xref: /linux/fs/xfs/xfs_mount.c (revision 3c4fc7bf4c9e66fe71abcbf93f62f4ddb89b7f15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 
38 static DEFINE_MUTEX(xfs_uuid_table_mutex);
39 static int xfs_uuid_table_size;
40 static uuid_t *xfs_uuid_table;
41 
42 void
43 xfs_uuid_table_free(void)
44 {
45 	if (xfs_uuid_table_size == 0)
46 		return;
47 	kmem_free(xfs_uuid_table);
48 	xfs_uuid_table = NULL;
49 	xfs_uuid_table_size = 0;
50 }
51 
52 /*
53  * See if the UUID is unique among mounted XFS filesystems.
54  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55  */
56 STATIC int
57 xfs_uuid_mount(
58 	struct xfs_mount	*mp)
59 {
60 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
61 	int			hole, i;
62 
63 	/* Publish UUID in struct super_block */
64 	uuid_copy(&mp->m_super->s_uuid, uuid);
65 
66 	if (xfs_has_nouuid(mp))
67 		return 0;
68 
69 	if (uuid_is_null(uuid)) {
70 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 		return -EINVAL;
72 	}
73 
74 	mutex_lock(&xfs_uuid_table_mutex);
75 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 		if (uuid_is_null(&xfs_uuid_table[i])) {
77 			hole = i;
78 			continue;
79 		}
80 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 			goto out_duplicate;
82 	}
83 
84 	if (hole < 0) {
85 		xfs_uuid_table = krealloc(xfs_uuid_table,
86 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 			GFP_KERNEL | __GFP_NOFAIL);
88 		hole = xfs_uuid_table_size++;
89 	}
90 	xfs_uuid_table[hole] = *uuid;
91 	mutex_unlock(&xfs_uuid_table_mutex);
92 
93 	return 0;
94 
95  out_duplicate:
96 	mutex_unlock(&xfs_uuid_table_mutex);
97 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 	return -EINVAL;
99 }
100 
101 STATIC void
102 xfs_uuid_unmount(
103 	struct xfs_mount	*mp)
104 {
105 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
106 	int			i;
107 
108 	if (xfs_has_nouuid(mp))
109 		return;
110 
111 	mutex_lock(&xfs_uuid_table_mutex);
112 	for (i = 0; i < xfs_uuid_table_size; i++) {
113 		if (uuid_is_null(&xfs_uuid_table[i]))
114 			continue;
115 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 			continue;
117 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 		break;
119 	}
120 	ASSERT(i < xfs_uuid_table_size);
121 	mutex_unlock(&xfs_uuid_table_mutex);
122 }
123 
124 /*
125  * Check size of device based on the (data/realtime) block count.
126  * Note: this check is used by the growfs code as well as mount.
127  */
128 int
129 xfs_sb_validate_fsb_count(
130 	xfs_sb_t	*sbp,
131 	uint64_t	nblocks)
132 {
133 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
135 
136 	/* Limited by ULONG_MAX of page cache index */
137 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 		return -EFBIG;
139 	return 0;
140 }
141 
142 /*
143  * xfs_readsb
144  *
145  * Does the initial read of the superblock.
146  */
147 int
148 xfs_readsb(
149 	struct xfs_mount *mp,
150 	int		flags)
151 {
152 	unsigned int	sector_size;
153 	struct xfs_buf	*bp;
154 	struct xfs_sb	*sbp = &mp->m_sb;
155 	int		error;
156 	int		loud = !(flags & XFS_MFSI_QUIET);
157 	const struct xfs_buf_ops *buf_ops;
158 
159 	ASSERT(mp->m_sb_bp == NULL);
160 	ASSERT(mp->m_ddev_targp != NULL);
161 
162 	/*
163 	 * For the initial read, we must guess at the sector
164 	 * size based on the block device.  It's enough to
165 	 * get the sb_sectsize out of the superblock and
166 	 * then reread with the proper length.
167 	 * We don't verify it yet, because it may not be complete.
168 	 */
169 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 	buf_ops = NULL;
171 
172 	/*
173 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 	 * around at all times to optimize access to the superblock. Therefore,
175 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 	 * elevated.
177 	 */
178 reread:
179 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 				      buf_ops);
182 	if (error) {
183 		if (loud)
184 			xfs_warn(mp, "SB validate failed with error %d.", error);
185 		/* bad CRC means corrupted metadata */
186 		if (error == -EFSBADCRC)
187 			error = -EFSCORRUPTED;
188 		return error;
189 	}
190 
191 	/*
192 	 * Initialize the mount structure from the superblock.
193 	 */
194 	xfs_sb_from_disk(sbp, bp->b_addr);
195 
196 	/*
197 	 * If we haven't validated the superblock, do so now before we try
198 	 * to check the sector size and reread the superblock appropriately.
199 	 */
200 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 		if (loud)
202 			xfs_warn(mp, "Invalid superblock magic number");
203 		error = -EINVAL;
204 		goto release_buf;
205 	}
206 
207 	/*
208 	 * We must be able to do sector-sized and sector-aligned IO.
209 	 */
210 	if (sector_size > sbp->sb_sectsize) {
211 		if (loud)
212 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 				sector_size, sbp->sb_sectsize);
214 		error = -ENOSYS;
215 		goto release_buf;
216 	}
217 
218 	if (buf_ops == NULL) {
219 		/*
220 		 * Re-read the superblock so the buffer is correctly sized,
221 		 * and properly verified.
222 		 */
223 		xfs_buf_relse(bp);
224 		sector_size = sbp->sb_sectsize;
225 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 		goto reread;
227 	}
228 
229 	mp->m_features |= xfs_sb_version_to_features(sbp);
230 	xfs_reinit_percpu_counters(mp);
231 
232 	/* no need to be quiet anymore, so reset the buf ops */
233 	bp->b_ops = &xfs_sb_buf_ops;
234 
235 	mp->m_sb_bp = bp;
236 	xfs_buf_unlock(bp);
237 	return 0;
238 
239 release_buf:
240 	xfs_buf_relse(bp);
241 	return error;
242 }
243 
244 /*
245  * If the sunit/swidth change would move the precomputed root inode value, we
246  * must reject the ondisk change because repair will stumble over that.
247  * However, we allow the mount to proceed because we never rejected this
248  * combination before.  Returns true to update the sb, false otherwise.
249  */
250 static inline int
251 xfs_check_new_dalign(
252 	struct xfs_mount	*mp,
253 	int			new_dalign,
254 	bool			*update_sb)
255 {
256 	struct xfs_sb		*sbp = &mp->m_sb;
257 	xfs_ino_t		calc_ino;
258 
259 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261 
262 	if (sbp->sb_rootino == calc_ino) {
263 		*update_sb = true;
264 		return 0;
265 	}
266 
267 	xfs_warn(mp,
268 "Cannot change stripe alignment; would require moving root inode.");
269 
270 	/*
271 	 * XXX: Next time we add a new incompat feature, this should start
272 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
273 	 * that we're ignoring the administrator's instructions.
274 	 */
275 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 	*update_sb = false;
277 	return 0;
278 }
279 
280 /*
281  * If we were provided with new sunit/swidth values as mount options, make sure
282  * that they pass basic alignment and superblock feature checks, and convert
283  * them into the same units (FSB) that everything else expects.  This step
284  * /must/ be done before computing the inode geometry.
285  */
286 STATIC int
287 xfs_validate_new_dalign(
288 	struct xfs_mount	*mp)
289 {
290 	if (mp->m_dalign == 0)
291 		return 0;
292 
293 	/*
294 	 * If stripe unit and stripe width are not multiples
295 	 * of the fs blocksize turn off alignment.
296 	 */
297 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 		xfs_warn(mp,
300 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
301 			mp->m_sb.sb_blocksize);
302 		return -EINVAL;
303 	} else {
304 		/*
305 		 * Convert the stripe unit and width to FSBs.
306 		 */
307 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
308 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
309 			xfs_warn(mp,
310 		"alignment check failed: sunit/swidth vs. agsize(%d)",
311 				 mp->m_sb.sb_agblocks);
312 			return -EINVAL;
313 		} else if (mp->m_dalign) {
314 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
315 		} else {
316 			xfs_warn(mp,
317 		"alignment check failed: sunit(%d) less than bsize(%d)",
318 				 mp->m_dalign, mp->m_sb.sb_blocksize);
319 			return -EINVAL;
320 		}
321 	}
322 
323 	if (!xfs_has_dalign(mp)) {
324 		xfs_warn(mp,
325 "cannot change alignment: superblock does not support data alignment");
326 		return -EINVAL;
327 	}
328 
329 	return 0;
330 }
331 
332 /* Update alignment values based on mount options and sb values. */
333 STATIC int
334 xfs_update_alignment(
335 	struct xfs_mount	*mp)
336 {
337 	struct xfs_sb		*sbp = &mp->m_sb;
338 
339 	if (mp->m_dalign) {
340 		bool		update_sb;
341 		int		error;
342 
343 		if (sbp->sb_unit == mp->m_dalign &&
344 		    sbp->sb_width == mp->m_swidth)
345 			return 0;
346 
347 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
348 		if (error || !update_sb)
349 			return error;
350 
351 		sbp->sb_unit = mp->m_dalign;
352 		sbp->sb_width = mp->m_swidth;
353 		mp->m_update_sb = true;
354 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
355 		mp->m_dalign = sbp->sb_unit;
356 		mp->m_swidth = sbp->sb_width;
357 	}
358 
359 	return 0;
360 }
361 
362 /*
363  * precalculate the low space thresholds for dynamic speculative preallocation.
364  */
365 void
366 xfs_set_low_space_thresholds(
367 	struct xfs_mount	*mp)
368 {
369 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
370 	uint64_t		rtexts = mp->m_sb.sb_rextents;
371 	int			i;
372 
373 	do_div(dblocks, 100);
374 	do_div(rtexts, 100);
375 
376 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
377 		mp->m_low_space[i] = dblocks * (i + 1);
378 		mp->m_low_rtexts[i] = rtexts * (i + 1);
379 	}
380 }
381 
382 /*
383  * Check that the data (and log if separate) is an ok size.
384  */
385 STATIC int
386 xfs_check_sizes(
387 	struct xfs_mount *mp)
388 {
389 	struct xfs_buf	*bp;
390 	xfs_daddr_t	d;
391 	int		error;
392 
393 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
394 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
395 		xfs_warn(mp, "filesystem size mismatch detected");
396 		return -EFBIG;
397 	}
398 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
399 					d - XFS_FSS_TO_BB(mp, 1),
400 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
401 	if (error) {
402 		xfs_warn(mp, "last sector read failed");
403 		return error;
404 	}
405 	xfs_buf_relse(bp);
406 
407 	if (mp->m_logdev_targp == mp->m_ddev_targp)
408 		return 0;
409 
410 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
411 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
412 		xfs_warn(mp, "log size mismatch detected");
413 		return -EFBIG;
414 	}
415 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
416 					d - XFS_FSB_TO_BB(mp, 1),
417 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
418 	if (error) {
419 		xfs_warn(mp, "log device read failed");
420 		return error;
421 	}
422 	xfs_buf_relse(bp);
423 	return 0;
424 }
425 
426 /*
427  * Clear the quotaflags in memory and in the superblock.
428  */
429 int
430 xfs_mount_reset_sbqflags(
431 	struct xfs_mount	*mp)
432 {
433 	mp->m_qflags = 0;
434 
435 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
436 	if (mp->m_sb.sb_qflags == 0)
437 		return 0;
438 	spin_lock(&mp->m_sb_lock);
439 	mp->m_sb.sb_qflags = 0;
440 	spin_unlock(&mp->m_sb_lock);
441 
442 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
443 		return 0;
444 
445 	return xfs_sync_sb(mp, false);
446 }
447 
448 uint64_t
449 xfs_default_resblks(xfs_mount_t *mp)
450 {
451 	uint64_t resblks;
452 
453 	/*
454 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
455 	 * smaller.  This is intended to cover concurrent allocation
456 	 * transactions when we initially hit enospc. These each require a 4
457 	 * block reservation. Hence by default we cover roughly 2000 concurrent
458 	 * allocation reservations.
459 	 */
460 	resblks = mp->m_sb.sb_dblocks;
461 	do_div(resblks, 20);
462 	resblks = min_t(uint64_t, resblks, 8192);
463 	return resblks;
464 }
465 
466 /* Ensure the summary counts are correct. */
467 STATIC int
468 xfs_check_summary_counts(
469 	struct xfs_mount	*mp)
470 {
471 	int			error = 0;
472 
473 	/*
474 	 * The AG0 superblock verifier rejects in-progress filesystems,
475 	 * so we should never see the flag set this far into mounting.
476 	 */
477 	if (mp->m_sb.sb_inprogress) {
478 		xfs_err(mp, "sb_inprogress set after log recovery??");
479 		WARN_ON(1);
480 		return -EFSCORRUPTED;
481 	}
482 
483 	/*
484 	 * Now the log is mounted, we know if it was an unclean shutdown or
485 	 * not. If it was, with the first phase of recovery has completed, we
486 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
487 	 * but they are recovered transactionally in the second recovery phase
488 	 * later.
489 	 *
490 	 * If the log was clean when we mounted, we can check the summary
491 	 * counters.  If any of them are obviously incorrect, we can recompute
492 	 * them from the AGF headers in the next step.
493 	 */
494 	if (xfs_is_clean(mp) &&
495 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
496 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
497 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
498 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
499 
500 	/*
501 	 * We can safely re-initialise incore superblock counters from the
502 	 * per-ag data. These may not be correct if the filesystem was not
503 	 * cleanly unmounted, so we waited for recovery to finish before doing
504 	 * this.
505 	 *
506 	 * If the filesystem was cleanly unmounted or the previous check did
507 	 * not flag anything weird, then we can trust the values in the
508 	 * superblock to be correct and we don't need to do anything here.
509 	 * Otherwise, recalculate the summary counters.
510 	 */
511 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
512 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
513 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
514 		if (error)
515 			return error;
516 	}
517 
518 	/*
519 	 * Older kernels misused sb_frextents to reflect both incore
520 	 * reservations made by running transactions and the actual count of
521 	 * free rt extents in the ondisk metadata.  Transactions committed
522 	 * during runtime can therefore contain a superblock update that
523 	 * undercounts the number of free rt extents tracked in the rt bitmap.
524 	 * A clean unmount record will have the correct frextents value since
525 	 * there can be no other transactions running at that point.
526 	 *
527 	 * If we're mounting the rt volume after recovering the log, recompute
528 	 * frextents from the rtbitmap file to fix the inconsistency.
529 	 */
530 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
531 		error = xfs_rtalloc_reinit_frextents(mp);
532 		if (error)
533 			return error;
534 	}
535 
536 	return 0;
537 }
538 
539 /*
540  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
541  * internal inode structures can be sitting in the CIL and AIL at this point,
542  * so we need to unpin them, write them back and/or reclaim them before unmount
543  * can proceed.  In other words, callers are required to have inactivated all
544  * inodes.
545  *
546  * An inode cluster that has been freed can have its buffer still pinned in
547  * memory because the transaction is still sitting in a iclog. The stale inodes
548  * on that buffer will be pinned to the buffer until the transaction hits the
549  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
550  * may never see the pinned buffer, so nothing will push out the iclog and
551  * unpin the buffer.
552  *
553  * Hence we need to force the log to unpin everything first. However, log
554  * forces don't wait for the discards they issue to complete, so we have to
555  * explicitly wait for them to complete here as well.
556  *
557  * Then we can tell the world we are unmounting so that error handling knows
558  * that the filesystem is going away and we should error out anything that we
559  * have been retrying in the background.  This will prevent never-ending
560  * retries in AIL pushing from hanging the unmount.
561  *
562  * Finally, we can push the AIL to clean all the remaining dirty objects, then
563  * reclaim the remaining inodes that are still in memory at this point in time.
564  */
565 static void
566 xfs_unmount_flush_inodes(
567 	struct xfs_mount	*mp)
568 {
569 	xfs_log_force(mp, XFS_LOG_SYNC);
570 	xfs_extent_busy_wait_all(mp);
571 	flush_workqueue(xfs_discard_wq);
572 
573 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
574 
575 	xfs_ail_push_all_sync(mp->m_ail);
576 	xfs_inodegc_stop(mp);
577 	cancel_delayed_work_sync(&mp->m_reclaim_work);
578 	xfs_reclaim_inodes(mp);
579 	xfs_health_unmount(mp);
580 }
581 
582 static void
583 xfs_mount_setup_inode_geom(
584 	struct xfs_mount	*mp)
585 {
586 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
587 
588 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
589 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
590 
591 	xfs_ialloc_setup_geometry(mp);
592 }
593 
594 /* Compute maximum possible height for per-AG btree types for this fs. */
595 static inline void
596 xfs_agbtree_compute_maxlevels(
597 	struct xfs_mount	*mp)
598 {
599 	unsigned int		levels;
600 
601 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
602 	levels = max(levels, mp->m_rmap_maxlevels);
603 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
604 }
605 
606 /*
607  * This function does the following on an initial mount of a file system:
608  *	- reads the superblock from disk and init the mount struct
609  *	- if we're a 32-bit kernel, do a size check on the superblock
610  *		so we don't mount terabyte filesystems
611  *	- init mount struct realtime fields
612  *	- allocate inode hash table for fs
613  *	- init directory manager
614  *	- perform recovery and init the log manager
615  */
616 int
617 xfs_mountfs(
618 	struct xfs_mount	*mp)
619 {
620 	struct xfs_sb		*sbp = &(mp->m_sb);
621 	struct xfs_inode	*rip;
622 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
623 	uint64_t		resblks;
624 	uint			quotamount = 0;
625 	uint			quotaflags = 0;
626 	int			error = 0;
627 
628 	xfs_sb_mount_common(mp, sbp);
629 
630 	/*
631 	 * Check for a mismatched features2 values.  Older kernels read & wrote
632 	 * into the wrong sb offset for sb_features2 on some platforms due to
633 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
634 	 * which made older superblock reading/writing routines swap it as a
635 	 * 64-bit value.
636 	 *
637 	 * For backwards compatibility, we make both slots equal.
638 	 *
639 	 * If we detect a mismatched field, we OR the set bits into the existing
640 	 * features2 field in case it has already been modified; we don't want
641 	 * to lose any features.  We then update the bad location with the ORed
642 	 * value so that older kernels will see any features2 flags. The
643 	 * superblock writeback code ensures the new sb_features2 is copied to
644 	 * sb_bad_features2 before it is logged or written to disk.
645 	 */
646 	if (xfs_sb_has_mismatched_features2(sbp)) {
647 		xfs_warn(mp, "correcting sb_features alignment problem");
648 		sbp->sb_features2 |= sbp->sb_bad_features2;
649 		mp->m_update_sb = true;
650 	}
651 
652 
653 	/* always use v2 inodes by default now */
654 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
655 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
656 		mp->m_features |= XFS_FEAT_NLINK;
657 		mp->m_update_sb = true;
658 	}
659 
660 	/*
661 	 * If we were given new sunit/swidth options, do some basic validation
662 	 * checks and convert the incore dalign and swidth values to the
663 	 * same units (FSB) that everything else uses.  This /must/ happen
664 	 * before computing the inode geometry.
665 	 */
666 	error = xfs_validate_new_dalign(mp);
667 	if (error)
668 		goto out;
669 
670 	xfs_alloc_compute_maxlevels(mp);
671 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
672 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
673 	xfs_mount_setup_inode_geom(mp);
674 	xfs_rmapbt_compute_maxlevels(mp);
675 	xfs_refcountbt_compute_maxlevels(mp);
676 
677 	xfs_agbtree_compute_maxlevels(mp);
678 
679 	/*
680 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
681 	 * is NOT aligned turn off m_dalign since allocator alignment is within
682 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
683 	 * we must compute the free space and rmap btree geometry before doing
684 	 * this.
685 	 */
686 	error = xfs_update_alignment(mp);
687 	if (error)
688 		goto out;
689 
690 	/* enable fail_at_unmount as default */
691 	mp->m_fail_unmount = true;
692 
693 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
694 			       NULL, mp->m_super->s_id);
695 	if (error)
696 		goto out;
697 
698 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
699 			       &mp->m_kobj, "stats");
700 	if (error)
701 		goto out_remove_sysfs;
702 
703 	error = xfs_error_sysfs_init(mp);
704 	if (error)
705 		goto out_del_stats;
706 
707 	error = xfs_errortag_init(mp);
708 	if (error)
709 		goto out_remove_error_sysfs;
710 
711 	error = xfs_uuid_mount(mp);
712 	if (error)
713 		goto out_remove_errortag;
714 
715 	/*
716 	 * Update the preferred write size based on the information from the
717 	 * on-disk superblock.
718 	 */
719 	mp->m_allocsize_log =
720 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
721 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
722 
723 	/* set the low space thresholds for dynamic preallocation */
724 	xfs_set_low_space_thresholds(mp);
725 
726 	/*
727 	 * If enabled, sparse inode chunk alignment is expected to match the
728 	 * cluster size. Full inode chunk alignment must match the chunk size,
729 	 * but that is checked on sb read verification...
730 	 */
731 	if (xfs_has_sparseinodes(mp) &&
732 	    mp->m_sb.sb_spino_align !=
733 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
734 		xfs_warn(mp,
735 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
736 			 mp->m_sb.sb_spino_align,
737 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
738 		error = -EINVAL;
739 		goto out_remove_uuid;
740 	}
741 
742 	/*
743 	 * Check that the data (and log if separate) is an ok size.
744 	 */
745 	error = xfs_check_sizes(mp);
746 	if (error)
747 		goto out_remove_uuid;
748 
749 	/*
750 	 * Initialize realtime fields in the mount structure
751 	 */
752 	error = xfs_rtmount_init(mp);
753 	if (error) {
754 		xfs_warn(mp, "RT mount failed");
755 		goto out_remove_uuid;
756 	}
757 
758 	/*
759 	 *  Copies the low order bits of the timestamp and the randomly
760 	 *  set "sequence" number out of a UUID.
761 	 */
762 	mp->m_fixedfsid[0] =
763 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
764 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
765 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
766 
767 	error = xfs_da_mount(mp);
768 	if (error) {
769 		xfs_warn(mp, "Failed dir/attr init: %d", error);
770 		goto out_remove_uuid;
771 	}
772 
773 	/*
774 	 * Initialize the precomputed transaction reservations values.
775 	 */
776 	xfs_trans_init(mp);
777 
778 	/*
779 	 * Allocate and initialize the per-ag data.
780 	 */
781 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
782 			&mp->m_maxagi);
783 	if (error) {
784 		xfs_warn(mp, "Failed per-ag init: %d", error);
785 		goto out_free_dir;
786 	}
787 
788 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
789 		xfs_warn(mp, "no log defined");
790 		error = -EFSCORRUPTED;
791 		goto out_free_perag;
792 	}
793 
794 	error = xfs_inodegc_register_shrinker(mp);
795 	if (error)
796 		goto out_fail_wait;
797 
798 	/*
799 	 * Log's mount-time initialization. The first part of recovery can place
800 	 * some items on the AIL, to be handled when recovery is finished or
801 	 * cancelled.
802 	 */
803 	error = xfs_log_mount(mp, mp->m_logdev_targp,
804 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
805 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
806 	if (error) {
807 		xfs_warn(mp, "log mount failed");
808 		goto out_inodegc_shrinker;
809 	}
810 
811 	/* Enable background inode inactivation workers. */
812 	xfs_inodegc_start(mp);
813 	xfs_blockgc_start(mp);
814 
815 	/*
816 	 * Now that we've recovered any pending superblock feature bit
817 	 * additions, we can finish setting up the attr2 behaviour for the
818 	 * mount. The noattr2 option overrides the superblock flag, so only
819 	 * check the superblock feature flag if the mount option is not set.
820 	 */
821 	if (xfs_has_noattr2(mp)) {
822 		mp->m_features &= ~XFS_FEAT_ATTR2;
823 	} else if (!xfs_has_attr2(mp) &&
824 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
825 		mp->m_features |= XFS_FEAT_ATTR2;
826 	}
827 
828 	/*
829 	 * Get and sanity-check the root inode.
830 	 * Save the pointer to it in the mount structure.
831 	 */
832 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
833 			 XFS_ILOCK_EXCL, &rip);
834 	if (error) {
835 		xfs_warn(mp,
836 			"Failed to read root inode 0x%llx, error %d",
837 			sbp->sb_rootino, -error);
838 		goto out_log_dealloc;
839 	}
840 
841 	ASSERT(rip != NULL);
842 
843 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
844 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
845 			(unsigned long long)rip->i_ino);
846 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
847 		error = -EFSCORRUPTED;
848 		goto out_rele_rip;
849 	}
850 	mp->m_rootip = rip;	/* save it */
851 
852 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
853 
854 	/*
855 	 * Initialize realtime inode pointers in the mount structure
856 	 */
857 	error = xfs_rtmount_inodes(mp);
858 	if (error) {
859 		/*
860 		 * Free up the root inode.
861 		 */
862 		xfs_warn(mp, "failed to read RT inodes");
863 		goto out_rele_rip;
864 	}
865 
866 	/* Make sure the summary counts are ok. */
867 	error = xfs_check_summary_counts(mp);
868 	if (error)
869 		goto out_rtunmount;
870 
871 	/*
872 	 * If this is a read-only mount defer the superblock updates until
873 	 * the next remount into writeable mode.  Otherwise we would never
874 	 * perform the update e.g. for the root filesystem.
875 	 */
876 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
877 		error = xfs_sync_sb(mp, false);
878 		if (error) {
879 			xfs_warn(mp, "failed to write sb changes");
880 			goto out_rtunmount;
881 		}
882 	}
883 
884 	/*
885 	 * Initialise the XFS quota management subsystem for this mount
886 	 */
887 	if (XFS_IS_QUOTA_ON(mp)) {
888 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
889 		if (error)
890 			goto out_rtunmount;
891 	} else {
892 		/*
893 		 * If a file system had quotas running earlier, but decided to
894 		 * mount without -o uquota/pquota/gquota options, revoke the
895 		 * quotachecked license.
896 		 */
897 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
898 			xfs_notice(mp, "resetting quota flags");
899 			error = xfs_mount_reset_sbqflags(mp);
900 			if (error)
901 				goto out_rtunmount;
902 		}
903 	}
904 
905 	/*
906 	 * Finish recovering the file system.  This part needed to be delayed
907 	 * until after the root and real-time bitmap inodes were consistently
908 	 * read in.  Temporarily create per-AG space reservations for metadata
909 	 * btree shape changes because space freeing transactions (for inode
910 	 * inactivation) require the per-AG reservation in lieu of reserving
911 	 * blocks.
912 	 */
913 	error = xfs_fs_reserve_ag_blocks(mp);
914 	if (error && error == -ENOSPC)
915 		xfs_warn(mp,
916 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
917 	error = xfs_log_mount_finish(mp);
918 	xfs_fs_unreserve_ag_blocks(mp);
919 	if (error) {
920 		xfs_warn(mp, "log mount finish failed");
921 		goto out_rtunmount;
922 	}
923 
924 	/*
925 	 * Now the log is fully replayed, we can transition to full read-only
926 	 * mode for read-only mounts. This will sync all the metadata and clean
927 	 * the log so that the recovery we just performed does not have to be
928 	 * replayed again on the next mount.
929 	 *
930 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
931 	 * semantically identical operations.
932 	 */
933 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
934 		xfs_log_clean(mp);
935 
936 	/*
937 	 * Complete the quota initialisation, post-log-replay component.
938 	 */
939 	if (quotamount) {
940 		ASSERT(mp->m_qflags == 0);
941 		mp->m_qflags = quotaflags;
942 
943 		xfs_qm_mount_quotas(mp);
944 	}
945 
946 	/*
947 	 * Now we are mounted, reserve a small amount of unused space for
948 	 * privileged transactions. This is needed so that transaction
949 	 * space required for critical operations can dip into this pool
950 	 * when at ENOSPC. This is needed for operations like create with
951 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
952 	 * are not allowed to use this reserved space.
953 	 *
954 	 * This may drive us straight to ENOSPC on mount, but that implies
955 	 * we were already there on the last unmount. Warn if this occurs.
956 	 */
957 	if (!xfs_is_readonly(mp)) {
958 		resblks = xfs_default_resblks(mp);
959 		error = xfs_reserve_blocks(mp, &resblks, NULL);
960 		if (error)
961 			xfs_warn(mp,
962 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
963 
964 		/* Reserve AG blocks for future btree expansion. */
965 		error = xfs_fs_reserve_ag_blocks(mp);
966 		if (error && error != -ENOSPC)
967 			goto out_agresv;
968 	}
969 
970 	return 0;
971 
972  out_agresv:
973 	xfs_fs_unreserve_ag_blocks(mp);
974 	xfs_qm_unmount_quotas(mp);
975  out_rtunmount:
976 	xfs_rtunmount_inodes(mp);
977  out_rele_rip:
978 	xfs_irele(rip);
979 	/* Clean out dquots that might be in memory after quotacheck. */
980 	xfs_qm_unmount(mp);
981 
982 	/*
983 	 * Inactivate all inodes that might still be in memory after a log
984 	 * intent recovery failure so that reclaim can free them.  Metadata
985 	 * inodes and the root directory shouldn't need inactivation, but the
986 	 * mount failed for some reason, so pull down all the state and flee.
987 	 */
988 	xfs_inodegc_flush(mp);
989 
990 	/*
991 	 * Flush all inode reclamation work and flush the log.
992 	 * We have to do this /after/ rtunmount and qm_unmount because those
993 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
994 	 *
995 	 * This is slightly different from the unmountfs call sequence
996 	 * because we could be tearing down a partially set up mount.  In
997 	 * particular, if log_mount_finish fails we bail out without calling
998 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
999 	 * quota inodes.
1000 	 */
1001 	xfs_unmount_flush_inodes(mp);
1002  out_log_dealloc:
1003 	xfs_log_mount_cancel(mp);
1004  out_inodegc_shrinker:
1005 	unregister_shrinker(&mp->m_inodegc_shrinker);
1006  out_fail_wait:
1007 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1008 		xfs_buftarg_drain(mp->m_logdev_targp);
1009 	xfs_buftarg_drain(mp->m_ddev_targp);
1010  out_free_perag:
1011 	xfs_free_perag(mp);
1012  out_free_dir:
1013 	xfs_da_unmount(mp);
1014  out_remove_uuid:
1015 	xfs_uuid_unmount(mp);
1016  out_remove_errortag:
1017 	xfs_errortag_del(mp);
1018  out_remove_error_sysfs:
1019 	xfs_error_sysfs_del(mp);
1020  out_del_stats:
1021 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1022  out_remove_sysfs:
1023 	xfs_sysfs_del(&mp->m_kobj);
1024  out:
1025 	return error;
1026 }
1027 
1028 /*
1029  * This flushes out the inodes,dquots and the superblock, unmounts the
1030  * log and makes sure that incore structures are freed.
1031  */
1032 void
1033 xfs_unmountfs(
1034 	struct xfs_mount	*mp)
1035 {
1036 	uint64_t		resblks;
1037 	int			error;
1038 
1039 	/*
1040 	 * Perform all on-disk metadata updates required to inactivate inodes
1041 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1042 	 * and discarding CoW fork preallocations can cause shape changes to
1043 	 * the free inode and refcount btrees, respectively, so we must finish
1044 	 * this before we discard the metadata space reservations.  Metadata
1045 	 * inodes and the root directory do not require inactivation.
1046 	 */
1047 	xfs_inodegc_flush(mp);
1048 
1049 	xfs_blockgc_stop(mp);
1050 	xfs_fs_unreserve_ag_blocks(mp);
1051 	xfs_qm_unmount_quotas(mp);
1052 	xfs_rtunmount_inodes(mp);
1053 	xfs_irele(mp->m_rootip);
1054 
1055 	xfs_unmount_flush_inodes(mp);
1056 
1057 	xfs_qm_unmount(mp);
1058 
1059 	/*
1060 	 * Unreserve any blocks we have so that when we unmount we don't account
1061 	 * the reserved free space as used. This is really only necessary for
1062 	 * lazy superblock counting because it trusts the incore superblock
1063 	 * counters to be absolutely correct on clean unmount.
1064 	 *
1065 	 * We don't bother correcting this elsewhere for lazy superblock
1066 	 * counting because on mount of an unclean filesystem we reconstruct the
1067 	 * correct counter value and this is irrelevant.
1068 	 *
1069 	 * For non-lazy counter filesystems, this doesn't matter at all because
1070 	 * we only every apply deltas to the superblock and hence the incore
1071 	 * value does not matter....
1072 	 */
1073 	resblks = 0;
1074 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1075 	if (error)
1076 		xfs_warn(mp, "Unable to free reserved block pool. "
1077 				"Freespace may not be correct on next mount.");
1078 
1079 	xfs_log_unmount(mp);
1080 	xfs_da_unmount(mp);
1081 	xfs_uuid_unmount(mp);
1082 
1083 #if defined(DEBUG)
1084 	xfs_errortag_clearall(mp);
1085 #endif
1086 	unregister_shrinker(&mp->m_inodegc_shrinker);
1087 	xfs_free_perag(mp);
1088 
1089 	xfs_errortag_del(mp);
1090 	xfs_error_sysfs_del(mp);
1091 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1092 	xfs_sysfs_del(&mp->m_kobj);
1093 }
1094 
1095 /*
1096  * Determine whether modifications can proceed. The caller specifies the minimum
1097  * freeze level for which modifications should not be allowed. This allows
1098  * certain operations to proceed while the freeze sequence is in progress, if
1099  * necessary.
1100  */
1101 bool
1102 xfs_fs_writable(
1103 	struct xfs_mount	*mp,
1104 	int			level)
1105 {
1106 	ASSERT(level > SB_UNFROZEN);
1107 	if ((mp->m_super->s_writers.frozen >= level) ||
1108 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1109 		return false;
1110 
1111 	return true;
1112 }
1113 
1114 /* Adjust m_fdblocks or m_frextents. */
1115 int
1116 xfs_mod_freecounter(
1117 	struct xfs_mount	*mp,
1118 	struct percpu_counter	*counter,
1119 	int64_t			delta,
1120 	bool			rsvd)
1121 {
1122 	int64_t			lcounter;
1123 	long long		res_used;
1124 	uint64_t		set_aside = 0;
1125 	s32			batch;
1126 	bool			has_resv_pool;
1127 
1128 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1129 	has_resv_pool = (counter == &mp->m_fdblocks);
1130 	if (rsvd)
1131 		ASSERT(has_resv_pool);
1132 
1133 	if (delta > 0) {
1134 		/*
1135 		 * If the reserve pool is depleted, put blocks back into it
1136 		 * first. Most of the time the pool is full.
1137 		 */
1138 		if (likely(!has_resv_pool ||
1139 			   mp->m_resblks == mp->m_resblks_avail)) {
1140 			percpu_counter_add(counter, delta);
1141 			return 0;
1142 		}
1143 
1144 		spin_lock(&mp->m_sb_lock);
1145 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1146 
1147 		if (res_used > delta) {
1148 			mp->m_resblks_avail += delta;
1149 		} else {
1150 			delta -= res_used;
1151 			mp->m_resblks_avail = mp->m_resblks;
1152 			percpu_counter_add(counter, delta);
1153 		}
1154 		spin_unlock(&mp->m_sb_lock);
1155 		return 0;
1156 	}
1157 
1158 	/*
1159 	 * Taking blocks away, need to be more accurate the closer we
1160 	 * are to zero.
1161 	 *
1162 	 * If the counter has a value of less than 2 * max batch size,
1163 	 * then make everything serialise as we are real close to
1164 	 * ENOSPC.
1165 	 */
1166 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1167 				     XFS_FDBLOCKS_BATCH) < 0)
1168 		batch = 1;
1169 	else
1170 		batch = XFS_FDBLOCKS_BATCH;
1171 
1172 	/*
1173 	 * Set aside allocbt blocks because these blocks are tracked as free
1174 	 * space but not available for allocation. Technically this means that a
1175 	 * single reservation cannot consume all remaining free space, but the
1176 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1177 	 * The tradeoff without this is that filesystems that maintain high
1178 	 * perag block reservations can over reserve physical block availability
1179 	 * and fail physical allocation, which leads to much more serious
1180 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1181 	 * slightly premature -ENOSPC.
1182 	 */
1183 	if (has_resv_pool)
1184 		set_aside = xfs_fdblocks_unavailable(mp);
1185 	percpu_counter_add_batch(counter, delta, batch);
1186 	if (__percpu_counter_compare(counter, set_aside,
1187 				     XFS_FDBLOCKS_BATCH) >= 0) {
1188 		/* we had space! */
1189 		return 0;
1190 	}
1191 
1192 	/*
1193 	 * lock up the sb for dipping into reserves before releasing the space
1194 	 * that took us to ENOSPC.
1195 	 */
1196 	spin_lock(&mp->m_sb_lock);
1197 	percpu_counter_add(counter, -delta);
1198 	if (!has_resv_pool || !rsvd)
1199 		goto fdblocks_enospc;
1200 
1201 	lcounter = (long long)mp->m_resblks_avail + delta;
1202 	if (lcounter >= 0) {
1203 		mp->m_resblks_avail = lcounter;
1204 		spin_unlock(&mp->m_sb_lock);
1205 		return 0;
1206 	}
1207 	xfs_warn_once(mp,
1208 "Reserve blocks depleted! Consider increasing reserve pool size.");
1209 
1210 fdblocks_enospc:
1211 	spin_unlock(&mp->m_sb_lock);
1212 	return -ENOSPC;
1213 }
1214 
1215 /*
1216  * Used to free the superblock along various error paths.
1217  */
1218 void
1219 xfs_freesb(
1220 	struct xfs_mount	*mp)
1221 {
1222 	struct xfs_buf		*bp = mp->m_sb_bp;
1223 
1224 	xfs_buf_lock(bp);
1225 	mp->m_sb_bp = NULL;
1226 	xfs_buf_relse(bp);
1227 }
1228 
1229 /*
1230  * If the underlying (data/log/rt) device is readonly, there are some
1231  * operations that cannot proceed.
1232  */
1233 int
1234 xfs_dev_is_read_only(
1235 	struct xfs_mount	*mp,
1236 	char			*message)
1237 {
1238 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1239 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1240 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1241 		xfs_notice(mp, "%s required on read-only device.", message);
1242 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1243 		return -EROFS;
1244 	}
1245 	return 0;
1246 }
1247 
1248 /* Force the summary counters to be recalculated at next mount. */
1249 void
1250 xfs_force_summary_recalc(
1251 	struct xfs_mount	*mp)
1252 {
1253 	if (!xfs_has_lazysbcount(mp))
1254 		return;
1255 
1256 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1257 }
1258 
1259 /*
1260  * Enable a log incompat feature flag in the primary superblock.  The caller
1261  * cannot have any other transactions in progress.
1262  */
1263 int
1264 xfs_add_incompat_log_feature(
1265 	struct xfs_mount	*mp,
1266 	uint32_t		feature)
1267 {
1268 	struct xfs_dsb		*dsb;
1269 	int			error;
1270 
1271 	ASSERT(hweight32(feature) == 1);
1272 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1273 
1274 	/*
1275 	 * Force the log to disk and kick the background AIL thread to reduce
1276 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1277 	 * the primary superblock buffer.  This isn't a data integrity
1278 	 * operation, so we don't need a synchronous push.
1279 	 */
1280 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1281 	if (error)
1282 		return error;
1283 	xfs_ail_push_all(mp->m_ail);
1284 
1285 	/*
1286 	 * Lock the primary superblock buffer to serialize all callers that
1287 	 * are trying to set feature bits.
1288 	 */
1289 	xfs_buf_lock(mp->m_sb_bp);
1290 	xfs_buf_hold(mp->m_sb_bp);
1291 
1292 	if (xfs_is_shutdown(mp)) {
1293 		error = -EIO;
1294 		goto rele;
1295 	}
1296 
1297 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1298 		goto rele;
1299 
1300 	/*
1301 	 * Write the primary superblock to disk immediately, because we need
1302 	 * the log_incompat bit to be set in the primary super now to protect
1303 	 * the log items that we're going to commit later.
1304 	 */
1305 	dsb = mp->m_sb_bp->b_addr;
1306 	xfs_sb_to_disk(dsb, &mp->m_sb);
1307 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1308 	error = xfs_bwrite(mp->m_sb_bp);
1309 	if (error)
1310 		goto shutdown;
1311 
1312 	/*
1313 	 * Add the feature bits to the incore superblock before we unlock the
1314 	 * buffer.
1315 	 */
1316 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1317 	xfs_buf_relse(mp->m_sb_bp);
1318 
1319 	/* Log the superblock to disk. */
1320 	return xfs_sync_sb(mp, false);
1321 shutdown:
1322 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1323 rele:
1324 	xfs_buf_relse(mp->m_sb_bp);
1325 	return error;
1326 }
1327 
1328 /*
1329  * Clear all the log incompat flags from the superblock.
1330  *
1331  * The caller cannot be in a transaction, must ensure that the log does not
1332  * contain any log items protected by any log incompat bit, and must ensure
1333  * that there are no other threads that depend on the state of the log incompat
1334  * feature flags in the primary super.
1335  *
1336  * Returns true if the superblock is dirty.
1337  */
1338 bool
1339 xfs_clear_incompat_log_features(
1340 	struct xfs_mount	*mp)
1341 {
1342 	bool			ret = false;
1343 
1344 	if (!xfs_has_crc(mp) ||
1345 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1346 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1347 	    xfs_is_shutdown(mp))
1348 		return false;
1349 
1350 	/*
1351 	 * Update the incore superblock.  We synchronize on the primary super
1352 	 * buffer lock to be consistent with the add function, though at least
1353 	 * in theory this shouldn't be necessary.
1354 	 */
1355 	xfs_buf_lock(mp->m_sb_bp);
1356 	xfs_buf_hold(mp->m_sb_bp);
1357 
1358 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1359 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1360 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1361 		ret = true;
1362 	}
1363 
1364 	xfs_buf_relse(mp->m_sb_bp);
1365 	return ret;
1366 }
1367 
1368 /*
1369  * Update the in-core delayed block counter.
1370  *
1371  * We prefer to update the counter without having to take a spinlock for every
1372  * counter update (i.e. batching).  Each change to delayed allocation
1373  * reservations can change can easily exceed the default percpu counter
1374  * batching, so we use a larger batch factor here.
1375  *
1376  * Note that we don't currently have any callers requiring fast summation
1377  * (e.g. percpu_counter_read) so we can use a big batch value here.
1378  */
1379 #define XFS_DELALLOC_BATCH	(4096)
1380 void
1381 xfs_mod_delalloc(
1382 	struct xfs_mount	*mp,
1383 	int64_t			delta)
1384 {
1385 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1386 			XFS_DELALLOC_BATCH);
1387 }
1388