055 /* 1056 * This flushes out the inodes,dquots and the superblock, unmounts the 1057 * log and makes sure that incore structures are freed. 1058 */ 1059 void 1060 xfs_unmountfs( 1061 struct xfs_mount *mp) 1062 { 1063 uint64_t resblks; 1064 int error; 1065 1066 xfs_icache_disable_reclaim(mp); 1067 xfs_fs_unreserve_ag_blocks(mp); 1068 xfs_qm_unmount_quotas(mp); 1069 xfs_rtunmount_inodes(mp); 1070 IRELE(mp->m_rootip); 1071 1072 /* 1073 * We can potentially deadlock here if we have an inode cluster 1074 * that has been freed has its buffer still pinned in memory because 1075 * the transaction is still sitting in a iclog. The stale inodes 1076 * on that buffer will have their flush locks held until the 1077 * transaction hits the disk and the callbacks run. the inode 1078 * flush takes the flush lock unconditionally and with nothing to 1079 * push out the iclog we will never get that unlocked. hence we 1080 * need to force the log first. 1081 */ 1082 xfs_log_force(mp, XFS_LOG_SYNC); 1083 1084 /* 1085 * Wait for all busy extents to be freed, including completion of 1086 * any discard operation. 1087 */ 1088 xfs_extent_busy_wait_all(mp); 1089 flush_workqueue(xfs_discard_wq); 1090 1091 /* 1092 * We now need to tell the world we are unmounting. This will allow 1093 * us to detect that the filesystem is going away and we should error 1094 * out anything that we have been retrying in the background. This will 1095 * prevent neverending retries in AIL pushing from hanging the unmount. 1096 */ 1097 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1098 1099 /* 1100 * Flush all pending changes from the AIL. 1101 */ 1102 xfs_ail_push_all_sync(mp->m_ail); 1103 1104 /* 1105 * And reclaim all inodes. At this point there should be no dirty 1106 * inodes and none should be pinned or locked, but use synchronous 1107 * reclaim just to be sure. We can stop background inode reclaim 1108 * here as well if it is still running. 1109 */ 1110 cancel_delayed_work_sync(&mp->m_reclaim_work); 1111 xfs_reclaim_inodes(mp, SYNC_WAIT); 1112 1113 xfs_qm_unmount(mp); 1114 1115 /* 1116 * Unreserve any blocks we have so that when we unmount we don't account 1117 * the reserved free space as used. This is really only necessary for 1118 * lazy superblock counting because it trusts the incore superblock 1119 * counters to be absolutely correct on clean unmount. 1120 * 1121 * We don't bother correcting this elsewhere for lazy superblock 1122 * counting because on mount of an unclean filesystem we reconstruct the 1123 * correct counter value and this is irrelevant. 1124 * 1125 * For non-lazy counter filesystems, this doesn't matter at all because 1126 * we only every apply deltas to the superblock and hence the incore 1127 * value does not matter.... 1128 */ 1129 resblks = 0; 1130 error = xfs_reserve_blocks(mp, &resblks, NULL); 1131 if (error) 1132 xfs_warn(mp, "Unable to free reserved block pool. " 1133 "Freespace may not be correct on next mount."); 1134 1135 error = xfs_log_sbcount(mp); 1136 if (error) 1137 xfs_warn(mp, "Unable to update superblock counters. " 1138 "Freespace may not be correct on next mount."); 1139 1140 1141 xfs_log_unmount(mp); 1142 xfs_da_unmount(mp); 1143 xfs_uuid_unmount(mp); 1144 1145 #if defined(DEBUG) 1146 xfs_errortag_clearall(mp); 1147 #endif 1148 xfs_free_perag(mp); 1149 1150 xfs_errortag_del(mp); 1151 xfs_error_sysfs_del(mp); 1152 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1153 xfs_sysfs_del(&mp->m_kobj); 1154 } 1155 1156 /* 1157 * Determine whether modifications can proceed. The caller specifies the minimum 1158 * freeze level for which modifications should not be allowed. This allows 1159 * certain operations to proceed while the freeze sequence is in progress, if 1160 * necessary. 1161 */ 1162 bool 1163 xfs_fs_writable( 1164 struct xfs_mount *mp, 1165 int level) 1166 { 1167 ASSERT(level > SB_UNFROZEN); 1168 if ((mp->m_super->s_writers.frozen >= level) || 1169 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1170 return false; 1171 1172 return true; 1173 } 1174 1175 /* 1176 * xfs_log_sbcount 1177 * 1178 * Sync the superblock counters to disk. 1179 * 1180 * Note this code can be called during the process of freezing, so we use the 1181 * transaction allocator that does not block when the transaction subsystem is 1182 * in its frozen state. 1183 */ 1184 int 1185 xfs_log_sbcount(xfs_mount_t *mp) 1186 { 1187 /* allow this to proceed during the freeze sequence... */ 1188 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1189 return 0; 1190 1191 /* 1192 * we don't need to do this if we are updating the superblock 1193 * counters on every modification. 1194 */ 1195 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1196 return 0; 1197 1198 return xfs_sync_sb(mp, true); 1199 } 1200 1201 /* 1202 * Deltas for the inode count are +/-64, hence we use a large batch size 1203 * of 128 so we don't need to take the counter lock on every update. 1204 */ 1205 #define XFS_ICOUNT_BATCH 128 1206 int 1207 xfs_mod_icount( 1208 struct xfs_mount *mp, 1209 int64_t delta) 1210 { 1211 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1212 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1213 ASSERT(0); 1214 percpu_counter_add(&mp->m_icount, -delta); 1215 return -EINVAL; 1216 } 1217 return 0; 1218 } 1219 1220 int 1221 xfs_mod_ifree( 1222 struct xfs_mount *mp, 1223 int64_t delta) 1224 { 1225 percpu_counter_add(&mp->m_ifree, delta); 1226 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1227 ASSERT(0); 1228 percpu_counter_add(&mp->m_ifree, -delta); 1229 return -EINVAL; 1230 } 1231 return 0; 1232 } 1233 1234 /* 1235 * Deltas for the block count can vary from 1 to very large, but lock contention 1236 * only occurs on frequent small block count updates such as in the delayed 1237 * allocation path for buffered writes (page a time updates). Hence we set 1238 * a large batch count (1024) to minimise global counter updates except when 1239 * we get near to ENOSPC and we have to be very accurate with our updates. 1240 */ 1241 #define XFS_FDBLOCKS_BATCH 1024 1242 int 1243 xfs_mod_fdblocks( 1244 struct xfs_mount *mp, 1245 int64_t delta, 1246 bool rsvd) 1247 { 1248 int64_t lcounter; 1249 long long res_used; 1250 s32 batch; 1251 1252 if (delta > 0) { 1253 /* 1254 * If the reserve pool is depleted, put blocks back into it 1255 * first. Most of the time the pool is full. 1256 */ 1257 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1258 percpu_counter_add(&mp->m_fdblocks, delta); 1259 return 0; 1260 } 1261 1262 spin_lock(&mp->m_sb_lock); 1263 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1264 1265 if (res_used > delta) { 1266 mp->m_resblks_avail += delta; 1267 } else { 1268 delta -= res_used; 1269 mp->m_resblks_avail = mp->m_resblks; 1270 percpu_counter_add(&mp->m_fdblocks, delta); 1271 } 1272 spin_unlock(&mp->m_sb_lock); 1273 return 0; 1274 } 1275 1276 /* 1277 * Taking blocks away, need to be more accurate the closer we 1278 * are to zero. 1279 * 1280 * If the counter has a value of less than 2 * max batch size, 1281 * then make everything serialise as we are real close to 1282 * ENOSPC. 1283 */ 1284 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1285 XFS_FDBLOCKS_BATCH) < 0) 1286 batch = 1; 1287 else 1288 batch = XFS_FDBLOCKS_BATCH; 1289 1290 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1291 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1292 XFS_FDBLOCKS_BATCH) >= 0) { 1293 /* we had space! */ 1294 return 0; 1295 } 1296 1297 /* 1298 * lock up the sb for dipping into reserves before releasing the space 1299 * that took us to ENOSPC. 1300 */ 1301 spin_lock(&mp->m_sb_lock); 1302 percpu_counter_add(&mp->m_fdblocks, -delta); 1303 if (!rsvd) 1304 goto fdblocks_enospc; 1305 1306 lcounter = (long long)mp->m_resblks_avail + delta; 1307 if (lcounter >= 0) { 1308 mp->m_resblks_avail = lcounter; 1309 spin_unlock(&mp->m_sb_lock); 1310 return 0; 1311 } 1312 printk_once(KERN_WARNING 1313 "Filesystem \"%s\": reserve blocks depleted! " 1314 "Consider increasing reserve pool size.", 1315 mp->m_fsname); 1316 fdblocks_enospc: 1317 spin_unlock(&mp->m_sb_lock); 1318 return -ENOSPC; 1319 } 1320 1321 int 1322 xfs_mod_frextents( 1323 struct xfs_mount *mp, 1324 int64_t delta) 1325 { 1326 int64_t lcounter; 1327 int ret = 0; 1328 1329 spin_lock(&mp->m_sb_lock); 1330 lcounter = mp->m_sb.sb_frextents + delta; 1331 if (lcounter < 0) 1332 ret = -ENOSPC; 1333 else 1334 mp->m_sb.sb_frextents = lcounter; 1335 spin_unlock(&mp->m_sb_lock); 1336 return ret; 1337 } 1338 1339 /* 1340 * xfs_getsb() is called to obtain the buffer for the superblock. 1341 * The buffer is returned locked and read in from disk. 1342 * The buffer should be released with a call to xfs_brelse(). 1343 * 1344 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1345 * the superblock buffer if it can be locked without sleeping. 1346 * If it can't then we'll return NULL. 1347 */ 1348 struct xfs_buf * 1349 xfs_getsb( 1350 struct xfs_mount *mp, 1351 int flags) 1352 { 1353 struct xfs_buf *bp = mp->m_sb_bp; 1354 1355 if (!xfs_buf_trylock(bp)) { 1356 if (flags & XBF_TRYLOCK) 1357 return NULL; 1358 xfs_buf_lock(bp); 1359 } 1360 1361 xfs_buf_hold(bp); 1362 ASSERT(bp->b_flags & XBF_DONE); 1363 return bp; 1364 } 1365 1366 /* 1367 * Used to free the superblock along various error paths. 1368 */ 1369 void 1370 xfs_freesb( 1371 struct xfs_mount *mp) 1372 { 1373 struct xfs_buf *bp = mp->m_sb_bp; 1374 1375 xfs_buf_lock(bp); 1376 mp->m_sb_bp = NULL; 1377 xfs_buf_relse(bp); 1378 } 1379 1380 /* 1381 * If the underlying (data/log/rt) device is readonly, there are some 1382 * operations that cannot proceed. 1383 */ 1384 int 1385 xfs_dev_is_read_only( 1386 struct xfs_mount *mp, 1387 char *message) 1388 { 1389 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1390 xfs_readonly_buftarg(mp->m_logdev_targp) || 1391 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1392 xfs_notice(mp, "%s required on read-only device.", message); 1393 xfs_notice(mp, "write access unavailable, cannot proceed."); 1394 return -EROFS; 1395 } 1396 return 0; 1397 } 1398