1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_btree.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_alloc.h" 38 #include "xfs_rtalloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_error.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 47 #ifdef HAVE_PERCPU_SB 48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 49 int); 50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 51 int); 52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 53 #else 54 55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 57 #endif 58 59 static const struct { 60 short offset; 61 short type; /* 0 = integer 62 * 1 = binary / string (no translation) 63 */ 64 } xfs_sb_info[] = { 65 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 66 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 67 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 68 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 69 { offsetof(xfs_sb_t, sb_rextents), 0 }, 70 { offsetof(xfs_sb_t, sb_uuid), 1 }, 71 { offsetof(xfs_sb_t, sb_logstart), 0 }, 72 { offsetof(xfs_sb_t, sb_rootino), 0 }, 73 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 74 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 75 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 76 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 77 { offsetof(xfs_sb_t, sb_agcount), 0 }, 78 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 79 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 81 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 82 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 83 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 84 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 85 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 86 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 87 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 88 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 89 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 90 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 91 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 92 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 93 { offsetof(xfs_sb_t, sb_icount), 0 }, 94 { offsetof(xfs_sb_t, sb_ifree), 0 }, 95 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 96 { offsetof(xfs_sb_t, sb_frextents), 0 }, 97 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 98 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 99 { offsetof(xfs_sb_t, sb_qflags), 0 }, 100 { offsetof(xfs_sb_t, sb_flags), 0 }, 101 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 102 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 103 { offsetof(xfs_sb_t, sb_unit), 0 }, 104 { offsetof(xfs_sb_t, sb_width), 0 }, 105 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 106 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 107 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 108 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 109 { offsetof(xfs_sb_t, sb_features2), 0 }, 110 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 111 { sizeof(xfs_sb_t), 0 } 112 }; 113 114 static DEFINE_MUTEX(xfs_uuid_table_mutex); 115 static int xfs_uuid_table_size; 116 static uuid_t *xfs_uuid_table; 117 118 /* 119 * See if the UUID is unique among mounted XFS filesystems. 120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 121 */ 122 STATIC int 123 xfs_uuid_mount( 124 struct xfs_mount *mp) 125 { 126 uuid_t *uuid = &mp->m_sb.sb_uuid; 127 int hole, i; 128 129 if (mp->m_flags & XFS_MOUNT_NOUUID) 130 return 0; 131 132 if (uuid_is_nil(uuid)) { 133 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 134 return XFS_ERROR(EINVAL); 135 } 136 137 mutex_lock(&xfs_uuid_table_mutex); 138 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 139 if (uuid_is_nil(&xfs_uuid_table[i])) { 140 hole = i; 141 continue; 142 } 143 if (uuid_equal(uuid, &xfs_uuid_table[i])) 144 goto out_duplicate; 145 } 146 147 if (hole < 0) { 148 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 149 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 150 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 151 KM_SLEEP); 152 hole = xfs_uuid_table_size++; 153 } 154 xfs_uuid_table[hole] = *uuid; 155 mutex_unlock(&xfs_uuid_table_mutex); 156 157 return 0; 158 159 out_duplicate: 160 mutex_unlock(&xfs_uuid_table_mutex); 161 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 162 return XFS_ERROR(EINVAL); 163 } 164 165 STATIC void 166 xfs_uuid_unmount( 167 struct xfs_mount *mp) 168 { 169 uuid_t *uuid = &mp->m_sb.sb_uuid; 170 int i; 171 172 if (mp->m_flags & XFS_MOUNT_NOUUID) 173 return; 174 175 mutex_lock(&xfs_uuid_table_mutex); 176 for (i = 0; i < xfs_uuid_table_size; i++) { 177 if (uuid_is_nil(&xfs_uuid_table[i])) 178 continue; 179 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 180 continue; 181 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 182 break; 183 } 184 ASSERT(i < xfs_uuid_table_size); 185 mutex_unlock(&xfs_uuid_table_mutex); 186 } 187 188 189 /* 190 * Reference counting access wrappers to the perag structures. 191 * Because we never free per-ag structures, the only thing we 192 * have to protect against changes is the tree structure itself. 193 */ 194 struct xfs_perag * 195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 196 { 197 struct xfs_perag *pag; 198 int ref = 0; 199 200 rcu_read_lock(); 201 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 202 if (pag) { 203 ASSERT(atomic_read(&pag->pag_ref) >= 0); 204 ref = atomic_inc_return(&pag->pag_ref); 205 } 206 rcu_read_unlock(); 207 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 208 return pag; 209 } 210 211 /* 212 * search from @first to find the next perag with the given tag set. 213 */ 214 struct xfs_perag * 215 xfs_perag_get_tag( 216 struct xfs_mount *mp, 217 xfs_agnumber_t first, 218 int tag) 219 { 220 struct xfs_perag *pag; 221 int found; 222 int ref; 223 224 rcu_read_lock(); 225 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 226 (void **)&pag, first, 1, tag); 227 if (found <= 0) { 228 rcu_read_unlock(); 229 return NULL; 230 } 231 ref = atomic_inc_return(&pag->pag_ref); 232 rcu_read_unlock(); 233 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 234 return pag; 235 } 236 237 void 238 xfs_perag_put(struct xfs_perag *pag) 239 { 240 int ref; 241 242 ASSERT(atomic_read(&pag->pag_ref) > 0); 243 ref = atomic_dec_return(&pag->pag_ref); 244 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 245 } 246 247 STATIC void 248 __xfs_free_perag( 249 struct rcu_head *head) 250 { 251 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 252 253 ASSERT(atomic_read(&pag->pag_ref) == 0); 254 kmem_free(pag); 255 } 256 257 /* 258 * Free up the per-ag resources associated with the mount structure. 259 */ 260 STATIC void 261 xfs_free_perag( 262 xfs_mount_t *mp) 263 { 264 xfs_agnumber_t agno; 265 struct xfs_perag *pag; 266 267 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 268 spin_lock(&mp->m_perag_lock); 269 pag = radix_tree_delete(&mp->m_perag_tree, agno); 270 spin_unlock(&mp->m_perag_lock); 271 ASSERT(pag); 272 ASSERT(atomic_read(&pag->pag_ref) == 0); 273 call_rcu(&pag->rcu_head, __xfs_free_perag); 274 } 275 } 276 277 /* 278 * Check size of device based on the (data/realtime) block count. 279 * Note: this check is used by the growfs code as well as mount. 280 */ 281 int 282 xfs_sb_validate_fsb_count( 283 xfs_sb_t *sbp, 284 __uint64_t nblocks) 285 { 286 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 287 ASSERT(sbp->sb_blocklog >= BBSHIFT); 288 289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 290 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 291 return EFBIG; 292 #else /* Limited by UINT_MAX of sectors */ 293 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 294 return EFBIG; 295 #endif 296 return 0; 297 } 298 299 /* 300 * Check the validity of the SB found. 301 */ 302 STATIC int 303 xfs_mount_validate_sb( 304 xfs_mount_t *mp, 305 xfs_sb_t *sbp, 306 int flags) 307 { 308 int loud = !(flags & XFS_MFSI_QUIET); 309 310 /* 311 * If the log device and data device have the 312 * same device number, the log is internal. 313 * Consequently, the sb_logstart should be non-zero. If 314 * we have a zero sb_logstart in this case, we may be trying to mount 315 * a volume filesystem in a non-volume manner. 316 */ 317 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 318 if (loud) 319 xfs_warn(mp, "bad magic number"); 320 return XFS_ERROR(EWRONGFS); 321 } 322 323 if (!xfs_sb_good_version(sbp)) { 324 if (loud) 325 xfs_warn(mp, "bad version"); 326 return XFS_ERROR(EWRONGFS); 327 } 328 329 if (unlikely( 330 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 331 if (loud) 332 xfs_warn(mp, 333 "filesystem is marked as having an external log; " 334 "specify logdev on the mount command line."); 335 return XFS_ERROR(EINVAL); 336 } 337 338 if (unlikely( 339 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 340 if (loud) 341 xfs_warn(mp, 342 "filesystem is marked as having an internal log; " 343 "do not specify logdev on the mount command line."); 344 return XFS_ERROR(EINVAL); 345 } 346 347 /* 348 * More sanity checking. Most of these were stolen directly from 349 * xfs_repair. 350 */ 351 if (unlikely( 352 sbp->sb_agcount <= 0 || 353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 372 sbp->sb_dblocks == 0 || 373 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 374 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) { 375 if (loud) 376 XFS_CORRUPTION_ERROR("SB sanity check failed", 377 XFS_ERRLEVEL_LOW, mp, sbp); 378 return XFS_ERROR(EFSCORRUPTED); 379 } 380 381 /* 382 * Until this is fixed only page-sized or smaller data blocks work. 383 */ 384 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 385 if (loud) { 386 xfs_warn(mp, 387 "File system with blocksize %d bytes. " 388 "Only pagesize (%ld) or less will currently work.", 389 sbp->sb_blocksize, PAGE_SIZE); 390 } 391 return XFS_ERROR(ENOSYS); 392 } 393 394 /* 395 * Currently only very few inode sizes are supported. 396 */ 397 switch (sbp->sb_inodesize) { 398 case 256: 399 case 512: 400 case 1024: 401 case 2048: 402 break; 403 default: 404 if (loud) 405 xfs_warn(mp, "inode size of %d bytes not supported", 406 sbp->sb_inodesize); 407 return XFS_ERROR(ENOSYS); 408 } 409 410 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 411 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 412 if (loud) 413 xfs_warn(mp, 414 "file system too large to be mounted on this system."); 415 return XFS_ERROR(EFBIG); 416 } 417 418 if (unlikely(sbp->sb_inprogress)) { 419 if (loud) 420 xfs_warn(mp, "file system busy"); 421 return XFS_ERROR(EFSCORRUPTED); 422 } 423 424 /* 425 * Version 1 directory format has never worked on Linux. 426 */ 427 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 428 if (loud) 429 xfs_warn(mp, 430 "file system using version 1 directory format"); 431 return XFS_ERROR(ENOSYS); 432 } 433 434 return 0; 435 } 436 437 int 438 xfs_initialize_perag( 439 xfs_mount_t *mp, 440 xfs_agnumber_t agcount, 441 xfs_agnumber_t *maxagi) 442 { 443 xfs_agnumber_t index, max_metadata; 444 xfs_agnumber_t first_initialised = 0; 445 xfs_perag_t *pag; 446 xfs_agino_t agino; 447 xfs_ino_t ino; 448 xfs_sb_t *sbp = &mp->m_sb; 449 int error = -ENOMEM; 450 451 /* 452 * Walk the current per-ag tree so we don't try to initialise AGs 453 * that already exist (growfs case). Allocate and insert all the 454 * AGs we don't find ready for initialisation. 455 */ 456 for (index = 0; index < agcount; index++) { 457 pag = xfs_perag_get(mp, index); 458 if (pag) { 459 xfs_perag_put(pag); 460 continue; 461 } 462 if (!first_initialised) 463 first_initialised = index; 464 465 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 466 if (!pag) 467 goto out_unwind; 468 pag->pag_agno = index; 469 pag->pag_mount = mp; 470 spin_lock_init(&pag->pag_ici_lock); 471 mutex_init(&pag->pag_ici_reclaim_lock); 472 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 473 spin_lock_init(&pag->pag_buf_lock); 474 pag->pag_buf_tree = RB_ROOT; 475 476 if (radix_tree_preload(GFP_NOFS)) 477 goto out_unwind; 478 479 spin_lock(&mp->m_perag_lock); 480 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 481 BUG(); 482 spin_unlock(&mp->m_perag_lock); 483 radix_tree_preload_end(); 484 error = -EEXIST; 485 goto out_unwind; 486 } 487 spin_unlock(&mp->m_perag_lock); 488 radix_tree_preload_end(); 489 } 490 491 /* 492 * If we mount with the inode64 option, or no inode overflows 493 * the legacy 32-bit address space clear the inode32 option. 494 */ 495 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 496 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 497 498 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 499 mp->m_flags |= XFS_MOUNT_32BITINODES; 500 else 501 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 502 503 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 504 /* 505 * Calculate how much should be reserved for inodes to meet 506 * the max inode percentage. 507 */ 508 if (mp->m_maxicount) { 509 __uint64_t icount; 510 511 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 512 do_div(icount, 100); 513 icount += sbp->sb_agblocks - 1; 514 do_div(icount, sbp->sb_agblocks); 515 max_metadata = icount; 516 } else { 517 max_metadata = agcount; 518 } 519 520 for (index = 0; index < agcount; index++) { 521 ino = XFS_AGINO_TO_INO(mp, index, agino); 522 if (ino > XFS_MAXINUMBER_32) { 523 index++; 524 break; 525 } 526 527 pag = xfs_perag_get(mp, index); 528 pag->pagi_inodeok = 1; 529 if (index < max_metadata) 530 pag->pagf_metadata = 1; 531 xfs_perag_put(pag); 532 } 533 } else { 534 for (index = 0; index < agcount; index++) { 535 pag = xfs_perag_get(mp, index); 536 pag->pagi_inodeok = 1; 537 xfs_perag_put(pag); 538 } 539 } 540 541 if (maxagi) 542 *maxagi = index; 543 return 0; 544 545 out_unwind: 546 kmem_free(pag); 547 for (; index > first_initialised; index--) { 548 pag = radix_tree_delete(&mp->m_perag_tree, index); 549 kmem_free(pag); 550 } 551 return error; 552 } 553 554 void 555 xfs_sb_from_disk( 556 struct xfs_mount *mp, 557 xfs_dsb_t *from) 558 { 559 struct xfs_sb *to = &mp->m_sb; 560 561 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 562 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 563 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 564 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 565 to->sb_rextents = be64_to_cpu(from->sb_rextents); 566 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 567 to->sb_logstart = be64_to_cpu(from->sb_logstart); 568 to->sb_rootino = be64_to_cpu(from->sb_rootino); 569 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 570 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 571 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 572 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 573 to->sb_agcount = be32_to_cpu(from->sb_agcount); 574 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 575 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 576 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 577 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 578 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 579 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 580 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 581 to->sb_blocklog = from->sb_blocklog; 582 to->sb_sectlog = from->sb_sectlog; 583 to->sb_inodelog = from->sb_inodelog; 584 to->sb_inopblog = from->sb_inopblog; 585 to->sb_agblklog = from->sb_agblklog; 586 to->sb_rextslog = from->sb_rextslog; 587 to->sb_inprogress = from->sb_inprogress; 588 to->sb_imax_pct = from->sb_imax_pct; 589 to->sb_icount = be64_to_cpu(from->sb_icount); 590 to->sb_ifree = be64_to_cpu(from->sb_ifree); 591 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 592 to->sb_frextents = be64_to_cpu(from->sb_frextents); 593 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 594 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 595 to->sb_qflags = be16_to_cpu(from->sb_qflags); 596 to->sb_flags = from->sb_flags; 597 to->sb_shared_vn = from->sb_shared_vn; 598 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 599 to->sb_unit = be32_to_cpu(from->sb_unit); 600 to->sb_width = be32_to_cpu(from->sb_width); 601 to->sb_dirblklog = from->sb_dirblklog; 602 to->sb_logsectlog = from->sb_logsectlog; 603 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 604 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 605 to->sb_features2 = be32_to_cpu(from->sb_features2); 606 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 607 } 608 609 /* 610 * Copy in core superblock to ondisk one. 611 * 612 * The fields argument is mask of superblock fields to copy. 613 */ 614 void 615 xfs_sb_to_disk( 616 xfs_dsb_t *to, 617 xfs_sb_t *from, 618 __int64_t fields) 619 { 620 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 621 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 622 xfs_sb_field_t f; 623 int first; 624 int size; 625 626 ASSERT(fields); 627 if (!fields) 628 return; 629 630 while (fields) { 631 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 632 first = xfs_sb_info[f].offset; 633 size = xfs_sb_info[f + 1].offset - first; 634 635 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 636 637 if (size == 1 || xfs_sb_info[f].type == 1) { 638 memcpy(to_ptr + first, from_ptr + first, size); 639 } else { 640 switch (size) { 641 case 2: 642 *(__be16 *)(to_ptr + first) = 643 cpu_to_be16(*(__u16 *)(from_ptr + first)); 644 break; 645 case 4: 646 *(__be32 *)(to_ptr + first) = 647 cpu_to_be32(*(__u32 *)(from_ptr + first)); 648 break; 649 case 8: 650 *(__be64 *)(to_ptr + first) = 651 cpu_to_be64(*(__u64 *)(from_ptr + first)); 652 break; 653 default: 654 ASSERT(0); 655 } 656 } 657 658 fields &= ~(1LL << f); 659 } 660 } 661 662 /* 663 * xfs_readsb 664 * 665 * Does the initial read of the superblock. 666 */ 667 int 668 xfs_readsb(xfs_mount_t *mp, int flags) 669 { 670 unsigned int sector_size; 671 xfs_buf_t *bp; 672 int error; 673 int loud = !(flags & XFS_MFSI_QUIET); 674 675 ASSERT(mp->m_sb_bp == NULL); 676 ASSERT(mp->m_ddev_targp != NULL); 677 678 /* 679 * Allocate a (locked) buffer to hold the superblock. 680 * This will be kept around at all times to optimize 681 * access to the superblock. 682 */ 683 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 684 685 reread: 686 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 687 BTOBB(sector_size), 0); 688 if (!bp) { 689 if (loud) 690 xfs_warn(mp, "SB buffer read failed"); 691 return EIO; 692 } 693 694 /* 695 * Initialize the mount structure from the superblock. 696 * But first do some basic consistency checking. 697 */ 698 xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp)); 699 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 700 if (error) { 701 if (loud) 702 xfs_warn(mp, "SB validate failed"); 703 goto release_buf; 704 } 705 706 /* 707 * We must be able to do sector-sized and sector-aligned IO. 708 */ 709 if (sector_size > mp->m_sb.sb_sectsize) { 710 if (loud) 711 xfs_warn(mp, "device supports %u byte sectors (not %u)", 712 sector_size, mp->m_sb.sb_sectsize); 713 error = ENOSYS; 714 goto release_buf; 715 } 716 717 /* 718 * If device sector size is smaller than the superblock size, 719 * re-read the superblock so the buffer is correctly sized. 720 */ 721 if (sector_size < mp->m_sb.sb_sectsize) { 722 xfs_buf_relse(bp); 723 sector_size = mp->m_sb.sb_sectsize; 724 goto reread; 725 } 726 727 /* Initialize per-cpu counters */ 728 xfs_icsb_reinit_counters(mp); 729 730 mp->m_sb_bp = bp; 731 xfs_buf_unlock(bp); 732 return 0; 733 734 release_buf: 735 xfs_buf_relse(bp); 736 return error; 737 } 738 739 740 /* 741 * xfs_mount_common 742 * 743 * Mount initialization code establishing various mount 744 * fields from the superblock associated with the given 745 * mount structure 746 */ 747 STATIC void 748 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 749 { 750 mp->m_agfrotor = mp->m_agirotor = 0; 751 spin_lock_init(&mp->m_agirotor_lock); 752 mp->m_maxagi = mp->m_sb.sb_agcount; 753 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 754 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 755 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 756 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 757 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 758 mp->m_blockmask = sbp->sb_blocksize - 1; 759 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 760 mp->m_blockwmask = mp->m_blockwsize - 1; 761 762 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 763 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 764 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 765 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 766 767 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 768 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 769 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 770 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 771 772 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 773 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 774 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 775 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 776 777 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 778 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 779 sbp->sb_inopblock); 780 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 781 } 782 783 /* 784 * xfs_initialize_perag_data 785 * 786 * Read in each per-ag structure so we can count up the number of 787 * allocated inodes, free inodes and used filesystem blocks as this 788 * information is no longer persistent in the superblock. Once we have 789 * this information, write it into the in-core superblock structure. 790 */ 791 STATIC int 792 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 793 { 794 xfs_agnumber_t index; 795 xfs_perag_t *pag; 796 xfs_sb_t *sbp = &mp->m_sb; 797 uint64_t ifree = 0; 798 uint64_t ialloc = 0; 799 uint64_t bfree = 0; 800 uint64_t bfreelst = 0; 801 uint64_t btree = 0; 802 int error; 803 804 for (index = 0; index < agcount; index++) { 805 /* 806 * read the agf, then the agi. This gets us 807 * all the information we need and populates the 808 * per-ag structures for us. 809 */ 810 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 811 if (error) 812 return error; 813 814 error = xfs_ialloc_pagi_init(mp, NULL, index); 815 if (error) 816 return error; 817 pag = xfs_perag_get(mp, index); 818 ifree += pag->pagi_freecount; 819 ialloc += pag->pagi_count; 820 bfree += pag->pagf_freeblks; 821 bfreelst += pag->pagf_flcount; 822 btree += pag->pagf_btreeblks; 823 xfs_perag_put(pag); 824 } 825 /* 826 * Overwrite incore superblock counters with just-read data 827 */ 828 spin_lock(&mp->m_sb_lock); 829 sbp->sb_ifree = ifree; 830 sbp->sb_icount = ialloc; 831 sbp->sb_fdblocks = bfree + bfreelst + btree; 832 spin_unlock(&mp->m_sb_lock); 833 834 /* Fixup the per-cpu counters as well. */ 835 xfs_icsb_reinit_counters(mp); 836 837 return 0; 838 } 839 840 /* 841 * Update alignment values based on mount options and sb values 842 */ 843 STATIC int 844 xfs_update_alignment(xfs_mount_t *mp) 845 { 846 xfs_sb_t *sbp = &(mp->m_sb); 847 848 if (mp->m_dalign) { 849 /* 850 * If stripe unit and stripe width are not multiples 851 * of the fs blocksize turn off alignment. 852 */ 853 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 854 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 855 if (mp->m_flags & XFS_MOUNT_RETERR) { 856 xfs_warn(mp, "alignment check failed: " 857 "(sunit/swidth vs. blocksize)"); 858 return XFS_ERROR(EINVAL); 859 } 860 mp->m_dalign = mp->m_swidth = 0; 861 } else { 862 /* 863 * Convert the stripe unit and width to FSBs. 864 */ 865 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 866 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 867 if (mp->m_flags & XFS_MOUNT_RETERR) { 868 xfs_warn(mp, "alignment check failed: " 869 "(sunit/swidth vs. ag size)"); 870 return XFS_ERROR(EINVAL); 871 } 872 xfs_warn(mp, 873 "stripe alignment turned off: sunit(%d)/swidth(%d) " 874 "incompatible with agsize(%d)", 875 mp->m_dalign, mp->m_swidth, 876 sbp->sb_agblocks); 877 878 mp->m_dalign = 0; 879 mp->m_swidth = 0; 880 } else if (mp->m_dalign) { 881 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 882 } else { 883 if (mp->m_flags & XFS_MOUNT_RETERR) { 884 xfs_warn(mp, "alignment check failed: " 885 "sunit(%d) less than bsize(%d)", 886 mp->m_dalign, 887 mp->m_blockmask +1); 888 return XFS_ERROR(EINVAL); 889 } 890 mp->m_swidth = 0; 891 } 892 } 893 894 /* 895 * Update superblock with new values 896 * and log changes 897 */ 898 if (xfs_sb_version_hasdalign(sbp)) { 899 if (sbp->sb_unit != mp->m_dalign) { 900 sbp->sb_unit = mp->m_dalign; 901 mp->m_update_flags |= XFS_SB_UNIT; 902 } 903 if (sbp->sb_width != mp->m_swidth) { 904 sbp->sb_width = mp->m_swidth; 905 mp->m_update_flags |= XFS_SB_WIDTH; 906 } 907 } 908 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 909 xfs_sb_version_hasdalign(&mp->m_sb)) { 910 mp->m_dalign = sbp->sb_unit; 911 mp->m_swidth = sbp->sb_width; 912 } 913 914 return 0; 915 } 916 917 /* 918 * Set the maximum inode count for this filesystem 919 */ 920 STATIC void 921 xfs_set_maxicount(xfs_mount_t *mp) 922 { 923 xfs_sb_t *sbp = &(mp->m_sb); 924 __uint64_t icount; 925 926 if (sbp->sb_imax_pct) { 927 /* 928 * Make sure the maximum inode count is a multiple 929 * of the units we allocate inodes in. 930 */ 931 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 932 do_div(icount, 100); 933 do_div(icount, mp->m_ialloc_blks); 934 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 935 sbp->sb_inopblog; 936 } else { 937 mp->m_maxicount = 0; 938 } 939 } 940 941 /* 942 * Set the default minimum read and write sizes unless 943 * already specified in a mount option. 944 * We use smaller I/O sizes when the file system 945 * is being used for NFS service (wsync mount option). 946 */ 947 STATIC void 948 xfs_set_rw_sizes(xfs_mount_t *mp) 949 { 950 xfs_sb_t *sbp = &(mp->m_sb); 951 int readio_log, writeio_log; 952 953 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 954 if (mp->m_flags & XFS_MOUNT_WSYNC) { 955 readio_log = XFS_WSYNC_READIO_LOG; 956 writeio_log = XFS_WSYNC_WRITEIO_LOG; 957 } else { 958 readio_log = XFS_READIO_LOG_LARGE; 959 writeio_log = XFS_WRITEIO_LOG_LARGE; 960 } 961 } else { 962 readio_log = mp->m_readio_log; 963 writeio_log = mp->m_writeio_log; 964 } 965 966 if (sbp->sb_blocklog > readio_log) { 967 mp->m_readio_log = sbp->sb_blocklog; 968 } else { 969 mp->m_readio_log = readio_log; 970 } 971 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 972 if (sbp->sb_blocklog > writeio_log) { 973 mp->m_writeio_log = sbp->sb_blocklog; 974 } else { 975 mp->m_writeio_log = writeio_log; 976 } 977 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 978 } 979 980 /* 981 * precalculate the low space thresholds for dynamic speculative preallocation. 982 */ 983 void 984 xfs_set_low_space_thresholds( 985 struct xfs_mount *mp) 986 { 987 int i; 988 989 for (i = 0; i < XFS_LOWSP_MAX; i++) { 990 __uint64_t space = mp->m_sb.sb_dblocks; 991 992 do_div(space, 100); 993 mp->m_low_space[i] = space * (i + 1); 994 } 995 } 996 997 998 /* 999 * Set whether we're using inode alignment. 1000 */ 1001 STATIC void 1002 xfs_set_inoalignment(xfs_mount_t *mp) 1003 { 1004 if (xfs_sb_version_hasalign(&mp->m_sb) && 1005 mp->m_sb.sb_inoalignmt >= 1006 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1007 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1008 else 1009 mp->m_inoalign_mask = 0; 1010 /* 1011 * If we are using stripe alignment, check whether 1012 * the stripe unit is a multiple of the inode alignment 1013 */ 1014 if (mp->m_dalign && mp->m_inoalign_mask && 1015 !(mp->m_dalign & mp->m_inoalign_mask)) 1016 mp->m_sinoalign = mp->m_dalign; 1017 else 1018 mp->m_sinoalign = 0; 1019 } 1020 1021 /* 1022 * Check that the data (and log if separate) are an ok size. 1023 */ 1024 STATIC int 1025 xfs_check_sizes(xfs_mount_t *mp) 1026 { 1027 xfs_buf_t *bp; 1028 xfs_daddr_t d; 1029 1030 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1031 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1032 xfs_warn(mp, "filesystem size mismatch detected"); 1033 return XFS_ERROR(EFBIG); 1034 } 1035 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 1036 d - XFS_FSS_TO_BB(mp, 1), 1037 XFS_FSS_TO_BB(mp, 1), 0); 1038 if (!bp) { 1039 xfs_warn(mp, "last sector read failed"); 1040 return EIO; 1041 } 1042 xfs_buf_relse(bp); 1043 1044 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1045 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1046 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1047 xfs_warn(mp, "log size mismatch detected"); 1048 return XFS_ERROR(EFBIG); 1049 } 1050 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 1051 d - XFS_FSB_TO_BB(mp, 1), 1052 XFS_FSB_TO_BB(mp, 1), 0); 1053 if (!bp) { 1054 xfs_warn(mp, "log device read failed"); 1055 return EIO; 1056 } 1057 xfs_buf_relse(bp); 1058 } 1059 return 0; 1060 } 1061 1062 /* 1063 * Clear the quotaflags in memory and in the superblock. 1064 */ 1065 int 1066 xfs_mount_reset_sbqflags( 1067 struct xfs_mount *mp) 1068 { 1069 int error; 1070 struct xfs_trans *tp; 1071 1072 mp->m_qflags = 0; 1073 1074 /* 1075 * It is OK to look at sb_qflags here in mount path, 1076 * without m_sb_lock. 1077 */ 1078 if (mp->m_sb.sb_qflags == 0) 1079 return 0; 1080 spin_lock(&mp->m_sb_lock); 1081 mp->m_sb.sb_qflags = 0; 1082 spin_unlock(&mp->m_sb_lock); 1083 1084 /* 1085 * If the fs is readonly, let the incore superblock run 1086 * with quotas off but don't flush the update out to disk 1087 */ 1088 if (mp->m_flags & XFS_MOUNT_RDONLY) 1089 return 0; 1090 1091 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1092 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1093 XFS_DEFAULT_LOG_COUNT); 1094 if (error) { 1095 xfs_trans_cancel(tp, 0); 1096 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1097 return error; 1098 } 1099 1100 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1101 return xfs_trans_commit(tp, 0); 1102 } 1103 1104 __uint64_t 1105 xfs_default_resblks(xfs_mount_t *mp) 1106 { 1107 __uint64_t resblks; 1108 1109 /* 1110 * We default to 5% or 8192 fsbs of space reserved, whichever is 1111 * smaller. This is intended to cover concurrent allocation 1112 * transactions when we initially hit enospc. These each require a 4 1113 * block reservation. Hence by default we cover roughly 2000 concurrent 1114 * allocation reservations. 1115 */ 1116 resblks = mp->m_sb.sb_dblocks; 1117 do_div(resblks, 20); 1118 resblks = min_t(__uint64_t, resblks, 8192); 1119 return resblks; 1120 } 1121 1122 /* 1123 * This function does the following on an initial mount of a file system: 1124 * - reads the superblock from disk and init the mount struct 1125 * - if we're a 32-bit kernel, do a size check on the superblock 1126 * so we don't mount terabyte filesystems 1127 * - init mount struct realtime fields 1128 * - allocate inode hash table for fs 1129 * - init directory manager 1130 * - perform recovery and init the log manager 1131 */ 1132 int 1133 xfs_mountfs( 1134 xfs_mount_t *mp) 1135 { 1136 xfs_sb_t *sbp = &(mp->m_sb); 1137 xfs_inode_t *rip; 1138 __uint64_t resblks; 1139 uint quotamount = 0; 1140 uint quotaflags = 0; 1141 int error = 0; 1142 1143 xfs_mount_common(mp, sbp); 1144 1145 /* 1146 * Check for a mismatched features2 values. Older kernels 1147 * read & wrote into the wrong sb offset for sb_features2 1148 * on some platforms due to xfs_sb_t not being 64bit size aligned 1149 * when sb_features2 was added, which made older superblock 1150 * reading/writing routines swap it as a 64-bit value. 1151 * 1152 * For backwards compatibility, we make both slots equal. 1153 * 1154 * If we detect a mismatched field, we OR the set bits into the 1155 * existing features2 field in case it has already been modified; we 1156 * don't want to lose any features. We then update the bad location 1157 * with the ORed value so that older kernels will see any features2 1158 * flags, and mark the two fields as needing updates once the 1159 * transaction subsystem is online. 1160 */ 1161 if (xfs_sb_has_mismatched_features2(sbp)) { 1162 xfs_warn(mp, "correcting sb_features alignment problem"); 1163 sbp->sb_features2 |= sbp->sb_bad_features2; 1164 sbp->sb_bad_features2 = sbp->sb_features2; 1165 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1166 1167 /* 1168 * Re-check for ATTR2 in case it was found in bad_features2 1169 * slot. 1170 */ 1171 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1172 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1173 mp->m_flags |= XFS_MOUNT_ATTR2; 1174 } 1175 1176 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1177 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1178 xfs_sb_version_removeattr2(&mp->m_sb); 1179 mp->m_update_flags |= XFS_SB_FEATURES2; 1180 1181 /* update sb_versionnum for the clearing of the morebits */ 1182 if (!sbp->sb_features2) 1183 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1184 } 1185 1186 /* 1187 * Check if sb_agblocks is aligned at stripe boundary 1188 * If sb_agblocks is NOT aligned turn off m_dalign since 1189 * allocator alignment is within an ag, therefore ag has 1190 * to be aligned at stripe boundary. 1191 */ 1192 error = xfs_update_alignment(mp); 1193 if (error) 1194 goto out; 1195 1196 xfs_alloc_compute_maxlevels(mp); 1197 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1198 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1199 xfs_ialloc_compute_maxlevels(mp); 1200 1201 xfs_set_maxicount(mp); 1202 1203 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1204 1205 error = xfs_uuid_mount(mp); 1206 if (error) 1207 goto out; 1208 1209 /* 1210 * Set the minimum read and write sizes 1211 */ 1212 xfs_set_rw_sizes(mp); 1213 1214 /* set the low space thresholds for dynamic preallocation */ 1215 xfs_set_low_space_thresholds(mp); 1216 1217 /* 1218 * Set the inode cluster size. 1219 * This may still be overridden by the file system 1220 * block size if it is larger than the chosen cluster size. 1221 */ 1222 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1223 1224 /* 1225 * Set inode alignment fields 1226 */ 1227 xfs_set_inoalignment(mp); 1228 1229 /* 1230 * Check that the data (and log if separate) are an ok size. 1231 */ 1232 error = xfs_check_sizes(mp); 1233 if (error) 1234 goto out_remove_uuid; 1235 1236 /* 1237 * Initialize realtime fields in the mount structure 1238 */ 1239 error = xfs_rtmount_init(mp); 1240 if (error) { 1241 xfs_warn(mp, "RT mount failed"); 1242 goto out_remove_uuid; 1243 } 1244 1245 /* 1246 * Copies the low order bits of the timestamp and the randomly 1247 * set "sequence" number out of a UUID. 1248 */ 1249 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1250 1251 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1252 1253 xfs_dir_mount(mp); 1254 1255 /* 1256 * Initialize the attribute manager's entries. 1257 */ 1258 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1259 1260 /* 1261 * Initialize the precomputed transaction reservations values. 1262 */ 1263 xfs_trans_init(mp); 1264 1265 /* 1266 * Allocate and initialize the per-ag data. 1267 */ 1268 spin_lock_init(&mp->m_perag_lock); 1269 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1270 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1271 if (error) { 1272 xfs_warn(mp, "Failed per-ag init: %d", error); 1273 goto out_remove_uuid; 1274 } 1275 1276 if (!sbp->sb_logblocks) { 1277 xfs_warn(mp, "no log defined"); 1278 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1279 error = XFS_ERROR(EFSCORRUPTED); 1280 goto out_free_perag; 1281 } 1282 1283 /* 1284 * log's mount-time initialization. Perform 1st part recovery if needed 1285 */ 1286 error = xfs_log_mount(mp, mp->m_logdev_targp, 1287 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1288 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1289 if (error) { 1290 xfs_warn(mp, "log mount failed"); 1291 goto out_fail_wait; 1292 } 1293 1294 /* 1295 * Now the log is mounted, we know if it was an unclean shutdown or 1296 * not. If it was, with the first phase of recovery has completed, we 1297 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1298 * but they are recovered transactionally in the second recovery phase 1299 * later. 1300 * 1301 * Hence we can safely re-initialise incore superblock counters from 1302 * the per-ag data. These may not be correct if the filesystem was not 1303 * cleanly unmounted, so we need to wait for recovery to finish before 1304 * doing this. 1305 * 1306 * If the filesystem was cleanly unmounted, then we can trust the 1307 * values in the superblock to be correct and we don't need to do 1308 * anything here. 1309 * 1310 * If we are currently making the filesystem, the initialisation will 1311 * fail as the perag data is in an undefined state. 1312 */ 1313 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1314 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1315 !mp->m_sb.sb_inprogress) { 1316 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1317 if (error) 1318 goto out_fail_wait; 1319 } 1320 1321 /* 1322 * Get and sanity-check the root inode. 1323 * Save the pointer to it in the mount structure. 1324 */ 1325 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1326 if (error) { 1327 xfs_warn(mp, "failed to read root inode"); 1328 goto out_log_dealloc; 1329 } 1330 1331 ASSERT(rip != NULL); 1332 1333 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 1334 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1335 (unsigned long long)rip->i_ino); 1336 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1337 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1338 mp); 1339 error = XFS_ERROR(EFSCORRUPTED); 1340 goto out_rele_rip; 1341 } 1342 mp->m_rootip = rip; /* save it */ 1343 1344 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1345 1346 /* 1347 * Initialize realtime inode pointers in the mount structure 1348 */ 1349 error = xfs_rtmount_inodes(mp); 1350 if (error) { 1351 /* 1352 * Free up the root inode. 1353 */ 1354 xfs_warn(mp, "failed to read RT inodes"); 1355 goto out_rele_rip; 1356 } 1357 1358 /* 1359 * If this is a read-only mount defer the superblock updates until 1360 * the next remount into writeable mode. Otherwise we would never 1361 * perform the update e.g. for the root filesystem. 1362 */ 1363 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1364 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1365 if (error) { 1366 xfs_warn(mp, "failed to write sb changes"); 1367 goto out_rtunmount; 1368 } 1369 } 1370 1371 /* 1372 * Initialise the XFS quota management subsystem for this mount 1373 */ 1374 if (XFS_IS_QUOTA_RUNNING(mp)) { 1375 error = xfs_qm_newmount(mp, "amount, "aflags); 1376 if (error) 1377 goto out_rtunmount; 1378 } else { 1379 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1380 1381 /* 1382 * If a file system had quotas running earlier, but decided to 1383 * mount without -o uquota/pquota/gquota options, revoke the 1384 * quotachecked license. 1385 */ 1386 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1387 xfs_notice(mp, "resetting quota flags"); 1388 error = xfs_mount_reset_sbqflags(mp); 1389 if (error) 1390 return error; 1391 } 1392 } 1393 1394 /* 1395 * Finish recovering the file system. This part needed to be 1396 * delayed until after the root and real-time bitmap inodes 1397 * were consistently read in. 1398 */ 1399 error = xfs_log_mount_finish(mp); 1400 if (error) { 1401 xfs_warn(mp, "log mount finish failed"); 1402 goto out_rtunmount; 1403 } 1404 1405 /* 1406 * Complete the quota initialisation, post-log-replay component. 1407 */ 1408 if (quotamount) { 1409 ASSERT(mp->m_qflags == 0); 1410 mp->m_qflags = quotaflags; 1411 1412 xfs_qm_mount_quotas(mp); 1413 } 1414 1415 /* 1416 * Now we are mounted, reserve a small amount of unused space for 1417 * privileged transactions. This is needed so that transaction 1418 * space required for critical operations can dip into this pool 1419 * when at ENOSPC. This is needed for operations like create with 1420 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1421 * are not allowed to use this reserved space. 1422 * 1423 * This may drive us straight to ENOSPC on mount, but that implies 1424 * we were already there on the last unmount. Warn if this occurs. 1425 */ 1426 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1427 resblks = xfs_default_resblks(mp); 1428 error = xfs_reserve_blocks(mp, &resblks, NULL); 1429 if (error) 1430 xfs_warn(mp, 1431 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1432 } 1433 1434 return 0; 1435 1436 out_rtunmount: 1437 xfs_rtunmount_inodes(mp); 1438 out_rele_rip: 1439 IRELE(rip); 1440 out_log_dealloc: 1441 xfs_log_unmount(mp); 1442 out_fail_wait: 1443 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1444 xfs_wait_buftarg(mp->m_logdev_targp); 1445 xfs_wait_buftarg(mp->m_ddev_targp); 1446 out_free_perag: 1447 xfs_free_perag(mp); 1448 out_remove_uuid: 1449 xfs_uuid_unmount(mp); 1450 out: 1451 return error; 1452 } 1453 1454 /* 1455 * This flushes out the inodes,dquots and the superblock, unmounts the 1456 * log and makes sure that incore structures are freed. 1457 */ 1458 void 1459 xfs_unmountfs( 1460 struct xfs_mount *mp) 1461 { 1462 __uint64_t resblks; 1463 int error; 1464 1465 xfs_qm_unmount_quotas(mp); 1466 xfs_rtunmount_inodes(mp); 1467 IRELE(mp->m_rootip); 1468 1469 /* 1470 * We can potentially deadlock here if we have an inode cluster 1471 * that has been freed has its buffer still pinned in memory because 1472 * the transaction is still sitting in a iclog. The stale inodes 1473 * on that buffer will have their flush locks held until the 1474 * transaction hits the disk and the callbacks run. the inode 1475 * flush takes the flush lock unconditionally and with nothing to 1476 * push out the iclog we will never get that unlocked. hence we 1477 * need to force the log first. 1478 */ 1479 xfs_log_force(mp, XFS_LOG_SYNC); 1480 1481 /* 1482 * Flush all pending changes from the AIL. 1483 */ 1484 xfs_ail_push_all_sync(mp->m_ail); 1485 1486 /* 1487 * And reclaim all inodes. At this point there should be no dirty 1488 * inode, and none should be pinned or locked, but use synchronous 1489 * reclaim just to be sure. 1490 */ 1491 xfs_reclaim_inodes(mp, SYNC_WAIT); 1492 1493 xfs_qm_unmount(mp); 1494 1495 /* 1496 * Flush out the log synchronously so that we know for sure 1497 * that nothing is pinned. This is important because bflush() 1498 * will skip pinned buffers. 1499 */ 1500 xfs_log_force(mp, XFS_LOG_SYNC); 1501 1502 /* 1503 * Unreserve any blocks we have so that when we unmount we don't account 1504 * the reserved free space as used. This is really only necessary for 1505 * lazy superblock counting because it trusts the incore superblock 1506 * counters to be absolutely correct on clean unmount. 1507 * 1508 * We don't bother correcting this elsewhere for lazy superblock 1509 * counting because on mount of an unclean filesystem we reconstruct the 1510 * correct counter value and this is irrelevant. 1511 * 1512 * For non-lazy counter filesystems, this doesn't matter at all because 1513 * we only every apply deltas to the superblock and hence the incore 1514 * value does not matter.... 1515 */ 1516 resblks = 0; 1517 error = xfs_reserve_blocks(mp, &resblks, NULL); 1518 if (error) 1519 xfs_warn(mp, "Unable to free reserved block pool. " 1520 "Freespace may not be correct on next mount."); 1521 1522 error = xfs_log_sbcount(mp); 1523 if (error) 1524 xfs_warn(mp, "Unable to update superblock counters. " 1525 "Freespace may not be correct on next mount."); 1526 1527 /* 1528 * At this point we might have modified the superblock again and thus 1529 * added an item to the AIL, thus flush it again. 1530 */ 1531 xfs_ail_push_all_sync(mp->m_ail); 1532 xfs_wait_buftarg(mp->m_ddev_targp); 1533 1534 xfs_log_unmount_write(mp); 1535 xfs_log_unmount(mp); 1536 xfs_uuid_unmount(mp); 1537 1538 #if defined(DEBUG) 1539 xfs_errortag_clearall(mp, 0); 1540 #endif 1541 xfs_free_perag(mp); 1542 } 1543 1544 int 1545 xfs_fs_writable(xfs_mount_t *mp) 1546 { 1547 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1548 (mp->m_flags & XFS_MOUNT_RDONLY)); 1549 } 1550 1551 /* 1552 * xfs_log_sbcount 1553 * 1554 * Sync the superblock counters to disk. 1555 * 1556 * Note this code can be called during the process of freezing, so 1557 * we may need to use the transaction allocator which does not 1558 * block when the transaction subsystem is in its frozen state. 1559 */ 1560 int 1561 xfs_log_sbcount(xfs_mount_t *mp) 1562 { 1563 xfs_trans_t *tp; 1564 int error; 1565 1566 if (!xfs_fs_writable(mp)) 1567 return 0; 1568 1569 xfs_icsb_sync_counters(mp, 0); 1570 1571 /* 1572 * we don't need to do this if we are updating the superblock 1573 * counters on every modification. 1574 */ 1575 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1576 return 0; 1577 1578 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1579 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1580 XFS_DEFAULT_LOG_COUNT); 1581 if (error) { 1582 xfs_trans_cancel(tp, 0); 1583 return error; 1584 } 1585 1586 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1587 xfs_trans_set_sync(tp); 1588 error = xfs_trans_commit(tp, 0); 1589 return error; 1590 } 1591 1592 /* 1593 * xfs_mod_sb() can be used to copy arbitrary changes to the 1594 * in-core superblock into the superblock buffer to be logged. 1595 * It does not provide the higher level of locking that is 1596 * needed to protect the in-core superblock from concurrent 1597 * access. 1598 */ 1599 void 1600 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1601 { 1602 xfs_buf_t *bp; 1603 int first; 1604 int last; 1605 xfs_mount_t *mp; 1606 xfs_sb_field_t f; 1607 1608 ASSERT(fields); 1609 if (!fields) 1610 return; 1611 mp = tp->t_mountp; 1612 bp = xfs_trans_getsb(tp, mp, 0); 1613 first = sizeof(xfs_sb_t); 1614 last = 0; 1615 1616 /* translate/copy */ 1617 1618 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1619 1620 /* find modified range */ 1621 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1622 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1623 last = xfs_sb_info[f + 1].offset - 1; 1624 1625 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1626 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1627 first = xfs_sb_info[f].offset; 1628 1629 xfs_trans_log_buf(tp, bp, first, last); 1630 } 1631 1632 1633 /* 1634 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1635 * a delta to a specified field in the in-core superblock. Simply 1636 * switch on the field indicated and apply the delta to that field. 1637 * Fields are not allowed to dip below zero, so if the delta would 1638 * do this do not apply it and return EINVAL. 1639 * 1640 * The m_sb_lock must be held when this routine is called. 1641 */ 1642 STATIC int 1643 xfs_mod_incore_sb_unlocked( 1644 xfs_mount_t *mp, 1645 xfs_sb_field_t field, 1646 int64_t delta, 1647 int rsvd) 1648 { 1649 int scounter; /* short counter for 32 bit fields */ 1650 long long lcounter; /* long counter for 64 bit fields */ 1651 long long res_used, rem; 1652 1653 /* 1654 * With the in-core superblock spin lock held, switch 1655 * on the indicated field. Apply the delta to the 1656 * proper field. If the fields value would dip below 1657 * 0, then do not apply the delta and return EINVAL. 1658 */ 1659 switch (field) { 1660 case XFS_SBS_ICOUNT: 1661 lcounter = (long long)mp->m_sb.sb_icount; 1662 lcounter += delta; 1663 if (lcounter < 0) { 1664 ASSERT(0); 1665 return XFS_ERROR(EINVAL); 1666 } 1667 mp->m_sb.sb_icount = lcounter; 1668 return 0; 1669 case XFS_SBS_IFREE: 1670 lcounter = (long long)mp->m_sb.sb_ifree; 1671 lcounter += delta; 1672 if (lcounter < 0) { 1673 ASSERT(0); 1674 return XFS_ERROR(EINVAL); 1675 } 1676 mp->m_sb.sb_ifree = lcounter; 1677 return 0; 1678 case XFS_SBS_FDBLOCKS: 1679 lcounter = (long long) 1680 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1681 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1682 1683 if (delta > 0) { /* Putting blocks back */ 1684 if (res_used > delta) { 1685 mp->m_resblks_avail += delta; 1686 } else { 1687 rem = delta - res_used; 1688 mp->m_resblks_avail = mp->m_resblks; 1689 lcounter += rem; 1690 } 1691 } else { /* Taking blocks away */ 1692 lcounter += delta; 1693 if (lcounter >= 0) { 1694 mp->m_sb.sb_fdblocks = lcounter + 1695 XFS_ALLOC_SET_ASIDE(mp); 1696 return 0; 1697 } 1698 1699 /* 1700 * We are out of blocks, use any available reserved 1701 * blocks if were allowed to. 1702 */ 1703 if (!rsvd) 1704 return XFS_ERROR(ENOSPC); 1705 1706 lcounter = (long long)mp->m_resblks_avail + delta; 1707 if (lcounter >= 0) { 1708 mp->m_resblks_avail = lcounter; 1709 return 0; 1710 } 1711 printk_once(KERN_WARNING 1712 "Filesystem \"%s\": reserve blocks depleted! " 1713 "Consider increasing reserve pool size.", 1714 mp->m_fsname); 1715 return XFS_ERROR(ENOSPC); 1716 } 1717 1718 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1719 return 0; 1720 case XFS_SBS_FREXTENTS: 1721 lcounter = (long long)mp->m_sb.sb_frextents; 1722 lcounter += delta; 1723 if (lcounter < 0) { 1724 return XFS_ERROR(ENOSPC); 1725 } 1726 mp->m_sb.sb_frextents = lcounter; 1727 return 0; 1728 case XFS_SBS_DBLOCKS: 1729 lcounter = (long long)mp->m_sb.sb_dblocks; 1730 lcounter += delta; 1731 if (lcounter < 0) { 1732 ASSERT(0); 1733 return XFS_ERROR(EINVAL); 1734 } 1735 mp->m_sb.sb_dblocks = lcounter; 1736 return 0; 1737 case XFS_SBS_AGCOUNT: 1738 scounter = mp->m_sb.sb_agcount; 1739 scounter += delta; 1740 if (scounter < 0) { 1741 ASSERT(0); 1742 return XFS_ERROR(EINVAL); 1743 } 1744 mp->m_sb.sb_agcount = scounter; 1745 return 0; 1746 case XFS_SBS_IMAX_PCT: 1747 scounter = mp->m_sb.sb_imax_pct; 1748 scounter += delta; 1749 if (scounter < 0) { 1750 ASSERT(0); 1751 return XFS_ERROR(EINVAL); 1752 } 1753 mp->m_sb.sb_imax_pct = scounter; 1754 return 0; 1755 case XFS_SBS_REXTSIZE: 1756 scounter = mp->m_sb.sb_rextsize; 1757 scounter += delta; 1758 if (scounter < 0) { 1759 ASSERT(0); 1760 return XFS_ERROR(EINVAL); 1761 } 1762 mp->m_sb.sb_rextsize = scounter; 1763 return 0; 1764 case XFS_SBS_RBMBLOCKS: 1765 scounter = mp->m_sb.sb_rbmblocks; 1766 scounter += delta; 1767 if (scounter < 0) { 1768 ASSERT(0); 1769 return XFS_ERROR(EINVAL); 1770 } 1771 mp->m_sb.sb_rbmblocks = scounter; 1772 return 0; 1773 case XFS_SBS_RBLOCKS: 1774 lcounter = (long long)mp->m_sb.sb_rblocks; 1775 lcounter += delta; 1776 if (lcounter < 0) { 1777 ASSERT(0); 1778 return XFS_ERROR(EINVAL); 1779 } 1780 mp->m_sb.sb_rblocks = lcounter; 1781 return 0; 1782 case XFS_SBS_REXTENTS: 1783 lcounter = (long long)mp->m_sb.sb_rextents; 1784 lcounter += delta; 1785 if (lcounter < 0) { 1786 ASSERT(0); 1787 return XFS_ERROR(EINVAL); 1788 } 1789 mp->m_sb.sb_rextents = lcounter; 1790 return 0; 1791 case XFS_SBS_REXTSLOG: 1792 scounter = mp->m_sb.sb_rextslog; 1793 scounter += delta; 1794 if (scounter < 0) { 1795 ASSERT(0); 1796 return XFS_ERROR(EINVAL); 1797 } 1798 mp->m_sb.sb_rextslog = scounter; 1799 return 0; 1800 default: 1801 ASSERT(0); 1802 return XFS_ERROR(EINVAL); 1803 } 1804 } 1805 1806 /* 1807 * xfs_mod_incore_sb() is used to change a field in the in-core 1808 * superblock structure by the specified delta. This modification 1809 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1810 * routine to do the work. 1811 */ 1812 int 1813 xfs_mod_incore_sb( 1814 struct xfs_mount *mp, 1815 xfs_sb_field_t field, 1816 int64_t delta, 1817 int rsvd) 1818 { 1819 int status; 1820 1821 #ifdef HAVE_PERCPU_SB 1822 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1823 #endif 1824 spin_lock(&mp->m_sb_lock); 1825 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1826 spin_unlock(&mp->m_sb_lock); 1827 1828 return status; 1829 } 1830 1831 /* 1832 * Change more than one field in the in-core superblock structure at a time. 1833 * 1834 * The fields and changes to those fields are specified in the array of 1835 * xfs_mod_sb structures passed in. Either all of the specified deltas 1836 * will be applied or none of them will. If any modified field dips below 0, 1837 * then all modifications will be backed out and EINVAL will be returned. 1838 * 1839 * Note that this function may not be used for the superblock values that 1840 * are tracked with the in-memory per-cpu counters - a direct call to 1841 * xfs_icsb_modify_counters is required for these. 1842 */ 1843 int 1844 xfs_mod_incore_sb_batch( 1845 struct xfs_mount *mp, 1846 xfs_mod_sb_t *msb, 1847 uint nmsb, 1848 int rsvd) 1849 { 1850 xfs_mod_sb_t *msbp; 1851 int error = 0; 1852 1853 /* 1854 * Loop through the array of mod structures and apply each individually. 1855 * If any fail, then back out all those which have already been applied. 1856 * Do all of this within the scope of the m_sb_lock so that all of the 1857 * changes will be atomic. 1858 */ 1859 spin_lock(&mp->m_sb_lock); 1860 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1861 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1862 msbp->msb_field > XFS_SBS_FDBLOCKS); 1863 1864 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1865 msbp->msb_delta, rsvd); 1866 if (error) 1867 goto unwind; 1868 } 1869 spin_unlock(&mp->m_sb_lock); 1870 return 0; 1871 1872 unwind: 1873 while (--msbp >= msb) { 1874 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1875 -msbp->msb_delta, rsvd); 1876 ASSERT(error == 0); 1877 } 1878 spin_unlock(&mp->m_sb_lock); 1879 return error; 1880 } 1881 1882 /* 1883 * xfs_getsb() is called to obtain the buffer for the superblock. 1884 * The buffer is returned locked and read in from disk. 1885 * The buffer should be released with a call to xfs_brelse(). 1886 * 1887 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1888 * the superblock buffer if it can be locked without sleeping. 1889 * If it can't then we'll return NULL. 1890 */ 1891 struct xfs_buf * 1892 xfs_getsb( 1893 struct xfs_mount *mp, 1894 int flags) 1895 { 1896 struct xfs_buf *bp = mp->m_sb_bp; 1897 1898 if (!xfs_buf_trylock(bp)) { 1899 if (flags & XBF_TRYLOCK) 1900 return NULL; 1901 xfs_buf_lock(bp); 1902 } 1903 1904 xfs_buf_hold(bp); 1905 ASSERT(XFS_BUF_ISDONE(bp)); 1906 return bp; 1907 } 1908 1909 /* 1910 * Used to free the superblock along various error paths. 1911 */ 1912 void 1913 xfs_freesb( 1914 struct xfs_mount *mp) 1915 { 1916 struct xfs_buf *bp = mp->m_sb_bp; 1917 1918 xfs_buf_lock(bp); 1919 mp->m_sb_bp = NULL; 1920 xfs_buf_relse(bp); 1921 } 1922 1923 /* 1924 * Used to log changes to the superblock unit and width fields which could 1925 * be altered by the mount options, as well as any potential sb_features2 1926 * fixup. Only the first superblock is updated. 1927 */ 1928 int 1929 xfs_mount_log_sb( 1930 xfs_mount_t *mp, 1931 __int64_t fields) 1932 { 1933 xfs_trans_t *tp; 1934 int error; 1935 1936 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1937 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1938 XFS_SB_VERSIONNUM)); 1939 1940 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1941 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1942 XFS_DEFAULT_LOG_COUNT); 1943 if (error) { 1944 xfs_trans_cancel(tp, 0); 1945 return error; 1946 } 1947 xfs_mod_sb(tp, fields); 1948 error = xfs_trans_commit(tp, 0); 1949 return error; 1950 } 1951 1952 /* 1953 * If the underlying (data/log/rt) device is readonly, there are some 1954 * operations that cannot proceed. 1955 */ 1956 int 1957 xfs_dev_is_read_only( 1958 struct xfs_mount *mp, 1959 char *message) 1960 { 1961 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1962 xfs_readonly_buftarg(mp->m_logdev_targp) || 1963 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1964 xfs_notice(mp, "%s required on read-only device.", message); 1965 xfs_notice(mp, "write access unavailable, cannot proceed."); 1966 return EROFS; 1967 } 1968 return 0; 1969 } 1970 1971 #ifdef HAVE_PERCPU_SB 1972 /* 1973 * Per-cpu incore superblock counters 1974 * 1975 * Simple concept, difficult implementation 1976 * 1977 * Basically, replace the incore superblock counters with a distributed per cpu 1978 * counter for contended fields (e.g. free block count). 1979 * 1980 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1981 * hence needs to be accurately read when we are running low on space. Hence 1982 * there is a method to enable and disable the per-cpu counters based on how 1983 * much "stuff" is available in them. 1984 * 1985 * Basically, a counter is enabled if there is enough free resource to justify 1986 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1987 * ENOSPC), then we disable the counters to synchronise all callers and 1988 * re-distribute the available resources. 1989 * 1990 * If, once we redistributed the available resources, we still get a failure, 1991 * we disable the per-cpu counter and go through the slow path. 1992 * 1993 * The slow path is the current xfs_mod_incore_sb() function. This means that 1994 * when we disable a per-cpu counter, we need to drain its resources back to 1995 * the global superblock. We do this after disabling the counter to prevent 1996 * more threads from queueing up on the counter. 1997 * 1998 * Essentially, this means that we still need a lock in the fast path to enable 1999 * synchronisation between the global counters and the per-cpu counters. This 2000 * is not a problem because the lock will be local to a CPU almost all the time 2001 * and have little contention except when we get to ENOSPC conditions. 2002 * 2003 * Basically, this lock becomes a barrier that enables us to lock out the fast 2004 * path while we do things like enabling and disabling counters and 2005 * synchronising the counters. 2006 * 2007 * Locking rules: 2008 * 2009 * 1. m_sb_lock before picking up per-cpu locks 2010 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2011 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2012 * 4. modifying per-cpu counters requires holding per-cpu lock 2013 * 5. modifying global counters requires holding m_sb_lock 2014 * 6. enabling or disabling a counter requires holding the m_sb_lock 2015 * and _none_ of the per-cpu locks. 2016 * 2017 * Disabled counters are only ever re-enabled by a balance operation 2018 * that results in more free resources per CPU than a given threshold. 2019 * To ensure counters don't remain disabled, they are rebalanced when 2020 * the global resource goes above a higher threshold (i.e. some hysteresis 2021 * is present to prevent thrashing). 2022 */ 2023 2024 #ifdef CONFIG_HOTPLUG_CPU 2025 /* 2026 * hot-plug CPU notifier support. 2027 * 2028 * We need a notifier per filesystem as we need to be able to identify 2029 * the filesystem to balance the counters out. This is achieved by 2030 * having a notifier block embedded in the xfs_mount_t and doing pointer 2031 * magic to get the mount pointer from the notifier block address. 2032 */ 2033 STATIC int 2034 xfs_icsb_cpu_notify( 2035 struct notifier_block *nfb, 2036 unsigned long action, 2037 void *hcpu) 2038 { 2039 xfs_icsb_cnts_t *cntp; 2040 xfs_mount_t *mp; 2041 2042 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2043 cntp = (xfs_icsb_cnts_t *) 2044 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2045 switch (action) { 2046 case CPU_UP_PREPARE: 2047 case CPU_UP_PREPARE_FROZEN: 2048 /* Easy Case - initialize the area and locks, and 2049 * then rebalance when online does everything else for us. */ 2050 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2051 break; 2052 case CPU_ONLINE: 2053 case CPU_ONLINE_FROZEN: 2054 xfs_icsb_lock(mp); 2055 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2056 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2057 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2058 xfs_icsb_unlock(mp); 2059 break; 2060 case CPU_DEAD: 2061 case CPU_DEAD_FROZEN: 2062 /* Disable all the counters, then fold the dead cpu's 2063 * count into the total on the global superblock and 2064 * re-enable the counters. */ 2065 xfs_icsb_lock(mp); 2066 spin_lock(&mp->m_sb_lock); 2067 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2068 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2069 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2070 2071 mp->m_sb.sb_icount += cntp->icsb_icount; 2072 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2073 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2074 2075 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2076 2077 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2078 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2079 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2080 spin_unlock(&mp->m_sb_lock); 2081 xfs_icsb_unlock(mp); 2082 break; 2083 } 2084 2085 return NOTIFY_OK; 2086 } 2087 #endif /* CONFIG_HOTPLUG_CPU */ 2088 2089 int 2090 xfs_icsb_init_counters( 2091 xfs_mount_t *mp) 2092 { 2093 xfs_icsb_cnts_t *cntp; 2094 int i; 2095 2096 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2097 if (mp->m_sb_cnts == NULL) 2098 return -ENOMEM; 2099 2100 #ifdef CONFIG_HOTPLUG_CPU 2101 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2102 mp->m_icsb_notifier.priority = 0; 2103 register_hotcpu_notifier(&mp->m_icsb_notifier); 2104 #endif /* CONFIG_HOTPLUG_CPU */ 2105 2106 for_each_online_cpu(i) { 2107 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2108 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2109 } 2110 2111 mutex_init(&mp->m_icsb_mutex); 2112 2113 /* 2114 * start with all counters disabled so that the 2115 * initial balance kicks us off correctly 2116 */ 2117 mp->m_icsb_counters = -1; 2118 return 0; 2119 } 2120 2121 void 2122 xfs_icsb_reinit_counters( 2123 xfs_mount_t *mp) 2124 { 2125 xfs_icsb_lock(mp); 2126 /* 2127 * start with all counters disabled so that the 2128 * initial balance kicks us off correctly 2129 */ 2130 mp->m_icsb_counters = -1; 2131 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2132 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2133 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2134 xfs_icsb_unlock(mp); 2135 } 2136 2137 void 2138 xfs_icsb_destroy_counters( 2139 xfs_mount_t *mp) 2140 { 2141 if (mp->m_sb_cnts) { 2142 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2143 free_percpu(mp->m_sb_cnts); 2144 } 2145 mutex_destroy(&mp->m_icsb_mutex); 2146 } 2147 2148 STATIC void 2149 xfs_icsb_lock_cntr( 2150 xfs_icsb_cnts_t *icsbp) 2151 { 2152 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2153 ndelay(1000); 2154 } 2155 } 2156 2157 STATIC void 2158 xfs_icsb_unlock_cntr( 2159 xfs_icsb_cnts_t *icsbp) 2160 { 2161 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2162 } 2163 2164 2165 STATIC void 2166 xfs_icsb_lock_all_counters( 2167 xfs_mount_t *mp) 2168 { 2169 xfs_icsb_cnts_t *cntp; 2170 int i; 2171 2172 for_each_online_cpu(i) { 2173 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2174 xfs_icsb_lock_cntr(cntp); 2175 } 2176 } 2177 2178 STATIC void 2179 xfs_icsb_unlock_all_counters( 2180 xfs_mount_t *mp) 2181 { 2182 xfs_icsb_cnts_t *cntp; 2183 int i; 2184 2185 for_each_online_cpu(i) { 2186 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2187 xfs_icsb_unlock_cntr(cntp); 2188 } 2189 } 2190 2191 STATIC void 2192 xfs_icsb_count( 2193 xfs_mount_t *mp, 2194 xfs_icsb_cnts_t *cnt, 2195 int flags) 2196 { 2197 xfs_icsb_cnts_t *cntp; 2198 int i; 2199 2200 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2201 2202 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2203 xfs_icsb_lock_all_counters(mp); 2204 2205 for_each_online_cpu(i) { 2206 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2207 cnt->icsb_icount += cntp->icsb_icount; 2208 cnt->icsb_ifree += cntp->icsb_ifree; 2209 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2210 } 2211 2212 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2213 xfs_icsb_unlock_all_counters(mp); 2214 } 2215 2216 STATIC int 2217 xfs_icsb_counter_disabled( 2218 xfs_mount_t *mp, 2219 xfs_sb_field_t field) 2220 { 2221 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2222 return test_bit(field, &mp->m_icsb_counters); 2223 } 2224 2225 STATIC void 2226 xfs_icsb_disable_counter( 2227 xfs_mount_t *mp, 2228 xfs_sb_field_t field) 2229 { 2230 xfs_icsb_cnts_t cnt; 2231 2232 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2233 2234 /* 2235 * If we are already disabled, then there is nothing to do 2236 * here. We check before locking all the counters to avoid 2237 * the expensive lock operation when being called in the 2238 * slow path and the counter is already disabled. This is 2239 * safe because the only time we set or clear this state is under 2240 * the m_icsb_mutex. 2241 */ 2242 if (xfs_icsb_counter_disabled(mp, field)) 2243 return; 2244 2245 xfs_icsb_lock_all_counters(mp); 2246 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2247 /* drain back to superblock */ 2248 2249 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2250 switch(field) { 2251 case XFS_SBS_ICOUNT: 2252 mp->m_sb.sb_icount = cnt.icsb_icount; 2253 break; 2254 case XFS_SBS_IFREE: 2255 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2256 break; 2257 case XFS_SBS_FDBLOCKS: 2258 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2259 break; 2260 default: 2261 BUG(); 2262 } 2263 } 2264 2265 xfs_icsb_unlock_all_counters(mp); 2266 } 2267 2268 STATIC void 2269 xfs_icsb_enable_counter( 2270 xfs_mount_t *mp, 2271 xfs_sb_field_t field, 2272 uint64_t count, 2273 uint64_t resid) 2274 { 2275 xfs_icsb_cnts_t *cntp; 2276 int i; 2277 2278 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2279 2280 xfs_icsb_lock_all_counters(mp); 2281 for_each_online_cpu(i) { 2282 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2283 switch (field) { 2284 case XFS_SBS_ICOUNT: 2285 cntp->icsb_icount = count + resid; 2286 break; 2287 case XFS_SBS_IFREE: 2288 cntp->icsb_ifree = count + resid; 2289 break; 2290 case XFS_SBS_FDBLOCKS: 2291 cntp->icsb_fdblocks = count + resid; 2292 break; 2293 default: 2294 BUG(); 2295 break; 2296 } 2297 resid = 0; 2298 } 2299 clear_bit(field, &mp->m_icsb_counters); 2300 xfs_icsb_unlock_all_counters(mp); 2301 } 2302 2303 void 2304 xfs_icsb_sync_counters_locked( 2305 xfs_mount_t *mp, 2306 int flags) 2307 { 2308 xfs_icsb_cnts_t cnt; 2309 2310 xfs_icsb_count(mp, &cnt, flags); 2311 2312 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2313 mp->m_sb.sb_icount = cnt.icsb_icount; 2314 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2315 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2316 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2317 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2318 } 2319 2320 /* 2321 * Accurate update of per-cpu counters to incore superblock 2322 */ 2323 void 2324 xfs_icsb_sync_counters( 2325 xfs_mount_t *mp, 2326 int flags) 2327 { 2328 spin_lock(&mp->m_sb_lock); 2329 xfs_icsb_sync_counters_locked(mp, flags); 2330 spin_unlock(&mp->m_sb_lock); 2331 } 2332 2333 /* 2334 * Balance and enable/disable counters as necessary. 2335 * 2336 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2337 * chosen to be the same number as single on disk allocation chunk per CPU, and 2338 * free blocks is something far enough zero that we aren't going thrash when we 2339 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2340 * prevent looping endlessly when xfs_alloc_space asks for more than will 2341 * be distributed to a single CPU but each CPU has enough blocks to be 2342 * reenabled. 2343 * 2344 * Note that we can be called when counters are already disabled. 2345 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2346 * prevent locking every per-cpu counter needlessly. 2347 */ 2348 2349 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2350 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2351 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2352 STATIC void 2353 xfs_icsb_balance_counter_locked( 2354 xfs_mount_t *mp, 2355 xfs_sb_field_t field, 2356 int min_per_cpu) 2357 { 2358 uint64_t count, resid; 2359 int weight = num_online_cpus(); 2360 uint64_t min = (uint64_t)min_per_cpu; 2361 2362 /* disable counter and sync counter */ 2363 xfs_icsb_disable_counter(mp, field); 2364 2365 /* update counters - first CPU gets residual*/ 2366 switch (field) { 2367 case XFS_SBS_ICOUNT: 2368 count = mp->m_sb.sb_icount; 2369 resid = do_div(count, weight); 2370 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2371 return; 2372 break; 2373 case XFS_SBS_IFREE: 2374 count = mp->m_sb.sb_ifree; 2375 resid = do_div(count, weight); 2376 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2377 return; 2378 break; 2379 case XFS_SBS_FDBLOCKS: 2380 count = mp->m_sb.sb_fdblocks; 2381 resid = do_div(count, weight); 2382 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2383 return; 2384 break; 2385 default: 2386 BUG(); 2387 count = resid = 0; /* quiet, gcc */ 2388 break; 2389 } 2390 2391 xfs_icsb_enable_counter(mp, field, count, resid); 2392 } 2393 2394 STATIC void 2395 xfs_icsb_balance_counter( 2396 xfs_mount_t *mp, 2397 xfs_sb_field_t fields, 2398 int min_per_cpu) 2399 { 2400 spin_lock(&mp->m_sb_lock); 2401 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2402 spin_unlock(&mp->m_sb_lock); 2403 } 2404 2405 int 2406 xfs_icsb_modify_counters( 2407 xfs_mount_t *mp, 2408 xfs_sb_field_t field, 2409 int64_t delta, 2410 int rsvd) 2411 { 2412 xfs_icsb_cnts_t *icsbp; 2413 long long lcounter; /* long counter for 64 bit fields */ 2414 int ret = 0; 2415 2416 might_sleep(); 2417 again: 2418 preempt_disable(); 2419 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2420 2421 /* 2422 * if the counter is disabled, go to slow path 2423 */ 2424 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2425 goto slow_path; 2426 xfs_icsb_lock_cntr(icsbp); 2427 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2428 xfs_icsb_unlock_cntr(icsbp); 2429 goto slow_path; 2430 } 2431 2432 switch (field) { 2433 case XFS_SBS_ICOUNT: 2434 lcounter = icsbp->icsb_icount; 2435 lcounter += delta; 2436 if (unlikely(lcounter < 0)) 2437 goto balance_counter; 2438 icsbp->icsb_icount = lcounter; 2439 break; 2440 2441 case XFS_SBS_IFREE: 2442 lcounter = icsbp->icsb_ifree; 2443 lcounter += delta; 2444 if (unlikely(lcounter < 0)) 2445 goto balance_counter; 2446 icsbp->icsb_ifree = lcounter; 2447 break; 2448 2449 case XFS_SBS_FDBLOCKS: 2450 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2451 2452 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2453 lcounter += delta; 2454 if (unlikely(lcounter < 0)) 2455 goto balance_counter; 2456 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2457 break; 2458 default: 2459 BUG(); 2460 break; 2461 } 2462 xfs_icsb_unlock_cntr(icsbp); 2463 preempt_enable(); 2464 return 0; 2465 2466 slow_path: 2467 preempt_enable(); 2468 2469 /* 2470 * serialise with a mutex so we don't burn lots of cpu on 2471 * the superblock lock. We still need to hold the superblock 2472 * lock, however, when we modify the global structures. 2473 */ 2474 xfs_icsb_lock(mp); 2475 2476 /* 2477 * Now running atomically. 2478 * 2479 * If the counter is enabled, someone has beaten us to rebalancing. 2480 * Drop the lock and try again in the fast path.... 2481 */ 2482 if (!(xfs_icsb_counter_disabled(mp, field))) { 2483 xfs_icsb_unlock(mp); 2484 goto again; 2485 } 2486 2487 /* 2488 * The counter is currently disabled. Because we are 2489 * running atomically here, we know a rebalance cannot 2490 * be in progress. Hence we can go straight to operating 2491 * on the global superblock. We do not call xfs_mod_incore_sb() 2492 * here even though we need to get the m_sb_lock. Doing so 2493 * will cause us to re-enter this function and deadlock. 2494 * Hence we get the m_sb_lock ourselves and then call 2495 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2496 * directly on the global counters. 2497 */ 2498 spin_lock(&mp->m_sb_lock); 2499 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2500 spin_unlock(&mp->m_sb_lock); 2501 2502 /* 2503 * Now that we've modified the global superblock, we 2504 * may be able to re-enable the distributed counters 2505 * (e.g. lots of space just got freed). After that 2506 * we are done. 2507 */ 2508 if (ret != ENOSPC) 2509 xfs_icsb_balance_counter(mp, field, 0); 2510 xfs_icsb_unlock(mp); 2511 return ret; 2512 2513 balance_counter: 2514 xfs_icsb_unlock_cntr(icsbp); 2515 preempt_enable(); 2516 2517 /* 2518 * We may have multiple threads here if multiple per-cpu 2519 * counters run dry at the same time. This will mean we can 2520 * do more balances than strictly necessary but it is not 2521 * the common slowpath case. 2522 */ 2523 xfs_icsb_lock(mp); 2524 2525 /* 2526 * running atomically. 2527 * 2528 * This will leave the counter in the correct state for future 2529 * accesses. After the rebalance, we simply try again and our retry 2530 * will either succeed through the fast path or slow path without 2531 * another balance operation being required. 2532 */ 2533 xfs_icsb_balance_counter(mp, field, delta); 2534 xfs_icsb_unlock(mp); 2535 goto again; 2536 } 2537 2538 #endif 2539