1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "scrub/stats.h" 39 40 static DEFINE_MUTEX(xfs_uuid_table_mutex); 41 static int xfs_uuid_table_size; 42 static uuid_t *xfs_uuid_table; 43 44 void 45 xfs_uuid_table_free(void) 46 { 47 if (xfs_uuid_table_size == 0) 48 return; 49 kfree(xfs_uuid_table); 50 xfs_uuid_table = NULL; 51 xfs_uuid_table_size = 0; 52 } 53 54 /* 55 * See if the UUID is unique among mounted XFS filesystems. 56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 57 */ 58 STATIC int 59 xfs_uuid_mount( 60 struct xfs_mount *mp) 61 { 62 uuid_t *uuid = &mp->m_sb.sb_uuid; 63 int hole, i; 64 65 /* Publish UUID in struct super_block */ 66 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 67 68 if (xfs_has_nouuid(mp)) 69 return 0; 70 71 if (uuid_is_null(uuid)) { 72 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 73 return -EINVAL; 74 } 75 76 mutex_lock(&xfs_uuid_table_mutex); 77 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 78 if (uuid_is_null(&xfs_uuid_table[i])) { 79 hole = i; 80 continue; 81 } 82 if (uuid_equal(uuid, &xfs_uuid_table[i])) 83 goto out_duplicate; 84 } 85 86 if (hole < 0) { 87 xfs_uuid_table = krealloc(xfs_uuid_table, 88 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 89 GFP_KERNEL | __GFP_NOFAIL); 90 hole = xfs_uuid_table_size++; 91 } 92 xfs_uuid_table[hole] = *uuid; 93 mutex_unlock(&xfs_uuid_table_mutex); 94 95 return 0; 96 97 out_duplicate: 98 mutex_unlock(&xfs_uuid_table_mutex); 99 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 100 return -EINVAL; 101 } 102 103 STATIC void 104 xfs_uuid_unmount( 105 struct xfs_mount *mp) 106 { 107 uuid_t *uuid = &mp->m_sb.sb_uuid; 108 int i; 109 110 if (xfs_has_nouuid(mp)) 111 return; 112 113 mutex_lock(&xfs_uuid_table_mutex); 114 for (i = 0; i < xfs_uuid_table_size; i++) { 115 if (uuid_is_null(&xfs_uuid_table[i])) 116 continue; 117 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 118 continue; 119 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 120 break; 121 } 122 ASSERT(i < xfs_uuid_table_size); 123 mutex_unlock(&xfs_uuid_table_mutex); 124 } 125 126 /* 127 * Check size of device based on the (data/realtime) block count. 128 * Note: this check is used by the growfs code as well as mount. 129 */ 130 int 131 xfs_sb_validate_fsb_count( 132 xfs_sb_t *sbp, 133 uint64_t nblocks) 134 { 135 uint64_t max_bytes; 136 137 ASSERT(sbp->sb_blocklog >= BBSHIFT); 138 139 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 140 return -EFBIG; 141 142 /* Limited by ULONG_MAX of page cache index */ 143 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 144 return -EFBIG; 145 return 0; 146 } 147 148 /* 149 * xfs_readsb 150 * 151 * Does the initial read of the superblock. 152 */ 153 int 154 xfs_readsb( 155 struct xfs_mount *mp, 156 int flags) 157 { 158 unsigned int sector_size; 159 struct xfs_buf *bp; 160 struct xfs_sb *sbp = &mp->m_sb; 161 int error; 162 int loud = !(flags & XFS_MFSI_QUIET); 163 const struct xfs_buf_ops *buf_ops; 164 165 ASSERT(mp->m_sb_bp == NULL); 166 ASSERT(mp->m_ddev_targp != NULL); 167 168 /* 169 * For the initial read, we must guess at the sector 170 * size based on the block device. It's enough to 171 * get the sb_sectsize out of the superblock and 172 * then reread with the proper length. 173 * We don't verify it yet, because it may not be complete. 174 */ 175 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 176 buf_ops = NULL; 177 178 /* 179 * Allocate a (locked) buffer to hold the superblock. This will be kept 180 * around at all times to optimize access to the superblock. Therefore, 181 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 182 * elevated. 183 */ 184 reread: 185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 186 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 187 buf_ops); 188 if (error) { 189 if (loud) 190 xfs_warn(mp, "SB validate failed with error %d.", error); 191 /* bad CRC means corrupted metadata */ 192 if (error == -EFSBADCRC) 193 error = -EFSCORRUPTED; 194 return error; 195 } 196 197 /* 198 * Initialize the mount structure from the superblock. 199 */ 200 xfs_sb_from_disk(sbp, bp->b_addr); 201 202 /* 203 * If we haven't validated the superblock, do so now before we try 204 * to check the sector size and reread the superblock appropriately. 205 */ 206 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 207 if (loud) 208 xfs_warn(mp, "Invalid superblock magic number"); 209 error = -EINVAL; 210 goto release_buf; 211 } 212 213 /* 214 * We must be able to do sector-sized and sector-aligned IO. 215 */ 216 if (sector_size > sbp->sb_sectsize) { 217 if (loud) 218 xfs_warn(mp, "device supports %u byte sectors (not %u)", 219 sector_size, sbp->sb_sectsize); 220 error = -ENOSYS; 221 goto release_buf; 222 } 223 224 if (buf_ops == NULL) { 225 /* 226 * Re-read the superblock so the buffer is correctly sized, 227 * and properly verified. 228 */ 229 xfs_buf_relse(bp); 230 sector_size = sbp->sb_sectsize; 231 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 232 goto reread; 233 } 234 235 mp->m_features |= xfs_sb_version_to_features(sbp); 236 xfs_reinit_percpu_counters(mp); 237 238 /* 239 * If logged xattrs are enabled after log recovery finishes, then set 240 * the opstate so that log recovery will work properly. 241 */ 242 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 243 xfs_set_using_logged_xattrs(mp); 244 245 /* no need to be quiet anymore, so reset the buf ops */ 246 bp->b_ops = &xfs_sb_buf_ops; 247 248 mp->m_sb_bp = bp; 249 xfs_buf_unlock(bp); 250 return 0; 251 252 release_buf: 253 xfs_buf_relse(bp); 254 return error; 255 } 256 257 /* 258 * If the sunit/swidth change would move the precomputed root inode value, we 259 * must reject the ondisk change because repair will stumble over that. 260 * However, we allow the mount to proceed because we never rejected this 261 * combination before. Returns true to update the sb, false otherwise. 262 */ 263 static inline int 264 xfs_check_new_dalign( 265 struct xfs_mount *mp, 266 int new_dalign, 267 bool *update_sb) 268 { 269 struct xfs_sb *sbp = &mp->m_sb; 270 xfs_ino_t calc_ino; 271 272 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 273 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 274 275 if (sbp->sb_rootino == calc_ino) { 276 *update_sb = true; 277 return 0; 278 } 279 280 xfs_warn(mp, 281 "Cannot change stripe alignment; would require moving root inode."); 282 283 /* 284 * XXX: Next time we add a new incompat feature, this should start 285 * returning -EINVAL to fail the mount. Until then, spit out a warning 286 * that we're ignoring the administrator's instructions. 287 */ 288 xfs_warn(mp, "Skipping superblock stripe alignment update."); 289 *update_sb = false; 290 return 0; 291 } 292 293 /* 294 * If we were provided with new sunit/swidth values as mount options, make sure 295 * that they pass basic alignment and superblock feature checks, and convert 296 * them into the same units (FSB) that everything else expects. This step 297 * /must/ be done before computing the inode geometry. 298 */ 299 STATIC int 300 xfs_validate_new_dalign( 301 struct xfs_mount *mp) 302 { 303 if (mp->m_dalign == 0) 304 return 0; 305 306 /* 307 * If stripe unit and stripe width are not multiples 308 * of the fs blocksize turn off alignment. 309 */ 310 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 311 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 312 xfs_warn(mp, 313 "alignment check failed: sunit/swidth vs. blocksize(%d)", 314 mp->m_sb.sb_blocksize); 315 return -EINVAL; 316 } 317 318 /* 319 * Convert the stripe unit and width to FSBs. 320 */ 321 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 322 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 323 xfs_warn(mp, 324 "alignment check failed: sunit/swidth vs. agsize(%d)", 325 mp->m_sb.sb_agblocks); 326 return -EINVAL; 327 } 328 329 if (!mp->m_dalign) { 330 xfs_warn(mp, 331 "alignment check failed: sunit(%d) less than bsize(%d)", 332 mp->m_dalign, mp->m_sb.sb_blocksize); 333 return -EINVAL; 334 } 335 336 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 337 338 if (!xfs_has_dalign(mp)) { 339 xfs_warn(mp, 340 "cannot change alignment: superblock does not support data alignment"); 341 return -EINVAL; 342 } 343 344 return 0; 345 } 346 347 /* Update alignment values based on mount options and sb values. */ 348 STATIC int 349 xfs_update_alignment( 350 struct xfs_mount *mp) 351 { 352 struct xfs_sb *sbp = &mp->m_sb; 353 354 if (mp->m_dalign) { 355 bool update_sb; 356 int error; 357 358 if (sbp->sb_unit == mp->m_dalign && 359 sbp->sb_width == mp->m_swidth) 360 return 0; 361 362 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 363 if (error || !update_sb) 364 return error; 365 366 sbp->sb_unit = mp->m_dalign; 367 sbp->sb_width = mp->m_swidth; 368 mp->m_update_sb = true; 369 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 370 mp->m_dalign = sbp->sb_unit; 371 mp->m_swidth = sbp->sb_width; 372 } 373 374 return 0; 375 } 376 377 /* 378 * precalculate the low space thresholds for dynamic speculative preallocation. 379 */ 380 void 381 xfs_set_low_space_thresholds( 382 struct xfs_mount *mp) 383 { 384 uint64_t dblocks = mp->m_sb.sb_dblocks; 385 uint64_t rtexts = mp->m_sb.sb_rextents; 386 int i; 387 388 do_div(dblocks, 100); 389 do_div(rtexts, 100); 390 391 for (i = 0; i < XFS_LOWSP_MAX; i++) { 392 mp->m_low_space[i] = dblocks * (i + 1); 393 mp->m_low_rtexts[i] = rtexts * (i + 1); 394 } 395 } 396 397 /* 398 * Check that the data (and log if separate) is an ok size. 399 */ 400 STATIC int 401 xfs_check_sizes( 402 struct xfs_mount *mp) 403 { 404 struct xfs_buf *bp; 405 xfs_daddr_t d; 406 int error; 407 408 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 409 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 410 xfs_warn(mp, "filesystem size mismatch detected"); 411 return -EFBIG; 412 } 413 error = xfs_buf_read_uncached(mp->m_ddev_targp, 414 d - XFS_FSS_TO_BB(mp, 1), 415 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 416 if (error) { 417 xfs_warn(mp, "last sector read failed"); 418 return error; 419 } 420 xfs_buf_relse(bp); 421 422 if (mp->m_logdev_targp == mp->m_ddev_targp) 423 return 0; 424 425 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 426 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 427 xfs_warn(mp, "log size mismatch detected"); 428 return -EFBIG; 429 } 430 error = xfs_buf_read_uncached(mp->m_logdev_targp, 431 d - XFS_FSB_TO_BB(mp, 1), 432 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 433 if (error) { 434 xfs_warn(mp, "log device read failed"); 435 return error; 436 } 437 xfs_buf_relse(bp); 438 return 0; 439 } 440 441 /* 442 * Clear the quotaflags in memory and in the superblock. 443 */ 444 int 445 xfs_mount_reset_sbqflags( 446 struct xfs_mount *mp) 447 { 448 mp->m_qflags = 0; 449 450 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 451 if (mp->m_sb.sb_qflags == 0) 452 return 0; 453 spin_lock(&mp->m_sb_lock); 454 mp->m_sb.sb_qflags = 0; 455 spin_unlock(&mp->m_sb_lock); 456 457 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 458 return 0; 459 460 return xfs_sync_sb(mp, false); 461 } 462 463 uint64_t 464 xfs_default_resblks(xfs_mount_t *mp) 465 { 466 uint64_t resblks; 467 468 /* 469 * We default to 5% or 8192 fsbs of space reserved, whichever is 470 * smaller. This is intended to cover concurrent allocation 471 * transactions when we initially hit enospc. These each require a 4 472 * block reservation. Hence by default we cover roughly 2000 concurrent 473 * allocation reservations. 474 */ 475 resblks = mp->m_sb.sb_dblocks; 476 do_div(resblks, 20); 477 resblks = min_t(uint64_t, resblks, 8192); 478 return resblks; 479 } 480 481 /* Ensure the summary counts are correct. */ 482 STATIC int 483 xfs_check_summary_counts( 484 struct xfs_mount *mp) 485 { 486 int error = 0; 487 488 /* 489 * The AG0 superblock verifier rejects in-progress filesystems, 490 * so we should never see the flag set this far into mounting. 491 */ 492 if (mp->m_sb.sb_inprogress) { 493 xfs_err(mp, "sb_inprogress set after log recovery??"); 494 WARN_ON(1); 495 return -EFSCORRUPTED; 496 } 497 498 /* 499 * Now the log is mounted, we know if it was an unclean shutdown or 500 * not. If it was, with the first phase of recovery has completed, we 501 * have consistent AG blocks on disk. We have not recovered EFIs yet, 502 * but they are recovered transactionally in the second recovery phase 503 * later. 504 * 505 * If the log was clean when we mounted, we can check the summary 506 * counters. If any of them are obviously incorrect, we can recompute 507 * them from the AGF headers in the next step. 508 */ 509 if (xfs_is_clean(mp) && 510 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 511 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 512 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 513 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 514 515 /* 516 * We can safely re-initialise incore superblock counters from the 517 * per-ag data. These may not be correct if the filesystem was not 518 * cleanly unmounted, so we waited for recovery to finish before doing 519 * this. 520 * 521 * If the filesystem was cleanly unmounted or the previous check did 522 * not flag anything weird, then we can trust the values in the 523 * superblock to be correct and we don't need to do anything here. 524 * Otherwise, recalculate the summary counters. 525 */ 526 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 527 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 528 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 529 if (error) 530 return error; 531 } 532 533 /* 534 * Older kernels misused sb_frextents to reflect both incore 535 * reservations made by running transactions and the actual count of 536 * free rt extents in the ondisk metadata. Transactions committed 537 * during runtime can therefore contain a superblock update that 538 * undercounts the number of free rt extents tracked in the rt bitmap. 539 * A clean unmount record will have the correct frextents value since 540 * there can be no other transactions running at that point. 541 * 542 * If we're mounting the rt volume after recovering the log, recompute 543 * frextents from the rtbitmap file to fix the inconsistency. 544 */ 545 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 546 error = xfs_rtalloc_reinit_frextents(mp); 547 if (error) 548 return error; 549 } 550 551 return 0; 552 } 553 554 static void 555 xfs_unmount_check( 556 struct xfs_mount *mp) 557 { 558 if (xfs_is_shutdown(mp)) 559 return; 560 561 if (percpu_counter_sum(&mp->m_ifree) > 562 percpu_counter_sum(&mp->m_icount)) { 563 xfs_alert(mp, "ifree/icount mismatch at unmount"); 564 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 565 } 566 } 567 568 /* 569 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 570 * internal inode structures can be sitting in the CIL and AIL at this point, 571 * so we need to unpin them, write them back and/or reclaim them before unmount 572 * can proceed. In other words, callers are required to have inactivated all 573 * inodes. 574 * 575 * An inode cluster that has been freed can have its buffer still pinned in 576 * memory because the transaction is still sitting in a iclog. The stale inodes 577 * on that buffer will be pinned to the buffer until the transaction hits the 578 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 579 * may never see the pinned buffer, so nothing will push out the iclog and 580 * unpin the buffer. 581 * 582 * Hence we need to force the log to unpin everything first. However, log 583 * forces don't wait for the discards they issue to complete, so we have to 584 * explicitly wait for them to complete here as well. 585 * 586 * Then we can tell the world we are unmounting so that error handling knows 587 * that the filesystem is going away and we should error out anything that we 588 * have been retrying in the background. This will prevent never-ending 589 * retries in AIL pushing from hanging the unmount. 590 * 591 * Finally, we can push the AIL to clean all the remaining dirty objects, then 592 * reclaim the remaining inodes that are still in memory at this point in time. 593 */ 594 static void 595 xfs_unmount_flush_inodes( 596 struct xfs_mount *mp) 597 { 598 xfs_log_force(mp, XFS_LOG_SYNC); 599 xfs_extent_busy_wait_all(mp); 600 flush_workqueue(xfs_discard_wq); 601 602 xfs_set_unmounting(mp); 603 604 xfs_ail_push_all_sync(mp->m_ail); 605 xfs_inodegc_stop(mp); 606 cancel_delayed_work_sync(&mp->m_reclaim_work); 607 xfs_reclaim_inodes(mp); 608 xfs_health_unmount(mp); 609 } 610 611 static void 612 xfs_mount_setup_inode_geom( 613 struct xfs_mount *mp) 614 { 615 struct xfs_ino_geometry *igeo = M_IGEO(mp); 616 617 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 618 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 619 620 xfs_ialloc_setup_geometry(mp); 621 } 622 623 /* Compute maximum possible height for per-AG btree types for this fs. */ 624 static inline void 625 xfs_agbtree_compute_maxlevels( 626 struct xfs_mount *mp) 627 { 628 unsigned int levels; 629 630 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 631 levels = max(levels, mp->m_rmap_maxlevels); 632 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 633 } 634 635 /* 636 * This function does the following on an initial mount of a file system: 637 * - reads the superblock from disk and init the mount struct 638 * - if we're a 32-bit kernel, do a size check on the superblock 639 * so we don't mount terabyte filesystems 640 * - init mount struct realtime fields 641 * - allocate inode hash table for fs 642 * - init directory manager 643 * - perform recovery and init the log manager 644 */ 645 int 646 xfs_mountfs( 647 struct xfs_mount *mp) 648 { 649 struct xfs_sb *sbp = &(mp->m_sb); 650 struct xfs_inode *rip; 651 struct xfs_ino_geometry *igeo = M_IGEO(mp); 652 uint quotamount = 0; 653 uint quotaflags = 0; 654 int error = 0; 655 656 xfs_sb_mount_common(mp, sbp); 657 658 /* 659 * Check for a mismatched features2 values. Older kernels read & wrote 660 * into the wrong sb offset for sb_features2 on some platforms due to 661 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 662 * which made older superblock reading/writing routines swap it as a 663 * 64-bit value. 664 * 665 * For backwards compatibility, we make both slots equal. 666 * 667 * If we detect a mismatched field, we OR the set bits into the existing 668 * features2 field in case it has already been modified; we don't want 669 * to lose any features. We then update the bad location with the ORed 670 * value so that older kernels will see any features2 flags. The 671 * superblock writeback code ensures the new sb_features2 is copied to 672 * sb_bad_features2 before it is logged or written to disk. 673 */ 674 if (xfs_sb_has_mismatched_features2(sbp)) { 675 xfs_warn(mp, "correcting sb_features alignment problem"); 676 sbp->sb_features2 |= sbp->sb_bad_features2; 677 mp->m_update_sb = true; 678 } 679 680 681 /* always use v2 inodes by default now */ 682 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 683 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 684 mp->m_features |= XFS_FEAT_NLINK; 685 mp->m_update_sb = true; 686 } 687 688 /* 689 * If we were given new sunit/swidth options, do some basic validation 690 * checks and convert the incore dalign and swidth values to the 691 * same units (FSB) that everything else uses. This /must/ happen 692 * before computing the inode geometry. 693 */ 694 error = xfs_validate_new_dalign(mp); 695 if (error) 696 goto out; 697 698 xfs_alloc_compute_maxlevels(mp); 699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 701 xfs_mount_setup_inode_geom(mp); 702 xfs_rmapbt_compute_maxlevels(mp); 703 xfs_refcountbt_compute_maxlevels(mp); 704 705 xfs_agbtree_compute_maxlevels(mp); 706 707 /* 708 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 709 * is NOT aligned turn off m_dalign since allocator alignment is within 710 * an ag, therefore ag has to be aligned at stripe boundary. Note that 711 * we must compute the free space and rmap btree geometry before doing 712 * this. 713 */ 714 error = xfs_update_alignment(mp); 715 if (error) 716 goto out; 717 718 /* enable fail_at_unmount as default */ 719 mp->m_fail_unmount = true; 720 721 super_set_sysfs_name_id(mp->m_super); 722 723 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 724 NULL, mp->m_super->s_id); 725 if (error) 726 goto out; 727 728 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 729 &mp->m_kobj, "stats"); 730 if (error) 731 goto out_remove_sysfs; 732 733 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 734 735 error = xfs_error_sysfs_init(mp); 736 if (error) 737 goto out_remove_scrub_stats; 738 739 error = xfs_errortag_init(mp); 740 if (error) 741 goto out_remove_error_sysfs; 742 743 error = xfs_uuid_mount(mp); 744 if (error) 745 goto out_remove_errortag; 746 747 /* 748 * Update the preferred write size based on the information from the 749 * on-disk superblock. 750 */ 751 mp->m_allocsize_log = 752 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 753 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 754 755 /* set the low space thresholds for dynamic preallocation */ 756 xfs_set_low_space_thresholds(mp); 757 758 /* 759 * If enabled, sparse inode chunk alignment is expected to match the 760 * cluster size. Full inode chunk alignment must match the chunk size, 761 * but that is checked on sb read verification... 762 */ 763 if (xfs_has_sparseinodes(mp) && 764 mp->m_sb.sb_spino_align != 765 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 766 xfs_warn(mp, 767 "Sparse inode block alignment (%u) must match cluster size (%llu).", 768 mp->m_sb.sb_spino_align, 769 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 770 error = -EINVAL; 771 goto out_remove_uuid; 772 } 773 774 /* 775 * Check that the data (and log if separate) is an ok size. 776 */ 777 error = xfs_check_sizes(mp); 778 if (error) 779 goto out_remove_uuid; 780 781 /* 782 * Initialize realtime fields in the mount structure 783 */ 784 error = xfs_rtmount_init(mp); 785 if (error) { 786 xfs_warn(mp, "RT mount failed"); 787 goto out_remove_uuid; 788 } 789 790 /* 791 * Copies the low order bits of the timestamp and the randomly 792 * set "sequence" number out of a UUID. 793 */ 794 mp->m_fixedfsid[0] = 795 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 796 get_unaligned_be16(&sbp->sb_uuid.b[4]); 797 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 798 799 error = xfs_da_mount(mp); 800 if (error) { 801 xfs_warn(mp, "Failed dir/attr init: %d", error); 802 goto out_remove_uuid; 803 } 804 805 /* 806 * Initialize the precomputed transaction reservations values. 807 */ 808 xfs_trans_init(mp); 809 810 /* 811 * Allocate and initialize the per-ag data. 812 */ 813 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 814 mp->m_sb.sb_dblocks, &mp->m_maxagi); 815 if (error) { 816 xfs_warn(mp, "Failed per-ag init: %d", error); 817 goto out_free_dir; 818 } 819 820 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 821 xfs_warn(mp, "no log defined"); 822 error = -EFSCORRUPTED; 823 goto out_free_perag; 824 } 825 826 error = xfs_inodegc_register_shrinker(mp); 827 if (error) 828 goto out_fail_wait; 829 830 /* 831 * Log's mount-time initialization. The first part of recovery can place 832 * some items on the AIL, to be handled when recovery is finished or 833 * cancelled. 834 */ 835 error = xfs_log_mount(mp, mp->m_logdev_targp, 836 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 837 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 838 if (error) { 839 xfs_warn(mp, "log mount failed"); 840 goto out_inodegc_shrinker; 841 } 842 843 /* 844 * If logged xattrs are still enabled after log recovery finishes, then 845 * they'll be available until unmount. Otherwise, turn them off. 846 */ 847 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 848 xfs_set_using_logged_xattrs(mp); 849 else 850 xfs_clear_using_logged_xattrs(mp); 851 852 /* Enable background inode inactivation workers. */ 853 xfs_inodegc_start(mp); 854 xfs_blockgc_start(mp); 855 856 /* 857 * Now that we've recovered any pending superblock feature bit 858 * additions, we can finish setting up the attr2 behaviour for the 859 * mount. The noattr2 option overrides the superblock flag, so only 860 * check the superblock feature flag if the mount option is not set. 861 */ 862 if (xfs_has_noattr2(mp)) { 863 mp->m_features &= ~XFS_FEAT_ATTR2; 864 } else if (!xfs_has_attr2(mp) && 865 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 866 mp->m_features |= XFS_FEAT_ATTR2; 867 } 868 869 /* 870 * Get and sanity-check the root inode. 871 * Save the pointer to it in the mount structure. 872 */ 873 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 874 XFS_ILOCK_EXCL, &rip); 875 if (error) { 876 xfs_warn(mp, 877 "Failed to read root inode 0x%llx, error %d", 878 sbp->sb_rootino, -error); 879 goto out_log_dealloc; 880 } 881 882 ASSERT(rip != NULL); 883 884 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 885 xfs_warn(mp, "corrupted root inode %llu: not a directory", 886 (unsigned long long)rip->i_ino); 887 xfs_iunlock(rip, XFS_ILOCK_EXCL); 888 error = -EFSCORRUPTED; 889 goto out_rele_rip; 890 } 891 mp->m_rootip = rip; /* save it */ 892 893 xfs_iunlock(rip, XFS_ILOCK_EXCL); 894 895 /* 896 * Initialize realtime inode pointers in the mount structure 897 */ 898 error = xfs_rtmount_inodes(mp); 899 if (error) { 900 /* 901 * Free up the root inode. 902 */ 903 xfs_warn(mp, "failed to read RT inodes"); 904 goto out_rele_rip; 905 } 906 907 /* Make sure the summary counts are ok. */ 908 error = xfs_check_summary_counts(mp); 909 if (error) 910 goto out_rtunmount; 911 912 /* 913 * If this is a read-only mount defer the superblock updates until 914 * the next remount into writeable mode. Otherwise we would never 915 * perform the update e.g. for the root filesystem. 916 */ 917 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 918 error = xfs_sync_sb(mp, false); 919 if (error) { 920 xfs_warn(mp, "failed to write sb changes"); 921 goto out_rtunmount; 922 } 923 } 924 925 /* 926 * Initialise the XFS quota management subsystem for this mount 927 */ 928 if (XFS_IS_QUOTA_ON(mp)) { 929 error = xfs_qm_newmount(mp, "amount, "aflags); 930 if (error) 931 goto out_rtunmount; 932 } else { 933 /* 934 * If a file system had quotas running earlier, but decided to 935 * mount without -o uquota/pquota/gquota options, revoke the 936 * quotachecked license. 937 */ 938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 939 xfs_notice(mp, "resetting quota flags"); 940 error = xfs_mount_reset_sbqflags(mp); 941 if (error) 942 goto out_rtunmount; 943 } 944 } 945 946 /* 947 * Finish recovering the file system. This part needed to be delayed 948 * until after the root and real-time bitmap inodes were consistently 949 * read in. Temporarily create per-AG space reservations for metadata 950 * btree shape changes because space freeing transactions (for inode 951 * inactivation) require the per-AG reservation in lieu of reserving 952 * blocks. 953 */ 954 error = xfs_fs_reserve_ag_blocks(mp); 955 if (error && error == -ENOSPC) 956 xfs_warn(mp, 957 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 958 error = xfs_log_mount_finish(mp); 959 xfs_fs_unreserve_ag_blocks(mp); 960 if (error) { 961 xfs_warn(mp, "log mount finish failed"); 962 goto out_rtunmount; 963 } 964 965 /* 966 * Now the log is fully replayed, we can transition to full read-only 967 * mode for read-only mounts. This will sync all the metadata and clean 968 * the log so that the recovery we just performed does not have to be 969 * replayed again on the next mount. 970 * 971 * We use the same quiesce mechanism as the rw->ro remount, as they are 972 * semantically identical operations. 973 */ 974 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 975 xfs_log_clean(mp); 976 977 /* 978 * Complete the quota initialisation, post-log-replay component. 979 */ 980 if (quotamount) { 981 ASSERT(mp->m_qflags == 0); 982 mp->m_qflags = quotaflags; 983 984 xfs_qm_mount_quotas(mp); 985 } 986 987 /* 988 * Now we are mounted, reserve a small amount of unused space for 989 * privileged transactions. This is needed so that transaction 990 * space required for critical operations can dip into this pool 991 * when at ENOSPC. This is needed for operations like create with 992 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 993 * are not allowed to use this reserved space. 994 * 995 * This may drive us straight to ENOSPC on mount, but that implies 996 * we were already there on the last unmount. Warn if this occurs. 997 */ 998 if (!xfs_is_readonly(mp)) { 999 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp)); 1000 if (error) 1001 xfs_warn(mp, 1002 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1003 1004 /* Reserve AG blocks for future btree expansion. */ 1005 error = xfs_fs_reserve_ag_blocks(mp); 1006 if (error && error != -ENOSPC) 1007 goto out_agresv; 1008 } 1009 1010 return 0; 1011 1012 out_agresv: 1013 xfs_fs_unreserve_ag_blocks(mp); 1014 xfs_qm_unmount_quotas(mp); 1015 out_rtunmount: 1016 xfs_rtunmount_inodes(mp); 1017 out_rele_rip: 1018 xfs_irele(rip); 1019 /* Clean out dquots that might be in memory after quotacheck. */ 1020 xfs_qm_unmount(mp); 1021 1022 /* 1023 * Inactivate all inodes that might still be in memory after a log 1024 * intent recovery failure so that reclaim can free them. Metadata 1025 * inodes and the root directory shouldn't need inactivation, but the 1026 * mount failed for some reason, so pull down all the state and flee. 1027 */ 1028 xfs_inodegc_flush(mp); 1029 1030 /* 1031 * Flush all inode reclamation work and flush the log. 1032 * We have to do this /after/ rtunmount and qm_unmount because those 1033 * two will have scheduled delayed reclaim for the rt/quota inodes. 1034 * 1035 * This is slightly different from the unmountfs call sequence 1036 * because we could be tearing down a partially set up mount. In 1037 * particular, if log_mount_finish fails we bail out without calling 1038 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1039 * quota inodes. 1040 */ 1041 xfs_unmount_flush_inodes(mp); 1042 out_log_dealloc: 1043 xfs_log_mount_cancel(mp); 1044 out_inodegc_shrinker: 1045 shrinker_free(mp->m_inodegc_shrinker); 1046 out_fail_wait: 1047 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1048 xfs_buftarg_drain(mp->m_logdev_targp); 1049 xfs_buftarg_drain(mp->m_ddev_targp); 1050 out_free_perag: 1051 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1052 out_free_dir: 1053 xfs_da_unmount(mp); 1054 out_remove_uuid: 1055 xfs_uuid_unmount(mp); 1056 out_remove_errortag: 1057 xfs_errortag_del(mp); 1058 out_remove_error_sysfs: 1059 xfs_error_sysfs_del(mp); 1060 out_remove_scrub_stats: 1061 xchk_stats_unregister(mp->m_scrub_stats); 1062 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1063 out_remove_sysfs: 1064 xfs_sysfs_del(&mp->m_kobj); 1065 out: 1066 return error; 1067 } 1068 1069 /* 1070 * This flushes out the inodes,dquots and the superblock, unmounts the 1071 * log and makes sure that incore structures are freed. 1072 */ 1073 void 1074 xfs_unmountfs( 1075 struct xfs_mount *mp) 1076 { 1077 int error; 1078 1079 /* 1080 * Perform all on-disk metadata updates required to inactivate inodes 1081 * that the VFS evicted earlier in the unmount process. Freeing inodes 1082 * and discarding CoW fork preallocations can cause shape changes to 1083 * the free inode and refcount btrees, respectively, so we must finish 1084 * this before we discard the metadata space reservations. Metadata 1085 * inodes and the root directory do not require inactivation. 1086 */ 1087 xfs_inodegc_flush(mp); 1088 1089 xfs_blockgc_stop(mp); 1090 xfs_fs_unreserve_ag_blocks(mp); 1091 xfs_qm_unmount_quotas(mp); 1092 xfs_rtunmount_inodes(mp); 1093 xfs_irele(mp->m_rootip); 1094 1095 xfs_unmount_flush_inodes(mp); 1096 1097 xfs_qm_unmount(mp); 1098 1099 /* 1100 * Unreserve any blocks we have so that when we unmount we don't account 1101 * the reserved free space as used. This is really only necessary for 1102 * lazy superblock counting because it trusts the incore superblock 1103 * counters to be absolutely correct on clean unmount. 1104 * 1105 * We don't bother correcting this elsewhere for lazy superblock 1106 * counting because on mount of an unclean filesystem we reconstruct the 1107 * correct counter value and this is irrelevant. 1108 * 1109 * For non-lazy counter filesystems, this doesn't matter at all because 1110 * we only every apply deltas to the superblock and hence the incore 1111 * value does not matter.... 1112 */ 1113 error = xfs_reserve_blocks(mp, 0); 1114 if (error) 1115 xfs_warn(mp, "Unable to free reserved block pool. " 1116 "Freespace may not be correct on next mount."); 1117 xfs_unmount_check(mp); 1118 1119 /* 1120 * Indicate that it's ok to clear log incompat bits before cleaning 1121 * the log and writing the unmount record. 1122 */ 1123 xfs_set_done_with_log_incompat(mp); 1124 xfs_log_unmount(mp); 1125 xfs_da_unmount(mp); 1126 xfs_uuid_unmount(mp); 1127 1128 #if defined(DEBUG) 1129 xfs_errortag_clearall(mp); 1130 #endif 1131 shrinker_free(mp->m_inodegc_shrinker); 1132 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1133 xfs_errortag_del(mp); 1134 xfs_error_sysfs_del(mp); 1135 xchk_stats_unregister(mp->m_scrub_stats); 1136 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1137 xfs_sysfs_del(&mp->m_kobj); 1138 } 1139 1140 /* 1141 * Determine whether modifications can proceed. The caller specifies the minimum 1142 * freeze level for which modifications should not be allowed. This allows 1143 * certain operations to proceed while the freeze sequence is in progress, if 1144 * necessary. 1145 */ 1146 bool 1147 xfs_fs_writable( 1148 struct xfs_mount *mp, 1149 int level) 1150 { 1151 ASSERT(level > SB_UNFROZEN); 1152 if ((mp->m_super->s_writers.frozen >= level) || 1153 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1154 return false; 1155 1156 return true; 1157 } 1158 1159 void 1160 xfs_add_freecounter( 1161 struct xfs_mount *mp, 1162 struct percpu_counter *counter, 1163 uint64_t delta) 1164 { 1165 bool has_resv_pool = (counter == &mp->m_fdblocks); 1166 uint64_t res_used; 1167 1168 /* 1169 * If the reserve pool is depleted, put blocks back into it first. 1170 * Most of the time the pool is full. 1171 */ 1172 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) { 1173 percpu_counter_add(counter, delta); 1174 return; 1175 } 1176 1177 spin_lock(&mp->m_sb_lock); 1178 res_used = mp->m_resblks - mp->m_resblks_avail; 1179 if (res_used > delta) { 1180 mp->m_resblks_avail += delta; 1181 } else { 1182 delta -= res_used; 1183 mp->m_resblks_avail = mp->m_resblks; 1184 percpu_counter_add(counter, delta); 1185 } 1186 spin_unlock(&mp->m_sb_lock); 1187 } 1188 1189 int 1190 xfs_dec_freecounter( 1191 struct xfs_mount *mp, 1192 struct percpu_counter *counter, 1193 uint64_t delta, 1194 bool rsvd) 1195 { 1196 int64_t lcounter; 1197 uint64_t set_aside = 0; 1198 s32 batch; 1199 bool has_resv_pool; 1200 1201 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1202 has_resv_pool = (counter == &mp->m_fdblocks); 1203 if (rsvd) 1204 ASSERT(has_resv_pool); 1205 1206 /* 1207 * Taking blocks away, need to be more accurate the closer we 1208 * are to zero. 1209 * 1210 * If the counter has a value of less than 2 * max batch size, 1211 * then make everything serialise as we are real close to 1212 * ENOSPC. 1213 */ 1214 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1215 XFS_FDBLOCKS_BATCH) < 0) 1216 batch = 1; 1217 else 1218 batch = XFS_FDBLOCKS_BATCH; 1219 1220 /* 1221 * Set aside allocbt blocks because these blocks are tracked as free 1222 * space but not available for allocation. Technically this means that a 1223 * single reservation cannot consume all remaining free space, but the 1224 * ratio of allocbt blocks to usable free blocks should be rather small. 1225 * The tradeoff without this is that filesystems that maintain high 1226 * perag block reservations can over reserve physical block availability 1227 * and fail physical allocation, which leads to much more serious 1228 * problems (i.e. transaction abort, pagecache discards, etc.) than 1229 * slightly premature -ENOSPC. 1230 */ 1231 if (has_resv_pool) 1232 set_aside = xfs_fdblocks_unavailable(mp); 1233 percpu_counter_add_batch(counter, -((int64_t)delta), batch); 1234 if (__percpu_counter_compare(counter, set_aside, 1235 XFS_FDBLOCKS_BATCH) >= 0) { 1236 /* we had space! */ 1237 return 0; 1238 } 1239 1240 /* 1241 * lock up the sb for dipping into reserves before releasing the space 1242 * that took us to ENOSPC. 1243 */ 1244 spin_lock(&mp->m_sb_lock); 1245 percpu_counter_add(counter, delta); 1246 if (!has_resv_pool || !rsvd) 1247 goto fdblocks_enospc; 1248 1249 lcounter = (long long)mp->m_resblks_avail - delta; 1250 if (lcounter >= 0) { 1251 mp->m_resblks_avail = lcounter; 1252 spin_unlock(&mp->m_sb_lock); 1253 return 0; 1254 } 1255 xfs_warn_once(mp, 1256 "Reserve blocks depleted! Consider increasing reserve pool size."); 1257 1258 fdblocks_enospc: 1259 spin_unlock(&mp->m_sb_lock); 1260 return -ENOSPC; 1261 } 1262 1263 /* 1264 * Used to free the superblock along various error paths. 1265 */ 1266 void 1267 xfs_freesb( 1268 struct xfs_mount *mp) 1269 { 1270 struct xfs_buf *bp = mp->m_sb_bp; 1271 1272 xfs_buf_lock(bp); 1273 mp->m_sb_bp = NULL; 1274 xfs_buf_relse(bp); 1275 } 1276 1277 /* 1278 * If the underlying (data/log/rt) device is readonly, there are some 1279 * operations that cannot proceed. 1280 */ 1281 int 1282 xfs_dev_is_read_only( 1283 struct xfs_mount *mp, 1284 char *message) 1285 { 1286 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1287 xfs_readonly_buftarg(mp->m_logdev_targp) || 1288 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1289 xfs_notice(mp, "%s required on read-only device.", message); 1290 xfs_notice(mp, "write access unavailable, cannot proceed."); 1291 return -EROFS; 1292 } 1293 return 0; 1294 } 1295 1296 /* Force the summary counters to be recalculated at next mount. */ 1297 void 1298 xfs_force_summary_recalc( 1299 struct xfs_mount *mp) 1300 { 1301 if (!xfs_has_lazysbcount(mp)) 1302 return; 1303 1304 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1305 } 1306 1307 /* 1308 * Enable a log incompat feature flag in the primary superblock. The caller 1309 * cannot have any other transactions in progress. 1310 */ 1311 int 1312 xfs_add_incompat_log_feature( 1313 struct xfs_mount *mp, 1314 uint32_t feature) 1315 { 1316 struct xfs_dsb *dsb; 1317 int error; 1318 1319 ASSERT(hweight32(feature) == 1); 1320 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1321 1322 /* 1323 * Force the log to disk and kick the background AIL thread to reduce 1324 * the chances that the bwrite will stall waiting for the AIL to unpin 1325 * the primary superblock buffer. This isn't a data integrity 1326 * operation, so we don't need a synchronous push. 1327 */ 1328 error = xfs_log_force(mp, XFS_LOG_SYNC); 1329 if (error) 1330 return error; 1331 xfs_ail_push_all(mp->m_ail); 1332 1333 /* 1334 * Lock the primary superblock buffer to serialize all callers that 1335 * are trying to set feature bits. 1336 */ 1337 xfs_buf_lock(mp->m_sb_bp); 1338 xfs_buf_hold(mp->m_sb_bp); 1339 1340 if (xfs_is_shutdown(mp)) { 1341 error = -EIO; 1342 goto rele; 1343 } 1344 1345 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1346 goto rele; 1347 1348 /* 1349 * Write the primary superblock to disk immediately, because we need 1350 * the log_incompat bit to be set in the primary super now to protect 1351 * the log items that we're going to commit later. 1352 */ 1353 dsb = mp->m_sb_bp->b_addr; 1354 xfs_sb_to_disk(dsb, &mp->m_sb); 1355 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1356 error = xfs_bwrite(mp->m_sb_bp); 1357 if (error) 1358 goto shutdown; 1359 1360 /* 1361 * Add the feature bits to the incore superblock before we unlock the 1362 * buffer. 1363 */ 1364 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1365 xfs_buf_relse(mp->m_sb_bp); 1366 1367 /* Log the superblock to disk. */ 1368 return xfs_sync_sb(mp, false); 1369 shutdown: 1370 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1371 rele: 1372 xfs_buf_relse(mp->m_sb_bp); 1373 return error; 1374 } 1375 1376 /* 1377 * Clear all the log incompat flags from the superblock. 1378 * 1379 * The caller cannot be in a transaction, must ensure that the log does not 1380 * contain any log items protected by any log incompat bit, and must ensure 1381 * that there are no other threads that depend on the state of the log incompat 1382 * feature flags in the primary super. 1383 * 1384 * Returns true if the superblock is dirty. 1385 */ 1386 bool 1387 xfs_clear_incompat_log_features( 1388 struct xfs_mount *mp) 1389 { 1390 bool ret = false; 1391 1392 if (!xfs_has_crc(mp) || 1393 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1394 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1395 xfs_is_shutdown(mp) || 1396 !xfs_is_done_with_log_incompat(mp)) 1397 return false; 1398 1399 /* 1400 * Update the incore superblock. We synchronize on the primary super 1401 * buffer lock to be consistent with the add function, though at least 1402 * in theory this shouldn't be necessary. 1403 */ 1404 xfs_buf_lock(mp->m_sb_bp); 1405 xfs_buf_hold(mp->m_sb_bp); 1406 1407 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1408 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1409 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1410 ret = true; 1411 } 1412 1413 xfs_buf_relse(mp->m_sb_bp); 1414 return ret; 1415 } 1416 1417 /* 1418 * Update the in-core delayed block counter. 1419 * 1420 * We prefer to update the counter without having to take a spinlock for every 1421 * counter update (i.e. batching). Each change to delayed allocation 1422 * reservations can change can easily exceed the default percpu counter 1423 * batching, so we use a larger batch factor here. 1424 * 1425 * Note that we don't currently have any callers requiring fast summation 1426 * (e.g. percpu_counter_read) so we can use a big batch value here. 1427 */ 1428 #define XFS_DELALLOC_BATCH (4096) 1429 void 1430 xfs_mod_delalloc( 1431 struct xfs_inode *ip, 1432 int64_t data_delta, 1433 int64_t ind_delta) 1434 { 1435 struct xfs_mount *mp = ip->i_mount; 1436 1437 if (XFS_IS_REALTIME_INODE(ip)) { 1438 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1439 xfs_rtb_to_rtx(mp, data_delta), 1440 XFS_DELALLOC_BATCH); 1441 if (!ind_delta) 1442 return; 1443 data_delta = 0; 1444 } 1445 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1446 XFS_DELALLOC_BATCH); 1447 } 1448