xref: /linux/fs/xfs/xfs_mount.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "scrub/stats.h"
39 
40 static DEFINE_MUTEX(xfs_uuid_table_mutex);
41 static int xfs_uuid_table_size;
42 static uuid_t *xfs_uuid_table;
43 
44 void
45 xfs_uuid_table_free(void)
46 {
47 	if (xfs_uuid_table_size == 0)
48 		return;
49 	kfree(xfs_uuid_table);
50 	xfs_uuid_table = NULL;
51 	xfs_uuid_table_size = 0;
52 }
53 
54 /*
55  * See if the UUID is unique among mounted XFS filesystems.
56  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
57  */
58 STATIC int
59 xfs_uuid_mount(
60 	struct xfs_mount	*mp)
61 {
62 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
63 	int			hole, i;
64 
65 	/* Publish UUID in struct super_block */
66 	super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
67 
68 	if (xfs_has_nouuid(mp))
69 		return 0;
70 
71 	if (uuid_is_null(uuid)) {
72 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
73 		return -EINVAL;
74 	}
75 
76 	mutex_lock(&xfs_uuid_table_mutex);
77 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
78 		if (uuid_is_null(&xfs_uuid_table[i])) {
79 			hole = i;
80 			continue;
81 		}
82 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
83 			goto out_duplicate;
84 	}
85 
86 	if (hole < 0) {
87 		xfs_uuid_table = krealloc(xfs_uuid_table,
88 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
89 			GFP_KERNEL | __GFP_NOFAIL);
90 		hole = xfs_uuid_table_size++;
91 	}
92 	xfs_uuid_table[hole] = *uuid;
93 	mutex_unlock(&xfs_uuid_table_mutex);
94 
95 	return 0;
96 
97  out_duplicate:
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100 	return -EINVAL;
101 }
102 
103 STATIC void
104 xfs_uuid_unmount(
105 	struct xfs_mount	*mp)
106 {
107 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
108 	int			i;
109 
110 	if (xfs_has_nouuid(mp))
111 		return;
112 
113 	mutex_lock(&xfs_uuid_table_mutex);
114 	for (i = 0; i < xfs_uuid_table_size; i++) {
115 		if (uuid_is_null(&xfs_uuid_table[i]))
116 			continue;
117 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118 			continue;
119 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120 		break;
121 	}
122 	ASSERT(i < xfs_uuid_table_size);
123 	mutex_unlock(&xfs_uuid_table_mutex);
124 }
125 
126 /*
127  * Check size of device based on the (data/realtime) block count.
128  * Note: this check is used by the growfs code as well as mount.
129  */
130 int
131 xfs_sb_validate_fsb_count(
132 	xfs_sb_t	*sbp,
133 	uint64_t	nblocks)
134 {
135 	uint64_t		max_bytes;
136 
137 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
138 
139 	if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
140 		return -EFBIG;
141 
142 	/* Limited by ULONG_MAX of page cache index */
143 	if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
144 		return -EFBIG;
145 	return 0;
146 }
147 
148 /*
149  * xfs_readsb
150  *
151  * Does the initial read of the superblock.
152  */
153 int
154 xfs_readsb(
155 	struct xfs_mount *mp,
156 	int		flags)
157 {
158 	unsigned int	sector_size;
159 	struct xfs_buf	*bp;
160 	struct xfs_sb	*sbp = &mp->m_sb;
161 	int		error;
162 	int		loud = !(flags & XFS_MFSI_QUIET);
163 	const struct xfs_buf_ops *buf_ops;
164 
165 	ASSERT(mp->m_sb_bp == NULL);
166 	ASSERT(mp->m_ddev_targp != NULL);
167 
168 	/*
169 	 * For the initial read, we must guess at the sector
170 	 * size based on the block device.  It's enough to
171 	 * get the sb_sectsize out of the superblock and
172 	 * then reread with the proper length.
173 	 * We don't verify it yet, because it may not be complete.
174 	 */
175 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
176 	buf_ops = NULL;
177 
178 	/*
179 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
180 	 * around at all times to optimize access to the superblock. Therefore,
181 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
182 	 * elevated.
183 	 */
184 reread:
185 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
187 				      buf_ops);
188 	if (error) {
189 		if (loud)
190 			xfs_warn(mp, "SB validate failed with error %d.", error);
191 		/* bad CRC means corrupted metadata */
192 		if (error == -EFSBADCRC)
193 			error = -EFSCORRUPTED;
194 		return error;
195 	}
196 
197 	/*
198 	 * Initialize the mount structure from the superblock.
199 	 */
200 	xfs_sb_from_disk(sbp, bp->b_addr);
201 
202 	/*
203 	 * If we haven't validated the superblock, do so now before we try
204 	 * to check the sector size and reread the superblock appropriately.
205 	 */
206 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
207 		if (loud)
208 			xfs_warn(mp, "Invalid superblock magic number");
209 		error = -EINVAL;
210 		goto release_buf;
211 	}
212 
213 	/*
214 	 * We must be able to do sector-sized and sector-aligned IO.
215 	 */
216 	if (sector_size > sbp->sb_sectsize) {
217 		if (loud)
218 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
219 				sector_size, sbp->sb_sectsize);
220 		error = -ENOSYS;
221 		goto release_buf;
222 	}
223 
224 	if (buf_ops == NULL) {
225 		/*
226 		 * Re-read the superblock so the buffer is correctly sized,
227 		 * and properly verified.
228 		 */
229 		xfs_buf_relse(bp);
230 		sector_size = sbp->sb_sectsize;
231 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
232 		goto reread;
233 	}
234 
235 	mp->m_features |= xfs_sb_version_to_features(sbp);
236 	xfs_reinit_percpu_counters(mp);
237 
238 	/*
239 	 * If logged xattrs are enabled after log recovery finishes, then set
240 	 * the opstate so that log recovery will work properly.
241 	 */
242 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
243 		xfs_set_using_logged_xattrs(mp);
244 
245 	/* no need to be quiet anymore, so reset the buf ops */
246 	bp->b_ops = &xfs_sb_buf_ops;
247 
248 	mp->m_sb_bp = bp;
249 	xfs_buf_unlock(bp);
250 	return 0;
251 
252 release_buf:
253 	xfs_buf_relse(bp);
254 	return error;
255 }
256 
257 /*
258  * If the sunit/swidth change would move the precomputed root inode value, we
259  * must reject the ondisk change because repair will stumble over that.
260  * However, we allow the mount to proceed because we never rejected this
261  * combination before.  Returns true to update the sb, false otherwise.
262  */
263 static inline int
264 xfs_check_new_dalign(
265 	struct xfs_mount	*mp,
266 	int			new_dalign,
267 	bool			*update_sb)
268 {
269 	struct xfs_sb		*sbp = &mp->m_sb;
270 	xfs_ino_t		calc_ino;
271 
272 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
273 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
274 
275 	if (sbp->sb_rootino == calc_ino) {
276 		*update_sb = true;
277 		return 0;
278 	}
279 
280 	xfs_warn(mp,
281 "Cannot change stripe alignment; would require moving root inode.");
282 
283 	/*
284 	 * XXX: Next time we add a new incompat feature, this should start
285 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
286 	 * that we're ignoring the administrator's instructions.
287 	 */
288 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
289 	*update_sb = false;
290 	return 0;
291 }
292 
293 /*
294  * If we were provided with new sunit/swidth values as mount options, make sure
295  * that they pass basic alignment and superblock feature checks, and convert
296  * them into the same units (FSB) that everything else expects.  This step
297  * /must/ be done before computing the inode geometry.
298  */
299 STATIC int
300 xfs_validate_new_dalign(
301 	struct xfs_mount	*mp)
302 {
303 	if (mp->m_dalign == 0)
304 		return 0;
305 
306 	/*
307 	 * If stripe unit and stripe width are not multiples
308 	 * of the fs blocksize turn off alignment.
309 	 */
310 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
311 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
312 		xfs_warn(mp,
313 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
314 			mp->m_sb.sb_blocksize);
315 		return -EINVAL;
316 	}
317 
318 	/*
319 	 * Convert the stripe unit and width to FSBs.
320 	 */
321 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
322 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
323 		xfs_warn(mp,
324 	"alignment check failed: sunit/swidth vs. agsize(%d)",
325 			mp->m_sb.sb_agblocks);
326 		return -EINVAL;
327 	}
328 
329 	if (!mp->m_dalign) {
330 		xfs_warn(mp,
331 	"alignment check failed: sunit(%d) less than bsize(%d)",
332 			mp->m_dalign, mp->m_sb.sb_blocksize);
333 		return -EINVAL;
334 	}
335 
336 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
337 
338 	if (!xfs_has_dalign(mp)) {
339 		xfs_warn(mp,
340 "cannot change alignment: superblock does not support data alignment");
341 		return -EINVAL;
342 	}
343 
344 	return 0;
345 }
346 
347 /* Update alignment values based on mount options and sb values. */
348 STATIC int
349 xfs_update_alignment(
350 	struct xfs_mount	*mp)
351 {
352 	struct xfs_sb		*sbp = &mp->m_sb;
353 
354 	if (mp->m_dalign) {
355 		bool		update_sb;
356 		int		error;
357 
358 		if (sbp->sb_unit == mp->m_dalign &&
359 		    sbp->sb_width == mp->m_swidth)
360 			return 0;
361 
362 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
363 		if (error || !update_sb)
364 			return error;
365 
366 		sbp->sb_unit = mp->m_dalign;
367 		sbp->sb_width = mp->m_swidth;
368 		mp->m_update_sb = true;
369 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
370 		mp->m_dalign = sbp->sb_unit;
371 		mp->m_swidth = sbp->sb_width;
372 	}
373 
374 	return 0;
375 }
376 
377 /*
378  * precalculate the low space thresholds for dynamic speculative preallocation.
379  */
380 void
381 xfs_set_low_space_thresholds(
382 	struct xfs_mount	*mp)
383 {
384 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
385 	uint64_t		rtexts = mp->m_sb.sb_rextents;
386 	int			i;
387 
388 	do_div(dblocks, 100);
389 	do_div(rtexts, 100);
390 
391 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
392 		mp->m_low_space[i] = dblocks * (i + 1);
393 		mp->m_low_rtexts[i] = rtexts * (i + 1);
394 	}
395 }
396 
397 /*
398  * Check that the data (and log if separate) is an ok size.
399  */
400 STATIC int
401 xfs_check_sizes(
402 	struct xfs_mount *mp)
403 {
404 	struct xfs_buf	*bp;
405 	xfs_daddr_t	d;
406 	int		error;
407 
408 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
409 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
410 		xfs_warn(mp, "filesystem size mismatch detected");
411 		return -EFBIG;
412 	}
413 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
414 					d - XFS_FSS_TO_BB(mp, 1),
415 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
416 	if (error) {
417 		xfs_warn(mp, "last sector read failed");
418 		return error;
419 	}
420 	xfs_buf_relse(bp);
421 
422 	if (mp->m_logdev_targp == mp->m_ddev_targp)
423 		return 0;
424 
425 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
426 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
427 		xfs_warn(mp, "log size mismatch detected");
428 		return -EFBIG;
429 	}
430 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
431 					d - XFS_FSB_TO_BB(mp, 1),
432 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
433 	if (error) {
434 		xfs_warn(mp, "log device read failed");
435 		return error;
436 	}
437 	xfs_buf_relse(bp);
438 	return 0;
439 }
440 
441 /*
442  * Clear the quotaflags in memory and in the superblock.
443  */
444 int
445 xfs_mount_reset_sbqflags(
446 	struct xfs_mount	*mp)
447 {
448 	mp->m_qflags = 0;
449 
450 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
451 	if (mp->m_sb.sb_qflags == 0)
452 		return 0;
453 	spin_lock(&mp->m_sb_lock);
454 	mp->m_sb.sb_qflags = 0;
455 	spin_unlock(&mp->m_sb_lock);
456 
457 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
458 		return 0;
459 
460 	return xfs_sync_sb(mp, false);
461 }
462 
463 uint64_t
464 xfs_default_resblks(xfs_mount_t *mp)
465 {
466 	uint64_t resblks;
467 
468 	/*
469 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
470 	 * smaller.  This is intended to cover concurrent allocation
471 	 * transactions when we initially hit enospc. These each require a 4
472 	 * block reservation. Hence by default we cover roughly 2000 concurrent
473 	 * allocation reservations.
474 	 */
475 	resblks = mp->m_sb.sb_dblocks;
476 	do_div(resblks, 20);
477 	resblks = min_t(uint64_t, resblks, 8192);
478 	return resblks;
479 }
480 
481 /* Ensure the summary counts are correct. */
482 STATIC int
483 xfs_check_summary_counts(
484 	struct xfs_mount	*mp)
485 {
486 	int			error = 0;
487 
488 	/*
489 	 * The AG0 superblock verifier rejects in-progress filesystems,
490 	 * so we should never see the flag set this far into mounting.
491 	 */
492 	if (mp->m_sb.sb_inprogress) {
493 		xfs_err(mp, "sb_inprogress set after log recovery??");
494 		WARN_ON(1);
495 		return -EFSCORRUPTED;
496 	}
497 
498 	/*
499 	 * Now the log is mounted, we know if it was an unclean shutdown or
500 	 * not. If it was, with the first phase of recovery has completed, we
501 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
502 	 * but they are recovered transactionally in the second recovery phase
503 	 * later.
504 	 *
505 	 * If the log was clean when we mounted, we can check the summary
506 	 * counters.  If any of them are obviously incorrect, we can recompute
507 	 * them from the AGF headers in the next step.
508 	 */
509 	if (xfs_is_clean(mp) &&
510 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
511 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
512 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
513 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
514 
515 	/*
516 	 * We can safely re-initialise incore superblock counters from the
517 	 * per-ag data. These may not be correct if the filesystem was not
518 	 * cleanly unmounted, so we waited for recovery to finish before doing
519 	 * this.
520 	 *
521 	 * If the filesystem was cleanly unmounted or the previous check did
522 	 * not flag anything weird, then we can trust the values in the
523 	 * superblock to be correct and we don't need to do anything here.
524 	 * Otherwise, recalculate the summary counters.
525 	 */
526 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
527 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
528 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
529 		if (error)
530 			return error;
531 	}
532 
533 	/*
534 	 * Older kernels misused sb_frextents to reflect both incore
535 	 * reservations made by running transactions and the actual count of
536 	 * free rt extents in the ondisk metadata.  Transactions committed
537 	 * during runtime can therefore contain a superblock update that
538 	 * undercounts the number of free rt extents tracked in the rt bitmap.
539 	 * A clean unmount record will have the correct frextents value since
540 	 * there can be no other transactions running at that point.
541 	 *
542 	 * If we're mounting the rt volume after recovering the log, recompute
543 	 * frextents from the rtbitmap file to fix the inconsistency.
544 	 */
545 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
546 		error = xfs_rtalloc_reinit_frextents(mp);
547 		if (error)
548 			return error;
549 	}
550 
551 	return 0;
552 }
553 
554 static void
555 xfs_unmount_check(
556 	struct xfs_mount	*mp)
557 {
558 	if (xfs_is_shutdown(mp))
559 		return;
560 
561 	if (percpu_counter_sum(&mp->m_ifree) >
562 			percpu_counter_sum(&mp->m_icount)) {
563 		xfs_alert(mp, "ifree/icount mismatch at unmount");
564 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
565 	}
566 }
567 
568 /*
569  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
570  * internal inode structures can be sitting in the CIL and AIL at this point,
571  * so we need to unpin them, write them back and/or reclaim them before unmount
572  * can proceed.  In other words, callers are required to have inactivated all
573  * inodes.
574  *
575  * An inode cluster that has been freed can have its buffer still pinned in
576  * memory because the transaction is still sitting in a iclog. The stale inodes
577  * on that buffer will be pinned to the buffer until the transaction hits the
578  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
579  * may never see the pinned buffer, so nothing will push out the iclog and
580  * unpin the buffer.
581  *
582  * Hence we need to force the log to unpin everything first. However, log
583  * forces don't wait for the discards they issue to complete, so we have to
584  * explicitly wait for them to complete here as well.
585  *
586  * Then we can tell the world we are unmounting so that error handling knows
587  * that the filesystem is going away and we should error out anything that we
588  * have been retrying in the background.  This will prevent never-ending
589  * retries in AIL pushing from hanging the unmount.
590  *
591  * Finally, we can push the AIL to clean all the remaining dirty objects, then
592  * reclaim the remaining inodes that are still in memory at this point in time.
593  */
594 static void
595 xfs_unmount_flush_inodes(
596 	struct xfs_mount	*mp)
597 {
598 	xfs_log_force(mp, XFS_LOG_SYNC);
599 	xfs_extent_busy_wait_all(mp);
600 	flush_workqueue(xfs_discard_wq);
601 
602 	xfs_set_unmounting(mp);
603 
604 	xfs_ail_push_all_sync(mp->m_ail);
605 	xfs_inodegc_stop(mp);
606 	cancel_delayed_work_sync(&mp->m_reclaim_work);
607 	xfs_reclaim_inodes(mp);
608 	xfs_health_unmount(mp);
609 }
610 
611 static void
612 xfs_mount_setup_inode_geom(
613 	struct xfs_mount	*mp)
614 {
615 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
616 
617 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
618 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
619 
620 	xfs_ialloc_setup_geometry(mp);
621 }
622 
623 /* Compute maximum possible height for per-AG btree types for this fs. */
624 static inline void
625 xfs_agbtree_compute_maxlevels(
626 	struct xfs_mount	*mp)
627 {
628 	unsigned int		levels;
629 
630 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
631 	levels = max(levels, mp->m_rmap_maxlevels);
632 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
633 }
634 
635 /*
636  * This function does the following on an initial mount of a file system:
637  *	- reads the superblock from disk and init the mount struct
638  *	- if we're a 32-bit kernel, do a size check on the superblock
639  *		so we don't mount terabyte filesystems
640  *	- init mount struct realtime fields
641  *	- allocate inode hash table for fs
642  *	- init directory manager
643  *	- perform recovery and init the log manager
644  */
645 int
646 xfs_mountfs(
647 	struct xfs_mount	*mp)
648 {
649 	struct xfs_sb		*sbp = &(mp->m_sb);
650 	struct xfs_inode	*rip;
651 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
652 	uint			quotamount = 0;
653 	uint			quotaflags = 0;
654 	int			error = 0;
655 
656 	xfs_sb_mount_common(mp, sbp);
657 
658 	/*
659 	 * Check for a mismatched features2 values.  Older kernels read & wrote
660 	 * into the wrong sb offset for sb_features2 on some platforms due to
661 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
662 	 * which made older superblock reading/writing routines swap it as a
663 	 * 64-bit value.
664 	 *
665 	 * For backwards compatibility, we make both slots equal.
666 	 *
667 	 * If we detect a mismatched field, we OR the set bits into the existing
668 	 * features2 field in case it has already been modified; we don't want
669 	 * to lose any features.  We then update the bad location with the ORed
670 	 * value so that older kernels will see any features2 flags. The
671 	 * superblock writeback code ensures the new sb_features2 is copied to
672 	 * sb_bad_features2 before it is logged or written to disk.
673 	 */
674 	if (xfs_sb_has_mismatched_features2(sbp)) {
675 		xfs_warn(mp, "correcting sb_features alignment problem");
676 		sbp->sb_features2 |= sbp->sb_bad_features2;
677 		mp->m_update_sb = true;
678 	}
679 
680 
681 	/* always use v2 inodes by default now */
682 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
683 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
684 		mp->m_features |= XFS_FEAT_NLINK;
685 		mp->m_update_sb = true;
686 	}
687 
688 	/*
689 	 * If we were given new sunit/swidth options, do some basic validation
690 	 * checks and convert the incore dalign and swidth values to the
691 	 * same units (FSB) that everything else uses.  This /must/ happen
692 	 * before computing the inode geometry.
693 	 */
694 	error = xfs_validate_new_dalign(mp);
695 	if (error)
696 		goto out;
697 
698 	xfs_alloc_compute_maxlevels(mp);
699 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 	xfs_mount_setup_inode_geom(mp);
702 	xfs_rmapbt_compute_maxlevels(mp);
703 	xfs_refcountbt_compute_maxlevels(mp);
704 
705 	xfs_agbtree_compute_maxlevels(mp);
706 
707 	/*
708 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
709 	 * is NOT aligned turn off m_dalign since allocator alignment is within
710 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
711 	 * we must compute the free space and rmap btree geometry before doing
712 	 * this.
713 	 */
714 	error = xfs_update_alignment(mp);
715 	if (error)
716 		goto out;
717 
718 	/* enable fail_at_unmount as default */
719 	mp->m_fail_unmount = true;
720 
721 	super_set_sysfs_name_id(mp->m_super);
722 
723 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
724 			       NULL, mp->m_super->s_id);
725 	if (error)
726 		goto out;
727 
728 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
729 			       &mp->m_kobj, "stats");
730 	if (error)
731 		goto out_remove_sysfs;
732 
733 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
734 
735 	error = xfs_error_sysfs_init(mp);
736 	if (error)
737 		goto out_remove_scrub_stats;
738 
739 	error = xfs_errortag_init(mp);
740 	if (error)
741 		goto out_remove_error_sysfs;
742 
743 	error = xfs_uuid_mount(mp);
744 	if (error)
745 		goto out_remove_errortag;
746 
747 	/*
748 	 * Update the preferred write size based on the information from the
749 	 * on-disk superblock.
750 	 */
751 	mp->m_allocsize_log =
752 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
753 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
754 
755 	/* set the low space thresholds for dynamic preallocation */
756 	xfs_set_low_space_thresholds(mp);
757 
758 	/*
759 	 * If enabled, sparse inode chunk alignment is expected to match the
760 	 * cluster size. Full inode chunk alignment must match the chunk size,
761 	 * but that is checked on sb read verification...
762 	 */
763 	if (xfs_has_sparseinodes(mp) &&
764 	    mp->m_sb.sb_spino_align !=
765 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
766 		xfs_warn(mp,
767 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
768 			 mp->m_sb.sb_spino_align,
769 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
770 		error = -EINVAL;
771 		goto out_remove_uuid;
772 	}
773 
774 	/*
775 	 * Check that the data (and log if separate) is an ok size.
776 	 */
777 	error = xfs_check_sizes(mp);
778 	if (error)
779 		goto out_remove_uuid;
780 
781 	/*
782 	 * Initialize realtime fields in the mount structure
783 	 */
784 	error = xfs_rtmount_init(mp);
785 	if (error) {
786 		xfs_warn(mp, "RT mount failed");
787 		goto out_remove_uuid;
788 	}
789 
790 	/*
791 	 *  Copies the low order bits of the timestamp and the randomly
792 	 *  set "sequence" number out of a UUID.
793 	 */
794 	mp->m_fixedfsid[0] =
795 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
796 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
797 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
798 
799 	error = xfs_da_mount(mp);
800 	if (error) {
801 		xfs_warn(mp, "Failed dir/attr init: %d", error);
802 		goto out_remove_uuid;
803 	}
804 
805 	/*
806 	 * Initialize the precomputed transaction reservations values.
807 	 */
808 	xfs_trans_init(mp);
809 
810 	/*
811 	 * Allocate and initialize the per-ag data.
812 	 */
813 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
814 			&mp->m_maxagi);
815 	if (error) {
816 		xfs_warn(mp, "Failed per-ag init: %d", error);
817 		goto out_free_dir;
818 	}
819 
820 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
821 		xfs_warn(mp, "no log defined");
822 		error = -EFSCORRUPTED;
823 		goto out_free_perag;
824 	}
825 
826 	error = xfs_inodegc_register_shrinker(mp);
827 	if (error)
828 		goto out_fail_wait;
829 
830 	/*
831 	 * Log's mount-time initialization. The first part of recovery can place
832 	 * some items on the AIL, to be handled when recovery is finished or
833 	 * cancelled.
834 	 */
835 	error = xfs_log_mount(mp, mp->m_logdev_targp,
836 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
837 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
838 	if (error) {
839 		xfs_warn(mp, "log mount failed");
840 		goto out_inodegc_shrinker;
841 	}
842 
843 	/*
844 	 * If logged xattrs are still enabled after log recovery finishes, then
845 	 * they'll be available until unmount.  Otherwise, turn them off.
846 	 */
847 	if (xfs_sb_version_haslogxattrs(&mp->m_sb))
848 		xfs_set_using_logged_xattrs(mp);
849 	else
850 		xfs_clear_using_logged_xattrs(mp);
851 
852 	/* Enable background inode inactivation workers. */
853 	xfs_inodegc_start(mp);
854 	xfs_blockgc_start(mp);
855 
856 	/*
857 	 * Now that we've recovered any pending superblock feature bit
858 	 * additions, we can finish setting up the attr2 behaviour for the
859 	 * mount. The noattr2 option overrides the superblock flag, so only
860 	 * check the superblock feature flag if the mount option is not set.
861 	 */
862 	if (xfs_has_noattr2(mp)) {
863 		mp->m_features &= ~XFS_FEAT_ATTR2;
864 	} else if (!xfs_has_attr2(mp) &&
865 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
866 		mp->m_features |= XFS_FEAT_ATTR2;
867 	}
868 
869 	/*
870 	 * Get and sanity-check the root inode.
871 	 * Save the pointer to it in the mount structure.
872 	 */
873 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
874 			 XFS_ILOCK_EXCL, &rip);
875 	if (error) {
876 		xfs_warn(mp,
877 			"Failed to read root inode 0x%llx, error %d",
878 			sbp->sb_rootino, -error);
879 		goto out_log_dealloc;
880 	}
881 
882 	ASSERT(rip != NULL);
883 
884 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
885 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
886 			(unsigned long long)rip->i_ino);
887 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
888 		error = -EFSCORRUPTED;
889 		goto out_rele_rip;
890 	}
891 	mp->m_rootip = rip;	/* save it */
892 
893 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
894 
895 	/*
896 	 * Initialize realtime inode pointers in the mount structure
897 	 */
898 	error = xfs_rtmount_inodes(mp);
899 	if (error) {
900 		/*
901 		 * Free up the root inode.
902 		 */
903 		xfs_warn(mp, "failed to read RT inodes");
904 		goto out_rele_rip;
905 	}
906 
907 	/* Make sure the summary counts are ok. */
908 	error = xfs_check_summary_counts(mp);
909 	if (error)
910 		goto out_rtunmount;
911 
912 	/*
913 	 * If this is a read-only mount defer the superblock updates until
914 	 * the next remount into writeable mode.  Otherwise we would never
915 	 * perform the update e.g. for the root filesystem.
916 	 */
917 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
918 		error = xfs_sync_sb(mp, false);
919 		if (error) {
920 			xfs_warn(mp, "failed to write sb changes");
921 			goto out_rtunmount;
922 		}
923 	}
924 
925 	/*
926 	 * Initialise the XFS quota management subsystem for this mount
927 	 */
928 	if (XFS_IS_QUOTA_ON(mp)) {
929 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
930 		if (error)
931 			goto out_rtunmount;
932 	} else {
933 		/*
934 		 * If a file system had quotas running earlier, but decided to
935 		 * mount without -o uquota/pquota/gquota options, revoke the
936 		 * quotachecked license.
937 		 */
938 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 			xfs_notice(mp, "resetting quota flags");
940 			error = xfs_mount_reset_sbqflags(mp);
941 			if (error)
942 				goto out_rtunmount;
943 		}
944 	}
945 
946 	/*
947 	 * Finish recovering the file system.  This part needed to be delayed
948 	 * until after the root and real-time bitmap inodes were consistently
949 	 * read in.  Temporarily create per-AG space reservations for metadata
950 	 * btree shape changes because space freeing transactions (for inode
951 	 * inactivation) require the per-AG reservation in lieu of reserving
952 	 * blocks.
953 	 */
954 	error = xfs_fs_reserve_ag_blocks(mp);
955 	if (error && error == -ENOSPC)
956 		xfs_warn(mp,
957 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
958 	error = xfs_log_mount_finish(mp);
959 	xfs_fs_unreserve_ag_blocks(mp);
960 	if (error) {
961 		xfs_warn(mp, "log mount finish failed");
962 		goto out_rtunmount;
963 	}
964 
965 	/*
966 	 * Now the log is fully replayed, we can transition to full read-only
967 	 * mode for read-only mounts. This will sync all the metadata and clean
968 	 * the log so that the recovery we just performed does not have to be
969 	 * replayed again on the next mount.
970 	 *
971 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
972 	 * semantically identical operations.
973 	 */
974 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
975 		xfs_log_clean(mp);
976 
977 	/*
978 	 * Complete the quota initialisation, post-log-replay component.
979 	 */
980 	if (quotamount) {
981 		ASSERT(mp->m_qflags == 0);
982 		mp->m_qflags = quotaflags;
983 
984 		xfs_qm_mount_quotas(mp);
985 	}
986 
987 	/*
988 	 * Now we are mounted, reserve a small amount of unused space for
989 	 * privileged transactions. This is needed so that transaction
990 	 * space required for critical operations can dip into this pool
991 	 * when at ENOSPC. This is needed for operations like create with
992 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
993 	 * are not allowed to use this reserved space.
994 	 *
995 	 * This may drive us straight to ENOSPC on mount, but that implies
996 	 * we were already there on the last unmount. Warn if this occurs.
997 	 */
998 	if (!xfs_is_readonly(mp)) {
999 		error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1000 		if (error)
1001 			xfs_warn(mp,
1002 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1003 
1004 		/* Reserve AG blocks for future btree expansion. */
1005 		error = xfs_fs_reserve_ag_blocks(mp);
1006 		if (error && error != -ENOSPC)
1007 			goto out_agresv;
1008 	}
1009 
1010 	return 0;
1011 
1012  out_agresv:
1013 	xfs_fs_unreserve_ag_blocks(mp);
1014 	xfs_qm_unmount_quotas(mp);
1015  out_rtunmount:
1016 	xfs_rtunmount_inodes(mp);
1017  out_rele_rip:
1018 	xfs_irele(rip);
1019 	/* Clean out dquots that might be in memory after quotacheck. */
1020 	xfs_qm_unmount(mp);
1021 
1022 	/*
1023 	 * Inactivate all inodes that might still be in memory after a log
1024 	 * intent recovery failure so that reclaim can free them.  Metadata
1025 	 * inodes and the root directory shouldn't need inactivation, but the
1026 	 * mount failed for some reason, so pull down all the state and flee.
1027 	 */
1028 	xfs_inodegc_flush(mp);
1029 
1030 	/*
1031 	 * Flush all inode reclamation work and flush the log.
1032 	 * We have to do this /after/ rtunmount and qm_unmount because those
1033 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1034 	 *
1035 	 * This is slightly different from the unmountfs call sequence
1036 	 * because we could be tearing down a partially set up mount.  In
1037 	 * particular, if log_mount_finish fails we bail out without calling
1038 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1039 	 * quota inodes.
1040 	 */
1041 	xfs_unmount_flush_inodes(mp);
1042  out_log_dealloc:
1043 	xfs_log_mount_cancel(mp);
1044  out_inodegc_shrinker:
1045 	shrinker_free(mp->m_inodegc_shrinker);
1046  out_fail_wait:
1047 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1048 		xfs_buftarg_drain(mp->m_logdev_targp);
1049 	xfs_buftarg_drain(mp->m_ddev_targp);
1050  out_free_perag:
1051 	xfs_free_perag(mp);
1052  out_free_dir:
1053 	xfs_da_unmount(mp);
1054  out_remove_uuid:
1055 	xfs_uuid_unmount(mp);
1056  out_remove_errortag:
1057 	xfs_errortag_del(mp);
1058  out_remove_error_sysfs:
1059 	xfs_error_sysfs_del(mp);
1060  out_remove_scrub_stats:
1061 	xchk_stats_unregister(mp->m_scrub_stats);
1062 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1063  out_remove_sysfs:
1064 	xfs_sysfs_del(&mp->m_kobj);
1065  out:
1066 	return error;
1067 }
1068 
1069 /*
1070  * This flushes out the inodes,dquots and the superblock, unmounts the
1071  * log and makes sure that incore structures are freed.
1072  */
1073 void
1074 xfs_unmountfs(
1075 	struct xfs_mount	*mp)
1076 {
1077 	int			error;
1078 
1079 	/*
1080 	 * Perform all on-disk metadata updates required to inactivate inodes
1081 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1082 	 * and discarding CoW fork preallocations can cause shape changes to
1083 	 * the free inode and refcount btrees, respectively, so we must finish
1084 	 * this before we discard the metadata space reservations.  Metadata
1085 	 * inodes and the root directory do not require inactivation.
1086 	 */
1087 	xfs_inodegc_flush(mp);
1088 
1089 	xfs_blockgc_stop(mp);
1090 	xfs_fs_unreserve_ag_blocks(mp);
1091 	xfs_qm_unmount_quotas(mp);
1092 	xfs_rtunmount_inodes(mp);
1093 	xfs_irele(mp->m_rootip);
1094 
1095 	xfs_unmount_flush_inodes(mp);
1096 
1097 	xfs_qm_unmount(mp);
1098 
1099 	/*
1100 	 * Unreserve any blocks we have so that when we unmount we don't account
1101 	 * the reserved free space as used. This is really only necessary for
1102 	 * lazy superblock counting because it trusts the incore superblock
1103 	 * counters to be absolutely correct on clean unmount.
1104 	 *
1105 	 * We don't bother correcting this elsewhere for lazy superblock
1106 	 * counting because on mount of an unclean filesystem we reconstruct the
1107 	 * correct counter value and this is irrelevant.
1108 	 *
1109 	 * For non-lazy counter filesystems, this doesn't matter at all because
1110 	 * we only every apply deltas to the superblock and hence the incore
1111 	 * value does not matter....
1112 	 */
1113 	error = xfs_reserve_blocks(mp, 0);
1114 	if (error)
1115 		xfs_warn(mp, "Unable to free reserved block pool. "
1116 				"Freespace may not be correct on next mount.");
1117 	xfs_unmount_check(mp);
1118 
1119 	/*
1120 	 * Indicate that it's ok to clear log incompat bits before cleaning
1121 	 * the log and writing the unmount record.
1122 	 */
1123 	xfs_set_done_with_log_incompat(mp);
1124 	xfs_log_unmount(mp);
1125 	xfs_da_unmount(mp);
1126 	xfs_uuid_unmount(mp);
1127 
1128 #if defined(DEBUG)
1129 	xfs_errortag_clearall(mp);
1130 #endif
1131 	shrinker_free(mp->m_inodegc_shrinker);
1132 	xfs_free_perag(mp);
1133 
1134 	xfs_errortag_del(mp);
1135 	xfs_error_sysfs_del(mp);
1136 	xchk_stats_unregister(mp->m_scrub_stats);
1137 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1138 	xfs_sysfs_del(&mp->m_kobj);
1139 }
1140 
1141 /*
1142  * Determine whether modifications can proceed. The caller specifies the minimum
1143  * freeze level for which modifications should not be allowed. This allows
1144  * certain operations to proceed while the freeze sequence is in progress, if
1145  * necessary.
1146  */
1147 bool
1148 xfs_fs_writable(
1149 	struct xfs_mount	*mp,
1150 	int			level)
1151 {
1152 	ASSERT(level > SB_UNFROZEN);
1153 	if ((mp->m_super->s_writers.frozen >= level) ||
1154 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1155 		return false;
1156 
1157 	return true;
1158 }
1159 
1160 void
1161 xfs_add_freecounter(
1162 	struct xfs_mount	*mp,
1163 	struct percpu_counter	*counter,
1164 	uint64_t		delta)
1165 {
1166 	bool			has_resv_pool = (counter == &mp->m_fdblocks);
1167 	uint64_t		res_used;
1168 
1169 	/*
1170 	 * If the reserve pool is depleted, put blocks back into it first.
1171 	 * Most of the time the pool is full.
1172 	 */
1173 	if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1174 		percpu_counter_add(counter, delta);
1175 		return;
1176 	}
1177 
1178 	spin_lock(&mp->m_sb_lock);
1179 	res_used = mp->m_resblks - mp->m_resblks_avail;
1180 	if (res_used > delta) {
1181 		mp->m_resblks_avail += delta;
1182 	} else {
1183 		delta -= res_used;
1184 		mp->m_resblks_avail = mp->m_resblks;
1185 		percpu_counter_add(counter, delta);
1186 	}
1187 	spin_unlock(&mp->m_sb_lock);
1188 }
1189 
1190 int
1191 xfs_dec_freecounter(
1192 	struct xfs_mount	*mp,
1193 	struct percpu_counter	*counter,
1194 	uint64_t		delta,
1195 	bool			rsvd)
1196 {
1197 	int64_t			lcounter;
1198 	uint64_t		set_aside = 0;
1199 	s32			batch;
1200 	bool			has_resv_pool;
1201 
1202 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1203 	has_resv_pool = (counter == &mp->m_fdblocks);
1204 	if (rsvd)
1205 		ASSERT(has_resv_pool);
1206 
1207 	/*
1208 	 * Taking blocks away, need to be more accurate the closer we
1209 	 * are to zero.
1210 	 *
1211 	 * If the counter has a value of less than 2 * max batch size,
1212 	 * then make everything serialise as we are real close to
1213 	 * ENOSPC.
1214 	 */
1215 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1216 				     XFS_FDBLOCKS_BATCH) < 0)
1217 		batch = 1;
1218 	else
1219 		batch = XFS_FDBLOCKS_BATCH;
1220 
1221 	/*
1222 	 * Set aside allocbt blocks because these blocks are tracked as free
1223 	 * space but not available for allocation. Technically this means that a
1224 	 * single reservation cannot consume all remaining free space, but the
1225 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1226 	 * The tradeoff without this is that filesystems that maintain high
1227 	 * perag block reservations can over reserve physical block availability
1228 	 * and fail physical allocation, which leads to much more serious
1229 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1230 	 * slightly premature -ENOSPC.
1231 	 */
1232 	if (has_resv_pool)
1233 		set_aside = xfs_fdblocks_unavailable(mp);
1234 	percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1235 	if (__percpu_counter_compare(counter, set_aside,
1236 				     XFS_FDBLOCKS_BATCH) >= 0) {
1237 		/* we had space! */
1238 		return 0;
1239 	}
1240 
1241 	/*
1242 	 * lock up the sb for dipping into reserves before releasing the space
1243 	 * that took us to ENOSPC.
1244 	 */
1245 	spin_lock(&mp->m_sb_lock);
1246 	percpu_counter_add(counter, delta);
1247 	if (!has_resv_pool || !rsvd)
1248 		goto fdblocks_enospc;
1249 
1250 	lcounter = (long long)mp->m_resblks_avail - delta;
1251 	if (lcounter >= 0) {
1252 		mp->m_resblks_avail = lcounter;
1253 		spin_unlock(&mp->m_sb_lock);
1254 		return 0;
1255 	}
1256 	xfs_warn_once(mp,
1257 "Reserve blocks depleted! Consider increasing reserve pool size.");
1258 
1259 fdblocks_enospc:
1260 	spin_unlock(&mp->m_sb_lock);
1261 	return -ENOSPC;
1262 }
1263 
1264 /*
1265  * Used to free the superblock along various error paths.
1266  */
1267 void
1268 xfs_freesb(
1269 	struct xfs_mount	*mp)
1270 {
1271 	struct xfs_buf		*bp = mp->m_sb_bp;
1272 
1273 	xfs_buf_lock(bp);
1274 	mp->m_sb_bp = NULL;
1275 	xfs_buf_relse(bp);
1276 }
1277 
1278 /*
1279  * If the underlying (data/log/rt) device is readonly, there are some
1280  * operations that cannot proceed.
1281  */
1282 int
1283 xfs_dev_is_read_only(
1284 	struct xfs_mount	*mp,
1285 	char			*message)
1286 {
1287 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1288 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1289 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1290 		xfs_notice(mp, "%s required on read-only device.", message);
1291 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1292 		return -EROFS;
1293 	}
1294 	return 0;
1295 }
1296 
1297 /* Force the summary counters to be recalculated at next mount. */
1298 void
1299 xfs_force_summary_recalc(
1300 	struct xfs_mount	*mp)
1301 {
1302 	if (!xfs_has_lazysbcount(mp))
1303 		return;
1304 
1305 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1306 }
1307 
1308 /*
1309  * Enable a log incompat feature flag in the primary superblock.  The caller
1310  * cannot have any other transactions in progress.
1311  */
1312 int
1313 xfs_add_incompat_log_feature(
1314 	struct xfs_mount	*mp,
1315 	uint32_t		feature)
1316 {
1317 	struct xfs_dsb		*dsb;
1318 	int			error;
1319 
1320 	ASSERT(hweight32(feature) == 1);
1321 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1322 
1323 	/*
1324 	 * Force the log to disk and kick the background AIL thread to reduce
1325 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1326 	 * the primary superblock buffer.  This isn't a data integrity
1327 	 * operation, so we don't need a synchronous push.
1328 	 */
1329 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1330 	if (error)
1331 		return error;
1332 	xfs_ail_push_all(mp->m_ail);
1333 
1334 	/*
1335 	 * Lock the primary superblock buffer to serialize all callers that
1336 	 * are trying to set feature bits.
1337 	 */
1338 	xfs_buf_lock(mp->m_sb_bp);
1339 	xfs_buf_hold(mp->m_sb_bp);
1340 
1341 	if (xfs_is_shutdown(mp)) {
1342 		error = -EIO;
1343 		goto rele;
1344 	}
1345 
1346 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1347 		goto rele;
1348 
1349 	/*
1350 	 * Write the primary superblock to disk immediately, because we need
1351 	 * the log_incompat bit to be set in the primary super now to protect
1352 	 * the log items that we're going to commit later.
1353 	 */
1354 	dsb = mp->m_sb_bp->b_addr;
1355 	xfs_sb_to_disk(dsb, &mp->m_sb);
1356 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1357 	error = xfs_bwrite(mp->m_sb_bp);
1358 	if (error)
1359 		goto shutdown;
1360 
1361 	/*
1362 	 * Add the feature bits to the incore superblock before we unlock the
1363 	 * buffer.
1364 	 */
1365 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1366 	xfs_buf_relse(mp->m_sb_bp);
1367 
1368 	/* Log the superblock to disk. */
1369 	return xfs_sync_sb(mp, false);
1370 shutdown:
1371 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1372 rele:
1373 	xfs_buf_relse(mp->m_sb_bp);
1374 	return error;
1375 }
1376 
1377 /*
1378  * Clear all the log incompat flags from the superblock.
1379  *
1380  * The caller cannot be in a transaction, must ensure that the log does not
1381  * contain any log items protected by any log incompat bit, and must ensure
1382  * that there are no other threads that depend on the state of the log incompat
1383  * feature flags in the primary super.
1384  *
1385  * Returns true if the superblock is dirty.
1386  */
1387 bool
1388 xfs_clear_incompat_log_features(
1389 	struct xfs_mount	*mp)
1390 {
1391 	bool			ret = false;
1392 
1393 	if (!xfs_has_crc(mp) ||
1394 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1395 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1396 	    xfs_is_shutdown(mp) ||
1397 	    !xfs_is_done_with_log_incompat(mp))
1398 		return false;
1399 
1400 	/*
1401 	 * Update the incore superblock.  We synchronize on the primary super
1402 	 * buffer lock to be consistent with the add function, though at least
1403 	 * in theory this shouldn't be necessary.
1404 	 */
1405 	xfs_buf_lock(mp->m_sb_bp);
1406 	xfs_buf_hold(mp->m_sb_bp);
1407 
1408 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1409 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1410 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1411 		ret = true;
1412 	}
1413 
1414 	xfs_buf_relse(mp->m_sb_bp);
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Update the in-core delayed block counter.
1420  *
1421  * We prefer to update the counter without having to take a spinlock for every
1422  * counter update (i.e. batching).  Each change to delayed allocation
1423  * reservations can change can easily exceed the default percpu counter
1424  * batching, so we use a larger batch factor here.
1425  *
1426  * Note that we don't currently have any callers requiring fast summation
1427  * (e.g. percpu_counter_read) so we can use a big batch value here.
1428  */
1429 #define XFS_DELALLOC_BATCH	(4096)
1430 void
1431 xfs_mod_delalloc(
1432 	struct xfs_inode	*ip,
1433 	int64_t			data_delta,
1434 	int64_t			ind_delta)
1435 {
1436 	struct xfs_mount	*mp = ip->i_mount;
1437 
1438 	if (XFS_IS_REALTIME_INODE(ip)) {
1439 		percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1440 				xfs_rtb_to_rtx(mp, data_delta),
1441 				XFS_DELALLOC_BATCH);
1442 		if (!ind_delta)
1443 			return;
1444 		data_delta = 0;
1445 	}
1446 	percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1447 			XFS_DELALLOC_BATCH);
1448 }
1449