xref: /linux/fs/xfs/xfs_mount.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
49 
50 
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
54 
55 void
56 xfs_uuid_table_free(void)
57 {
58 	if (xfs_uuid_table_size == 0)
59 		return;
60 	kmem_free(xfs_uuid_table);
61 	xfs_uuid_table = NULL;
62 	xfs_uuid_table_size = 0;
63 }
64 
65 /*
66  * See if the UUID is unique among mounted XFS filesystems.
67  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68  */
69 STATIC int
70 xfs_uuid_mount(
71 	struct xfs_mount	*mp)
72 {
73 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
74 	int			hole, i;
75 
76 	/* Publish UUID in struct super_block */
77 	uuid_copy(&mp->m_super->s_uuid, uuid);
78 
79 	if (mp->m_flags & XFS_MOUNT_NOUUID)
80 		return 0;
81 
82 	if (uuid_is_null(uuid)) {
83 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 		return -EINVAL;
85 	}
86 
87 	mutex_lock(&xfs_uuid_table_mutex);
88 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 		if (uuid_is_null(&xfs_uuid_table[i])) {
90 			hole = i;
91 			continue;
92 		}
93 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 			goto out_duplicate;
95 	}
96 
97 	if (hole < 0) {
98 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 			KM_SLEEP);
101 		hole = xfs_uuid_table_size++;
102 	}
103 	xfs_uuid_table[hole] = *uuid;
104 	mutex_unlock(&xfs_uuid_table_mutex);
105 
106 	return 0;
107 
108  out_duplicate:
109 	mutex_unlock(&xfs_uuid_table_mutex);
110 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 	return -EINVAL;
112 }
113 
114 STATIC void
115 xfs_uuid_unmount(
116 	struct xfs_mount	*mp)
117 {
118 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
119 	int			i;
120 
121 	if (mp->m_flags & XFS_MOUNT_NOUUID)
122 		return;
123 
124 	mutex_lock(&xfs_uuid_table_mutex);
125 	for (i = 0; i < xfs_uuid_table_size; i++) {
126 		if (uuid_is_null(&xfs_uuid_table[i]))
127 			continue;
128 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 			continue;
130 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 		break;
132 	}
133 	ASSERT(i < xfs_uuid_table_size);
134 	mutex_unlock(&xfs_uuid_table_mutex);
135 }
136 
137 
138 STATIC void
139 __xfs_free_perag(
140 	struct rcu_head	*head)
141 {
142 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143 
144 	ASSERT(atomic_read(&pag->pag_ref) == 0);
145 	kmem_free(pag);
146 }
147 
148 /*
149  * Free up the per-ag resources associated with the mount structure.
150  */
151 STATIC void
152 xfs_free_perag(
153 	xfs_mount_t	*mp)
154 {
155 	xfs_agnumber_t	agno;
156 	struct xfs_perag *pag;
157 
158 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 		spin_lock(&mp->m_perag_lock);
160 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 		spin_unlock(&mp->m_perag_lock);
162 		ASSERT(pag);
163 		ASSERT(atomic_read(&pag->pag_ref) == 0);
164 		xfs_buf_hash_destroy(pag);
165 		mutex_destroy(&pag->pag_ici_reclaim_lock);
166 		call_rcu(&pag->rcu_head, __xfs_free_perag);
167 	}
168 }
169 
170 /*
171  * Check size of device based on the (data/realtime) block count.
172  * Note: this check is used by the growfs code as well as mount.
173  */
174 int
175 xfs_sb_validate_fsb_count(
176 	xfs_sb_t	*sbp,
177 	uint64_t	nblocks)
178 {
179 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
180 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
181 
182 	/* Limited by ULONG_MAX of page cache index */
183 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
184 		return -EFBIG;
185 	return 0;
186 }
187 
188 int
189 xfs_initialize_perag(
190 	xfs_mount_t	*mp,
191 	xfs_agnumber_t	agcount,
192 	xfs_agnumber_t	*maxagi)
193 {
194 	xfs_agnumber_t	index;
195 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
196 	xfs_perag_t	*pag;
197 	int		error = -ENOMEM;
198 
199 	/*
200 	 * Walk the current per-ag tree so we don't try to initialise AGs
201 	 * that already exist (growfs case). Allocate and insert all the
202 	 * AGs we don't find ready for initialisation.
203 	 */
204 	for (index = 0; index < agcount; index++) {
205 		pag = xfs_perag_get(mp, index);
206 		if (pag) {
207 			xfs_perag_put(pag);
208 			continue;
209 		}
210 
211 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 		if (!pag)
213 			goto out_unwind_new_pags;
214 		pag->pag_agno = index;
215 		pag->pag_mount = mp;
216 		spin_lock_init(&pag->pag_ici_lock);
217 		mutex_init(&pag->pag_ici_reclaim_lock);
218 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 		if (xfs_buf_hash_init(pag))
220 			goto out_free_pag;
221 		init_waitqueue_head(&pag->pagb_wait);
222 
223 		if (radix_tree_preload(GFP_NOFS))
224 			goto out_hash_destroy;
225 
226 		spin_lock(&mp->m_perag_lock);
227 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
228 			BUG();
229 			spin_unlock(&mp->m_perag_lock);
230 			radix_tree_preload_end();
231 			error = -EEXIST;
232 			goto out_hash_destroy;
233 		}
234 		spin_unlock(&mp->m_perag_lock);
235 		radix_tree_preload_end();
236 		/* first new pag is fully initialized */
237 		if (first_initialised == NULLAGNUMBER)
238 			first_initialised = index;
239 	}
240 
241 	index = xfs_set_inode_alloc(mp, agcount);
242 
243 	if (maxagi)
244 		*maxagi = index;
245 
246 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 	return 0;
248 
249 out_hash_destroy:
250 	xfs_buf_hash_destroy(pag);
251 out_free_pag:
252 	mutex_destroy(&pag->pag_ici_reclaim_lock);
253 	kmem_free(pag);
254 out_unwind_new_pags:
255 	/* unwind any prior newly initialized pags */
256 	for (index = first_initialised; index < agcount; index++) {
257 		pag = radix_tree_delete(&mp->m_perag_tree, index);
258 		if (!pag)
259 			break;
260 		xfs_buf_hash_destroy(pag);
261 		mutex_destroy(&pag->pag_ici_reclaim_lock);
262 		kmem_free(pag);
263 	}
264 	return error;
265 }
266 
267 /*
268  * xfs_readsb
269  *
270  * Does the initial read of the superblock.
271  */
272 int
273 xfs_readsb(
274 	struct xfs_mount *mp,
275 	int		flags)
276 {
277 	unsigned int	sector_size;
278 	struct xfs_buf	*bp;
279 	struct xfs_sb	*sbp = &mp->m_sb;
280 	int		error;
281 	int		loud = !(flags & XFS_MFSI_QUIET);
282 	const struct xfs_buf_ops *buf_ops;
283 
284 	ASSERT(mp->m_sb_bp == NULL);
285 	ASSERT(mp->m_ddev_targp != NULL);
286 
287 	/*
288 	 * For the initial read, we must guess at the sector
289 	 * size based on the block device.  It's enough to
290 	 * get the sb_sectsize out of the superblock and
291 	 * then reread with the proper length.
292 	 * We don't verify it yet, because it may not be complete.
293 	 */
294 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 	buf_ops = NULL;
296 
297 	/*
298 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
299 	 * around at all times to optimize access to the superblock. Therefore,
300 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
301 	 * elevated.
302 	 */
303 reread:
304 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
305 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
306 				      buf_ops);
307 	if (error) {
308 		if (loud)
309 			xfs_warn(mp, "SB validate failed with error %d.", error);
310 		/* bad CRC means corrupted metadata */
311 		if (error == -EFSBADCRC)
312 			error = -EFSCORRUPTED;
313 		return error;
314 	}
315 
316 	/*
317 	 * Initialize the mount structure from the superblock.
318 	 */
319 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
320 
321 	/*
322 	 * If we haven't validated the superblock, do so now before we try
323 	 * to check the sector size and reread the superblock appropriately.
324 	 */
325 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 		if (loud)
327 			xfs_warn(mp, "Invalid superblock magic number");
328 		error = -EINVAL;
329 		goto release_buf;
330 	}
331 
332 	/*
333 	 * We must be able to do sector-sized and sector-aligned IO.
334 	 */
335 	if (sector_size > sbp->sb_sectsize) {
336 		if (loud)
337 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
338 				sector_size, sbp->sb_sectsize);
339 		error = -ENOSYS;
340 		goto release_buf;
341 	}
342 
343 	if (buf_ops == NULL) {
344 		/*
345 		 * Re-read the superblock so the buffer is correctly sized,
346 		 * and properly verified.
347 		 */
348 		xfs_buf_relse(bp);
349 		sector_size = sbp->sb_sectsize;
350 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
351 		goto reread;
352 	}
353 
354 	xfs_reinit_percpu_counters(mp);
355 
356 	/* no need to be quiet anymore, so reset the buf ops */
357 	bp->b_ops = &xfs_sb_buf_ops;
358 
359 	mp->m_sb_bp = bp;
360 	xfs_buf_unlock(bp);
361 	return 0;
362 
363 release_buf:
364 	xfs_buf_relse(bp);
365 	return error;
366 }
367 
368 /*
369  * Update alignment values based on mount options and sb values
370  */
371 STATIC int
372 xfs_update_alignment(xfs_mount_t *mp)
373 {
374 	xfs_sb_t	*sbp = &(mp->m_sb);
375 
376 	if (mp->m_dalign) {
377 		/*
378 		 * If stripe unit and stripe width are not multiples
379 		 * of the fs blocksize turn off alignment.
380 		 */
381 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
382 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
383 			xfs_warn(mp,
384 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
385 				sbp->sb_blocksize);
386 			return -EINVAL;
387 		} else {
388 			/*
389 			 * Convert the stripe unit and width to FSBs.
390 			 */
391 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
392 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
393 				xfs_warn(mp,
394 			"alignment check failed: sunit/swidth vs. agsize(%d)",
395 					 sbp->sb_agblocks);
396 				return -EINVAL;
397 			} else if (mp->m_dalign) {
398 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
399 			} else {
400 				xfs_warn(mp,
401 			"alignment check failed: sunit(%d) less than bsize(%d)",
402 					 mp->m_dalign, sbp->sb_blocksize);
403 				return -EINVAL;
404 			}
405 		}
406 
407 		/*
408 		 * Update superblock with new values
409 		 * and log changes
410 		 */
411 		if (xfs_sb_version_hasdalign(sbp)) {
412 			if (sbp->sb_unit != mp->m_dalign) {
413 				sbp->sb_unit = mp->m_dalign;
414 				mp->m_update_sb = true;
415 			}
416 			if (sbp->sb_width != mp->m_swidth) {
417 				sbp->sb_width = mp->m_swidth;
418 				mp->m_update_sb = true;
419 			}
420 		} else {
421 			xfs_warn(mp,
422 	"cannot change alignment: superblock does not support data alignment");
423 			return -EINVAL;
424 		}
425 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
426 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
427 			mp->m_dalign = sbp->sb_unit;
428 			mp->m_swidth = sbp->sb_width;
429 	}
430 
431 	return 0;
432 }
433 
434 /*
435  * Set the maximum inode count for this filesystem
436  */
437 STATIC void
438 xfs_set_maxicount(xfs_mount_t *mp)
439 {
440 	xfs_sb_t	*sbp = &(mp->m_sb);
441 	uint64_t	icount;
442 
443 	if (sbp->sb_imax_pct) {
444 		/*
445 		 * Make sure the maximum inode count is a multiple
446 		 * of the units we allocate inodes in.
447 		 */
448 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
449 		do_div(icount, 100);
450 		do_div(icount, mp->m_ialloc_blks);
451 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
452 				   sbp->sb_inopblog;
453 	} else {
454 		mp->m_maxicount = 0;
455 	}
456 }
457 
458 /*
459  * Set the default minimum read and write sizes unless
460  * already specified in a mount option.
461  * We use smaller I/O sizes when the file system
462  * is being used for NFS service (wsync mount option).
463  */
464 STATIC void
465 xfs_set_rw_sizes(xfs_mount_t *mp)
466 {
467 	xfs_sb_t	*sbp = &(mp->m_sb);
468 	int		readio_log, writeio_log;
469 
470 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
471 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
472 			readio_log = XFS_WSYNC_READIO_LOG;
473 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
474 		} else {
475 			readio_log = XFS_READIO_LOG_LARGE;
476 			writeio_log = XFS_WRITEIO_LOG_LARGE;
477 		}
478 	} else {
479 		readio_log = mp->m_readio_log;
480 		writeio_log = mp->m_writeio_log;
481 	}
482 
483 	if (sbp->sb_blocklog > readio_log) {
484 		mp->m_readio_log = sbp->sb_blocklog;
485 	} else {
486 		mp->m_readio_log = readio_log;
487 	}
488 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
489 	if (sbp->sb_blocklog > writeio_log) {
490 		mp->m_writeio_log = sbp->sb_blocklog;
491 	} else {
492 		mp->m_writeio_log = writeio_log;
493 	}
494 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
495 }
496 
497 /*
498  * precalculate the low space thresholds for dynamic speculative preallocation.
499  */
500 void
501 xfs_set_low_space_thresholds(
502 	struct xfs_mount	*mp)
503 {
504 	int i;
505 
506 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
507 		uint64_t space = mp->m_sb.sb_dblocks;
508 
509 		do_div(space, 100);
510 		mp->m_low_space[i] = space * (i + 1);
511 	}
512 }
513 
514 
515 /*
516  * Set whether we're using inode alignment.
517  */
518 STATIC void
519 xfs_set_inoalignment(xfs_mount_t *mp)
520 {
521 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
522 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
523 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 	else
525 		mp->m_inoalign_mask = 0;
526 	/*
527 	 * If we are using stripe alignment, check whether
528 	 * the stripe unit is a multiple of the inode alignment
529 	 */
530 	if (mp->m_dalign && mp->m_inoalign_mask &&
531 	    !(mp->m_dalign & mp->m_inoalign_mask))
532 		mp->m_sinoalign = mp->m_dalign;
533 	else
534 		mp->m_sinoalign = 0;
535 }
536 
537 /*
538  * Check that the data (and log if separate) is an ok size.
539  */
540 STATIC int
541 xfs_check_sizes(
542 	struct xfs_mount *mp)
543 {
544 	struct xfs_buf	*bp;
545 	xfs_daddr_t	d;
546 	int		error;
547 
548 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 		xfs_warn(mp, "filesystem size mismatch detected");
551 		return -EFBIG;
552 	}
553 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 					d - XFS_FSS_TO_BB(mp, 1),
555 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 	if (error) {
557 		xfs_warn(mp, "last sector read failed");
558 		return error;
559 	}
560 	xfs_buf_relse(bp);
561 
562 	if (mp->m_logdev_targp == mp->m_ddev_targp)
563 		return 0;
564 
565 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 		xfs_warn(mp, "log size mismatch detected");
568 		return -EFBIG;
569 	}
570 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 					d - XFS_FSB_TO_BB(mp, 1),
572 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 	if (error) {
574 		xfs_warn(mp, "log device read failed");
575 		return error;
576 	}
577 	xfs_buf_relse(bp);
578 	return 0;
579 }
580 
581 /*
582  * Clear the quotaflags in memory and in the superblock.
583  */
584 int
585 xfs_mount_reset_sbqflags(
586 	struct xfs_mount	*mp)
587 {
588 	mp->m_qflags = 0;
589 
590 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
591 	if (mp->m_sb.sb_qflags == 0)
592 		return 0;
593 	spin_lock(&mp->m_sb_lock);
594 	mp->m_sb.sb_qflags = 0;
595 	spin_unlock(&mp->m_sb_lock);
596 
597 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
598 		return 0;
599 
600 	return xfs_sync_sb(mp, false);
601 }
602 
603 uint64_t
604 xfs_default_resblks(xfs_mount_t *mp)
605 {
606 	uint64_t resblks;
607 
608 	/*
609 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
610 	 * smaller.  This is intended to cover concurrent allocation
611 	 * transactions when we initially hit enospc. These each require a 4
612 	 * block reservation. Hence by default we cover roughly 2000 concurrent
613 	 * allocation reservations.
614 	 */
615 	resblks = mp->m_sb.sb_dblocks;
616 	do_div(resblks, 20);
617 	resblks = min_t(uint64_t, resblks, 8192);
618 	return resblks;
619 }
620 
621 /*
622  * This function does the following on an initial mount of a file system:
623  *	- reads the superblock from disk and init the mount struct
624  *	- if we're a 32-bit kernel, do a size check on the superblock
625  *		so we don't mount terabyte filesystems
626  *	- init mount struct realtime fields
627  *	- allocate inode hash table for fs
628  *	- init directory manager
629  *	- perform recovery and init the log manager
630  */
631 int
632 xfs_mountfs(
633 	struct xfs_mount	*mp)
634 {
635 	struct xfs_sb		*sbp = &(mp->m_sb);
636 	struct xfs_inode	*rip;
637 	uint64_t		resblks;
638 	uint			quotamount = 0;
639 	uint			quotaflags = 0;
640 	int			error = 0;
641 
642 	xfs_sb_mount_common(mp, sbp);
643 
644 	/*
645 	 * Check for a mismatched features2 values.  Older kernels read & wrote
646 	 * into the wrong sb offset for sb_features2 on some platforms due to
647 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
648 	 * which made older superblock reading/writing routines swap it as a
649 	 * 64-bit value.
650 	 *
651 	 * For backwards compatibility, we make both slots equal.
652 	 *
653 	 * If we detect a mismatched field, we OR the set bits into the existing
654 	 * features2 field in case it has already been modified; we don't want
655 	 * to lose any features.  We then update the bad location with the ORed
656 	 * value so that older kernels will see any features2 flags. The
657 	 * superblock writeback code ensures the new sb_features2 is copied to
658 	 * sb_bad_features2 before it is logged or written to disk.
659 	 */
660 	if (xfs_sb_has_mismatched_features2(sbp)) {
661 		xfs_warn(mp, "correcting sb_features alignment problem");
662 		sbp->sb_features2 |= sbp->sb_bad_features2;
663 		mp->m_update_sb = true;
664 
665 		/*
666 		 * Re-check for ATTR2 in case it was found in bad_features2
667 		 * slot.
668 		 */
669 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
671 			mp->m_flags |= XFS_MOUNT_ATTR2;
672 	}
673 
674 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
675 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
676 		xfs_sb_version_removeattr2(&mp->m_sb);
677 		mp->m_update_sb = true;
678 
679 		/* update sb_versionnum for the clearing of the morebits */
680 		if (!sbp->sb_features2)
681 			mp->m_update_sb = true;
682 	}
683 
684 	/* always use v2 inodes by default now */
685 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
686 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
687 		mp->m_update_sb = true;
688 	}
689 
690 	/*
691 	 * Check if sb_agblocks is aligned at stripe boundary
692 	 * If sb_agblocks is NOT aligned turn off m_dalign since
693 	 * allocator alignment is within an ag, therefore ag has
694 	 * to be aligned at stripe boundary.
695 	 */
696 	error = xfs_update_alignment(mp);
697 	if (error)
698 		goto out;
699 
700 	xfs_alloc_compute_maxlevels(mp);
701 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
702 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
703 	xfs_ialloc_compute_maxlevels(mp);
704 	xfs_rmapbt_compute_maxlevels(mp);
705 	xfs_refcountbt_compute_maxlevels(mp);
706 
707 	xfs_set_maxicount(mp);
708 
709 	/* enable fail_at_unmount as default */
710 	mp->m_fail_unmount = true;
711 
712 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
713 	if (error)
714 		goto out;
715 
716 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
717 			       &mp->m_kobj, "stats");
718 	if (error)
719 		goto out_remove_sysfs;
720 
721 	error = xfs_error_sysfs_init(mp);
722 	if (error)
723 		goto out_del_stats;
724 
725 	error = xfs_errortag_init(mp);
726 	if (error)
727 		goto out_remove_error_sysfs;
728 
729 	error = xfs_uuid_mount(mp);
730 	if (error)
731 		goto out_remove_errortag;
732 
733 	/*
734 	 * Set the minimum read and write sizes
735 	 */
736 	xfs_set_rw_sizes(mp);
737 
738 	/* set the low space thresholds for dynamic preallocation */
739 	xfs_set_low_space_thresholds(mp);
740 
741 	/*
742 	 * Set the inode cluster size.
743 	 * This may still be overridden by the file system
744 	 * block size if it is larger than the chosen cluster size.
745 	 *
746 	 * For v5 filesystems, scale the cluster size with the inode size to
747 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 	 * has set the inode alignment value appropriately for larger cluster
749 	 * sizes.
750 	 */
751 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 		int	new_size = mp->m_inode_cluster_size;
754 
755 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 			mp->m_inode_cluster_size = new_size;
758 	}
759 
760 	/*
761 	 * If enabled, sparse inode chunk alignment is expected to match the
762 	 * cluster size. Full inode chunk alignment must match the chunk size,
763 	 * but that is checked on sb read verification...
764 	 */
765 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
766 	    mp->m_sb.sb_spino_align !=
767 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
768 		xfs_warn(mp,
769 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
770 			 mp->m_sb.sb_spino_align,
771 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
772 		error = -EINVAL;
773 		goto out_remove_uuid;
774 	}
775 
776 	/*
777 	 * Set inode alignment fields
778 	 */
779 	xfs_set_inoalignment(mp);
780 
781 	/*
782 	 * Check that the data (and log if separate) is an ok size.
783 	 */
784 	error = xfs_check_sizes(mp);
785 	if (error)
786 		goto out_remove_uuid;
787 
788 	/*
789 	 * Initialize realtime fields in the mount structure
790 	 */
791 	error = xfs_rtmount_init(mp);
792 	if (error) {
793 		xfs_warn(mp, "RT mount failed");
794 		goto out_remove_uuid;
795 	}
796 
797 	/*
798 	 *  Copies the low order bits of the timestamp and the randomly
799 	 *  set "sequence" number out of a UUID.
800 	 */
801 	mp->m_fixedfsid[0] =
802 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
803 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
804 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
805 
806 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
807 
808 	error = xfs_da_mount(mp);
809 	if (error) {
810 		xfs_warn(mp, "Failed dir/attr init: %d", error);
811 		goto out_remove_uuid;
812 	}
813 
814 	/*
815 	 * Initialize the precomputed transaction reservations values.
816 	 */
817 	xfs_trans_init(mp);
818 
819 	/*
820 	 * Allocate and initialize the per-ag data.
821 	 */
822 	spin_lock_init(&mp->m_perag_lock);
823 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
824 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
825 	if (error) {
826 		xfs_warn(mp, "Failed per-ag init: %d", error);
827 		goto out_free_dir;
828 	}
829 
830 	if (!sbp->sb_logblocks) {
831 		xfs_warn(mp, "no log defined");
832 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
833 		error = -EFSCORRUPTED;
834 		goto out_free_perag;
835 	}
836 
837 	/*
838 	 * Log's mount-time initialization. The first part of recovery can place
839 	 * some items on the AIL, to be handled when recovery is finished or
840 	 * cancelled.
841 	 */
842 	error = xfs_log_mount(mp, mp->m_logdev_targp,
843 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
844 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
845 	if (error) {
846 		xfs_warn(mp, "log mount failed");
847 		goto out_fail_wait;
848 	}
849 
850 	/*
851 	 * Now the log is mounted, we know if it was an unclean shutdown or
852 	 * not. If it was, with the first phase of recovery has completed, we
853 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
854 	 * but they are recovered transactionally in the second recovery phase
855 	 * later.
856 	 *
857 	 * Hence we can safely re-initialise incore superblock counters from
858 	 * the per-ag data. These may not be correct if the filesystem was not
859 	 * cleanly unmounted, so we need to wait for recovery to finish before
860 	 * doing this.
861 	 *
862 	 * If the filesystem was cleanly unmounted, then we can trust the
863 	 * values in the superblock to be correct and we don't need to do
864 	 * anything here.
865 	 *
866 	 * If we are currently making the filesystem, the initialisation will
867 	 * fail as the perag data is in an undefined state.
868 	 */
869 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
870 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
871 	     !mp->m_sb.sb_inprogress) {
872 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
873 		if (error)
874 			goto out_log_dealloc;
875 	}
876 
877 	/*
878 	 * Get and sanity-check the root inode.
879 	 * Save the pointer to it in the mount structure.
880 	 */
881 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
882 	if (error) {
883 		xfs_warn(mp, "failed to read root inode");
884 		goto out_log_dealloc;
885 	}
886 
887 	ASSERT(rip != NULL);
888 
889 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
890 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
891 			(unsigned long long)rip->i_ino);
892 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
893 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
894 				 mp);
895 		error = -EFSCORRUPTED;
896 		goto out_rele_rip;
897 	}
898 	mp->m_rootip = rip;	/* save it */
899 
900 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
901 
902 	/*
903 	 * Initialize realtime inode pointers in the mount structure
904 	 */
905 	error = xfs_rtmount_inodes(mp);
906 	if (error) {
907 		/*
908 		 * Free up the root inode.
909 		 */
910 		xfs_warn(mp, "failed to read RT inodes");
911 		goto out_rele_rip;
912 	}
913 
914 	/*
915 	 * If this is a read-only mount defer the superblock updates until
916 	 * the next remount into writeable mode.  Otherwise we would never
917 	 * perform the update e.g. for the root filesystem.
918 	 */
919 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
920 		error = xfs_sync_sb(mp, false);
921 		if (error) {
922 			xfs_warn(mp, "failed to write sb changes");
923 			goto out_rtunmount;
924 		}
925 	}
926 
927 	/*
928 	 * Initialise the XFS quota management subsystem for this mount
929 	 */
930 	if (XFS_IS_QUOTA_RUNNING(mp)) {
931 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
932 		if (error)
933 			goto out_rtunmount;
934 	} else {
935 		ASSERT(!XFS_IS_QUOTA_ON(mp));
936 
937 		/*
938 		 * If a file system had quotas running earlier, but decided to
939 		 * mount without -o uquota/pquota/gquota options, revoke the
940 		 * quotachecked license.
941 		 */
942 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
943 			xfs_notice(mp, "resetting quota flags");
944 			error = xfs_mount_reset_sbqflags(mp);
945 			if (error)
946 				goto out_rtunmount;
947 		}
948 	}
949 
950 	/*
951 	 * Finish recovering the file system.  This part needed to be delayed
952 	 * until after the root and real-time bitmap inodes were consistently
953 	 * read in.
954 	 */
955 	error = xfs_log_mount_finish(mp);
956 	if (error) {
957 		xfs_warn(mp, "log mount finish failed");
958 		goto out_rtunmount;
959 	}
960 
961 	/*
962 	 * Now the log is fully replayed, we can transition to full read-only
963 	 * mode for read-only mounts. This will sync all the metadata and clean
964 	 * the log so that the recovery we just performed does not have to be
965 	 * replayed again on the next mount.
966 	 *
967 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
968 	 * semantically identical operations.
969 	 */
970 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
971 							XFS_MOUNT_RDONLY) {
972 		xfs_quiesce_attr(mp);
973 	}
974 
975 	/*
976 	 * Complete the quota initialisation, post-log-replay component.
977 	 */
978 	if (quotamount) {
979 		ASSERT(mp->m_qflags == 0);
980 		mp->m_qflags = quotaflags;
981 
982 		xfs_qm_mount_quotas(mp);
983 	}
984 
985 	/*
986 	 * Now we are mounted, reserve a small amount of unused space for
987 	 * privileged transactions. This is needed so that transaction
988 	 * space required for critical operations can dip into this pool
989 	 * when at ENOSPC. This is needed for operations like create with
990 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
991 	 * are not allowed to use this reserved space.
992 	 *
993 	 * This may drive us straight to ENOSPC on mount, but that implies
994 	 * we were already there on the last unmount. Warn if this occurs.
995 	 */
996 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
997 		resblks = xfs_default_resblks(mp);
998 		error = xfs_reserve_blocks(mp, &resblks, NULL);
999 		if (error)
1000 			xfs_warn(mp,
1001 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1002 
1003 		/* Recover any CoW blocks that never got remapped. */
1004 		error = xfs_reflink_recover_cow(mp);
1005 		if (error) {
1006 			xfs_err(mp,
1007 	"Error %d recovering leftover CoW allocations.", error);
1008 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1009 			goto out_quota;
1010 		}
1011 
1012 		/* Reserve AG blocks for future btree expansion. */
1013 		error = xfs_fs_reserve_ag_blocks(mp);
1014 		if (error && error != -ENOSPC)
1015 			goto out_agresv;
1016 	}
1017 
1018 	return 0;
1019 
1020  out_agresv:
1021 	xfs_fs_unreserve_ag_blocks(mp);
1022  out_quota:
1023 	xfs_qm_unmount_quotas(mp);
1024  out_rtunmount:
1025 	xfs_rtunmount_inodes(mp);
1026  out_rele_rip:
1027 	IRELE(rip);
1028 	/* Clean out dquots that might be in memory after quotacheck. */
1029 	xfs_qm_unmount(mp);
1030 	/*
1031 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1032 	 * We have to do this /after/ rtunmount and qm_unmount because those
1033 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1034 	 *
1035 	 * This is slightly different from the unmountfs call sequence
1036 	 * because we could be tearing down a partially set up mount.  In
1037 	 * particular, if log_mount_finish fails we bail out without calling
1038 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1039 	 * quota inodes.
1040 	 */
1041 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1042 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1043  out_log_dealloc:
1044 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1045 	xfs_log_mount_cancel(mp);
1046  out_fail_wait:
1047 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1048 		xfs_wait_buftarg(mp->m_logdev_targp);
1049 	xfs_wait_buftarg(mp->m_ddev_targp);
1050  out_free_perag:
1051 	xfs_free_perag(mp);
1052  out_free_dir:
1053 	xfs_da_unmount(mp);
1054  out_remove_uuid:
1055 	xfs_uuid_unmount(mp);
1056  out_remove_errortag:
1057 	xfs_errortag_del(mp);
1058  out_remove_error_sysfs:
1059 	xfs_error_sysfs_del(mp);
1060  out_del_stats:
1061 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1062  out_remove_sysfs:
1063 	xfs_sysfs_del(&mp->m_kobj);
1064  out:
1065 	return error;
1066 }
1067 
1068 /*
1069  * This flushes out the inodes,dquots and the superblock, unmounts the
1070  * log and makes sure that incore structures are freed.
1071  */
1072 void
1073 xfs_unmountfs(
1074 	struct xfs_mount	*mp)
1075 {
1076 	uint64_t		resblks;
1077 	int			error;
1078 
1079 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1080 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1081 
1082 	xfs_fs_unreserve_ag_blocks(mp);
1083 	xfs_qm_unmount_quotas(mp);
1084 	xfs_rtunmount_inodes(mp);
1085 	IRELE(mp->m_rootip);
1086 
1087 	/*
1088 	 * We can potentially deadlock here if we have an inode cluster
1089 	 * that has been freed has its buffer still pinned in memory because
1090 	 * the transaction is still sitting in a iclog. The stale inodes
1091 	 * on that buffer will have their flush locks held until the
1092 	 * transaction hits the disk and the callbacks run. the inode
1093 	 * flush takes the flush lock unconditionally and with nothing to
1094 	 * push out the iclog we will never get that unlocked. hence we
1095 	 * need to force the log first.
1096 	 */
1097 	xfs_log_force(mp, XFS_LOG_SYNC);
1098 
1099 	/*
1100 	 * Wait for all busy extents to be freed, including completion of
1101 	 * any discard operation.
1102 	 */
1103 	xfs_extent_busy_wait_all(mp);
1104 	flush_workqueue(xfs_discard_wq);
1105 
1106 	/*
1107 	 * We now need to tell the world we are unmounting. This will allow
1108 	 * us to detect that the filesystem is going away and we should error
1109 	 * out anything that we have been retrying in the background. This will
1110 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1111 	 */
1112 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1113 
1114 	/*
1115 	 * Flush all pending changes from the AIL.
1116 	 */
1117 	xfs_ail_push_all_sync(mp->m_ail);
1118 
1119 	/*
1120 	 * And reclaim all inodes.  At this point there should be no dirty
1121 	 * inodes and none should be pinned or locked, but use synchronous
1122 	 * reclaim just to be sure. We can stop background inode reclaim
1123 	 * here as well if it is still running.
1124 	 */
1125 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1126 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1127 
1128 	xfs_qm_unmount(mp);
1129 
1130 	/*
1131 	 * Unreserve any blocks we have so that when we unmount we don't account
1132 	 * the reserved free space as used. This is really only necessary for
1133 	 * lazy superblock counting because it trusts the incore superblock
1134 	 * counters to be absolutely correct on clean unmount.
1135 	 *
1136 	 * We don't bother correcting this elsewhere for lazy superblock
1137 	 * counting because on mount of an unclean filesystem we reconstruct the
1138 	 * correct counter value and this is irrelevant.
1139 	 *
1140 	 * For non-lazy counter filesystems, this doesn't matter at all because
1141 	 * we only every apply deltas to the superblock and hence the incore
1142 	 * value does not matter....
1143 	 */
1144 	resblks = 0;
1145 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1146 	if (error)
1147 		xfs_warn(mp, "Unable to free reserved block pool. "
1148 				"Freespace may not be correct on next mount.");
1149 
1150 	error = xfs_log_sbcount(mp);
1151 	if (error)
1152 		xfs_warn(mp, "Unable to update superblock counters. "
1153 				"Freespace may not be correct on next mount.");
1154 
1155 
1156 	xfs_log_unmount(mp);
1157 	xfs_da_unmount(mp);
1158 	xfs_uuid_unmount(mp);
1159 
1160 #if defined(DEBUG)
1161 	xfs_errortag_clearall(mp);
1162 #endif
1163 	xfs_free_perag(mp);
1164 
1165 	xfs_errortag_del(mp);
1166 	xfs_error_sysfs_del(mp);
1167 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1168 	xfs_sysfs_del(&mp->m_kobj);
1169 }
1170 
1171 /*
1172  * Determine whether modifications can proceed. The caller specifies the minimum
1173  * freeze level for which modifications should not be allowed. This allows
1174  * certain operations to proceed while the freeze sequence is in progress, if
1175  * necessary.
1176  */
1177 bool
1178 xfs_fs_writable(
1179 	struct xfs_mount	*mp,
1180 	int			level)
1181 {
1182 	ASSERT(level > SB_UNFROZEN);
1183 	if ((mp->m_super->s_writers.frozen >= level) ||
1184 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1185 		return false;
1186 
1187 	return true;
1188 }
1189 
1190 /*
1191  * xfs_log_sbcount
1192  *
1193  * Sync the superblock counters to disk.
1194  *
1195  * Note this code can be called during the process of freezing, so we use the
1196  * transaction allocator that does not block when the transaction subsystem is
1197  * in its frozen state.
1198  */
1199 int
1200 xfs_log_sbcount(xfs_mount_t *mp)
1201 {
1202 	/* allow this to proceed during the freeze sequence... */
1203 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1204 		return 0;
1205 
1206 	/*
1207 	 * we don't need to do this if we are updating the superblock
1208 	 * counters on every modification.
1209 	 */
1210 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1211 		return 0;
1212 
1213 	return xfs_sync_sb(mp, true);
1214 }
1215 
1216 /*
1217  * Deltas for the inode count are +/-64, hence we use a large batch size
1218  * of 128 so we don't need to take the counter lock on every update.
1219  */
1220 #define XFS_ICOUNT_BATCH	128
1221 int
1222 xfs_mod_icount(
1223 	struct xfs_mount	*mp,
1224 	int64_t			delta)
1225 {
1226 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1227 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1228 		ASSERT(0);
1229 		percpu_counter_add(&mp->m_icount, -delta);
1230 		return -EINVAL;
1231 	}
1232 	return 0;
1233 }
1234 
1235 int
1236 xfs_mod_ifree(
1237 	struct xfs_mount	*mp,
1238 	int64_t			delta)
1239 {
1240 	percpu_counter_add(&mp->m_ifree, delta);
1241 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1242 		ASSERT(0);
1243 		percpu_counter_add(&mp->m_ifree, -delta);
1244 		return -EINVAL;
1245 	}
1246 	return 0;
1247 }
1248 
1249 /*
1250  * Deltas for the block count can vary from 1 to very large, but lock contention
1251  * only occurs on frequent small block count updates such as in the delayed
1252  * allocation path for buffered writes (page a time updates). Hence we set
1253  * a large batch count (1024) to minimise global counter updates except when
1254  * we get near to ENOSPC and we have to be very accurate with our updates.
1255  */
1256 #define XFS_FDBLOCKS_BATCH	1024
1257 int
1258 xfs_mod_fdblocks(
1259 	struct xfs_mount	*mp,
1260 	int64_t			delta,
1261 	bool			rsvd)
1262 {
1263 	int64_t			lcounter;
1264 	long long		res_used;
1265 	s32			batch;
1266 
1267 	if (delta > 0) {
1268 		/*
1269 		 * If the reserve pool is depleted, put blocks back into it
1270 		 * first. Most of the time the pool is full.
1271 		 */
1272 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1273 			percpu_counter_add(&mp->m_fdblocks, delta);
1274 			return 0;
1275 		}
1276 
1277 		spin_lock(&mp->m_sb_lock);
1278 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1279 
1280 		if (res_used > delta) {
1281 			mp->m_resblks_avail += delta;
1282 		} else {
1283 			delta -= res_used;
1284 			mp->m_resblks_avail = mp->m_resblks;
1285 			percpu_counter_add(&mp->m_fdblocks, delta);
1286 		}
1287 		spin_unlock(&mp->m_sb_lock);
1288 		return 0;
1289 	}
1290 
1291 	/*
1292 	 * Taking blocks away, need to be more accurate the closer we
1293 	 * are to zero.
1294 	 *
1295 	 * If the counter has a value of less than 2 * max batch size,
1296 	 * then make everything serialise as we are real close to
1297 	 * ENOSPC.
1298 	 */
1299 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1300 				     XFS_FDBLOCKS_BATCH) < 0)
1301 		batch = 1;
1302 	else
1303 		batch = XFS_FDBLOCKS_BATCH;
1304 
1305 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1306 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1307 				     XFS_FDBLOCKS_BATCH) >= 0) {
1308 		/* we had space! */
1309 		return 0;
1310 	}
1311 
1312 	/*
1313 	 * lock up the sb for dipping into reserves before releasing the space
1314 	 * that took us to ENOSPC.
1315 	 */
1316 	spin_lock(&mp->m_sb_lock);
1317 	percpu_counter_add(&mp->m_fdblocks, -delta);
1318 	if (!rsvd)
1319 		goto fdblocks_enospc;
1320 
1321 	lcounter = (long long)mp->m_resblks_avail + delta;
1322 	if (lcounter >= 0) {
1323 		mp->m_resblks_avail = lcounter;
1324 		spin_unlock(&mp->m_sb_lock);
1325 		return 0;
1326 	}
1327 	printk_once(KERN_WARNING
1328 		"Filesystem \"%s\": reserve blocks depleted! "
1329 		"Consider increasing reserve pool size.",
1330 		mp->m_fsname);
1331 fdblocks_enospc:
1332 	spin_unlock(&mp->m_sb_lock);
1333 	return -ENOSPC;
1334 }
1335 
1336 int
1337 xfs_mod_frextents(
1338 	struct xfs_mount	*mp,
1339 	int64_t			delta)
1340 {
1341 	int64_t			lcounter;
1342 	int			ret = 0;
1343 
1344 	spin_lock(&mp->m_sb_lock);
1345 	lcounter = mp->m_sb.sb_frextents + delta;
1346 	if (lcounter < 0)
1347 		ret = -ENOSPC;
1348 	else
1349 		mp->m_sb.sb_frextents = lcounter;
1350 	spin_unlock(&mp->m_sb_lock);
1351 	return ret;
1352 }
1353 
1354 /*
1355  * xfs_getsb() is called to obtain the buffer for the superblock.
1356  * The buffer is returned locked and read in from disk.
1357  * The buffer should be released with a call to xfs_brelse().
1358  *
1359  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1360  * the superblock buffer if it can be locked without sleeping.
1361  * If it can't then we'll return NULL.
1362  */
1363 struct xfs_buf *
1364 xfs_getsb(
1365 	struct xfs_mount	*mp,
1366 	int			flags)
1367 {
1368 	struct xfs_buf		*bp = mp->m_sb_bp;
1369 
1370 	if (!xfs_buf_trylock(bp)) {
1371 		if (flags & XBF_TRYLOCK)
1372 			return NULL;
1373 		xfs_buf_lock(bp);
1374 	}
1375 
1376 	xfs_buf_hold(bp);
1377 	ASSERT(bp->b_flags & XBF_DONE);
1378 	return bp;
1379 }
1380 
1381 /*
1382  * Used to free the superblock along various error paths.
1383  */
1384 void
1385 xfs_freesb(
1386 	struct xfs_mount	*mp)
1387 {
1388 	struct xfs_buf		*bp = mp->m_sb_bp;
1389 
1390 	xfs_buf_lock(bp);
1391 	mp->m_sb_bp = NULL;
1392 	xfs_buf_relse(bp);
1393 }
1394 
1395 /*
1396  * If the underlying (data/log/rt) device is readonly, there are some
1397  * operations that cannot proceed.
1398  */
1399 int
1400 xfs_dev_is_read_only(
1401 	struct xfs_mount	*mp,
1402 	char			*message)
1403 {
1404 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1405 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1406 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1407 		xfs_notice(mp, "%s required on read-only device.", message);
1408 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1409 		return -EROFS;
1410 	}
1411 	return 0;
1412 }
1413