1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_dir2.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_alloc.h" 22 #include "xfs_rtalloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_fsops.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_refcount_btree.h" 35 #include "xfs_reflink.h" 36 #include "xfs_extent_busy.h" 37 38 39 static DEFINE_MUTEX(xfs_uuid_table_mutex); 40 static int xfs_uuid_table_size; 41 static uuid_t *xfs_uuid_table; 42 43 void 44 xfs_uuid_table_free(void) 45 { 46 if (xfs_uuid_table_size == 0) 47 return; 48 kmem_free(xfs_uuid_table); 49 xfs_uuid_table = NULL; 50 xfs_uuid_table_size = 0; 51 } 52 53 /* 54 * See if the UUID is unique among mounted XFS filesystems. 55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 56 */ 57 STATIC int 58 xfs_uuid_mount( 59 struct xfs_mount *mp) 60 { 61 uuid_t *uuid = &mp->m_sb.sb_uuid; 62 int hole, i; 63 64 /* Publish UUID in struct super_block */ 65 uuid_copy(&mp->m_super->s_uuid, uuid); 66 67 if (mp->m_flags & XFS_MOUNT_NOUUID) 68 return 0; 69 70 if (uuid_is_null(uuid)) { 71 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 72 return -EINVAL; 73 } 74 75 mutex_lock(&xfs_uuid_table_mutex); 76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 77 if (uuid_is_null(&xfs_uuid_table[i])) { 78 hole = i; 79 continue; 80 } 81 if (uuid_equal(uuid, &xfs_uuid_table[i])) 82 goto out_duplicate; 83 } 84 85 if (hole < 0) { 86 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 88 KM_SLEEP); 89 hole = xfs_uuid_table_size++; 90 } 91 xfs_uuid_table[hole] = *uuid; 92 mutex_unlock(&xfs_uuid_table_mutex); 93 94 return 0; 95 96 out_duplicate: 97 mutex_unlock(&xfs_uuid_table_mutex); 98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 99 return -EINVAL; 100 } 101 102 STATIC void 103 xfs_uuid_unmount( 104 struct xfs_mount *mp) 105 { 106 uuid_t *uuid = &mp->m_sb.sb_uuid; 107 int i; 108 109 if (mp->m_flags & XFS_MOUNT_NOUUID) 110 return; 111 112 mutex_lock(&xfs_uuid_table_mutex); 113 for (i = 0; i < xfs_uuid_table_size; i++) { 114 if (uuid_is_null(&xfs_uuid_table[i])) 115 continue; 116 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 117 continue; 118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 119 break; 120 } 121 ASSERT(i < xfs_uuid_table_size); 122 mutex_unlock(&xfs_uuid_table_mutex); 123 } 124 125 126 STATIC void 127 __xfs_free_perag( 128 struct rcu_head *head) 129 { 130 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 131 132 ASSERT(atomic_read(&pag->pag_ref) == 0); 133 kmem_free(pag); 134 } 135 136 /* 137 * Free up the per-ag resources associated with the mount structure. 138 */ 139 STATIC void 140 xfs_free_perag( 141 xfs_mount_t *mp) 142 { 143 xfs_agnumber_t agno; 144 struct xfs_perag *pag; 145 146 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 147 spin_lock(&mp->m_perag_lock); 148 pag = radix_tree_delete(&mp->m_perag_tree, agno); 149 spin_unlock(&mp->m_perag_lock); 150 ASSERT(pag); 151 ASSERT(atomic_read(&pag->pag_ref) == 0); 152 xfs_iunlink_destroy(pag); 153 xfs_buf_hash_destroy(pag); 154 mutex_destroy(&pag->pag_ici_reclaim_lock); 155 call_rcu(&pag->rcu_head, __xfs_free_perag); 156 } 157 } 158 159 /* 160 * Check size of device based on the (data/realtime) block count. 161 * Note: this check is used by the growfs code as well as mount. 162 */ 163 int 164 xfs_sb_validate_fsb_count( 165 xfs_sb_t *sbp, 166 uint64_t nblocks) 167 { 168 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 169 ASSERT(sbp->sb_blocklog >= BBSHIFT); 170 171 /* Limited by ULONG_MAX of page cache index */ 172 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 173 return -EFBIG; 174 return 0; 175 } 176 177 int 178 xfs_initialize_perag( 179 xfs_mount_t *mp, 180 xfs_agnumber_t agcount, 181 xfs_agnumber_t *maxagi) 182 { 183 xfs_agnumber_t index; 184 xfs_agnumber_t first_initialised = NULLAGNUMBER; 185 xfs_perag_t *pag; 186 int error = -ENOMEM; 187 188 /* 189 * Walk the current per-ag tree so we don't try to initialise AGs 190 * that already exist (growfs case). Allocate and insert all the 191 * AGs we don't find ready for initialisation. 192 */ 193 for (index = 0; index < agcount; index++) { 194 pag = xfs_perag_get(mp, index); 195 if (pag) { 196 xfs_perag_put(pag); 197 continue; 198 } 199 200 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 201 if (!pag) 202 goto out_unwind_new_pags; 203 pag->pag_agno = index; 204 pag->pag_mount = mp; 205 spin_lock_init(&pag->pag_ici_lock); 206 mutex_init(&pag->pag_ici_reclaim_lock); 207 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 208 if (xfs_buf_hash_init(pag)) 209 goto out_free_pag; 210 init_waitqueue_head(&pag->pagb_wait); 211 spin_lock_init(&pag->pagb_lock); 212 pag->pagb_count = 0; 213 pag->pagb_tree = RB_ROOT; 214 215 if (radix_tree_preload(GFP_NOFS)) 216 goto out_hash_destroy; 217 218 spin_lock(&mp->m_perag_lock); 219 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 220 BUG(); 221 spin_unlock(&mp->m_perag_lock); 222 radix_tree_preload_end(); 223 error = -EEXIST; 224 goto out_hash_destroy; 225 } 226 spin_unlock(&mp->m_perag_lock); 227 radix_tree_preload_end(); 228 /* first new pag is fully initialized */ 229 if (first_initialised == NULLAGNUMBER) 230 first_initialised = index; 231 error = xfs_iunlink_init(pag); 232 if (error) 233 goto out_hash_destroy; 234 } 235 236 index = xfs_set_inode_alloc(mp, agcount); 237 238 if (maxagi) 239 *maxagi = index; 240 241 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 242 return 0; 243 244 out_hash_destroy: 245 xfs_buf_hash_destroy(pag); 246 out_free_pag: 247 mutex_destroy(&pag->pag_ici_reclaim_lock); 248 kmem_free(pag); 249 out_unwind_new_pags: 250 /* unwind any prior newly initialized pags */ 251 for (index = first_initialised; index < agcount; index++) { 252 pag = radix_tree_delete(&mp->m_perag_tree, index); 253 if (!pag) 254 break; 255 xfs_buf_hash_destroy(pag); 256 xfs_iunlink_destroy(pag); 257 mutex_destroy(&pag->pag_ici_reclaim_lock); 258 kmem_free(pag); 259 } 260 return error; 261 } 262 263 /* 264 * xfs_readsb 265 * 266 * Does the initial read of the superblock. 267 */ 268 int 269 xfs_readsb( 270 struct xfs_mount *mp, 271 int flags) 272 { 273 unsigned int sector_size; 274 struct xfs_buf *bp; 275 struct xfs_sb *sbp = &mp->m_sb; 276 int error; 277 int loud = !(flags & XFS_MFSI_QUIET); 278 const struct xfs_buf_ops *buf_ops; 279 280 ASSERT(mp->m_sb_bp == NULL); 281 ASSERT(mp->m_ddev_targp != NULL); 282 283 /* 284 * For the initial read, we must guess at the sector 285 * size based on the block device. It's enough to 286 * get the sb_sectsize out of the superblock and 287 * then reread with the proper length. 288 * We don't verify it yet, because it may not be complete. 289 */ 290 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 291 buf_ops = NULL; 292 293 /* 294 * Allocate a (locked) buffer to hold the superblock. This will be kept 295 * around at all times to optimize access to the superblock. Therefore, 296 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 297 * elevated. 298 */ 299 reread: 300 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 301 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 302 buf_ops); 303 if (error) { 304 if (loud) 305 xfs_warn(mp, "SB validate failed with error %d.", error); 306 /* bad CRC means corrupted metadata */ 307 if (error == -EFSBADCRC) 308 error = -EFSCORRUPTED; 309 return error; 310 } 311 312 /* 313 * Initialize the mount structure from the superblock. 314 */ 315 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 316 317 /* 318 * If we haven't validated the superblock, do so now before we try 319 * to check the sector size and reread the superblock appropriately. 320 */ 321 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 322 if (loud) 323 xfs_warn(mp, "Invalid superblock magic number"); 324 error = -EINVAL; 325 goto release_buf; 326 } 327 328 /* 329 * We must be able to do sector-sized and sector-aligned IO. 330 */ 331 if (sector_size > sbp->sb_sectsize) { 332 if (loud) 333 xfs_warn(mp, "device supports %u byte sectors (not %u)", 334 sector_size, sbp->sb_sectsize); 335 error = -ENOSYS; 336 goto release_buf; 337 } 338 339 if (buf_ops == NULL) { 340 /* 341 * Re-read the superblock so the buffer is correctly sized, 342 * and properly verified. 343 */ 344 xfs_buf_relse(bp); 345 sector_size = sbp->sb_sectsize; 346 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 347 goto reread; 348 } 349 350 xfs_reinit_percpu_counters(mp); 351 352 /* no need to be quiet anymore, so reset the buf ops */ 353 bp->b_ops = &xfs_sb_buf_ops; 354 355 mp->m_sb_bp = bp; 356 xfs_buf_unlock(bp); 357 return 0; 358 359 release_buf: 360 xfs_buf_relse(bp); 361 return error; 362 } 363 364 /* 365 * Update alignment values based on mount options and sb values 366 */ 367 STATIC int 368 xfs_update_alignment(xfs_mount_t *mp) 369 { 370 xfs_sb_t *sbp = &(mp->m_sb); 371 372 if (mp->m_dalign) { 373 /* 374 * If stripe unit and stripe width are not multiples 375 * of the fs blocksize turn off alignment. 376 */ 377 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 378 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 379 xfs_warn(mp, 380 "alignment check failed: sunit/swidth vs. blocksize(%d)", 381 sbp->sb_blocksize); 382 return -EINVAL; 383 } else { 384 /* 385 * Convert the stripe unit and width to FSBs. 386 */ 387 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 388 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 389 xfs_warn(mp, 390 "alignment check failed: sunit/swidth vs. agsize(%d)", 391 sbp->sb_agblocks); 392 return -EINVAL; 393 } else if (mp->m_dalign) { 394 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 395 } else { 396 xfs_warn(mp, 397 "alignment check failed: sunit(%d) less than bsize(%d)", 398 mp->m_dalign, sbp->sb_blocksize); 399 return -EINVAL; 400 } 401 } 402 403 /* 404 * Update superblock with new values 405 * and log changes 406 */ 407 if (xfs_sb_version_hasdalign(sbp)) { 408 if (sbp->sb_unit != mp->m_dalign) { 409 sbp->sb_unit = mp->m_dalign; 410 mp->m_update_sb = true; 411 } 412 if (sbp->sb_width != mp->m_swidth) { 413 sbp->sb_width = mp->m_swidth; 414 mp->m_update_sb = true; 415 } 416 } else { 417 xfs_warn(mp, 418 "cannot change alignment: superblock does not support data alignment"); 419 return -EINVAL; 420 } 421 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 422 xfs_sb_version_hasdalign(&mp->m_sb)) { 423 mp->m_dalign = sbp->sb_unit; 424 mp->m_swidth = sbp->sb_width; 425 } 426 427 return 0; 428 } 429 430 /* 431 * Set the maximum inode count for this filesystem 432 */ 433 STATIC void 434 xfs_set_maxicount(xfs_mount_t *mp) 435 { 436 xfs_sb_t *sbp = &(mp->m_sb); 437 uint64_t icount; 438 439 if (sbp->sb_imax_pct) { 440 /* 441 * Make sure the maximum inode count is a multiple 442 * of the units we allocate inodes in. 443 */ 444 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 445 do_div(icount, 100); 446 do_div(icount, mp->m_ialloc_blks); 447 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 448 sbp->sb_inopblog; 449 } else { 450 mp->m_maxicount = 0; 451 } 452 } 453 454 /* 455 * Set the default minimum read and write sizes unless 456 * already specified in a mount option. 457 * We use smaller I/O sizes when the file system 458 * is being used for NFS service (wsync mount option). 459 */ 460 STATIC void 461 xfs_set_rw_sizes(xfs_mount_t *mp) 462 { 463 xfs_sb_t *sbp = &(mp->m_sb); 464 int readio_log, writeio_log; 465 466 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 467 if (mp->m_flags & XFS_MOUNT_WSYNC) { 468 readio_log = XFS_WSYNC_READIO_LOG; 469 writeio_log = XFS_WSYNC_WRITEIO_LOG; 470 } else { 471 readio_log = XFS_READIO_LOG_LARGE; 472 writeio_log = XFS_WRITEIO_LOG_LARGE; 473 } 474 } else { 475 readio_log = mp->m_readio_log; 476 writeio_log = mp->m_writeio_log; 477 } 478 479 if (sbp->sb_blocklog > readio_log) { 480 mp->m_readio_log = sbp->sb_blocklog; 481 } else { 482 mp->m_readio_log = readio_log; 483 } 484 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 485 if (sbp->sb_blocklog > writeio_log) { 486 mp->m_writeio_log = sbp->sb_blocklog; 487 } else { 488 mp->m_writeio_log = writeio_log; 489 } 490 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 491 } 492 493 /* 494 * precalculate the low space thresholds for dynamic speculative preallocation. 495 */ 496 void 497 xfs_set_low_space_thresholds( 498 struct xfs_mount *mp) 499 { 500 int i; 501 502 for (i = 0; i < XFS_LOWSP_MAX; i++) { 503 uint64_t space = mp->m_sb.sb_dblocks; 504 505 do_div(space, 100); 506 mp->m_low_space[i] = space * (i + 1); 507 } 508 } 509 510 511 /* 512 * Set whether we're using inode alignment. 513 */ 514 STATIC void 515 xfs_set_inoalignment(xfs_mount_t *mp) 516 { 517 if (xfs_sb_version_hasalign(&mp->m_sb) && 518 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 519 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 520 else 521 mp->m_inoalign_mask = 0; 522 /* 523 * If we are using stripe alignment, check whether 524 * the stripe unit is a multiple of the inode alignment 525 */ 526 if (mp->m_dalign && mp->m_inoalign_mask && 527 !(mp->m_dalign & mp->m_inoalign_mask)) 528 mp->m_sinoalign = mp->m_dalign; 529 else 530 mp->m_sinoalign = 0; 531 } 532 533 /* 534 * Check that the data (and log if separate) is an ok size. 535 */ 536 STATIC int 537 xfs_check_sizes( 538 struct xfs_mount *mp) 539 { 540 struct xfs_buf *bp; 541 xfs_daddr_t d; 542 int error; 543 544 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 545 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 546 xfs_warn(mp, "filesystem size mismatch detected"); 547 return -EFBIG; 548 } 549 error = xfs_buf_read_uncached(mp->m_ddev_targp, 550 d - XFS_FSS_TO_BB(mp, 1), 551 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 552 if (error) { 553 xfs_warn(mp, "last sector read failed"); 554 return error; 555 } 556 xfs_buf_relse(bp); 557 558 if (mp->m_logdev_targp == mp->m_ddev_targp) 559 return 0; 560 561 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 562 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 563 xfs_warn(mp, "log size mismatch detected"); 564 return -EFBIG; 565 } 566 error = xfs_buf_read_uncached(mp->m_logdev_targp, 567 d - XFS_FSB_TO_BB(mp, 1), 568 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 569 if (error) { 570 xfs_warn(mp, "log device read failed"); 571 return error; 572 } 573 xfs_buf_relse(bp); 574 return 0; 575 } 576 577 /* 578 * Clear the quotaflags in memory and in the superblock. 579 */ 580 int 581 xfs_mount_reset_sbqflags( 582 struct xfs_mount *mp) 583 { 584 mp->m_qflags = 0; 585 586 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 587 if (mp->m_sb.sb_qflags == 0) 588 return 0; 589 spin_lock(&mp->m_sb_lock); 590 mp->m_sb.sb_qflags = 0; 591 spin_unlock(&mp->m_sb_lock); 592 593 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 594 return 0; 595 596 return xfs_sync_sb(mp, false); 597 } 598 599 uint64_t 600 xfs_default_resblks(xfs_mount_t *mp) 601 { 602 uint64_t resblks; 603 604 /* 605 * We default to 5% or 8192 fsbs of space reserved, whichever is 606 * smaller. This is intended to cover concurrent allocation 607 * transactions when we initially hit enospc. These each require a 4 608 * block reservation. Hence by default we cover roughly 2000 concurrent 609 * allocation reservations. 610 */ 611 resblks = mp->m_sb.sb_dblocks; 612 do_div(resblks, 20); 613 resblks = min_t(uint64_t, resblks, 8192); 614 return resblks; 615 } 616 617 /* Ensure the summary counts are correct. */ 618 STATIC int 619 xfs_check_summary_counts( 620 struct xfs_mount *mp) 621 { 622 /* 623 * The AG0 superblock verifier rejects in-progress filesystems, 624 * so we should never see the flag set this far into mounting. 625 */ 626 if (mp->m_sb.sb_inprogress) { 627 xfs_err(mp, "sb_inprogress set after log recovery??"); 628 WARN_ON(1); 629 return -EFSCORRUPTED; 630 } 631 632 /* 633 * Now the log is mounted, we know if it was an unclean shutdown or 634 * not. If it was, with the first phase of recovery has completed, we 635 * have consistent AG blocks on disk. We have not recovered EFIs yet, 636 * but they are recovered transactionally in the second recovery phase 637 * later. 638 * 639 * If the log was clean when we mounted, we can check the summary 640 * counters. If any of them are obviously incorrect, we can recompute 641 * them from the AGF headers in the next step. 642 */ 643 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 644 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 645 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 646 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 647 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; 648 649 /* 650 * We can safely re-initialise incore superblock counters from the 651 * per-ag data. These may not be correct if the filesystem was not 652 * cleanly unmounted, so we waited for recovery to finish before doing 653 * this. 654 * 655 * If the filesystem was cleanly unmounted or the previous check did 656 * not flag anything weird, then we can trust the values in the 657 * superblock to be correct and we don't need to do anything here. 658 * Otherwise, recalculate the summary counters. 659 */ 660 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 661 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 662 !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) 663 return 0; 664 665 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 666 } 667 668 /* 669 * This function does the following on an initial mount of a file system: 670 * - reads the superblock from disk and init the mount struct 671 * - if we're a 32-bit kernel, do a size check on the superblock 672 * so we don't mount terabyte filesystems 673 * - init mount struct realtime fields 674 * - allocate inode hash table for fs 675 * - init directory manager 676 * - perform recovery and init the log manager 677 */ 678 int 679 xfs_mountfs( 680 struct xfs_mount *mp) 681 { 682 struct xfs_sb *sbp = &(mp->m_sb); 683 struct xfs_inode *rip; 684 uint64_t resblks; 685 uint quotamount = 0; 686 uint quotaflags = 0; 687 int error = 0; 688 689 xfs_sb_mount_common(mp, sbp); 690 691 /* 692 * Check for a mismatched features2 values. Older kernels read & wrote 693 * into the wrong sb offset for sb_features2 on some platforms due to 694 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 695 * which made older superblock reading/writing routines swap it as a 696 * 64-bit value. 697 * 698 * For backwards compatibility, we make both slots equal. 699 * 700 * If we detect a mismatched field, we OR the set bits into the existing 701 * features2 field in case it has already been modified; we don't want 702 * to lose any features. We then update the bad location with the ORed 703 * value so that older kernels will see any features2 flags. The 704 * superblock writeback code ensures the new sb_features2 is copied to 705 * sb_bad_features2 before it is logged or written to disk. 706 */ 707 if (xfs_sb_has_mismatched_features2(sbp)) { 708 xfs_warn(mp, "correcting sb_features alignment problem"); 709 sbp->sb_features2 |= sbp->sb_bad_features2; 710 mp->m_update_sb = true; 711 712 /* 713 * Re-check for ATTR2 in case it was found in bad_features2 714 * slot. 715 */ 716 if (xfs_sb_version_hasattr2(&mp->m_sb) && 717 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 718 mp->m_flags |= XFS_MOUNT_ATTR2; 719 } 720 721 if (xfs_sb_version_hasattr2(&mp->m_sb) && 722 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 723 xfs_sb_version_removeattr2(&mp->m_sb); 724 mp->m_update_sb = true; 725 726 /* update sb_versionnum for the clearing of the morebits */ 727 if (!sbp->sb_features2) 728 mp->m_update_sb = true; 729 } 730 731 /* always use v2 inodes by default now */ 732 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 733 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 734 mp->m_update_sb = true; 735 } 736 737 /* 738 * Check if sb_agblocks is aligned at stripe boundary 739 * If sb_agblocks is NOT aligned turn off m_dalign since 740 * allocator alignment is within an ag, therefore ag has 741 * to be aligned at stripe boundary. 742 */ 743 error = xfs_update_alignment(mp); 744 if (error) 745 goto out; 746 747 xfs_alloc_compute_maxlevels(mp); 748 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 749 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 750 xfs_ialloc_compute_maxlevels(mp); 751 xfs_rmapbt_compute_maxlevels(mp); 752 xfs_refcountbt_compute_maxlevels(mp); 753 754 xfs_set_maxicount(mp); 755 756 /* enable fail_at_unmount as default */ 757 mp->m_fail_unmount = true; 758 759 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 760 if (error) 761 goto out; 762 763 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 764 &mp->m_kobj, "stats"); 765 if (error) 766 goto out_remove_sysfs; 767 768 error = xfs_error_sysfs_init(mp); 769 if (error) 770 goto out_del_stats; 771 772 error = xfs_errortag_init(mp); 773 if (error) 774 goto out_remove_error_sysfs; 775 776 error = xfs_uuid_mount(mp); 777 if (error) 778 goto out_remove_errortag; 779 780 /* 781 * Set the minimum read and write sizes 782 */ 783 xfs_set_rw_sizes(mp); 784 785 /* set the low space thresholds for dynamic preallocation */ 786 xfs_set_low_space_thresholds(mp); 787 788 /* 789 * Set the inode cluster size. 790 * This may still be overridden by the file system 791 * block size if it is larger than the chosen cluster size. 792 * 793 * For v5 filesystems, scale the cluster size with the inode size to 794 * keep a constant ratio of inode per cluster buffer, but only if mkfs 795 * has set the inode alignment value appropriately for larger cluster 796 * sizes. 797 */ 798 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 799 if (xfs_sb_version_hascrc(&mp->m_sb)) { 800 int new_size = mp->m_inode_cluster_size; 801 802 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 803 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 804 mp->m_inode_cluster_size = new_size; 805 } 806 mp->m_blocks_per_cluster = xfs_icluster_size_fsb(mp); 807 mp->m_inodes_per_cluster = XFS_FSB_TO_INO(mp, mp->m_blocks_per_cluster); 808 mp->m_cluster_align = xfs_ialloc_cluster_alignment(mp); 809 mp->m_cluster_align_inodes = XFS_FSB_TO_INO(mp, mp->m_cluster_align); 810 811 /* 812 * If enabled, sparse inode chunk alignment is expected to match the 813 * cluster size. Full inode chunk alignment must match the chunk size, 814 * but that is checked on sb read verification... 815 */ 816 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 817 mp->m_sb.sb_spino_align != 818 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 819 xfs_warn(mp, 820 "Sparse inode block alignment (%u) must match cluster size (%llu).", 821 mp->m_sb.sb_spino_align, 822 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 823 error = -EINVAL; 824 goto out_remove_uuid; 825 } 826 827 /* 828 * Set inode alignment fields 829 */ 830 xfs_set_inoalignment(mp); 831 832 /* 833 * Check that the data (and log if separate) is an ok size. 834 */ 835 error = xfs_check_sizes(mp); 836 if (error) 837 goto out_remove_uuid; 838 839 /* 840 * Initialize realtime fields in the mount structure 841 */ 842 error = xfs_rtmount_init(mp); 843 if (error) { 844 xfs_warn(mp, "RT mount failed"); 845 goto out_remove_uuid; 846 } 847 848 /* 849 * Copies the low order bits of the timestamp and the randomly 850 * set "sequence" number out of a UUID. 851 */ 852 mp->m_fixedfsid[0] = 853 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 854 get_unaligned_be16(&sbp->sb_uuid.b[4]); 855 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 856 857 error = xfs_da_mount(mp); 858 if (error) { 859 xfs_warn(mp, "Failed dir/attr init: %d", error); 860 goto out_remove_uuid; 861 } 862 863 /* 864 * Initialize the precomputed transaction reservations values. 865 */ 866 xfs_trans_init(mp); 867 868 /* 869 * Allocate and initialize the per-ag data. 870 */ 871 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 872 if (error) { 873 xfs_warn(mp, "Failed per-ag init: %d", error); 874 goto out_free_dir; 875 } 876 877 if (!sbp->sb_logblocks) { 878 xfs_warn(mp, "no log defined"); 879 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 880 error = -EFSCORRUPTED; 881 goto out_free_perag; 882 } 883 884 /* 885 * Log's mount-time initialization. The first part of recovery can place 886 * some items on the AIL, to be handled when recovery is finished or 887 * cancelled. 888 */ 889 error = xfs_log_mount(mp, mp->m_logdev_targp, 890 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 891 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 892 if (error) { 893 xfs_warn(mp, "log mount failed"); 894 goto out_fail_wait; 895 } 896 897 /* Make sure the summary counts are ok. */ 898 error = xfs_check_summary_counts(mp); 899 if (error) 900 goto out_log_dealloc; 901 902 /* 903 * Get and sanity-check the root inode. 904 * Save the pointer to it in the mount structure. 905 */ 906 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 907 XFS_ILOCK_EXCL, &rip); 908 if (error) { 909 xfs_warn(mp, 910 "Failed to read root inode 0x%llx, error %d", 911 sbp->sb_rootino, -error); 912 goto out_log_dealloc; 913 } 914 915 ASSERT(rip != NULL); 916 917 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 918 xfs_warn(mp, "corrupted root inode %llu: not a directory", 919 (unsigned long long)rip->i_ino); 920 xfs_iunlock(rip, XFS_ILOCK_EXCL); 921 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 922 mp); 923 error = -EFSCORRUPTED; 924 goto out_rele_rip; 925 } 926 mp->m_rootip = rip; /* save it */ 927 928 xfs_iunlock(rip, XFS_ILOCK_EXCL); 929 930 /* 931 * Initialize realtime inode pointers in the mount structure 932 */ 933 error = xfs_rtmount_inodes(mp); 934 if (error) { 935 /* 936 * Free up the root inode. 937 */ 938 xfs_warn(mp, "failed to read RT inodes"); 939 goto out_rele_rip; 940 } 941 942 /* 943 * If this is a read-only mount defer the superblock updates until 944 * the next remount into writeable mode. Otherwise we would never 945 * perform the update e.g. for the root filesystem. 946 */ 947 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 948 error = xfs_sync_sb(mp, false); 949 if (error) { 950 xfs_warn(mp, "failed to write sb changes"); 951 goto out_rtunmount; 952 } 953 } 954 955 /* 956 * Initialise the XFS quota management subsystem for this mount 957 */ 958 if (XFS_IS_QUOTA_RUNNING(mp)) { 959 error = xfs_qm_newmount(mp, "amount, "aflags); 960 if (error) 961 goto out_rtunmount; 962 } else { 963 ASSERT(!XFS_IS_QUOTA_ON(mp)); 964 965 /* 966 * If a file system had quotas running earlier, but decided to 967 * mount without -o uquota/pquota/gquota options, revoke the 968 * quotachecked license. 969 */ 970 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 971 xfs_notice(mp, "resetting quota flags"); 972 error = xfs_mount_reset_sbqflags(mp); 973 if (error) 974 goto out_rtunmount; 975 } 976 } 977 978 /* 979 * Finish recovering the file system. This part needed to be delayed 980 * until after the root and real-time bitmap inodes were consistently 981 * read in. 982 */ 983 error = xfs_log_mount_finish(mp); 984 if (error) { 985 xfs_warn(mp, "log mount finish failed"); 986 goto out_rtunmount; 987 } 988 989 /* 990 * Now the log is fully replayed, we can transition to full read-only 991 * mode for read-only mounts. This will sync all the metadata and clean 992 * the log so that the recovery we just performed does not have to be 993 * replayed again on the next mount. 994 * 995 * We use the same quiesce mechanism as the rw->ro remount, as they are 996 * semantically identical operations. 997 */ 998 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 999 XFS_MOUNT_RDONLY) { 1000 xfs_quiesce_attr(mp); 1001 } 1002 1003 /* 1004 * Complete the quota initialisation, post-log-replay component. 1005 */ 1006 if (quotamount) { 1007 ASSERT(mp->m_qflags == 0); 1008 mp->m_qflags = quotaflags; 1009 1010 xfs_qm_mount_quotas(mp); 1011 } 1012 1013 /* 1014 * Now we are mounted, reserve a small amount of unused space for 1015 * privileged transactions. This is needed so that transaction 1016 * space required for critical operations can dip into this pool 1017 * when at ENOSPC. This is needed for operations like create with 1018 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1019 * are not allowed to use this reserved space. 1020 * 1021 * This may drive us straight to ENOSPC on mount, but that implies 1022 * we were already there on the last unmount. Warn if this occurs. 1023 */ 1024 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1025 resblks = xfs_default_resblks(mp); 1026 error = xfs_reserve_blocks(mp, &resblks, NULL); 1027 if (error) 1028 xfs_warn(mp, 1029 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1030 1031 /* Recover any CoW blocks that never got remapped. */ 1032 error = xfs_reflink_recover_cow(mp); 1033 if (error) { 1034 xfs_err(mp, 1035 "Error %d recovering leftover CoW allocations.", error); 1036 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1037 goto out_quota; 1038 } 1039 1040 /* Reserve AG blocks for future btree expansion. */ 1041 error = xfs_fs_reserve_ag_blocks(mp); 1042 if (error && error != -ENOSPC) 1043 goto out_agresv; 1044 } 1045 1046 return 0; 1047 1048 out_agresv: 1049 xfs_fs_unreserve_ag_blocks(mp); 1050 out_quota: 1051 xfs_qm_unmount_quotas(mp); 1052 out_rtunmount: 1053 xfs_rtunmount_inodes(mp); 1054 out_rele_rip: 1055 xfs_irele(rip); 1056 /* Clean out dquots that might be in memory after quotacheck. */ 1057 xfs_qm_unmount(mp); 1058 /* 1059 * Cancel all delayed reclaim work and reclaim the inodes directly. 1060 * We have to do this /after/ rtunmount and qm_unmount because those 1061 * two will have scheduled delayed reclaim for the rt/quota inodes. 1062 * 1063 * This is slightly different from the unmountfs call sequence 1064 * because we could be tearing down a partially set up mount. In 1065 * particular, if log_mount_finish fails we bail out without calling 1066 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1067 * quota inodes. 1068 */ 1069 cancel_delayed_work_sync(&mp->m_reclaim_work); 1070 xfs_reclaim_inodes(mp, SYNC_WAIT); 1071 out_log_dealloc: 1072 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1073 xfs_log_mount_cancel(mp); 1074 out_fail_wait: 1075 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1076 xfs_wait_buftarg(mp->m_logdev_targp); 1077 xfs_wait_buftarg(mp->m_ddev_targp); 1078 out_free_perag: 1079 xfs_free_perag(mp); 1080 out_free_dir: 1081 xfs_da_unmount(mp); 1082 out_remove_uuid: 1083 xfs_uuid_unmount(mp); 1084 out_remove_errortag: 1085 xfs_errortag_del(mp); 1086 out_remove_error_sysfs: 1087 xfs_error_sysfs_del(mp); 1088 out_del_stats: 1089 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1090 out_remove_sysfs: 1091 xfs_sysfs_del(&mp->m_kobj); 1092 out: 1093 return error; 1094 } 1095 1096 /* 1097 * This flushes out the inodes,dquots and the superblock, unmounts the 1098 * log and makes sure that incore structures are freed. 1099 */ 1100 void 1101 xfs_unmountfs( 1102 struct xfs_mount *mp) 1103 { 1104 uint64_t resblks; 1105 int error; 1106 1107 xfs_icache_disable_reclaim(mp); 1108 xfs_fs_unreserve_ag_blocks(mp); 1109 xfs_qm_unmount_quotas(mp); 1110 xfs_rtunmount_inodes(mp); 1111 xfs_irele(mp->m_rootip); 1112 1113 /* 1114 * We can potentially deadlock here if we have an inode cluster 1115 * that has been freed has its buffer still pinned in memory because 1116 * the transaction is still sitting in a iclog. The stale inodes 1117 * on that buffer will have their flush locks held until the 1118 * transaction hits the disk and the callbacks run. the inode 1119 * flush takes the flush lock unconditionally and with nothing to 1120 * push out the iclog we will never get that unlocked. hence we 1121 * need to force the log first. 1122 */ 1123 xfs_log_force(mp, XFS_LOG_SYNC); 1124 1125 /* 1126 * Wait for all busy extents to be freed, including completion of 1127 * any discard operation. 1128 */ 1129 xfs_extent_busy_wait_all(mp); 1130 flush_workqueue(xfs_discard_wq); 1131 1132 /* 1133 * We now need to tell the world we are unmounting. This will allow 1134 * us to detect that the filesystem is going away and we should error 1135 * out anything that we have been retrying in the background. This will 1136 * prevent neverending retries in AIL pushing from hanging the unmount. 1137 */ 1138 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1139 1140 /* 1141 * Flush all pending changes from the AIL. 1142 */ 1143 xfs_ail_push_all_sync(mp->m_ail); 1144 1145 /* 1146 * And reclaim all inodes. At this point there should be no dirty 1147 * inodes and none should be pinned or locked, but use synchronous 1148 * reclaim just to be sure. We can stop background inode reclaim 1149 * here as well if it is still running. 1150 */ 1151 cancel_delayed_work_sync(&mp->m_reclaim_work); 1152 xfs_reclaim_inodes(mp, SYNC_WAIT); 1153 1154 xfs_qm_unmount(mp); 1155 1156 /* 1157 * Unreserve any blocks we have so that when we unmount we don't account 1158 * the reserved free space as used. This is really only necessary for 1159 * lazy superblock counting because it trusts the incore superblock 1160 * counters to be absolutely correct on clean unmount. 1161 * 1162 * We don't bother correcting this elsewhere for lazy superblock 1163 * counting because on mount of an unclean filesystem we reconstruct the 1164 * correct counter value and this is irrelevant. 1165 * 1166 * For non-lazy counter filesystems, this doesn't matter at all because 1167 * we only every apply deltas to the superblock and hence the incore 1168 * value does not matter.... 1169 */ 1170 resblks = 0; 1171 error = xfs_reserve_blocks(mp, &resblks, NULL); 1172 if (error) 1173 xfs_warn(mp, "Unable to free reserved block pool. " 1174 "Freespace may not be correct on next mount."); 1175 1176 error = xfs_log_sbcount(mp); 1177 if (error) 1178 xfs_warn(mp, "Unable to update superblock counters. " 1179 "Freespace may not be correct on next mount."); 1180 1181 1182 xfs_log_unmount(mp); 1183 xfs_da_unmount(mp); 1184 xfs_uuid_unmount(mp); 1185 1186 #if defined(DEBUG) 1187 xfs_errortag_clearall(mp); 1188 #endif 1189 xfs_free_perag(mp); 1190 1191 xfs_errortag_del(mp); 1192 xfs_error_sysfs_del(mp); 1193 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1194 xfs_sysfs_del(&mp->m_kobj); 1195 } 1196 1197 /* 1198 * Determine whether modifications can proceed. The caller specifies the minimum 1199 * freeze level for which modifications should not be allowed. This allows 1200 * certain operations to proceed while the freeze sequence is in progress, if 1201 * necessary. 1202 */ 1203 bool 1204 xfs_fs_writable( 1205 struct xfs_mount *mp, 1206 int level) 1207 { 1208 ASSERT(level > SB_UNFROZEN); 1209 if ((mp->m_super->s_writers.frozen >= level) || 1210 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1211 return false; 1212 1213 return true; 1214 } 1215 1216 /* 1217 * xfs_log_sbcount 1218 * 1219 * Sync the superblock counters to disk. 1220 * 1221 * Note this code can be called during the process of freezing, so we use the 1222 * transaction allocator that does not block when the transaction subsystem is 1223 * in its frozen state. 1224 */ 1225 int 1226 xfs_log_sbcount(xfs_mount_t *mp) 1227 { 1228 /* allow this to proceed during the freeze sequence... */ 1229 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1230 return 0; 1231 1232 /* 1233 * we don't need to do this if we are updating the superblock 1234 * counters on every modification. 1235 */ 1236 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1237 return 0; 1238 1239 return xfs_sync_sb(mp, true); 1240 } 1241 1242 /* 1243 * Deltas for the inode count are +/-64, hence we use a large batch size 1244 * of 128 so we don't need to take the counter lock on every update. 1245 */ 1246 #define XFS_ICOUNT_BATCH 128 1247 int 1248 xfs_mod_icount( 1249 struct xfs_mount *mp, 1250 int64_t delta) 1251 { 1252 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1253 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1254 ASSERT(0); 1255 percpu_counter_add(&mp->m_icount, -delta); 1256 return -EINVAL; 1257 } 1258 return 0; 1259 } 1260 1261 int 1262 xfs_mod_ifree( 1263 struct xfs_mount *mp, 1264 int64_t delta) 1265 { 1266 percpu_counter_add(&mp->m_ifree, delta); 1267 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1268 ASSERT(0); 1269 percpu_counter_add(&mp->m_ifree, -delta); 1270 return -EINVAL; 1271 } 1272 return 0; 1273 } 1274 1275 /* 1276 * Deltas for the block count can vary from 1 to very large, but lock contention 1277 * only occurs on frequent small block count updates such as in the delayed 1278 * allocation path for buffered writes (page a time updates). Hence we set 1279 * a large batch count (1024) to minimise global counter updates except when 1280 * we get near to ENOSPC and we have to be very accurate with our updates. 1281 */ 1282 #define XFS_FDBLOCKS_BATCH 1024 1283 int 1284 xfs_mod_fdblocks( 1285 struct xfs_mount *mp, 1286 int64_t delta, 1287 bool rsvd) 1288 { 1289 int64_t lcounter; 1290 long long res_used; 1291 s32 batch; 1292 1293 if (delta > 0) { 1294 /* 1295 * If the reserve pool is depleted, put blocks back into it 1296 * first. Most of the time the pool is full. 1297 */ 1298 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1299 percpu_counter_add(&mp->m_fdblocks, delta); 1300 return 0; 1301 } 1302 1303 spin_lock(&mp->m_sb_lock); 1304 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1305 1306 if (res_used > delta) { 1307 mp->m_resblks_avail += delta; 1308 } else { 1309 delta -= res_used; 1310 mp->m_resblks_avail = mp->m_resblks; 1311 percpu_counter_add(&mp->m_fdblocks, delta); 1312 } 1313 spin_unlock(&mp->m_sb_lock); 1314 return 0; 1315 } 1316 1317 /* 1318 * Taking blocks away, need to be more accurate the closer we 1319 * are to zero. 1320 * 1321 * If the counter has a value of less than 2 * max batch size, 1322 * then make everything serialise as we are real close to 1323 * ENOSPC. 1324 */ 1325 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1326 XFS_FDBLOCKS_BATCH) < 0) 1327 batch = 1; 1328 else 1329 batch = XFS_FDBLOCKS_BATCH; 1330 1331 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1332 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1333 XFS_FDBLOCKS_BATCH) >= 0) { 1334 /* we had space! */ 1335 return 0; 1336 } 1337 1338 /* 1339 * lock up the sb for dipping into reserves before releasing the space 1340 * that took us to ENOSPC. 1341 */ 1342 spin_lock(&mp->m_sb_lock); 1343 percpu_counter_add(&mp->m_fdblocks, -delta); 1344 if (!rsvd) 1345 goto fdblocks_enospc; 1346 1347 lcounter = (long long)mp->m_resblks_avail + delta; 1348 if (lcounter >= 0) { 1349 mp->m_resblks_avail = lcounter; 1350 spin_unlock(&mp->m_sb_lock); 1351 return 0; 1352 } 1353 printk_once(KERN_WARNING 1354 "Filesystem \"%s\": reserve blocks depleted! " 1355 "Consider increasing reserve pool size.", 1356 mp->m_fsname); 1357 fdblocks_enospc: 1358 spin_unlock(&mp->m_sb_lock); 1359 return -ENOSPC; 1360 } 1361 1362 int 1363 xfs_mod_frextents( 1364 struct xfs_mount *mp, 1365 int64_t delta) 1366 { 1367 int64_t lcounter; 1368 int ret = 0; 1369 1370 spin_lock(&mp->m_sb_lock); 1371 lcounter = mp->m_sb.sb_frextents + delta; 1372 if (lcounter < 0) 1373 ret = -ENOSPC; 1374 else 1375 mp->m_sb.sb_frextents = lcounter; 1376 spin_unlock(&mp->m_sb_lock); 1377 return ret; 1378 } 1379 1380 /* 1381 * xfs_getsb() is called to obtain the buffer for the superblock. 1382 * The buffer is returned locked and read in from disk. 1383 * The buffer should be released with a call to xfs_brelse(). 1384 * 1385 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1386 * the superblock buffer if it can be locked without sleeping. 1387 * If it can't then we'll return NULL. 1388 */ 1389 struct xfs_buf * 1390 xfs_getsb( 1391 struct xfs_mount *mp, 1392 int flags) 1393 { 1394 struct xfs_buf *bp = mp->m_sb_bp; 1395 1396 if (!xfs_buf_trylock(bp)) { 1397 if (flags & XBF_TRYLOCK) 1398 return NULL; 1399 xfs_buf_lock(bp); 1400 } 1401 1402 xfs_buf_hold(bp); 1403 ASSERT(bp->b_flags & XBF_DONE); 1404 return bp; 1405 } 1406 1407 /* 1408 * Used to free the superblock along various error paths. 1409 */ 1410 void 1411 xfs_freesb( 1412 struct xfs_mount *mp) 1413 { 1414 struct xfs_buf *bp = mp->m_sb_bp; 1415 1416 xfs_buf_lock(bp); 1417 mp->m_sb_bp = NULL; 1418 xfs_buf_relse(bp); 1419 } 1420 1421 /* 1422 * If the underlying (data/log/rt) device is readonly, there are some 1423 * operations that cannot proceed. 1424 */ 1425 int 1426 xfs_dev_is_read_only( 1427 struct xfs_mount *mp, 1428 char *message) 1429 { 1430 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1431 xfs_readonly_buftarg(mp->m_logdev_targp) || 1432 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1433 xfs_notice(mp, "%s required on read-only device.", message); 1434 xfs_notice(mp, "write access unavailable, cannot proceed."); 1435 return -EROFS; 1436 } 1437 return 0; 1438 } 1439 1440 /* Force the summary counters to be recalculated at next mount. */ 1441 void 1442 xfs_force_summary_recalc( 1443 struct xfs_mount *mp) 1444 { 1445 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1446 return; 1447 1448 spin_lock(&mp->m_sb_lock); 1449 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; 1450 spin_unlock(&mp->m_sb_lock); 1451 } 1452