1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "xfs_metafile.h" 39 #include "xfs_rtgroup.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtrefcount_btree.h" 42 #include "scrub/stats.h" 43 #include "xfs_zone_alloc.h" 44 45 static DEFINE_MUTEX(xfs_uuid_table_mutex); 46 static int xfs_uuid_table_size; 47 static uuid_t *xfs_uuid_table; 48 49 void 50 xfs_uuid_table_free(void) 51 { 52 if (xfs_uuid_table_size == 0) 53 return; 54 kfree(xfs_uuid_table); 55 xfs_uuid_table = NULL; 56 xfs_uuid_table_size = 0; 57 } 58 59 /* 60 * See if the UUID is unique among mounted XFS filesystems. 61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 62 */ 63 STATIC int 64 xfs_uuid_mount( 65 struct xfs_mount *mp) 66 { 67 uuid_t *uuid = &mp->m_sb.sb_uuid; 68 int hole, i; 69 70 /* Publish UUID in struct super_block */ 71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 72 73 if (xfs_has_nouuid(mp)) 74 return 0; 75 76 if (uuid_is_null(uuid)) { 77 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 78 return -EINVAL; 79 } 80 81 mutex_lock(&xfs_uuid_table_mutex); 82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 83 if (uuid_is_null(&xfs_uuid_table[i])) { 84 hole = i; 85 continue; 86 } 87 if (uuid_equal(uuid, &xfs_uuid_table[i])) 88 goto out_duplicate; 89 } 90 91 if (hole < 0) { 92 xfs_uuid_table = krealloc(xfs_uuid_table, 93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 94 GFP_KERNEL | __GFP_NOFAIL); 95 hole = xfs_uuid_table_size++; 96 } 97 xfs_uuid_table[hole] = *uuid; 98 mutex_unlock(&xfs_uuid_table_mutex); 99 100 return 0; 101 102 out_duplicate: 103 mutex_unlock(&xfs_uuid_table_mutex); 104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 105 return -EINVAL; 106 } 107 108 STATIC void 109 xfs_uuid_unmount( 110 struct xfs_mount *mp) 111 { 112 uuid_t *uuid = &mp->m_sb.sb_uuid; 113 int i; 114 115 if (xfs_has_nouuid(mp)) 116 return; 117 118 mutex_lock(&xfs_uuid_table_mutex); 119 for (i = 0; i < xfs_uuid_table_size; i++) { 120 if (uuid_is_null(&xfs_uuid_table[i])) 121 continue; 122 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 123 continue; 124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 125 break; 126 } 127 ASSERT(i < xfs_uuid_table_size); 128 mutex_unlock(&xfs_uuid_table_mutex); 129 } 130 131 /* 132 * Check size of device based on the (data/realtime) block count. 133 * Note: this check is used by the growfs code as well as mount. 134 */ 135 int 136 xfs_sb_validate_fsb_count( 137 xfs_sb_t *sbp, 138 uint64_t nblocks) 139 { 140 uint64_t max_bytes; 141 142 ASSERT(sbp->sb_blocklog >= BBSHIFT); 143 144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 145 return -EFBIG; 146 147 /* Limited by ULONG_MAX of page cache index */ 148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 149 return -EFBIG; 150 return 0; 151 } 152 153 /* 154 * xfs_readsb 155 * 156 * Does the initial read of the superblock. 157 */ 158 int 159 xfs_readsb( 160 struct xfs_mount *mp, 161 int flags) 162 { 163 unsigned int sector_size; 164 struct xfs_buf *bp; 165 struct xfs_sb *sbp = &mp->m_sb; 166 int error; 167 int loud = !(flags & XFS_MFSI_QUIET); 168 const struct xfs_buf_ops *buf_ops; 169 170 ASSERT(mp->m_sb_bp == NULL); 171 ASSERT(mp->m_ddev_targp != NULL); 172 173 /* 174 * In the first pass, use the device sector size to just read enough 175 * of the superblock to extract the XFS sector size. 176 * 177 * The device sector size must be smaller than or equal to the XFS 178 * sector size and thus we can always read the superblock. Once we know 179 * the XFS sector size, re-read it and run the buffer verifier. 180 */ 181 sector_size = mp->m_ddev_targp->bt_logical_sectorsize; 182 buf_ops = NULL; 183 184 reread: 185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 186 BTOBB(sector_size), &bp, buf_ops); 187 if (error) { 188 if (loud) 189 xfs_warn(mp, "SB validate failed with error %d.", error); 190 /* bad CRC means corrupted metadata */ 191 if (error == -EFSBADCRC) 192 error = -EFSCORRUPTED; 193 return error; 194 } 195 196 /* 197 * Initialize the mount structure from the superblock. 198 */ 199 xfs_sb_from_disk(sbp, bp->b_addr); 200 201 /* 202 * If we haven't validated the superblock, do so now before we try 203 * to check the sector size and reread the superblock appropriately. 204 */ 205 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 206 if (loud) 207 xfs_warn(mp, "Invalid superblock magic number"); 208 error = -EINVAL; 209 goto release_buf; 210 } 211 212 /* 213 * We must be able to do sector-sized and sector-aligned IO. 214 */ 215 if (sector_size > sbp->sb_sectsize) { 216 if (loud) 217 xfs_warn(mp, "device supports %u byte sectors (not %u)", 218 sector_size, sbp->sb_sectsize); 219 error = -ENOSYS; 220 goto release_buf; 221 } 222 223 if (buf_ops == NULL) { 224 /* 225 * Re-read the superblock so the buffer is correctly sized, 226 * and properly verified. 227 */ 228 xfs_buf_relse(bp); 229 sector_size = sbp->sb_sectsize; 230 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 231 goto reread; 232 } 233 234 mp->m_features |= xfs_sb_version_to_features(sbp); 235 xfs_reinit_percpu_counters(mp); 236 237 /* 238 * If logged xattrs are enabled after log recovery finishes, then set 239 * the opstate so that log recovery will work properly. 240 */ 241 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 242 xfs_set_using_logged_xattrs(mp); 243 244 /* no need to be quiet anymore, so reset the buf ops */ 245 bp->b_ops = &xfs_sb_buf_ops; 246 247 /* 248 * Keep a pointer of the sb buffer around instead of caching it in the 249 * buffer cache because we access it frequently. 250 */ 251 mp->m_sb_bp = bp; 252 xfs_buf_unlock(bp); 253 return 0; 254 255 release_buf: 256 xfs_buf_relse(bp); 257 return error; 258 } 259 260 /* 261 * If the sunit/swidth change would move the precomputed root inode value, we 262 * must reject the ondisk change because repair will stumble over that. 263 * However, we allow the mount to proceed because we never rejected this 264 * combination before. Returns true to update the sb, false otherwise. 265 */ 266 static inline int 267 xfs_check_new_dalign( 268 struct xfs_mount *mp, 269 int new_dalign, 270 bool *update_sb) 271 { 272 struct xfs_sb *sbp = &mp->m_sb; 273 xfs_ino_t calc_ino; 274 275 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 276 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 277 278 if (sbp->sb_rootino == calc_ino) { 279 *update_sb = true; 280 return 0; 281 } 282 283 xfs_warn(mp, 284 "Cannot change stripe alignment; would require moving root inode."); 285 286 /* 287 * XXX: Next time we add a new incompat feature, this should start 288 * returning -EINVAL to fail the mount. Until then, spit out a warning 289 * that we're ignoring the administrator's instructions. 290 */ 291 xfs_warn(mp, "Skipping superblock stripe alignment update."); 292 *update_sb = false; 293 return 0; 294 } 295 296 /* 297 * If we were provided with new sunit/swidth values as mount options, make sure 298 * that they pass basic alignment and superblock feature checks, and convert 299 * them into the same units (FSB) that everything else expects. This step 300 * /must/ be done before computing the inode geometry. 301 */ 302 STATIC int 303 xfs_validate_new_dalign( 304 struct xfs_mount *mp) 305 { 306 if (mp->m_dalign == 0) 307 return 0; 308 309 /* 310 * If stripe unit and stripe width are not multiples 311 * of the fs blocksize turn off alignment. 312 */ 313 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 314 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 315 xfs_warn(mp, 316 "alignment check failed: sunit/swidth vs. blocksize(%d)", 317 mp->m_sb.sb_blocksize); 318 return -EINVAL; 319 } 320 321 /* 322 * Convert the stripe unit and width to FSBs. 323 */ 324 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 325 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 326 xfs_warn(mp, 327 "alignment check failed: sunit/swidth vs. agsize(%d)", 328 mp->m_sb.sb_agblocks); 329 return -EINVAL; 330 } 331 332 if (!mp->m_dalign) { 333 xfs_warn(mp, 334 "alignment check failed: sunit(%d) less than bsize(%d)", 335 mp->m_dalign, mp->m_sb.sb_blocksize); 336 return -EINVAL; 337 } 338 339 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 340 341 if (!xfs_has_dalign(mp)) { 342 xfs_warn(mp, 343 "cannot change alignment: superblock does not support data alignment"); 344 return -EINVAL; 345 } 346 347 return 0; 348 } 349 350 /* Update alignment values based on mount options and sb values. */ 351 STATIC int 352 xfs_update_alignment( 353 struct xfs_mount *mp) 354 { 355 struct xfs_sb *sbp = &mp->m_sb; 356 357 if (mp->m_dalign) { 358 bool update_sb; 359 int error; 360 361 if (sbp->sb_unit == mp->m_dalign && 362 sbp->sb_width == mp->m_swidth) 363 return 0; 364 365 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 366 if (error || !update_sb) 367 return error; 368 369 sbp->sb_unit = mp->m_dalign; 370 sbp->sb_width = mp->m_swidth; 371 mp->m_update_sb = true; 372 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 373 mp->m_dalign = sbp->sb_unit; 374 mp->m_swidth = sbp->sb_width; 375 } 376 377 return 0; 378 } 379 380 /* 381 * precalculate the low space thresholds for dynamic speculative preallocation. 382 */ 383 void 384 xfs_set_low_space_thresholds( 385 struct xfs_mount *mp) 386 { 387 uint64_t dblocks = mp->m_sb.sb_dblocks; 388 uint64_t rtexts = mp->m_sb.sb_rextents; 389 int i; 390 391 do_div(dblocks, 100); 392 do_div(rtexts, 100); 393 394 for (i = 0; i < XFS_LOWSP_MAX; i++) { 395 mp->m_low_space[i] = dblocks * (i + 1); 396 mp->m_low_rtexts[i] = rtexts * (i + 1); 397 } 398 } 399 400 /* 401 * Check that the data (and log if separate) is an ok size. 402 */ 403 STATIC int 404 xfs_check_sizes( 405 struct xfs_mount *mp) 406 { 407 struct xfs_buf *bp; 408 xfs_daddr_t d; 409 int error; 410 411 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 412 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 413 xfs_warn(mp, "filesystem size mismatch detected"); 414 return -EFBIG; 415 } 416 error = xfs_buf_read_uncached(mp->m_ddev_targp, 417 d - XFS_FSS_TO_BB(mp, 1), 418 XFS_FSS_TO_BB(mp, 1), &bp, NULL); 419 if (error) { 420 xfs_warn(mp, "last sector read failed"); 421 return error; 422 } 423 xfs_buf_relse(bp); 424 425 if (mp->m_logdev_targp == mp->m_ddev_targp) 426 return 0; 427 428 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 429 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 430 xfs_warn(mp, "log size mismatch detected"); 431 return -EFBIG; 432 } 433 error = xfs_buf_read_uncached(mp->m_logdev_targp, 434 d - XFS_FSB_TO_BB(mp, 1), 435 XFS_FSB_TO_BB(mp, 1), &bp, NULL); 436 if (error) { 437 xfs_warn(mp, "log device read failed"); 438 return error; 439 } 440 xfs_buf_relse(bp); 441 return 0; 442 } 443 444 /* 445 * Clear the quotaflags in memory and in the superblock. 446 */ 447 int 448 xfs_mount_reset_sbqflags( 449 struct xfs_mount *mp) 450 { 451 mp->m_qflags = 0; 452 453 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 454 if (mp->m_sb.sb_qflags == 0) 455 return 0; 456 spin_lock(&mp->m_sb_lock); 457 mp->m_sb.sb_qflags = 0; 458 spin_unlock(&mp->m_sb_lock); 459 460 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 461 return 0; 462 463 return xfs_sync_sb(mp, false); 464 } 465 466 static const char *const xfs_free_pool_name[] = { 467 [XC_FREE_BLOCKS] = "free blocks", 468 [XC_FREE_RTEXTENTS] = "free rt extents", 469 [XC_FREE_RTAVAILABLE] = "available rt extents", 470 }; 471 472 uint64_t 473 xfs_default_resblks( 474 struct xfs_mount *mp, 475 enum xfs_free_counter ctr) 476 { 477 switch (ctr) { 478 case XC_FREE_BLOCKS: 479 /* 480 * Default to 5% or 8192 FSBs of space reserved, whichever is 481 * smaller. 482 * 483 * This is intended to cover concurrent allocation transactions 484 * when we initially hit ENOSPC. These each require a 4 block 485 * reservation. Hence by default we cover roughly 2000 486 * concurrent allocation reservations. 487 */ 488 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL); 489 case XC_FREE_RTEXTENTS: 490 case XC_FREE_RTAVAILABLE: 491 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp)) 492 return xfs_zoned_default_resblks(mp, ctr); 493 return 0; 494 default: 495 ASSERT(0); 496 return 0; 497 } 498 } 499 500 /* Ensure the summary counts are correct. */ 501 STATIC int 502 xfs_check_summary_counts( 503 struct xfs_mount *mp) 504 { 505 int error = 0; 506 507 /* 508 * The AG0 superblock verifier rejects in-progress filesystems, 509 * so we should never see the flag set this far into mounting. 510 */ 511 if (mp->m_sb.sb_inprogress) { 512 xfs_err(mp, "sb_inprogress set after log recovery??"); 513 WARN_ON(1); 514 return -EFSCORRUPTED; 515 } 516 517 /* 518 * Now the log is mounted, we know if it was an unclean shutdown or 519 * not. If it was, with the first phase of recovery has completed, we 520 * have consistent AG blocks on disk. We have not recovered EFIs yet, 521 * but they are recovered transactionally in the second recovery phase 522 * later. 523 * 524 * If the log was clean when we mounted, we can check the summary 525 * counters. If any of them are obviously incorrect, we can recompute 526 * them from the AGF headers in the next step. 527 */ 528 if (xfs_is_clean(mp) && 529 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 530 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 531 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 532 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 533 534 /* 535 * We can safely re-initialise incore superblock counters from the 536 * per-ag data. These may not be correct if the filesystem was not 537 * cleanly unmounted, so we waited for recovery to finish before doing 538 * this. 539 * 540 * If the filesystem was cleanly unmounted or the previous check did 541 * not flag anything weird, then we can trust the values in the 542 * superblock to be correct and we don't need to do anything here. 543 * Otherwise, recalculate the summary counters. 544 */ 545 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 546 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 547 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 548 if (error) 549 return error; 550 } 551 552 /* 553 * Older kernels misused sb_frextents to reflect both incore 554 * reservations made by running transactions and the actual count of 555 * free rt extents in the ondisk metadata. Transactions committed 556 * during runtime can therefore contain a superblock update that 557 * undercounts the number of free rt extents tracked in the rt bitmap. 558 * A clean unmount record will have the correct frextents value since 559 * there can be no other transactions running at that point. 560 * 561 * If we're mounting the rt volume after recovering the log, recompute 562 * frextents from the rtbitmap file to fix the inconsistency. 563 */ 564 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) { 565 error = xfs_rtalloc_reinit_frextents(mp); 566 if (error) 567 return error; 568 } 569 570 return 0; 571 } 572 573 static void 574 xfs_unmount_check( 575 struct xfs_mount *mp) 576 { 577 if (xfs_is_shutdown(mp)) 578 return; 579 580 if (percpu_counter_sum(&mp->m_ifree) > 581 percpu_counter_sum(&mp->m_icount)) { 582 xfs_alert(mp, "ifree/icount mismatch at unmount"); 583 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 584 } 585 } 586 587 /* 588 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 589 * internal inode structures can be sitting in the CIL and AIL at this point, 590 * so we need to unpin them, write them back and/or reclaim them before unmount 591 * can proceed. In other words, callers are required to have inactivated all 592 * inodes. 593 * 594 * An inode cluster that has been freed can have its buffer still pinned in 595 * memory because the transaction is still sitting in a iclog. The stale inodes 596 * on that buffer will be pinned to the buffer until the transaction hits the 597 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 598 * may never see the pinned buffer, so nothing will push out the iclog and 599 * unpin the buffer. 600 * 601 * Hence we need to force the log to unpin everything first. However, log 602 * forces don't wait for the discards they issue to complete, so we have to 603 * explicitly wait for them to complete here as well. 604 * 605 * Then we can tell the world we are unmounting so that error handling knows 606 * that the filesystem is going away and we should error out anything that we 607 * have been retrying in the background. This will prevent never-ending 608 * retries in AIL pushing from hanging the unmount. 609 * 610 * Finally, we can push the AIL to clean all the remaining dirty objects, then 611 * reclaim the remaining inodes that are still in memory at this point in time. 612 */ 613 static void 614 xfs_unmount_flush_inodes( 615 struct xfs_mount *mp) 616 { 617 xfs_log_force(mp, XFS_LOG_SYNC); 618 xfs_extent_busy_wait_all(mp); 619 flush_workqueue(xfs_discard_wq); 620 621 xfs_set_unmounting(mp); 622 623 xfs_ail_push_all_sync(mp->m_ail); 624 xfs_inodegc_stop(mp); 625 cancel_delayed_work_sync(&mp->m_reclaim_work); 626 xfs_reclaim_inodes(mp); 627 xfs_health_unmount(mp); 628 } 629 630 static void 631 xfs_mount_setup_inode_geom( 632 struct xfs_mount *mp) 633 { 634 struct xfs_ino_geometry *igeo = M_IGEO(mp); 635 636 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 637 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 638 639 xfs_ialloc_setup_geometry(mp); 640 } 641 642 /* Mount the metadata directory tree root. */ 643 STATIC int 644 xfs_mount_setup_metadir( 645 struct xfs_mount *mp) 646 { 647 int error; 648 649 /* Load the metadata directory root inode into memory. */ 650 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, 651 &mp->m_metadirip); 652 if (error) 653 xfs_warn(mp, "Failed to load metadir root directory, error %d", 654 error); 655 return error; 656 } 657 658 /* Compute maximum possible height for per-AG btree types for this fs. */ 659 static inline void 660 xfs_agbtree_compute_maxlevels( 661 struct xfs_mount *mp) 662 { 663 unsigned int levels; 664 665 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 666 levels = max(levels, mp->m_rmap_maxlevels); 667 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 668 } 669 670 /* Maximum atomic write IO size that the kernel allows. */ 671 static inline xfs_extlen_t xfs_calc_atomic_write_max(struct xfs_mount *mp) 672 { 673 return rounddown_pow_of_two(XFS_B_TO_FSB(mp, MAX_RW_COUNT)); 674 } 675 676 /* 677 * If the underlying device advertises atomic write support, limit the size of 678 * atomic writes to the greatest power-of-two factor of the group size so 679 * that every atomic write unit aligns with the start of every group. This is 680 * required so that the allocations for an atomic write will always be 681 * aligned compatibly with the alignment requirements of the storage. 682 * 683 * If the device doesn't advertise atomic writes, then there are no alignment 684 * restrictions and the largest out-of-place write we can do ourselves is the 685 * number of blocks that user files can allocate from any group. 686 */ 687 static xfs_extlen_t 688 xfs_calc_group_awu_max( 689 struct xfs_mount *mp, 690 enum xfs_group_type type) 691 { 692 struct xfs_groups *g = &mp->m_groups[type]; 693 struct xfs_buftarg *btp = xfs_group_type_buftarg(mp, type); 694 695 if (g->blocks == 0) 696 return 0; 697 if (btp && btp->bt_awu_min > 0) 698 return max_pow_of_two_factor(g->blocks); 699 return rounddown_pow_of_two(g->blocks); 700 } 701 702 /* Compute the maximum atomic write unit size for each section. */ 703 static inline void 704 xfs_calc_atomic_write_unit_max( 705 struct xfs_mount *mp, 706 enum xfs_group_type type) 707 { 708 struct xfs_groups *g = &mp->m_groups[type]; 709 710 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); 711 const xfs_extlen_t max_ioend = xfs_reflink_max_atomic_cow(mp); 712 const xfs_extlen_t max_gsize = xfs_calc_group_awu_max(mp, type); 713 714 g->awu_max = min3(max_write, max_ioend, max_gsize); 715 trace_xfs_calc_atomic_write_unit_max(mp, type, max_write, max_ioend, 716 max_gsize, g->awu_max); 717 } 718 719 /* 720 * Try to set the atomic write maximum to a new value that we got from 721 * userspace via mount option. 722 */ 723 int 724 xfs_set_max_atomic_write_opt( 725 struct xfs_mount *mp, 726 unsigned long long new_max_bytes) 727 { 728 const xfs_filblks_t new_max_fsbs = XFS_B_TO_FSBT(mp, new_max_bytes); 729 const xfs_extlen_t max_write = xfs_calc_atomic_write_max(mp); 730 const xfs_extlen_t max_group = 731 max(mp->m_groups[XG_TYPE_AG].blocks, 732 mp->m_groups[XG_TYPE_RTG].blocks); 733 const xfs_extlen_t max_group_write = 734 max(xfs_calc_group_awu_max(mp, XG_TYPE_AG), 735 xfs_calc_group_awu_max(mp, XG_TYPE_RTG)); 736 int error; 737 738 if (new_max_bytes == 0) 739 goto set_limit; 740 741 ASSERT(max_write <= U32_MAX); 742 743 /* generic_atomic_write_valid enforces power of two length */ 744 if (!is_power_of_2(new_max_bytes)) { 745 xfs_warn(mp, 746 "max atomic write size of %llu bytes is not a power of 2", 747 new_max_bytes); 748 return -EINVAL; 749 } 750 751 if (new_max_bytes & mp->m_blockmask) { 752 xfs_warn(mp, 753 "max atomic write size of %llu bytes not aligned with fsblock", 754 new_max_bytes); 755 return -EINVAL; 756 } 757 758 if (new_max_fsbs > max_write) { 759 xfs_warn(mp, 760 "max atomic write size of %lluk cannot be larger than max write size %lluk", 761 new_max_bytes >> 10, 762 XFS_FSB_TO_B(mp, max_write) >> 10); 763 return -EINVAL; 764 } 765 766 if (new_max_fsbs > max_group) { 767 xfs_warn(mp, 768 "max atomic write size of %lluk cannot be larger than allocation group size %lluk", 769 new_max_bytes >> 10, 770 XFS_FSB_TO_B(mp, max_group) >> 10); 771 return -EINVAL; 772 } 773 774 if (new_max_fsbs > max_group_write) { 775 xfs_warn(mp, 776 "max atomic write size of %lluk cannot be larger than max allocation group write size %lluk", 777 new_max_bytes >> 10, 778 XFS_FSB_TO_B(mp, max_group_write) >> 10); 779 return -EINVAL; 780 } 781 782 if (xfs_has_reflink(mp)) 783 goto set_limit; 784 785 if (new_max_fsbs == 1) { 786 if (mp->m_ddev_targp->bt_awu_max || 787 (mp->m_rtdev_targp && mp->m_rtdev_targp->bt_awu_max)) { 788 } else { 789 xfs_warn(mp, 790 "cannot support atomic writes of size %lluk with no reflink or HW support", 791 new_max_bytes >> 10); 792 return -EINVAL; 793 } 794 } else { 795 xfs_warn(mp, 796 "cannot support atomic writes of size %lluk with no reflink support", 797 new_max_bytes >> 10); 798 return -EINVAL; 799 } 800 801 set_limit: 802 error = xfs_calc_atomic_write_reservation(mp, new_max_fsbs); 803 if (error) { 804 xfs_warn(mp, 805 "cannot support completing atomic writes of %lluk", 806 new_max_bytes >> 10); 807 return error; 808 } 809 810 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_AG); 811 xfs_calc_atomic_write_unit_max(mp, XG_TYPE_RTG); 812 mp->m_awu_max_bytes = new_max_bytes; 813 return 0; 814 } 815 816 /* Compute maximum possible height for realtime btree types for this fs. */ 817 static inline void 818 xfs_rtbtree_compute_maxlevels( 819 struct xfs_mount *mp) 820 { 821 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, 822 mp->m_rtrefc_maxlevels); 823 } 824 825 /* 826 * This function does the following on an initial mount of a file system: 827 * - reads the superblock from disk and init the mount struct 828 * - if we're a 32-bit kernel, do a size check on the superblock 829 * so we don't mount terabyte filesystems 830 * - init mount struct realtime fields 831 * - allocate inode hash table for fs 832 * - init directory manager 833 * - perform recovery and init the log manager 834 */ 835 int 836 xfs_mountfs( 837 struct xfs_mount *mp) 838 { 839 struct xfs_sb *sbp = &(mp->m_sb); 840 struct xfs_inode *rip; 841 struct xfs_ino_geometry *igeo = M_IGEO(mp); 842 uint quotamount = 0; 843 uint quotaflags = 0; 844 int error = 0; 845 int i; 846 847 xfs_sb_mount_common(mp, sbp); 848 849 /* 850 * Check for a mismatched features2 values. Older kernels read & wrote 851 * into the wrong sb offset for sb_features2 on some platforms due to 852 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 853 * which made older superblock reading/writing routines swap it as a 854 * 64-bit value. 855 * 856 * For backwards compatibility, we make both slots equal. 857 * 858 * If we detect a mismatched field, we OR the set bits into the existing 859 * features2 field in case it has already been modified; we don't want 860 * to lose any features. We then update the bad location with the ORed 861 * value so that older kernels will see any features2 flags. The 862 * superblock writeback code ensures the new sb_features2 is copied to 863 * sb_bad_features2 before it is logged or written to disk. 864 */ 865 if (xfs_sb_has_mismatched_features2(sbp)) { 866 xfs_warn(mp, "correcting sb_features alignment problem"); 867 sbp->sb_features2 |= sbp->sb_bad_features2; 868 mp->m_update_sb = true; 869 } 870 871 872 /* always use v2 inodes by default now */ 873 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 874 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 875 mp->m_features |= XFS_FEAT_NLINK; 876 mp->m_update_sb = true; 877 } 878 879 /* 880 * If we were given new sunit/swidth options, do some basic validation 881 * checks and convert the incore dalign and swidth values to the 882 * same units (FSB) that everything else uses. This /must/ happen 883 * before computing the inode geometry. 884 */ 885 error = xfs_validate_new_dalign(mp); 886 if (error) 887 goto out; 888 889 xfs_alloc_compute_maxlevels(mp); 890 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 891 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 892 xfs_mount_setup_inode_geom(mp); 893 xfs_rmapbt_compute_maxlevels(mp); 894 xfs_rtrmapbt_compute_maxlevels(mp); 895 xfs_refcountbt_compute_maxlevels(mp); 896 xfs_rtrefcountbt_compute_maxlevels(mp); 897 898 xfs_agbtree_compute_maxlevels(mp); 899 xfs_rtbtree_compute_maxlevels(mp); 900 901 /* 902 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 903 * is NOT aligned turn off m_dalign since allocator alignment is within 904 * an ag, therefore ag has to be aligned at stripe boundary. Note that 905 * we must compute the free space and rmap btree geometry before doing 906 * this. 907 */ 908 error = xfs_update_alignment(mp); 909 if (error) 910 goto out; 911 912 /* enable fail_at_unmount as default */ 913 mp->m_fail_unmount = true; 914 915 error = xfs_mount_sysfs_init(mp); 916 if (error) 917 goto out_remove_scrub_stats; 918 919 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 920 921 error = xfs_errortag_init(mp); 922 if (error) 923 goto out_remove_sysfs; 924 925 error = xfs_uuid_mount(mp); 926 if (error) 927 goto out_remove_errortag; 928 929 /* 930 * Update the preferred write size based on the information from the 931 * on-disk superblock. 932 */ 933 mp->m_allocsize_log = 934 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 935 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 936 937 /* set the low space thresholds for dynamic preallocation */ 938 xfs_set_low_space_thresholds(mp); 939 940 /* 941 * If enabled, sparse inode chunk alignment is expected to match the 942 * cluster size. Full inode chunk alignment must match the chunk size, 943 * but that is checked on sb read verification... 944 */ 945 if (xfs_has_sparseinodes(mp) && 946 mp->m_sb.sb_spino_align != 947 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 948 xfs_warn(mp, 949 "Sparse inode block alignment (%u) must match cluster size (%llu).", 950 mp->m_sb.sb_spino_align, 951 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 952 error = -EINVAL; 953 goto out_remove_uuid; 954 } 955 956 /* 957 * Check that the data (and log if separate) is an ok size. 958 */ 959 error = xfs_check_sizes(mp); 960 if (error) 961 goto out_remove_uuid; 962 963 /* 964 * Initialize realtime fields in the mount structure 965 */ 966 error = xfs_rtmount_init(mp); 967 if (error) { 968 xfs_warn(mp, "RT mount failed"); 969 goto out_remove_uuid; 970 } 971 972 /* 973 * Copies the low order bits of the timestamp and the randomly 974 * set "sequence" number out of a UUID. 975 */ 976 mp->m_fixedfsid[0] = 977 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 978 get_unaligned_be16(&sbp->sb_uuid.b[4]); 979 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 980 981 error = xfs_da_mount(mp); 982 if (error) { 983 xfs_warn(mp, "Failed dir/attr init: %d", error); 984 goto out_remove_uuid; 985 } 986 987 /* 988 * Initialize the precomputed transaction reservations values. 989 */ 990 xfs_trans_init(mp); 991 992 /* 993 * Allocate and initialize the per-ag data. 994 */ 995 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 996 mp->m_sb.sb_dblocks, &mp->m_maxagi); 997 if (error) { 998 xfs_warn(mp, "Failed per-ag init: %d", error); 999 goto out_free_dir; 1000 } 1001 1002 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, 1003 mp->m_sb.sb_rextents); 1004 if (error) { 1005 xfs_warn(mp, "Failed rtgroup init: %d", error); 1006 goto out_free_perag; 1007 } 1008 1009 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 1010 xfs_warn(mp, "no log defined"); 1011 error = -EFSCORRUPTED; 1012 goto out_free_rtgroup; 1013 } 1014 1015 error = xfs_inodegc_register_shrinker(mp); 1016 if (error) 1017 goto out_fail_wait; 1018 1019 /* 1020 * If we're resuming quota status, pick up the preliminary qflags from 1021 * the ondisk superblock so that we know if we should recover dquots. 1022 */ 1023 if (xfs_is_resuming_quotaon(mp)) 1024 xfs_qm_resume_quotaon(mp); 1025 1026 /* 1027 * Log's mount-time initialization. The first part of recovery can place 1028 * some items on the AIL, to be handled when recovery is finished or 1029 * cancelled. 1030 */ 1031 error = xfs_log_mount(mp, mp->m_logdev_targp, 1032 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1033 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1034 if (error) { 1035 xfs_warn(mp, "log mount failed"); 1036 goto out_inodegc_shrinker; 1037 } 1038 1039 /* 1040 * If we're resuming quota status and recovered the log, re-sample the 1041 * qflags from the ondisk superblock now that we've recovered it, just 1042 * in case someone shut down enforcement just before a crash. 1043 */ 1044 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log)) 1045 xfs_qm_resume_quotaon(mp); 1046 1047 /* 1048 * If logged xattrs are still enabled after log recovery finishes, then 1049 * they'll be available until unmount. Otherwise, turn them off. 1050 */ 1051 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 1052 xfs_set_using_logged_xattrs(mp); 1053 else 1054 xfs_clear_using_logged_xattrs(mp); 1055 1056 /* Enable background inode inactivation workers. */ 1057 xfs_inodegc_start(mp); 1058 xfs_blockgc_start(mp); 1059 1060 /* 1061 * Now that we've recovered any pending superblock feature bit 1062 * additions, we can finish setting up the attr2 behaviour for the 1063 * mount. The noattr2 option overrides the superblock flag, so only 1064 * check the superblock feature flag if the mount option is not set. 1065 */ 1066 if (xfs_has_noattr2(mp)) { 1067 mp->m_features &= ~XFS_FEAT_ATTR2; 1068 } else if (!xfs_has_attr2(mp) && 1069 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 1070 mp->m_features |= XFS_FEAT_ATTR2; 1071 } 1072 1073 if (xfs_has_metadir(mp)) { 1074 error = xfs_mount_setup_metadir(mp); 1075 if (error) 1076 goto out_free_metadir; 1077 } 1078 1079 /* 1080 * Get and sanity-check the root inode. 1081 * Save the pointer to it in the mount structure. 1082 */ 1083 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 1084 XFS_ILOCK_EXCL, &rip); 1085 if (error) { 1086 xfs_warn(mp, 1087 "Failed to read root inode 0x%llx, error %d", 1088 sbp->sb_rootino, -error); 1089 goto out_free_metadir; 1090 } 1091 1092 ASSERT(rip != NULL); 1093 1094 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 1095 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1096 (unsigned long long)rip->i_ino); 1097 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1098 error = -EFSCORRUPTED; 1099 goto out_rele_rip; 1100 } 1101 mp->m_rootip = rip; /* save it */ 1102 1103 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1104 1105 /* 1106 * Initialize realtime inode pointers in the mount structure 1107 */ 1108 error = xfs_rtmount_inodes(mp); 1109 if (error) { 1110 /* 1111 * Free up the root inode. 1112 */ 1113 xfs_warn(mp, "failed to read RT inodes"); 1114 goto out_rele_rip; 1115 } 1116 1117 /* Make sure the summary counts are ok. */ 1118 error = xfs_check_summary_counts(mp); 1119 if (error) 1120 goto out_rtunmount; 1121 1122 /* 1123 * If this is a read-only mount defer the superblock updates until 1124 * the next remount into writeable mode. Otherwise we would never 1125 * perform the update e.g. for the root filesystem. 1126 */ 1127 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 1128 error = xfs_sync_sb(mp, false); 1129 if (error) { 1130 xfs_warn(mp, "failed to write sb changes"); 1131 goto out_rtunmount; 1132 } 1133 } 1134 1135 /* 1136 * Initialise the XFS quota management subsystem for this mount 1137 */ 1138 if (XFS_IS_QUOTA_ON(mp)) { 1139 error = xfs_qm_newmount(mp, "amount, "aflags); 1140 if (error) 1141 goto out_rtunmount; 1142 } else { 1143 /* 1144 * If a file system had quotas running earlier, but decided to 1145 * mount without -o uquota/pquota/gquota options, revoke the 1146 * quotachecked license. 1147 */ 1148 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1149 xfs_notice(mp, "resetting quota flags"); 1150 error = xfs_mount_reset_sbqflags(mp); 1151 if (error) 1152 goto out_rtunmount; 1153 } 1154 } 1155 1156 /* 1157 * Finish recovering the file system. This part needed to be delayed 1158 * until after the root and real-time bitmap inodes were consistently 1159 * read in. Temporarily create per-AG space reservations for metadata 1160 * btree shape changes because space freeing transactions (for inode 1161 * inactivation) require the per-AG reservation in lieu of reserving 1162 * blocks. 1163 */ 1164 error = xfs_fs_reserve_ag_blocks(mp); 1165 if (error && error == -ENOSPC) 1166 xfs_warn(mp, 1167 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 1168 error = xfs_log_mount_finish(mp); 1169 xfs_fs_unreserve_ag_blocks(mp); 1170 if (error) { 1171 xfs_warn(mp, "log mount finish failed"); 1172 goto out_rtunmount; 1173 } 1174 1175 /* 1176 * Now the log is fully replayed, we can transition to full read-only 1177 * mode for read-only mounts. This will sync all the metadata and clean 1178 * the log so that the recovery we just performed does not have to be 1179 * replayed again on the next mount. 1180 * 1181 * We use the same quiesce mechanism as the rw->ro remount, as they are 1182 * semantically identical operations. 1183 */ 1184 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 1185 xfs_log_clean(mp); 1186 1187 if (xfs_has_zoned(mp)) { 1188 error = xfs_mount_zones(mp); 1189 if (error) 1190 goto out_rtunmount; 1191 } 1192 1193 /* 1194 * Complete the quota initialisation, post-log-replay component. 1195 */ 1196 if (quotamount) { 1197 ASSERT(mp->m_qflags == 0); 1198 mp->m_qflags = quotaflags; 1199 1200 xfs_qm_mount_quotas(mp); 1201 } 1202 1203 /* 1204 * Now we are mounted, reserve a small amount of unused space for 1205 * privileged transactions. This is needed so that transaction 1206 * space required for critical operations can dip into this pool 1207 * when at ENOSPC. This is needed for operations like create with 1208 * attr, unwritten extent conversion at ENOSPC, garbage collection 1209 * etc. Data allocations are not allowed to use this reserved space. 1210 * 1211 * This may drive us straight to ENOSPC on mount, but that implies 1212 * we were already there on the last unmount. Warn if this occurs. 1213 */ 1214 if (!xfs_is_readonly(mp)) { 1215 for (i = 0; i < XC_FREE_NR; i++) { 1216 error = xfs_reserve_blocks(mp, i, 1217 xfs_default_resblks(mp, i)); 1218 if (error) 1219 xfs_warn(mp, 1220 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.", 1221 xfs_free_pool_name[i]); 1222 } 1223 1224 /* Reserve AG blocks for future btree expansion. */ 1225 error = xfs_fs_reserve_ag_blocks(mp); 1226 if (error && error != -ENOSPC) 1227 goto out_agresv; 1228 1229 xfs_zone_gc_start(mp); 1230 } 1231 1232 /* 1233 * Pre-calculate atomic write unit max. This involves computations 1234 * derived from transaction reservations, so we must do this after the 1235 * log is fully initialized. 1236 */ 1237 error = xfs_set_max_atomic_write_opt(mp, mp->m_awu_max_bytes); 1238 if (error) 1239 goto out_agresv; 1240 1241 return 0; 1242 1243 out_agresv: 1244 xfs_fs_unreserve_ag_blocks(mp); 1245 xfs_qm_unmount_quotas(mp); 1246 if (xfs_has_zoned(mp)) 1247 xfs_unmount_zones(mp); 1248 out_rtunmount: 1249 xfs_rtunmount_inodes(mp); 1250 out_rele_rip: 1251 xfs_irele(rip); 1252 /* Clean out dquots that might be in memory after quotacheck. */ 1253 xfs_qm_unmount(mp); 1254 out_free_metadir: 1255 if (mp->m_metadirip) 1256 xfs_irele(mp->m_metadirip); 1257 1258 /* 1259 * Inactivate all inodes that might still be in memory after a log 1260 * intent recovery failure so that reclaim can free them. Metadata 1261 * inodes and the root directory shouldn't need inactivation, but the 1262 * mount failed for some reason, so pull down all the state and flee. 1263 */ 1264 xfs_inodegc_flush(mp); 1265 1266 /* 1267 * Flush all inode reclamation work and flush the log. 1268 * We have to do this /after/ rtunmount and qm_unmount because those 1269 * two will have scheduled delayed reclaim for the rt/quota inodes. 1270 * 1271 * This is slightly different from the unmountfs call sequence 1272 * because we could be tearing down a partially set up mount. In 1273 * particular, if log_mount_finish fails we bail out without calling 1274 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1275 * quota inodes. 1276 */ 1277 xfs_unmount_flush_inodes(mp); 1278 xfs_log_mount_cancel(mp); 1279 out_inodegc_shrinker: 1280 shrinker_free(mp->m_inodegc_shrinker); 1281 out_fail_wait: 1282 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1283 xfs_buftarg_drain(mp->m_logdev_targp); 1284 xfs_buftarg_drain(mp->m_ddev_targp); 1285 out_free_rtgroup: 1286 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1287 out_free_perag: 1288 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1289 out_free_dir: 1290 xfs_da_unmount(mp); 1291 out_remove_uuid: 1292 xfs_uuid_unmount(mp); 1293 out_remove_errortag: 1294 xfs_errortag_del(mp); 1295 out_remove_sysfs: 1296 xfs_mount_sysfs_del(mp); 1297 out_remove_scrub_stats: 1298 xchk_stats_unregister(mp->m_scrub_stats); 1299 out: 1300 return error; 1301 } 1302 1303 /* 1304 * This flushes out the inodes,dquots and the superblock, unmounts the 1305 * log and makes sure that incore structures are freed. 1306 */ 1307 void 1308 xfs_unmountfs( 1309 struct xfs_mount *mp) 1310 { 1311 int error; 1312 1313 /* 1314 * Perform all on-disk metadata updates required to inactivate inodes 1315 * that the VFS evicted earlier in the unmount process. Freeing inodes 1316 * and discarding CoW fork preallocations can cause shape changes to 1317 * the free inode and refcount btrees, respectively, so we must finish 1318 * this before we discard the metadata space reservations. Metadata 1319 * inodes and the root directory do not require inactivation. 1320 */ 1321 xfs_inodegc_flush(mp); 1322 1323 xfs_blockgc_stop(mp); 1324 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate)) 1325 xfs_zone_gc_stop(mp); 1326 xfs_fs_unreserve_ag_blocks(mp); 1327 xfs_qm_unmount_quotas(mp); 1328 if (xfs_has_zoned(mp)) 1329 xfs_unmount_zones(mp); 1330 xfs_rtunmount_inodes(mp); 1331 xfs_irele(mp->m_rootip); 1332 if (mp->m_metadirip) 1333 xfs_irele(mp->m_metadirip); 1334 1335 xfs_unmount_flush_inodes(mp); 1336 1337 xfs_qm_unmount(mp); 1338 1339 /* 1340 * Unreserve any blocks we have so that when we unmount we don't account 1341 * the reserved free space as used. This is really only necessary for 1342 * lazy superblock counting because it trusts the incore superblock 1343 * counters to be absolutely correct on clean unmount. 1344 * 1345 * We don't bother correcting this elsewhere for lazy superblock 1346 * counting because on mount of an unclean filesystem we reconstruct the 1347 * correct counter value and this is irrelevant. 1348 * 1349 * For non-lazy counter filesystems, this doesn't matter at all because 1350 * we only every apply deltas to the superblock and hence the incore 1351 * value does not matter.... 1352 */ 1353 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0); 1354 if (error) 1355 xfs_warn(mp, "Unable to free reserved block pool. " 1356 "Freespace may not be correct on next mount."); 1357 xfs_unmount_check(mp); 1358 1359 /* 1360 * Indicate that it's ok to clear log incompat bits before cleaning 1361 * the log and writing the unmount record. 1362 */ 1363 xfs_set_done_with_log_incompat(mp); 1364 xfs_log_unmount(mp); 1365 xfs_da_unmount(mp); 1366 xfs_uuid_unmount(mp); 1367 1368 #if defined(DEBUG) 1369 xfs_errortag_clearall(mp); 1370 #endif 1371 shrinker_free(mp->m_inodegc_shrinker); 1372 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1373 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1374 xfs_errortag_del(mp); 1375 xchk_stats_unregister(mp->m_scrub_stats); 1376 xfs_mount_sysfs_del(mp); 1377 } 1378 1379 /* 1380 * Determine whether modifications can proceed. The caller specifies the minimum 1381 * freeze level for which modifications should not be allowed. This allows 1382 * certain operations to proceed while the freeze sequence is in progress, if 1383 * necessary. 1384 */ 1385 bool 1386 xfs_fs_writable( 1387 struct xfs_mount *mp, 1388 int level) 1389 { 1390 ASSERT(level > SB_UNFROZEN); 1391 if ((mp->m_super->s_writers.frozen >= level) || 1392 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1393 return false; 1394 1395 return true; 1396 } 1397 1398 /* 1399 * Estimate the amount of free space that is not available to userspace and is 1400 * not explicitly reserved from the incore fdblocks. This includes: 1401 * 1402 * - The minimum number of blocks needed to support splitting a bmap btree 1403 * - The blocks currently in use by the freespace btrees because they record 1404 * the actual blocks that will fill per-AG metadata space reservations 1405 */ 1406 uint64_t 1407 xfs_freecounter_unavailable( 1408 struct xfs_mount *mp, 1409 enum xfs_free_counter ctr) 1410 { 1411 if (ctr != XC_FREE_BLOCKS) 1412 return 0; 1413 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1414 } 1415 1416 void 1417 xfs_add_freecounter( 1418 struct xfs_mount *mp, 1419 enum xfs_free_counter ctr, 1420 uint64_t delta) 1421 { 1422 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1423 uint64_t res_used; 1424 1425 /* 1426 * If the reserve pool is depleted, put blocks back into it first. 1427 * Most of the time the pool is full. 1428 */ 1429 if (likely(counter->res_avail == counter->res_total)) { 1430 percpu_counter_add(&counter->count, delta); 1431 return; 1432 } 1433 1434 spin_lock(&mp->m_sb_lock); 1435 res_used = counter->res_total - counter->res_avail; 1436 if (res_used > delta) { 1437 counter->res_avail += delta; 1438 } else { 1439 delta -= res_used; 1440 counter->res_avail = counter->res_total; 1441 percpu_counter_add(&counter->count, delta); 1442 } 1443 spin_unlock(&mp->m_sb_lock); 1444 } 1445 1446 1447 /* Adjust in-core free blocks or RT extents. */ 1448 int 1449 xfs_dec_freecounter( 1450 struct xfs_mount *mp, 1451 enum xfs_free_counter ctr, 1452 uint64_t delta, 1453 bool rsvd) 1454 { 1455 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1456 s32 batch; 1457 1458 ASSERT(ctr < XC_FREE_NR); 1459 1460 /* 1461 * Taking blocks away, need to be more accurate the closer we 1462 * are to zero. 1463 * 1464 * If the counter has a value of less than 2 * max batch size, 1465 * then make everything serialise as we are real close to 1466 * ENOSPC. 1467 */ 1468 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH, 1469 XFS_FDBLOCKS_BATCH) < 0) 1470 batch = 1; 1471 else 1472 batch = XFS_FDBLOCKS_BATCH; 1473 1474 /* 1475 * Set aside allocbt blocks because these blocks are tracked as free 1476 * space but not available for allocation. Technically this means that a 1477 * single reservation cannot consume all remaining free space, but the 1478 * ratio of allocbt blocks to usable free blocks should be rather small. 1479 * The tradeoff without this is that filesystems that maintain high 1480 * perag block reservations can over reserve physical block availability 1481 * and fail physical allocation, which leads to much more serious 1482 * problems (i.e. transaction abort, pagecache discards, etc.) than 1483 * slightly premature -ENOSPC. 1484 */ 1485 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch); 1486 if (__percpu_counter_compare(&counter->count, 1487 xfs_freecounter_unavailable(mp, ctr), 1488 XFS_FDBLOCKS_BATCH) < 0) { 1489 /* 1490 * Lock up the sb for dipping into reserves before releasing the 1491 * space that took us to ENOSPC. 1492 */ 1493 spin_lock(&mp->m_sb_lock); 1494 percpu_counter_add(&counter->count, delta); 1495 if (!rsvd) 1496 goto fdblocks_enospc; 1497 if (delta > counter->res_avail) { 1498 if (ctr == XC_FREE_BLOCKS) 1499 xfs_warn_once(mp, 1500 "Reserve blocks depleted! Consider increasing reserve pool size."); 1501 goto fdblocks_enospc; 1502 } 1503 counter->res_avail -= delta; 1504 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_); 1505 spin_unlock(&mp->m_sb_lock); 1506 } 1507 1508 /* we had space! */ 1509 return 0; 1510 1511 fdblocks_enospc: 1512 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_); 1513 spin_unlock(&mp->m_sb_lock); 1514 return -ENOSPC; 1515 } 1516 1517 /* 1518 * Used to free the superblock along various error paths. 1519 */ 1520 void 1521 xfs_freesb( 1522 struct xfs_mount *mp) 1523 { 1524 struct xfs_buf *bp = mp->m_sb_bp; 1525 1526 xfs_buf_lock(bp); 1527 mp->m_sb_bp = NULL; 1528 xfs_buf_relse(bp); 1529 } 1530 1531 /* 1532 * If the underlying (data/log/rt) device is readonly, there are some 1533 * operations that cannot proceed. 1534 */ 1535 int 1536 xfs_dev_is_read_only( 1537 struct xfs_mount *mp, 1538 char *message) 1539 { 1540 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1541 xfs_readonly_buftarg(mp->m_logdev_targp) || 1542 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1543 xfs_notice(mp, "%s required on read-only device.", message); 1544 xfs_notice(mp, "write access unavailable, cannot proceed."); 1545 return -EROFS; 1546 } 1547 return 0; 1548 } 1549 1550 /* Force the summary counters to be recalculated at next mount. */ 1551 void 1552 xfs_force_summary_recalc( 1553 struct xfs_mount *mp) 1554 { 1555 if (!xfs_has_lazysbcount(mp)) 1556 return; 1557 1558 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1559 } 1560 1561 /* 1562 * Enable a log incompat feature flag in the primary superblock. The caller 1563 * cannot have any other transactions in progress. 1564 */ 1565 int 1566 xfs_add_incompat_log_feature( 1567 struct xfs_mount *mp, 1568 uint32_t feature) 1569 { 1570 struct xfs_dsb *dsb; 1571 int error; 1572 1573 ASSERT(hweight32(feature) == 1); 1574 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1575 1576 /* 1577 * Force the log to disk and kick the background AIL thread to reduce 1578 * the chances that the bwrite will stall waiting for the AIL to unpin 1579 * the primary superblock buffer. This isn't a data integrity 1580 * operation, so we don't need a synchronous push. 1581 */ 1582 error = xfs_log_force(mp, XFS_LOG_SYNC); 1583 if (error) 1584 return error; 1585 xfs_ail_push_all(mp->m_ail); 1586 1587 /* 1588 * Lock the primary superblock buffer to serialize all callers that 1589 * are trying to set feature bits. 1590 */ 1591 xfs_buf_lock(mp->m_sb_bp); 1592 xfs_buf_hold(mp->m_sb_bp); 1593 1594 if (xfs_is_shutdown(mp)) { 1595 error = -EIO; 1596 goto rele; 1597 } 1598 1599 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1600 goto rele; 1601 1602 /* 1603 * Write the primary superblock to disk immediately, because we need 1604 * the log_incompat bit to be set in the primary super now to protect 1605 * the log items that we're going to commit later. 1606 */ 1607 dsb = mp->m_sb_bp->b_addr; 1608 xfs_sb_to_disk(dsb, &mp->m_sb); 1609 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1610 error = xfs_bwrite(mp->m_sb_bp); 1611 if (error) 1612 goto shutdown; 1613 1614 /* 1615 * Add the feature bits to the incore superblock before we unlock the 1616 * buffer. 1617 */ 1618 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1619 xfs_buf_relse(mp->m_sb_bp); 1620 1621 /* Log the superblock to disk. */ 1622 return xfs_sync_sb(mp, false); 1623 shutdown: 1624 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1625 rele: 1626 xfs_buf_relse(mp->m_sb_bp); 1627 return error; 1628 } 1629 1630 /* 1631 * Clear all the log incompat flags from the superblock. 1632 * 1633 * The caller cannot be in a transaction, must ensure that the log does not 1634 * contain any log items protected by any log incompat bit, and must ensure 1635 * that there are no other threads that depend on the state of the log incompat 1636 * feature flags in the primary super. 1637 * 1638 * Returns true if the superblock is dirty. 1639 */ 1640 bool 1641 xfs_clear_incompat_log_features( 1642 struct xfs_mount *mp) 1643 { 1644 bool ret = false; 1645 1646 if (!xfs_has_crc(mp) || 1647 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1648 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1649 xfs_is_shutdown(mp) || 1650 !xfs_is_done_with_log_incompat(mp)) 1651 return false; 1652 1653 /* 1654 * Update the incore superblock. We synchronize on the primary super 1655 * buffer lock to be consistent with the add function, though at least 1656 * in theory this shouldn't be necessary. 1657 */ 1658 xfs_buf_lock(mp->m_sb_bp); 1659 xfs_buf_hold(mp->m_sb_bp); 1660 1661 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1662 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1663 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1664 ret = true; 1665 } 1666 1667 xfs_buf_relse(mp->m_sb_bp); 1668 return ret; 1669 } 1670 1671 /* 1672 * Update the in-core delayed block counter. 1673 * 1674 * We prefer to update the counter without having to take a spinlock for every 1675 * counter update (i.e. batching). Each change to delayed allocation 1676 * reservations can change can easily exceed the default percpu counter 1677 * batching, so we use a larger batch factor here. 1678 * 1679 * Note that we don't currently have any callers requiring fast summation 1680 * (e.g. percpu_counter_read) so we can use a big batch value here. 1681 */ 1682 #define XFS_DELALLOC_BATCH (4096) 1683 void 1684 xfs_mod_delalloc( 1685 struct xfs_inode *ip, 1686 int64_t data_delta, 1687 int64_t ind_delta) 1688 { 1689 struct xfs_mount *mp = ip->i_mount; 1690 1691 if (XFS_IS_REALTIME_INODE(ip)) { 1692 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1693 xfs_blen_to_rtbxlen(mp, data_delta), 1694 XFS_DELALLOC_BATCH); 1695 if (!ind_delta) 1696 return; 1697 data_delta = 0; 1698 } 1699 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1700 XFS_DELALLOC_BATCH); 1701 } 1702