1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_da_format.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_dinode.h" 45 #include "xfs_sysfs.h" 46 47 48 #ifdef HAVE_PERCPU_SB 49 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 50 int); 51 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 54 #else 55 56 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 57 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 58 #endif 59 60 static DEFINE_MUTEX(xfs_uuid_table_mutex); 61 static int xfs_uuid_table_size; 62 static uuid_t *xfs_uuid_table; 63 64 extern struct kset *xfs_kset; 65 66 /* 67 * See if the UUID is unique among mounted XFS filesystems. 68 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 69 */ 70 STATIC int 71 xfs_uuid_mount( 72 struct xfs_mount *mp) 73 { 74 uuid_t *uuid = &mp->m_sb.sb_uuid; 75 int hole, i; 76 77 if (mp->m_flags & XFS_MOUNT_NOUUID) 78 return 0; 79 80 if (uuid_is_nil(uuid)) { 81 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 82 return -EINVAL; 83 } 84 85 mutex_lock(&xfs_uuid_table_mutex); 86 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 87 if (uuid_is_nil(&xfs_uuid_table[i])) { 88 hole = i; 89 continue; 90 } 91 if (uuid_equal(uuid, &xfs_uuid_table[i])) 92 goto out_duplicate; 93 } 94 95 if (hole < 0) { 96 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 97 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 98 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 99 KM_SLEEP); 100 hole = xfs_uuid_table_size++; 101 } 102 xfs_uuid_table[hole] = *uuid; 103 mutex_unlock(&xfs_uuid_table_mutex); 104 105 return 0; 106 107 out_duplicate: 108 mutex_unlock(&xfs_uuid_table_mutex); 109 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 110 return -EINVAL; 111 } 112 113 STATIC void 114 xfs_uuid_unmount( 115 struct xfs_mount *mp) 116 { 117 uuid_t *uuid = &mp->m_sb.sb_uuid; 118 int i; 119 120 if (mp->m_flags & XFS_MOUNT_NOUUID) 121 return; 122 123 mutex_lock(&xfs_uuid_table_mutex); 124 for (i = 0; i < xfs_uuid_table_size; i++) { 125 if (uuid_is_nil(&xfs_uuid_table[i])) 126 continue; 127 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 128 continue; 129 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 130 break; 131 } 132 ASSERT(i < xfs_uuid_table_size); 133 mutex_unlock(&xfs_uuid_table_mutex); 134 } 135 136 137 STATIC void 138 __xfs_free_perag( 139 struct rcu_head *head) 140 { 141 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 142 143 ASSERT(atomic_read(&pag->pag_ref) == 0); 144 kmem_free(pag); 145 } 146 147 /* 148 * Free up the per-ag resources associated with the mount structure. 149 */ 150 STATIC void 151 xfs_free_perag( 152 xfs_mount_t *mp) 153 { 154 xfs_agnumber_t agno; 155 struct xfs_perag *pag; 156 157 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 158 spin_lock(&mp->m_perag_lock); 159 pag = radix_tree_delete(&mp->m_perag_tree, agno); 160 spin_unlock(&mp->m_perag_lock); 161 ASSERT(pag); 162 ASSERT(atomic_read(&pag->pag_ref) == 0); 163 call_rcu(&pag->rcu_head, __xfs_free_perag); 164 } 165 } 166 167 /* 168 * Check size of device based on the (data/realtime) block count. 169 * Note: this check is used by the growfs code as well as mount. 170 */ 171 int 172 xfs_sb_validate_fsb_count( 173 xfs_sb_t *sbp, 174 __uint64_t nblocks) 175 { 176 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 177 ASSERT(sbp->sb_blocklog >= BBSHIFT); 178 179 /* Limited by ULONG_MAX of page cache index */ 180 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 181 return -EFBIG; 182 return 0; 183 } 184 185 int 186 xfs_initialize_perag( 187 xfs_mount_t *mp, 188 xfs_agnumber_t agcount, 189 xfs_agnumber_t *maxagi) 190 { 191 xfs_agnumber_t index; 192 xfs_agnumber_t first_initialised = 0; 193 xfs_perag_t *pag; 194 xfs_agino_t agino; 195 xfs_ino_t ino; 196 xfs_sb_t *sbp = &mp->m_sb; 197 int error = -ENOMEM; 198 199 /* 200 * Walk the current per-ag tree so we don't try to initialise AGs 201 * that already exist (growfs case). Allocate and insert all the 202 * AGs we don't find ready for initialisation. 203 */ 204 for (index = 0; index < agcount; index++) { 205 pag = xfs_perag_get(mp, index); 206 if (pag) { 207 xfs_perag_put(pag); 208 continue; 209 } 210 if (!first_initialised) 211 first_initialised = index; 212 213 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 214 if (!pag) 215 goto out_unwind; 216 pag->pag_agno = index; 217 pag->pag_mount = mp; 218 spin_lock_init(&pag->pag_ici_lock); 219 mutex_init(&pag->pag_ici_reclaim_lock); 220 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 221 spin_lock_init(&pag->pag_buf_lock); 222 pag->pag_buf_tree = RB_ROOT; 223 224 if (radix_tree_preload(GFP_NOFS)) 225 goto out_unwind; 226 227 spin_lock(&mp->m_perag_lock); 228 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 229 BUG(); 230 spin_unlock(&mp->m_perag_lock); 231 radix_tree_preload_end(); 232 error = -EEXIST; 233 goto out_unwind; 234 } 235 spin_unlock(&mp->m_perag_lock); 236 radix_tree_preload_end(); 237 } 238 239 /* 240 * If we mount with the inode64 option, or no inode overflows 241 * the legacy 32-bit address space clear the inode32 option. 242 */ 243 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 244 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 245 246 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 247 mp->m_flags |= XFS_MOUNT_32BITINODES; 248 else 249 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 250 251 if (mp->m_flags & XFS_MOUNT_32BITINODES) 252 index = xfs_set_inode32(mp, agcount); 253 else 254 index = xfs_set_inode64(mp, agcount); 255 256 if (maxagi) 257 *maxagi = index; 258 return 0; 259 260 out_unwind: 261 kmem_free(pag); 262 for (; index > first_initialised; index--) { 263 pag = radix_tree_delete(&mp->m_perag_tree, index); 264 kmem_free(pag); 265 } 266 return error; 267 } 268 269 /* 270 * xfs_readsb 271 * 272 * Does the initial read of the superblock. 273 */ 274 int 275 xfs_readsb( 276 struct xfs_mount *mp, 277 int flags) 278 { 279 unsigned int sector_size; 280 struct xfs_buf *bp; 281 struct xfs_sb *sbp = &mp->m_sb; 282 int error; 283 int loud = !(flags & XFS_MFSI_QUIET); 284 const struct xfs_buf_ops *buf_ops; 285 286 ASSERT(mp->m_sb_bp == NULL); 287 ASSERT(mp->m_ddev_targp != NULL); 288 289 /* 290 * For the initial read, we must guess at the sector 291 * size based on the block device. It's enough to 292 * get the sb_sectsize out of the superblock and 293 * then reread with the proper length. 294 * We don't verify it yet, because it may not be complete. 295 */ 296 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 297 buf_ops = NULL; 298 299 /* 300 * Allocate a (locked) buffer to hold the superblock. 301 * This will be kept around at all times to optimize 302 * access to the superblock. 303 */ 304 reread: 305 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 306 BTOBB(sector_size), 0, buf_ops); 307 if (!bp) { 308 if (loud) 309 xfs_warn(mp, "SB buffer read failed"); 310 return -EIO; 311 } 312 if (bp->b_error) { 313 error = bp->b_error; 314 if (loud) 315 xfs_warn(mp, "SB validate failed with error %d.", error); 316 /* bad CRC means corrupted metadata */ 317 if (error == -EFSBADCRC) 318 error = -EFSCORRUPTED; 319 goto release_buf; 320 } 321 322 /* 323 * Initialize the mount structure from the superblock. 324 */ 325 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 326 327 /* 328 * If we haven't validated the superblock, do so now before we try 329 * to check the sector size and reread the superblock appropriately. 330 */ 331 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 332 if (loud) 333 xfs_warn(mp, "Invalid superblock magic number"); 334 error = -EINVAL; 335 goto release_buf; 336 } 337 338 /* 339 * We must be able to do sector-sized and sector-aligned IO. 340 */ 341 if (sector_size > sbp->sb_sectsize) { 342 if (loud) 343 xfs_warn(mp, "device supports %u byte sectors (not %u)", 344 sector_size, sbp->sb_sectsize); 345 error = -ENOSYS; 346 goto release_buf; 347 } 348 349 if (buf_ops == NULL) { 350 /* 351 * Re-read the superblock so the buffer is correctly sized, 352 * and properly verified. 353 */ 354 xfs_buf_relse(bp); 355 sector_size = sbp->sb_sectsize; 356 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 357 goto reread; 358 } 359 360 /* Initialize per-cpu counters */ 361 xfs_icsb_reinit_counters(mp); 362 363 /* no need to be quiet anymore, so reset the buf ops */ 364 bp->b_ops = &xfs_sb_buf_ops; 365 366 mp->m_sb_bp = bp; 367 xfs_buf_unlock(bp); 368 return 0; 369 370 release_buf: 371 xfs_buf_relse(bp); 372 return error; 373 } 374 375 /* 376 * Update alignment values based on mount options and sb values 377 */ 378 STATIC int 379 xfs_update_alignment(xfs_mount_t *mp) 380 { 381 xfs_sb_t *sbp = &(mp->m_sb); 382 383 if (mp->m_dalign) { 384 /* 385 * If stripe unit and stripe width are not multiples 386 * of the fs blocksize turn off alignment. 387 */ 388 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 389 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 390 xfs_warn(mp, 391 "alignment check failed: sunit/swidth vs. blocksize(%d)", 392 sbp->sb_blocksize); 393 return -EINVAL; 394 } else { 395 /* 396 * Convert the stripe unit and width to FSBs. 397 */ 398 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 399 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 400 xfs_warn(mp, 401 "alignment check failed: sunit/swidth vs. agsize(%d)", 402 sbp->sb_agblocks); 403 return -EINVAL; 404 } else if (mp->m_dalign) { 405 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 406 } else { 407 xfs_warn(mp, 408 "alignment check failed: sunit(%d) less than bsize(%d)", 409 mp->m_dalign, sbp->sb_blocksize); 410 return -EINVAL; 411 } 412 } 413 414 /* 415 * Update superblock with new values 416 * and log changes 417 */ 418 if (xfs_sb_version_hasdalign(sbp)) { 419 if (sbp->sb_unit != mp->m_dalign) { 420 sbp->sb_unit = mp->m_dalign; 421 mp->m_update_flags |= XFS_SB_UNIT; 422 } 423 if (sbp->sb_width != mp->m_swidth) { 424 sbp->sb_width = mp->m_swidth; 425 mp->m_update_flags |= XFS_SB_WIDTH; 426 } 427 } else { 428 xfs_warn(mp, 429 "cannot change alignment: superblock does not support data alignment"); 430 return -EINVAL; 431 } 432 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 433 xfs_sb_version_hasdalign(&mp->m_sb)) { 434 mp->m_dalign = sbp->sb_unit; 435 mp->m_swidth = sbp->sb_width; 436 } 437 438 return 0; 439 } 440 441 /* 442 * Set the maximum inode count for this filesystem 443 */ 444 STATIC void 445 xfs_set_maxicount(xfs_mount_t *mp) 446 { 447 xfs_sb_t *sbp = &(mp->m_sb); 448 __uint64_t icount; 449 450 if (sbp->sb_imax_pct) { 451 /* 452 * Make sure the maximum inode count is a multiple 453 * of the units we allocate inodes in. 454 */ 455 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 456 do_div(icount, 100); 457 do_div(icount, mp->m_ialloc_blks); 458 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 459 sbp->sb_inopblog; 460 } else { 461 mp->m_maxicount = 0; 462 } 463 } 464 465 /* 466 * Set the default minimum read and write sizes unless 467 * already specified in a mount option. 468 * We use smaller I/O sizes when the file system 469 * is being used for NFS service (wsync mount option). 470 */ 471 STATIC void 472 xfs_set_rw_sizes(xfs_mount_t *mp) 473 { 474 xfs_sb_t *sbp = &(mp->m_sb); 475 int readio_log, writeio_log; 476 477 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 478 if (mp->m_flags & XFS_MOUNT_WSYNC) { 479 readio_log = XFS_WSYNC_READIO_LOG; 480 writeio_log = XFS_WSYNC_WRITEIO_LOG; 481 } else { 482 readio_log = XFS_READIO_LOG_LARGE; 483 writeio_log = XFS_WRITEIO_LOG_LARGE; 484 } 485 } else { 486 readio_log = mp->m_readio_log; 487 writeio_log = mp->m_writeio_log; 488 } 489 490 if (sbp->sb_blocklog > readio_log) { 491 mp->m_readio_log = sbp->sb_blocklog; 492 } else { 493 mp->m_readio_log = readio_log; 494 } 495 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 496 if (sbp->sb_blocklog > writeio_log) { 497 mp->m_writeio_log = sbp->sb_blocklog; 498 } else { 499 mp->m_writeio_log = writeio_log; 500 } 501 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 502 } 503 504 /* 505 * precalculate the low space thresholds for dynamic speculative preallocation. 506 */ 507 void 508 xfs_set_low_space_thresholds( 509 struct xfs_mount *mp) 510 { 511 int i; 512 513 for (i = 0; i < XFS_LOWSP_MAX; i++) { 514 __uint64_t space = mp->m_sb.sb_dblocks; 515 516 do_div(space, 100); 517 mp->m_low_space[i] = space * (i + 1); 518 } 519 } 520 521 522 /* 523 * Set whether we're using inode alignment. 524 */ 525 STATIC void 526 xfs_set_inoalignment(xfs_mount_t *mp) 527 { 528 if (xfs_sb_version_hasalign(&mp->m_sb) && 529 mp->m_sb.sb_inoalignmt >= 530 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 531 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 532 else 533 mp->m_inoalign_mask = 0; 534 /* 535 * If we are using stripe alignment, check whether 536 * the stripe unit is a multiple of the inode alignment 537 */ 538 if (mp->m_dalign && mp->m_inoalign_mask && 539 !(mp->m_dalign & mp->m_inoalign_mask)) 540 mp->m_sinoalign = mp->m_dalign; 541 else 542 mp->m_sinoalign = 0; 543 } 544 545 /* 546 * Check that the data (and log if separate) is an ok size. 547 */ 548 STATIC int 549 xfs_check_sizes(xfs_mount_t *mp) 550 { 551 xfs_buf_t *bp; 552 xfs_daddr_t d; 553 554 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 555 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 556 xfs_warn(mp, "filesystem size mismatch detected"); 557 return -EFBIG; 558 } 559 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 560 d - XFS_FSS_TO_BB(mp, 1), 561 XFS_FSS_TO_BB(mp, 1), 0, NULL); 562 if (!bp) { 563 xfs_warn(mp, "last sector read failed"); 564 return -EIO; 565 } 566 xfs_buf_relse(bp); 567 568 if (mp->m_logdev_targp != mp->m_ddev_targp) { 569 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 570 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 571 xfs_warn(mp, "log size mismatch detected"); 572 return -EFBIG; 573 } 574 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 575 d - XFS_FSB_TO_BB(mp, 1), 576 XFS_FSB_TO_BB(mp, 1), 0, NULL); 577 if (!bp) { 578 xfs_warn(mp, "log device read failed"); 579 return -EIO; 580 } 581 xfs_buf_relse(bp); 582 } 583 return 0; 584 } 585 586 /* 587 * Clear the quotaflags in memory and in the superblock. 588 */ 589 int 590 xfs_mount_reset_sbqflags( 591 struct xfs_mount *mp) 592 { 593 int error; 594 struct xfs_trans *tp; 595 596 mp->m_qflags = 0; 597 598 /* 599 * It is OK to look at sb_qflags here in mount path, 600 * without m_sb_lock. 601 */ 602 if (mp->m_sb.sb_qflags == 0) 603 return 0; 604 spin_lock(&mp->m_sb_lock); 605 mp->m_sb.sb_qflags = 0; 606 spin_unlock(&mp->m_sb_lock); 607 608 /* 609 * If the fs is readonly, let the incore superblock run 610 * with quotas off but don't flush the update out to disk 611 */ 612 if (mp->m_flags & XFS_MOUNT_RDONLY) 613 return 0; 614 615 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 616 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); 617 if (error) { 618 xfs_trans_cancel(tp, 0); 619 xfs_alert(mp, "%s: Superblock update failed!", __func__); 620 return error; 621 } 622 623 xfs_mod_sb(tp, XFS_SB_QFLAGS); 624 return xfs_trans_commit(tp, 0); 625 } 626 627 __uint64_t 628 xfs_default_resblks(xfs_mount_t *mp) 629 { 630 __uint64_t resblks; 631 632 /* 633 * We default to 5% or 8192 fsbs of space reserved, whichever is 634 * smaller. This is intended to cover concurrent allocation 635 * transactions when we initially hit enospc. These each require a 4 636 * block reservation. Hence by default we cover roughly 2000 concurrent 637 * allocation reservations. 638 */ 639 resblks = mp->m_sb.sb_dblocks; 640 do_div(resblks, 20); 641 resblks = min_t(__uint64_t, resblks, 8192); 642 return resblks; 643 } 644 645 /* 646 * This function does the following on an initial mount of a file system: 647 * - reads the superblock from disk and init the mount struct 648 * - if we're a 32-bit kernel, do a size check on the superblock 649 * so we don't mount terabyte filesystems 650 * - init mount struct realtime fields 651 * - allocate inode hash table for fs 652 * - init directory manager 653 * - perform recovery and init the log manager 654 */ 655 int 656 xfs_mountfs( 657 xfs_mount_t *mp) 658 { 659 xfs_sb_t *sbp = &(mp->m_sb); 660 xfs_inode_t *rip; 661 __uint64_t resblks; 662 uint quotamount = 0; 663 uint quotaflags = 0; 664 int error = 0; 665 666 xfs_sb_mount_common(mp, sbp); 667 668 /* 669 * Check for a mismatched features2 values. Older kernels 670 * read & wrote into the wrong sb offset for sb_features2 671 * on some platforms due to xfs_sb_t not being 64bit size aligned 672 * when sb_features2 was added, which made older superblock 673 * reading/writing routines swap it as a 64-bit value. 674 * 675 * For backwards compatibility, we make both slots equal. 676 * 677 * If we detect a mismatched field, we OR the set bits into the 678 * existing features2 field in case it has already been modified; we 679 * don't want to lose any features. We then update the bad location 680 * with the ORed value so that older kernels will see any features2 681 * flags, and mark the two fields as needing updates once the 682 * transaction subsystem is online. 683 */ 684 if (xfs_sb_has_mismatched_features2(sbp)) { 685 xfs_warn(mp, "correcting sb_features alignment problem"); 686 sbp->sb_features2 |= sbp->sb_bad_features2; 687 sbp->sb_bad_features2 = sbp->sb_features2; 688 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 689 690 /* 691 * Re-check for ATTR2 in case it was found in bad_features2 692 * slot. 693 */ 694 if (xfs_sb_version_hasattr2(&mp->m_sb) && 695 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 696 mp->m_flags |= XFS_MOUNT_ATTR2; 697 } 698 699 if (xfs_sb_version_hasattr2(&mp->m_sb) && 700 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 701 xfs_sb_version_removeattr2(&mp->m_sb); 702 mp->m_update_flags |= XFS_SB_FEATURES2; 703 704 /* update sb_versionnum for the clearing of the morebits */ 705 if (!sbp->sb_features2) 706 mp->m_update_flags |= XFS_SB_VERSIONNUM; 707 } 708 709 /* always use v2 inodes by default now */ 710 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 711 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 712 mp->m_update_flags |= XFS_SB_VERSIONNUM; 713 } 714 715 /* 716 * Check if sb_agblocks is aligned at stripe boundary 717 * If sb_agblocks is NOT aligned turn off m_dalign since 718 * allocator alignment is within an ag, therefore ag has 719 * to be aligned at stripe boundary. 720 */ 721 error = xfs_update_alignment(mp); 722 if (error) 723 goto out; 724 725 xfs_alloc_compute_maxlevels(mp); 726 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 727 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 728 xfs_ialloc_compute_maxlevels(mp); 729 730 xfs_set_maxicount(mp); 731 732 mp->m_kobj.kobject.kset = xfs_kset; 733 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 734 if (error) 735 goto out; 736 737 error = xfs_uuid_mount(mp); 738 if (error) 739 goto out_remove_sysfs; 740 741 /* 742 * Set the minimum read and write sizes 743 */ 744 xfs_set_rw_sizes(mp); 745 746 /* set the low space thresholds for dynamic preallocation */ 747 xfs_set_low_space_thresholds(mp); 748 749 /* 750 * Set the inode cluster size. 751 * This may still be overridden by the file system 752 * block size if it is larger than the chosen cluster size. 753 * 754 * For v5 filesystems, scale the cluster size with the inode size to 755 * keep a constant ratio of inode per cluster buffer, but only if mkfs 756 * has set the inode alignment value appropriately for larger cluster 757 * sizes. 758 */ 759 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 760 if (xfs_sb_version_hascrc(&mp->m_sb)) { 761 int new_size = mp->m_inode_cluster_size; 762 763 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 764 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 765 mp->m_inode_cluster_size = new_size; 766 } 767 768 /* 769 * Set inode alignment fields 770 */ 771 xfs_set_inoalignment(mp); 772 773 /* 774 * Check that the data (and log if separate) is an ok size. 775 */ 776 error = xfs_check_sizes(mp); 777 if (error) 778 goto out_remove_uuid; 779 780 /* 781 * Initialize realtime fields in the mount structure 782 */ 783 error = xfs_rtmount_init(mp); 784 if (error) { 785 xfs_warn(mp, "RT mount failed"); 786 goto out_remove_uuid; 787 } 788 789 /* 790 * Copies the low order bits of the timestamp and the randomly 791 * set "sequence" number out of a UUID. 792 */ 793 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 794 795 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 796 797 error = xfs_da_mount(mp); 798 if (error) { 799 xfs_warn(mp, "Failed dir/attr init: %d", error); 800 goto out_remove_uuid; 801 } 802 803 /* 804 * Initialize the precomputed transaction reservations values. 805 */ 806 xfs_trans_init(mp); 807 808 /* 809 * Allocate and initialize the per-ag data. 810 */ 811 spin_lock_init(&mp->m_perag_lock); 812 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 813 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 814 if (error) { 815 xfs_warn(mp, "Failed per-ag init: %d", error); 816 goto out_free_dir; 817 } 818 819 if (!sbp->sb_logblocks) { 820 xfs_warn(mp, "no log defined"); 821 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 822 error = -EFSCORRUPTED; 823 goto out_free_perag; 824 } 825 826 /* 827 * log's mount-time initialization. Perform 1st part recovery if needed 828 */ 829 error = xfs_log_mount(mp, mp->m_logdev_targp, 830 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 831 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 832 if (error) { 833 xfs_warn(mp, "log mount failed"); 834 goto out_fail_wait; 835 } 836 837 /* 838 * Now the log is mounted, we know if it was an unclean shutdown or 839 * not. If it was, with the first phase of recovery has completed, we 840 * have consistent AG blocks on disk. We have not recovered EFIs yet, 841 * but they are recovered transactionally in the second recovery phase 842 * later. 843 * 844 * Hence we can safely re-initialise incore superblock counters from 845 * the per-ag data. These may not be correct if the filesystem was not 846 * cleanly unmounted, so we need to wait for recovery to finish before 847 * doing this. 848 * 849 * If the filesystem was cleanly unmounted, then we can trust the 850 * values in the superblock to be correct and we don't need to do 851 * anything here. 852 * 853 * If we are currently making the filesystem, the initialisation will 854 * fail as the perag data is in an undefined state. 855 */ 856 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 857 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 858 !mp->m_sb.sb_inprogress) { 859 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 860 if (error) 861 goto out_log_dealloc; 862 } 863 864 /* 865 * Get and sanity-check the root inode. 866 * Save the pointer to it in the mount structure. 867 */ 868 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 869 if (error) { 870 xfs_warn(mp, "failed to read root inode"); 871 goto out_log_dealloc; 872 } 873 874 ASSERT(rip != NULL); 875 876 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 877 xfs_warn(mp, "corrupted root inode %llu: not a directory", 878 (unsigned long long)rip->i_ino); 879 xfs_iunlock(rip, XFS_ILOCK_EXCL); 880 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 881 mp); 882 error = -EFSCORRUPTED; 883 goto out_rele_rip; 884 } 885 mp->m_rootip = rip; /* save it */ 886 887 xfs_iunlock(rip, XFS_ILOCK_EXCL); 888 889 /* 890 * Initialize realtime inode pointers in the mount structure 891 */ 892 error = xfs_rtmount_inodes(mp); 893 if (error) { 894 /* 895 * Free up the root inode. 896 */ 897 xfs_warn(mp, "failed to read RT inodes"); 898 goto out_rele_rip; 899 } 900 901 /* 902 * If this is a read-only mount defer the superblock updates until 903 * the next remount into writeable mode. Otherwise we would never 904 * perform the update e.g. for the root filesystem. 905 */ 906 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 907 error = xfs_mount_log_sb(mp, mp->m_update_flags); 908 if (error) { 909 xfs_warn(mp, "failed to write sb changes"); 910 goto out_rtunmount; 911 } 912 } 913 914 /* 915 * Initialise the XFS quota management subsystem for this mount 916 */ 917 if (XFS_IS_QUOTA_RUNNING(mp)) { 918 error = xfs_qm_newmount(mp, "amount, "aflags); 919 if (error) 920 goto out_rtunmount; 921 } else { 922 ASSERT(!XFS_IS_QUOTA_ON(mp)); 923 924 /* 925 * If a file system had quotas running earlier, but decided to 926 * mount without -o uquota/pquota/gquota options, revoke the 927 * quotachecked license. 928 */ 929 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 930 xfs_notice(mp, "resetting quota flags"); 931 error = xfs_mount_reset_sbqflags(mp); 932 if (error) 933 goto out_rtunmount; 934 } 935 } 936 937 /* 938 * Finish recovering the file system. This part needed to be 939 * delayed until after the root and real-time bitmap inodes 940 * were consistently read in. 941 */ 942 error = xfs_log_mount_finish(mp); 943 if (error) { 944 xfs_warn(mp, "log mount finish failed"); 945 goto out_rtunmount; 946 } 947 948 /* 949 * Complete the quota initialisation, post-log-replay component. 950 */ 951 if (quotamount) { 952 ASSERT(mp->m_qflags == 0); 953 mp->m_qflags = quotaflags; 954 955 xfs_qm_mount_quotas(mp); 956 } 957 958 /* 959 * Now we are mounted, reserve a small amount of unused space for 960 * privileged transactions. This is needed so that transaction 961 * space required for critical operations can dip into this pool 962 * when at ENOSPC. This is needed for operations like create with 963 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 964 * are not allowed to use this reserved space. 965 * 966 * This may drive us straight to ENOSPC on mount, but that implies 967 * we were already there on the last unmount. Warn if this occurs. 968 */ 969 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 970 resblks = xfs_default_resblks(mp); 971 error = xfs_reserve_blocks(mp, &resblks, NULL); 972 if (error) 973 xfs_warn(mp, 974 "Unable to allocate reserve blocks. Continuing without reserve pool."); 975 } 976 977 return 0; 978 979 out_rtunmount: 980 xfs_rtunmount_inodes(mp); 981 out_rele_rip: 982 IRELE(rip); 983 out_log_dealloc: 984 xfs_log_unmount(mp); 985 out_fail_wait: 986 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 987 xfs_wait_buftarg(mp->m_logdev_targp); 988 xfs_wait_buftarg(mp->m_ddev_targp); 989 out_free_perag: 990 xfs_free_perag(mp); 991 out_free_dir: 992 xfs_da_unmount(mp); 993 out_remove_uuid: 994 xfs_uuid_unmount(mp); 995 out_remove_sysfs: 996 xfs_sysfs_del(&mp->m_kobj); 997 out: 998 return error; 999 } 1000 1001 /* 1002 * This flushes out the inodes,dquots and the superblock, unmounts the 1003 * log and makes sure that incore structures are freed. 1004 */ 1005 void 1006 xfs_unmountfs( 1007 struct xfs_mount *mp) 1008 { 1009 __uint64_t resblks; 1010 int error; 1011 1012 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1013 1014 xfs_qm_unmount_quotas(mp); 1015 xfs_rtunmount_inodes(mp); 1016 IRELE(mp->m_rootip); 1017 1018 /* 1019 * We can potentially deadlock here if we have an inode cluster 1020 * that has been freed has its buffer still pinned in memory because 1021 * the transaction is still sitting in a iclog. The stale inodes 1022 * on that buffer will have their flush locks held until the 1023 * transaction hits the disk and the callbacks run. the inode 1024 * flush takes the flush lock unconditionally and with nothing to 1025 * push out the iclog we will never get that unlocked. hence we 1026 * need to force the log first. 1027 */ 1028 xfs_log_force(mp, XFS_LOG_SYNC); 1029 1030 /* 1031 * Flush all pending changes from the AIL. 1032 */ 1033 xfs_ail_push_all_sync(mp->m_ail); 1034 1035 /* 1036 * And reclaim all inodes. At this point there should be no dirty 1037 * inodes and none should be pinned or locked, but use synchronous 1038 * reclaim just to be sure. We can stop background inode reclaim 1039 * here as well if it is still running. 1040 */ 1041 cancel_delayed_work_sync(&mp->m_reclaim_work); 1042 xfs_reclaim_inodes(mp, SYNC_WAIT); 1043 1044 xfs_qm_unmount(mp); 1045 1046 /* 1047 * Unreserve any blocks we have so that when we unmount we don't account 1048 * the reserved free space as used. This is really only necessary for 1049 * lazy superblock counting because it trusts the incore superblock 1050 * counters to be absolutely correct on clean unmount. 1051 * 1052 * We don't bother correcting this elsewhere for lazy superblock 1053 * counting because on mount of an unclean filesystem we reconstruct the 1054 * correct counter value and this is irrelevant. 1055 * 1056 * For non-lazy counter filesystems, this doesn't matter at all because 1057 * we only every apply deltas to the superblock and hence the incore 1058 * value does not matter.... 1059 */ 1060 resblks = 0; 1061 error = xfs_reserve_blocks(mp, &resblks, NULL); 1062 if (error) 1063 xfs_warn(mp, "Unable to free reserved block pool. " 1064 "Freespace may not be correct on next mount."); 1065 1066 error = xfs_log_sbcount(mp); 1067 if (error) 1068 xfs_warn(mp, "Unable to update superblock counters. " 1069 "Freespace may not be correct on next mount."); 1070 1071 xfs_log_unmount(mp); 1072 xfs_da_unmount(mp); 1073 xfs_uuid_unmount(mp); 1074 1075 #if defined(DEBUG) 1076 xfs_errortag_clearall(mp, 0); 1077 #endif 1078 xfs_free_perag(mp); 1079 1080 xfs_sysfs_del(&mp->m_kobj); 1081 } 1082 1083 int 1084 xfs_fs_writable(xfs_mount_t *mp) 1085 { 1086 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1087 (mp->m_flags & XFS_MOUNT_RDONLY)); 1088 } 1089 1090 /* 1091 * xfs_log_sbcount 1092 * 1093 * Sync the superblock counters to disk. 1094 * 1095 * Note this code can be called during the process of freezing, so 1096 * we may need to use the transaction allocator which does not 1097 * block when the transaction subsystem is in its frozen state. 1098 */ 1099 int 1100 xfs_log_sbcount(xfs_mount_t *mp) 1101 { 1102 xfs_trans_t *tp; 1103 int error; 1104 1105 if (!xfs_fs_writable(mp)) 1106 return 0; 1107 1108 xfs_icsb_sync_counters(mp, 0); 1109 1110 /* 1111 * we don't need to do this if we are updating the superblock 1112 * counters on every modification. 1113 */ 1114 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1115 return 0; 1116 1117 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1118 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1119 if (error) { 1120 xfs_trans_cancel(tp, 0); 1121 return error; 1122 } 1123 1124 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1125 xfs_trans_set_sync(tp); 1126 error = xfs_trans_commit(tp, 0); 1127 return error; 1128 } 1129 1130 /* 1131 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1132 * a delta to a specified field in the in-core superblock. Simply 1133 * switch on the field indicated and apply the delta to that field. 1134 * Fields are not allowed to dip below zero, so if the delta would 1135 * do this do not apply it and return EINVAL. 1136 * 1137 * The m_sb_lock must be held when this routine is called. 1138 */ 1139 STATIC int 1140 xfs_mod_incore_sb_unlocked( 1141 xfs_mount_t *mp, 1142 xfs_sb_field_t field, 1143 int64_t delta, 1144 int rsvd) 1145 { 1146 int scounter; /* short counter for 32 bit fields */ 1147 long long lcounter; /* long counter for 64 bit fields */ 1148 long long res_used, rem; 1149 1150 /* 1151 * With the in-core superblock spin lock held, switch 1152 * on the indicated field. Apply the delta to the 1153 * proper field. If the fields value would dip below 1154 * 0, then do not apply the delta and return EINVAL. 1155 */ 1156 switch (field) { 1157 case XFS_SBS_ICOUNT: 1158 lcounter = (long long)mp->m_sb.sb_icount; 1159 lcounter += delta; 1160 if (lcounter < 0) { 1161 ASSERT(0); 1162 return -EINVAL; 1163 } 1164 mp->m_sb.sb_icount = lcounter; 1165 return 0; 1166 case XFS_SBS_IFREE: 1167 lcounter = (long long)mp->m_sb.sb_ifree; 1168 lcounter += delta; 1169 if (lcounter < 0) { 1170 ASSERT(0); 1171 return -EINVAL; 1172 } 1173 mp->m_sb.sb_ifree = lcounter; 1174 return 0; 1175 case XFS_SBS_FDBLOCKS: 1176 lcounter = (long long) 1177 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1178 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1179 1180 if (delta > 0) { /* Putting blocks back */ 1181 if (res_used > delta) { 1182 mp->m_resblks_avail += delta; 1183 } else { 1184 rem = delta - res_used; 1185 mp->m_resblks_avail = mp->m_resblks; 1186 lcounter += rem; 1187 } 1188 } else { /* Taking blocks away */ 1189 lcounter += delta; 1190 if (lcounter >= 0) { 1191 mp->m_sb.sb_fdblocks = lcounter + 1192 XFS_ALLOC_SET_ASIDE(mp); 1193 return 0; 1194 } 1195 1196 /* 1197 * We are out of blocks, use any available reserved 1198 * blocks if were allowed to. 1199 */ 1200 if (!rsvd) 1201 return -ENOSPC; 1202 1203 lcounter = (long long)mp->m_resblks_avail + delta; 1204 if (lcounter >= 0) { 1205 mp->m_resblks_avail = lcounter; 1206 return 0; 1207 } 1208 printk_once(KERN_WARNING 1209 "Filesystem \"%s\": reserve blocks depleted! " 1210 "Consider increasing reserve pool size.", 1211 mp->m_fsname); 1212 return -ENOSPC; 1213 } 1214 1215 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1216 return 0; 1217 case XFS_SBS_FREXTENTS: 1218 lcounter = (long long)mp->m_sb.sb_frextents; 1219 lcounter += delta; 1220 if (lcounter < 0) { 1221 return -ENOSPC; 1222 } 1223 mp->m_sb.sb_frextents = lcounter; 1224 return 0; 1225 case XFS_SBS_DBLOCKS: 1226 lcounter = (long long)mp->m_sb.sb_dblocks; 1227 lcounter += delta; 1228 if (lcounter < 0) { 1229 ASSERT(0); 1230 return -EINVAL; 1231 } 1232 mp->m_sb.sb_dblocks = lcounter; 1233 return 0; 1234 case XFS_SBS_AGCOUNT: 1235 scounter = mp->m_sb.sb_agcount; 1236 scounter += delta; 1237 if (scounter < 0) { 1238 ASSERT(0); 1239 return -EINVAL; 1240 } 1241 mp->m_sb.sb_agcount = scounter; 1242 return 0; 1243 case XFS_SBS_IMAX_PCT: 1244 scounter = mp->m_sb.sb_imax_pct; 1245 scounter += delta; 1246 if (scounter < 0) { 1247 ASSERT(0); 1248 return -EINVAL; 1249 } 1250 mp->m_sb.sb_imax_pct = scounter; 1251 return 0; 1252 case XFS_SBS_REXTSIZE: 1253 scounter = mp->m_sb.sb_rextsize; 1254 scounter += delta; 1255 if (scounter < 0) { 1256 ASSERT(0); 1257 return -EINVAL; 1258 } 1259 mp->m_sb.sb_rextsize = scounter; 1260 return 0; 1261 case XFS_SBS_RBMBLOCKS: 1262 scounter = mp->m_sb.sb_rbmblocks; 1263 scounter += delta; 1264 if (scounter < 0) { 1265 ASSERT(0); 1266 return -EINVAL; 1267 } 1268 mp->m_sb.sb_rbmblocks = scounter; 1269 return 0; 1270 case XFS_SBS_RBLOCKS: 1271 lcounter = (long long)mp->m_sb.sb_rblocks; 1272 lcounter += delta; 1273 if (lcounter < 0) { 1274 ASSERT(0); 1275 return -EINVAL; 1276 } 1277 mp->m_sb.sb_rblocks = lcounter; 1278 return 0; 1279 case XFS_SBS_REXTENTS: 1280 lcounter = (long long)mp->m_sb.sb_rextents; 1281 lcounter += delta; 1282 if (lcounter < 0) { 1283 ASSERT(0); 1284 return -EINVAL; 1285 } 1286 mp->m_sb.sb_rextents = lcounter; 1287 return 0; 1288 case XFS_SBS_REXTSLOG: 1289 scounter = mp->m_sb.sb_rextslog; 1290 scounter += delta; 1291 if (scounter < 0) { 1292 ASSERT(0); 1293 return -EINVAL; 1294 } 1295 mp->m_sb.sb_rextslog = scounter; 1296 return 0; 1297 default: 1298 ASSERT(0); 1299 return -EINVAL; 1300 } 1301 } 1302 1303 /* 1304 * xfs_mod_incore_sb() is used to change a field in the in-core 1305 * superblock structure by the specified delta. This modification 1306 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1307 * routine to do the work. 1308 */ 1309 int 1310 xfs_mod_incore_sb( 1311 struct xfs_mount *mp, 1312 xfs_sb_field_t field, 1313 int64_t delta, 1314 int rsvd) 1315 { 1316 int status; 1317 1318 #ifdef HAVE_PERCPU_SB 1319 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1320 #endif 1321 spin_lock(&mp->m_sb_lock); 1322 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1323 spin_unlock(&mp->m_sb_lock); 1324 1325 return status; 1326 } 1327 1328 /* 1329 * Change more than one field in the in-core superblock structure at a time. 1330 * 1331 * The fields and changes to those fields are specified in the array of 1332 * xfs_mod_sb structures passed in. Either all of the specified deltas 1333 * will be applied or none of them will. If any modified field dips below 0, 1334 * then all modifications will be backed out and EINVAL will be returned. 1335 * 1336 * Note that this function may not be used for the superblock values that 1337 * are tracked with the in-memory per-cpu counters - a direct call to 1338 * xfs_icsb_modify_counters is required for these. 1339 */ 1340 int 1341 xfs_mod_incore_sb_batch( 1342 struct xfs_mount *mp, 1343 xfs_mod_sb_t *msb, 1344 uint nmsb, 1345 int rsvd) 1346 { 1347 xfs_mod_sb_t *msbp; 1348 int error = 0; 1349 1350 /* 1351 * Loop through the array of mod structures and apply each individually. 1352 * If any fail, then back out all those which have already been applied. 1353 * Do all of this within the scope of the m_sb_lock so that all of the 1354 * changes will be atomic. 1355 */ 1356 spin_lock(&mp->m_sb_lock); 1357 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1358 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1359 msbp->msb_field > XFS_SBS_FDBLOCKS); 1360 1361 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1362 msbp->msb_delta, rsvd); 1363 if (error) 1364 goto unwind; 1365 } 1366 spin_unlock(&mp->m_sb_lock); 1367 return 0; 1368 1369 unwind: 1370 while (--msbp >= msb) { 1371 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1372 -msbp->msb_delta, rsvd); 1373 ASSERT(error == 0); 1374 } 1375 spin_unlock(&mp->m_sb_lock); 1376 return error; 1377 } 1378 1379 /* 1380 * xfs_getsb() is called to obtain the buffer for the superblock. 1381 * The buffer is returned locked and read in from disk. 1382 * The buffer should be released with a call to xfs_brelse(). 1383 * 1384 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1385 * the superblock buffer if it can be locked without sleeping. 1386 * If it can't then we'll return NULL. 1387 */ 1388 struct xfs_buf * 1389 xfs_getsb( 1390 struct xfs_mount *mp, 1391 int flags) 1392 { 1393 struct xfs_buf *bp = mp->m_sb_bp; 1394 1395 if (!xfs_buf_trylock(bp)) { 1396 if (flags & XBF_TRYLOCK) 1397 return NULL; 1398 xfs_buf_lock(bp); 1399 } 1400 1401 xfs_buf_hold(bp); 1402 ASSERT(XFS_BUF_ISDONE(bp)); 1403 return bp; 1404 } 1405 1406 /* 1407 * Used to free the superblock along various error paths. 1408 */ 1409 void 1410 xfs_freesb( 1411 struct xfs_mount *mp) 1412 { 1413 struct xfs_buf *bp = mp->m_sb_bp; 1414 1415 xfs_buf_lock(bp); 1416 mp->m_sb_bp = NULL; 1417 xfs_buf_relse(bp); 1418 } 1419 1420 /* 1421 * Used to log changes to the superblock unit and width fields which could 1422 * be altered by the mount options, as well as any potential sb_features2 1423 * fixup. Only the first superblock is updated. 1424 */ 1425 int 1426 xfs_mount_log_sb( 1427 xfs_mount_t *mp, 1428 __int64_t fields) 1429 { 1430 xfs_trans_t *tp; 1431 int error; 1432 1433 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1434 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1435 XFS_SB_VERSIONNUM)); 1436 1437 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1438 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1439 if (error) { 1440 xfs_trans_cancel(tp, 0); 1441 return error; 1442 } 1443 xfs_mod_sb(tp, fields); 1444 error = xfs_trans_commit(tp, 0); 1445 return error; 1446 } 1447 1448 /* 1449 * If the underlying (data/log/rt) device is readonly, there are some 1450 * operations that cannot proceed. 1451 */ 1452 int 1453 xfs_dev_is_read_only( 1454 struct xfs_mount *mp, 1455 char *message) 1456 { 1457 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1458 xfs_readonly_buftarg(mp->m_logdev_targp) || 1459 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1460 xfs_notice(mp, "%s required on read-only device.", message); 1461 xfs_notice(mp, "write access unavailable, cannot proceed."); 1462 return -EROFS; 1463 } 1464 return 0; 1465 } 1466 1467 #ifdef HAVE_PERCPU_SB 1468 /* 1469 * Per-cpu incore superblock counters 1470 * 1471 * Simple concept, difficult implementation 1472 * 1473 * Basically, replace the incore superblock counters with a distributed per cpu 1474 * counter for contended fields (e.g. free block count). 1475 * 1476 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1477 * hence needs to be accurately read when we are running low on space. Hence 1478 * there is a method to enable and disable the per-cpu counters based on how 1479 * much "stuff" is available in them. 1480 * 1481 * Basically, a counter is enabled if there is enough free resource to justify 1482 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1483 * ENOSPC), then we disable the counters to synchronise all callers and 1484 * re-distribute the available resources. 1485 * 1486 * If, once we redistributed the available resources, we still get a failure, 1487 * we disable the per-cpu counter and go through the slow path. 1488 * 1489 * The slow path is the current xfs_mod_incore_sb() function. This means that 1490 * when we disable a per-cpu counter, we need to drain its resources back to 1491 * the global superblock. We do this after disabling the counter to prevent 1492 * more threads from queueing up on the counter. 1493 * 1494 * Essentially, this means that we still need a lock in the fast path to enable 1495 * synchronisation between the global counters and the per-cpu counters. This 1496 * is not a problem because the lock will be local to a CPU almost all the time 1497 * and have little contention except when we get to ENOSPC conditions. 1498 * 1499 * Basically, this lock becomes a barrier that enables us to lock out the fast 1500 * path while we do things like enabling and disabling counters and 1501 * synchronising the counters. 1502 * 1503 * Locking rules: 1504 * 1505 * 1. m_sb_lock before picking up per-cpu locks 1506 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1507 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1508 * 4. modifying per-cpu counters requires holding per-cpu lock 1509 * 5. modifying global counters requires holding m_sb_lock 1510 * 6. enabling or disabling a counter requires holding the m_sb_lock 1511 * and _none_ of the per-cpu locks. 1512 * 1513 * Disabled counters are only ever re-enabled by a balance operation 1514 * that results in more free resources per CPU than a given threshold. 1515 * To ensure counters don't remain disabled, they are rebalanced when 1516 * the global resource goes above a higher threshold (i.e. some hysteresis 1517 * is present to prevent thrashing). 1518 */ 1519 1520 #ifdef CONFIG_HOTPLUG_CPU 1521 /* 1522 * hot-plug CPU notifier support. 1523 * 1524 * We need a notifier per filesystem as we need to be able to identify 1525 * the filesystem to balance the counters out. This is achieved by 1526 * having a notifier block embedded in the xfs_mount_t and doing pointer 1527 * magic to get the mount pointer from the notifier block address. 1528 */ 1529 STATIC int 1530 xfs_icsb_cpu_notify( 1531 struct notifier_block *nfb, 1532 unsigned long action, 1533 void *hcpu) 1534 { 1535 xfs_icsb_cnts_t *cntp; 1536 xfs_mount_t *mp; 1537 1538 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1539 cntp = (xfs_icsb_cnts_t *) 1540 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1541 switch (action) { 1542 case CPU_UP_PREPARE: 1543 case CPU_UP_PREPARE_FROZEN: 1544 /* Easy Case - initialize the area and locks, and 1545 * then rebalance when online does everything else for us. */ 1546 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1547 break; 1548 case CPU_ONLINE: 1549 case CPU_ONLINE_FROZEN: 1550 xfs_icsb_lock(mp); 1551 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1552 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1553 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1554 xfs_icsb_unlock(mp); 1555 break; 1556 case CPU_DEAD: 1557 case CPU_DEAD_FROZEN: 1558 /* Disable all the counters, then fold the dead cpu's 1559 * count into the total on the global superblock and 1560 * re-enable the counters. */ 1561 xfs_icsb_lock(mp); 1562 spin_lock(&mp->m_sb_lock); 1563 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1564 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1565 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1566 1567 mp->m_sb.sb_icount += cntp->icsb_icount; 1568 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1569 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1570 1571 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1572 1573 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1574 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1575 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1576 spin_unlock(&mp->m_sb_lock); 1577 xfs_icsb_unlock(mp); 1578 break; 1579 } 1580 1581 return NOTIFY_OK; 1582 } 1583 #endif /* CONFIG_HOTPLUG_CPU */ 1584 1585 int 1586 xfs_icsb_init_counters( 1587 xfs_mount_t *mp) 1588 { 1589 xfs_icsb_cnts_t *cntp; 1590 int i; 1591 1592 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1593 if (mp->m_sb_cnts == NULL) 1594 return -ENOMEM; 1595 1596 for_each_online_cpu(i) { 1597 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1598 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1599 } 1600 1601 mutex_init(&mp->m_icsb_mutex); 1602 1603 /* 1604 * start with all counters disabled so that the 1605 * initial balance kicks us off correctly 1606 */ 1607 mp->m_icsb_counters = -1; 1608 1609 #ifdef CONFIG_HOTPLUG_CPU 1610 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1611 mp->m_icsb_notifier.priority = 0; 1612 register_hotcpu_notifier(&mp->m_icsb_notifier); 1613 #endif /* CONFIG_HOTPLUG_CPU */ 1614 1615 return 0; 1616 } 1617 1618 void 1619 xfs_icsb_reinit_counters( 1620 xfs_mount_t *mp) 1621 { 1622 xfs_icsb_lock(mp); 1623 /* 1624 * start with all counters disabled so that the 1625 * initial balance kicks us off correctly 1626 */ 1627 mp->m_icsb_counters = -1; 1628 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1629 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1630 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1631 xfs_icsb_unlock(mp); 1632 } 1633 1634 void 1635 xfs_icsb_destroy_counters( 1636 xfs_mount_t *mp) 1637 { 1638 if (mp->m_sb_cnts) { 1639 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1640 free_percpu(mp->m_sb_cnts); 1641 } 1642 mutex_destroy(&mp->m_icsb_mutex); 1643 } 1644 1645 STATIC void 1646 xfs_icsb_lock_cntr( 1647 xfs_icsb_cnts_t *icsbp) 1648 { 1649 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1650 ndelay(1000); 1651 } 1652 } 1653 1654 STATIC void 1655 xfs_icsb_unlock_cntr( 1656 xfs_icsb_cnts_t *icsbp) 1657 { 1658 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1659 } 1660 1661 1662 STATIC void 1663 xfs_icsb_lock_all_counters( 1664 xfs_mount_t *mp) 1665 { 1666 xfs_icsb_cnts_t *cntp; 1667 int i; 1668 1669 for_each_online_cpu(i) { 1670 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1671 xfs_icsb_lock_cntr(cntp); 1672 } 1673 } 1674 1675 STATIC void 1676 xfs_icsb_unlock_all_counters( 1677 xfs_mount_t *mp) 1678 { 1679 xfs_icsb_cnts_t *cntp; 1680 int i; 1681 1682 for_each_online_cpu(i) { 1683 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1684 xfs_icsb_unlock_cntr(cntp); 1685 } 1686 } 1687 1688 STATIC void 1689 xfs_icsb_count( 1690 xfs_mount_t *mp, 1691 xfs_icsb_cnts_t *cnt, 1692 int flags) 1693 { 1694 xfs_icsb_cnts_t *cntp; 1695 int i; 1696 1697 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1698 1699 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1700 xfs_icsb_lock_all_counters(mp); 1701 1702 for_each_online_cpu(i) { 1703 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1704 cnt->icsb_icount += cntp->icsb_icount; 1705 cnt->icsb_ifree += cntp->icsb_ifree; 1706 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1707 } 1708 1709 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1710 xfs_icsb_unlock_all_counters(mp); 1711 } 1712 1713 STATIC int 1714 xfs_icsb_counter_disabled( 1715 xfs_mount_t *mp, 1716 xfs_sb_field_t field) 1717 { 1718 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1719 return test_bit(field, &mp->m_icsb_counters); 1720 } 1721 1722 STATIC void 1723 xfs_icsb_disable_counter( 1724 xfs_mount_t *mp, 1725 xfs_sb_field_t field) 1726 { 1727 xfs_icsb_cnts_t cnt; 1728 1729 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1730 1731 /* 1732 * If we are already disabled, then there is nothing to do 1733 * here. We check before locking all the counters to avoid 1734 * the expensive lock operation when being called in the 1735 * slow path and the counter is already disabled. This is 1736 * safe because the only time we set or clear this state is under 1737 * the m_icsb_mutex. 1738 */ 1739 if (xfs_icsb_counter_disabled(mp, field)) 1740 return; 1741 1742 xfs_icsb_lock_all_counters(mp); 1743 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1744 /* drain back to superblock */ 1745 1746 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1747 switch(field) { 1748 case XFS_SBS_ICOUNT: 1749 mp->m_sb.sb_icount = cnt.icsb_icount; 1750 break; 1751 case XFS_SBS_IFREE: 1752 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1753 break; 1754 case XFS_SBS_FDBLOCKS: 1755 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1756 break; 1757 default: 1758 BUG(); 1759 } 1760 } 1761 1762 xfs_icsb_unlock_all_counters(mp); 1763 } 1764 1765 STATIC void 1766 xfs_icsb_enable_counter( 1767 xfs_mount_t *mp, 1768 xfs_sb_field_t field, 1769 uint64_t count, 1770 uint64_t resid) 1771 { 1772 xfs_icsb_cnts_t *cntp; 1773 int i; 1774 1775 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1776 1777 xfs_icsb_lock_all_counters(mp); 1778 for_each_online_cpu(i) { 1779 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1780 switch (field) { 1781 case XFS_SBS_ICOUNT: 1782 cntp->icsb_icount = count + resid; 1783 break; 1784 case XFS_SBS_IFREE: 1785 cntp->icsb_ifree = count + resid; 1786 break; 1787 case XFS_SBS_FDBLOCKS: 1788 cntp->icsb_fdblocks = count + resid; 1789 break; 1790 default: 1791 BUG(); 1792 break; 1793 } 1794 resid = 0; 1795 } 1796 clear_bit(field, &mp->m_icsb_counters); 1797 xfs_icsb_unlock_all_counters(mp); 1798 } 1799 1800 void 1801 xfs_icsb_sync_counters_locked( 1802 xfs_mount_t *mp, 1803 int flags) 1804 { 1805 xfs_icsb_cnts_t cnt; 1806 1807 xfs_icsb_count(mp, &cnt, flags); 1808 1809 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1810 mp->m_sb.sb_icount = cnt.icsb_icount; 1811 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1812 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1813 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1814 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1815 } 1816 1817 /* 1818 * Accurate update of per-cpu counters to incore superblock 1819 */ 1820 void 1821 xfs_icsb_sync_counters( 1822 xfs_mount_t *mp, 1823 int flags) 1824 { 1825 spin_lock(&mp->m_sb_lock); 1826 xfs_icsb_sync_counters_locked(mp, flags); 1827 spin_unlock(&mp->m_sb_lock); 1828 } 1829 1830 /* 1831 * Balance and enable/disable counters as necessary. 1832 * 1833 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1834 * chosen to be the same number as single on disk allocation chunk per CPU, and 1835 * free blocks is something far enough zero that we aren't going thrash when we 1836 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1837 * prevent looping endlessly when xfs_alloc_space asks for more than will 1838 * be distributed to a single CPU but each CPU has enough blocks to be 1839 * reenabled. 1840 * 1841 * Note that we can be called when counters are already disabled. 1842 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1843 * prevent locking every per-cpu counter needlessly. 1844 */ 1845 1846 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1847 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1848 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1849 STATIC void 1850 xfs_icsb_balance_counter_locked( 1851 xfs_mount_t *mp, 1852 xfs_sb_field_t field, 1853 int min_per_cpu) 1854 { 1855 uint64_t count, resid; 1856 int weight = num_online_cpus(); 1857 uint64_t min = (uint64_t)min_per_cpu; 1858 1859 /* disable counter and sync counter */ 1860 xfs_icsb_disable_counter(mp, field); 1861 1862 /* update counters - first CPU gets residual*/ 1863 switch (field) { 1864 case XFS_SBS_ICOUNT: 1865 count = mp->m_sb.sb_icount; 1866 resid = do_div(count, weight); 1867 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1868 return; 1869 break; 1870 case XFS_SBS_IFREE: 1871 count = mp->m_sb.sb_ifree; 1872 resid = do_div(count, weight); 1873 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1874 return; 1875 break; 1876 case XFS_SBS_FDBLOCKS: 1877 count = mp->m_sb.sb_fdblocks; 1878 resid = do_div(count, weight); 1879 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1880 return; 1881 break; 1882 default: 1883 BUG(); 1884 count = resid = 0; /* quiet, gcc */ 1885 break; 1886 } 1887 1888 xfs_icsb_enable_counter(mp, field, count, resid); 1889 } 1890 1891 STATIC void 1892 xfs_icsb_balance_counter( 1893 xfs_mount_t *mp, 1894 xfs_sb_field_t fields, 1895 int min_per_cpu) 1896 { 1897 spin_lock(&mp->m_sb_lock); 1898 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1899 spin_unlock(&mp->m_sb_lock); 1900 } 1901 1902 int 1903 xfs_icsb_modify_counters( 1904 xfs_mount_t *mp, 1905 xfs_sb_field_t field, 1906 int64_t delta, 1907 int rsvd) 1908 { 1909 xfs_icsb_cnts_t *icsbp; 1910 long long lcounter; /* long counter for 64 bit fields */ 1911 int ret = 0; 1912 1913 might_sleep(); 1914 again: 1915 preempt_disable(); 1916 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1917 1918 /* 1919 * if the counter is disabled, go to slow path 1920 */ 1921 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1922 goto slow_path; 1923 xfs_icsb_lock_cntr(icsbp); 1924 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1925 xfs_icsb_unlock_cntr(icsbp); 1926 goto slow_path; 1927 } 1928 1929 switch (field) { 1930 case XFS_SBS_ICOUNT: 1931 lcounter = icsbp->icsb_icount; 1932 lcounter += delta; 1933 if (unlikely(lcounter < 0)) 1934 goto balance_counter; 1935 icsbp->icsb_icount = lcounter; 1936 break; 1937 1938 case XFS_SBS_IFREE: 1939 lcounter = icsbp->icsb_ifree; 1940 lcounter += delta; 1941 if (unlikely(lcounter < 0)) 1942 goto balance_counter; 1943 icsbp->icsb_ifree = lcounter; 1944 break; 1945 1946 case XFS_SBS_FDBLOCKS: 1947 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1948 1949 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1950 lcounter += delta; 1951 if (unlikely(lcounter < 0)) 1952 goto balance_counter; 1953 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1954 break; 1955 default: 1956 BUG(); 1957 break; 1958 } 1959 xfs_icsb_unlock_cntr(icsbp); 1960 preempt_enable(); 1961 return 0; 1962 1963 slow_path: 1964 preempt_enable(); 1965 1966 /* 1967 * serialise with a mutex so we don't burn lots of cpu on 1968 * the superblock lock. We still need to hold the superblock 1969 * lock, however, when we modify the global structures. 1970 */ 1971 xfs_icsb_lock(mp); 1972 1973 /* 1974 * Now running atomically. 1975 * 1976 * If the counter is enabled, someone has beaten us to rebalancing. 1977 * Drop the lock and try again in the fast path.... 1978 */ 1979 if (!(xfs_icsb_counter_disabled(mp, field))) { 1980 xfs_icsb_unlock(mp); 1981 goto again; 1982 } 1983 1984 /* 1985 * The counter is currently disabled. Because we are 1986 * running atomically here, we know a rebalance cannot 1987 * be in progress. Hence we can go straight to operating 1988 * on the global superblock. We do not call xfs_mod_incore_sb() 1989 * here even though we need to get the m_sb_lock. Doing so 1990 * will cause us to re-enter this function and deadlock. 1991 * Hence we get the m_sb_lock ourselves and then call 1992 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1993 * directly on the global counters. 1994 */ 1995 spin_lock(&mp->m_sb_lock); 1996 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1997 spin_unlock(&mp->m_sb_lock); 1998 1999 /* 2000 * Now that we've modified the global superblock, we 2001 * may be able to re-enable the distributed counters 2002 * (e.g. lots of space just got freed). After that 2003 * we are done. 2004 */ 2005 if (ret != -ENOSPC) 2006 xfs_icsb_balance_counter(mp, field, 0); 2007 xfs_icsb_unlock(mp); 2008 return ret; 2009 2010 balance_counter: 2011 xfs_icsb_unlock_cntr(icsbp); 2012 preempt_enable(); 2013 2014 /* 2015 * We may have multiple threads here if multiple per-cpu 2016 * counters run dry at the same time. This will mean we can 2017 * do more balances than strictly necessary but it is not 2018 * the common slowpath case. 2019 */ 2020 xfs_icsb_lock(mp); 2021 2022 /* 2023 * running atomically. 2024 * 2025 * This will leave the counter in the correct state for future 2026 * accesses. After the rebalance, we simply try again and our retry 2027 * will either succeed through the fast path or slow path without 2028 * another balance operation being required. 2029 */ 2030 xfs_icsb_balance_counter(mp, field, delta); 2031 xfs_icsb_unlock(mp); 2032 goto again; 2033 } 2034 2035 #endif 2036