xref: /linux/fs/xfs/xfs_mount.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
48 
49 
50 #ifdef HAVE_PERCPU_SB
51 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57 
58 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
60 #endif
61 
62 static const struct {
63 	short offset;
64 	short type;	/* 0 = integer
65 			 * 1 = binary / string (no translation)
66 			 */
67 } xfs_sb_info[] = {
68     { offsetof(xfs_sb_t, sb_magicnum),   0 },
69     { offsetof(xfs_sb_t, sb_blocksize),  0 },
70     { offsetof(xfs_sb_t, sb_dblocks),    0 },
71     { offsetof(xfs_sb_t, sb_rblocks),    0 },
72     { offsetof(xfs_sb_t, sb_rextents),   0 },
73     { offsetof(xfs_sb_t, sb_uuid),       1 },
74     { offsetof(xfs_sb_t, sb_logstart),   0 },
75     { offsetof(xfs_sb_t, sb_rootino),    0 },
76     { offsetof(xfs_sb_t, sb_rbmino),     0 },
77     { offsetof(xfs_sb_t, sb_rsumino),    0 },
78     { offsetof(xfs_sb_t, sb_rextsize),   0 },
79     { offsetof(xfs_sb_t, sb_agblocks),   0 },
80     { offsetof(xfs_sb_t, sb_agcount),    0 },
81     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
82     { offsetof(xfs_sb_t, sb_logblocks),  0 },
83     { offsetof(xfs_sb_t, sb_versionnum), 0 },
84     { offsetof(xfs_sb_t, sb_sectsize),   0 },
85     { offsetof(xfs_sb_t, sb_inodesize),  0 },
86     { offsetof(xfs_sb_t, sb_inopblock),  0 },
87     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
88     { offsetof(xfs_sb_t, sb_blocklog),   0 },
89     { offsetof(xfs_sb_t, sb_sectlog),    0 },
90     { offsetof(xfs_sb_t, sb_inodelog),   0 },
91     { offsetof(xfs_sb_t, sb_inopblog),   0 },
92     { offsetof(xfs_sb_t, sb_agblklog),   0 },
93     { offsetof(xfs_sb_t, sb_rextslog),   0 },
94     { offsetof(xfs_sb_t, sb_inprogress), 0 },
95     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
96     { offsetof(xfs_sb_t, sb_icount),     0 },
97     { offsetof(xfs_sb_t, sb_ifree),      0 },
98     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
99     { offsetof(xfs_sb_t, sb_frextents),  0 },
100     { offsetof(xfs_sb_t, sb_uquotino),   0 },
101     { offsetof(xfs_sb_t, sb_gquotino),   0 },
102     { offsetof(xfs_sb_t, sb_qflags),     0 },
103     { offsetof(xfs_sb_t, sb_flags),      0 },
104     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
105     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106     { offsetof(xfs_sb_t, sb_unit),	 0 },
107     { offsetof(xfs_sb_t, sb_width),	 0 },
108     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
109     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110     { offsetof(xfs_sb_t, sb_logsectsize),0 },
111     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
112     { offsetof(xfs_sb_t, sb_features2),	 0 },
113     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114     { offsetof(xfs_sb_t, sb_features_compat), 0 },
115     { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116     { offsetof(xfs_sb_t, sb_features_incompat), 0 },
117     { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
118     { offsetof(xfs_sb_t, sb_crc),	 0 },
119     { offsetof(xfs_sb_t, sb_pad),	 0 },
120     { offsetof(xfs_sb_t, sb_pquotino),	 0 },
121     { offsetof(xfs_sb_t, sb_lsn),	 0 },
122     { sizeof(xfs_sb_t),			 0 }
123 };
124 
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128 
129 /*
130  * See if the UUID is unique among mounted XFS filesystems.
131  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132  */
133 STATIC int
134 xfs_uuid_mount(
135 	struct xfs_mount	*mp)
136 {
137 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
138 	int			hole, i;
139 
140 	if (mp->m_flags & XFS_MOUNT_NOUUID)
141 		return 0;
142 
143 	if (uuid_is_nil(uuid)) {
144 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
145 		return XFS_ERROR(EINVAL);
146 	}
147 
148 	mutex_lock(&xfs_uuid_table_mutex);
149 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 		if (uuid_is_nil(&xfs_uuid_table[i])) {
151 			hole = i;
152 			continue;
153 		}
154 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 			goto out_duplicate;
156 	}
157 
158 	if (hole < 0) {
159 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
162 			KM_SLEEP);
163 		hole = xfs_uuid_table_size++;
164 	}
165 	xfs_uuid_table[hole] = *uuid;
166 	mutex_unlock(&xfs_uuid_table_mutex);
167 
168 	return 0;
169 
170  out_duplicate:
171 	mutex_unlock(&xfs_uuid_table_mutex);
172 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
173 	return XFS_ERROR(EINVAL);
174 }
175 
176 STATIC void
177 xfs_uuid_unmount(
178 	struct xfs_mount	*mp)
179 {
180 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
181 	int			i;
182 
183 	if (mp->m_flags & XFS_MOUNT_NOUUID)
184 		return;
185 
186 	mutex_lock(&xfs_uuid_table_mutex);
187 	for (i = 0; i < xfs_uuid_table_size; i++) {
188 		if (uuid_is_nil(&xfs_uuid_table[i]))
189 			continue;
190 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 			continue;
192 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 		break;
194 	}
195 	ASSERT(i < xfs_uuid_table_size);
196 	mutex_unlock(&xfs_uuid_table_mutex);
197 }
198 
199 
200 /*
201  * Reference counting access wrappers to the perag structures.
202  * Because we never free per-ag structures, the only thing we
203  * have to protect against changes is the tree structure itself.
204  */
205 struct xfs_perag *
206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
207 {
208 	struct xfs_perag	*pag;
209 	int			ref = 0;
210 
211 	rcu_read_lock();
212 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 	if (pag) {
214 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 		ref = atomic_inc_return(&pag->pag_ref);
216 	}
217 	rcu_read_unlock();
218 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 	return pag;
220 }
221 
222 /*
223  * search from @first to find the next perag with the given tag set.
224  */
225 struct xfs_perag *
226 xfs_perag_get_tag(
227 	struct xfs_mount	*mp,
228 	xfs_agnumber_t		first,
229 	int			tag)
230 {
231 	struct xfs_perag	*pag;
232 	int			found;
233 	int			ref;
234 
235 	rcu_read_lock();
236 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 					(void **)&pag, first, 1, tag);
238 	if (found <= 0) {
239 		rcu_read_unlock();
240 		return NULL;
241 	}
242 	ref = atomic_inc_return(&pag->pag_ref);
243 	rcu_read_unlock();
244 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 	return pag;
246 }
247 
248 void
249 xfs_perag_put(struct xfs_perag *pag)
250 {
251 	int	ref;
252 
253 	ASSERT(atomic_read(&pag->pag_ref) > 0);
254 	ref = atomic_dec_return(&pag->pag_ref);
255 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
256 }
257 
258 STATIC void
259 __xfs_free_perag(
260 	struct rcu_head	*head)
261 {
262 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
263 
264 	ASSERT(atomic_read(&pag->pag_ref) == 0);
265 	kmem_free(pag);
266 }
267 
268 /*
269  * Free up the per-ag resources associated with the mount structure.
270  */
271 STATIC void
272 xfs_free_perag(
273 	xfs_mount_t	*mp)
274 {
275 	xfs_agnumber_t	agno;
276 	struct xfs_perag *pag;
277 
278 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 		spin_lock(&mp->m_perag_lock);
280 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 		spin_unlock(&mp->m_perag_lock);
282 		ASSERT(pag);
283 		ASSERT(atomic_read(&pag->pag_ref) == 0);
284 		call_rcu(&pag->rcu_head, __xfs_free_perag);
285 	}
286 }
287 
288 /*
289  * Check size of device based on the (data/realtime) block count.
290  * Note: this check is used by the growfs code as well as mount.
291  */
292 int
293 xfs_sb_validate_fsb_count(
294 	xfs_sb_t	*sbp,
295 	__uint64_t	nblocks)
296 {
297 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
298 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
299 
300 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
301 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
302 		return EFBIG;
303 #else                  /* Limited by UINT_MAX of sectors */
304 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
305 		return EFBIG;
306 #endif
307 	return 0;
308 }
309 
310 /*
311  * Check the validity of the SB found.
312  */
313 STATIC int
314 xfs_mount_validate_sb(
315 	xfs_mount_t	*mp,
316 	xfs_sb_t	*sbp,
317 	bool		check_inprogress,
318 	bool		check_version)
319 {
320 
321 	/*
322 	 * If the log device and data device have the
323 	 * same device number, the log is internal.
324 	 * Consequently, the sb_logstart should be non-zero.  If
325 	 * we have a zero sb_logstart in this case, we may be trying to mount
326 	 * a volume filesystem in a non-volume manner.
327 	 */
328 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
329 		xfs_warn(mp, "bad magic number");
330 		return XFS_ERROR(EWRONGFS);
331 	}
332 
333 
334 	if (!xfs_sb_good_version(sbp)) {
335 		xfs_warn(mp, "bad version");
336 		return XFS_ERROR(EWRONGFS);
337 	}
338 
339 	if ((sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) &&
340 			(sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD |
341 				XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD))) {
342 		xfs_notice(mp,
343 "Super block has XFS_OQUOTA bits along with XFS_PQUOTA and/or XFS_GQUOTA bits.\n");
344 		return XFS_ERROR(EFSCORRUPTED);
345 	}
346 
347 	/*
348 	 * Version 5 superblock feature mask validation. Reject combinations the
349 	 * kernel cannot support up front before checking anything else. For
350 	 * write validation, we don't need to check feature masks.
351 	 */
352 	if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
353 		xfs_alert(mp,
354 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
355 "Use of these features in this kernel is at your own risk!");
356 
357 		if (xfs_sb_has_compat_feature(sbp,
358 					XFS_SB_FEAT_COMPAT_UNKNOWN)) {
359 			xfs_warn(mp,
360 "Superblock has unknown compatible features (0x%x) enabled.\n"
361 "Using a more recent kernel is recommended.",
362 				(sbp->sb_features_compat &
363 						XFS_SB_FEAT_COMPAT_UNKNOWN));
364 		}
365 
366 		if (xfs_sb_has_ro_compat_feature(sbp,
367 					XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
368 			xfs_alert(mp,
369 "Superblock has unknown read-only compatible features (0x%x) enabled.",
370 				(sbp->sb_features_ro_compat &
371 						XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
372 			if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
373 				xfs_warn(mp,
374 "Attempted to mount read-only compatible filesystem read-write.\n"
375 "Filesystem can only be safely mounted read only.");
376 				return XFS_ERROR(EINVAL);
377 			}
378 		}
379 		if (xfs_sb_has_incompat_feature(sbp,
380 					XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
381 			xfs_warn(mp,
382 "Superblock has unknown incompatible features (0x%x) enabled.\n"
383 "Filesystem can not be safely mounted by this kernel.",
384 				(sbp->sb_features_incompat &
385 						XFS_SB_FEAT_INCOMPAT_UNKNOWN));
386 			return XFS_ERROR(EINVAL);
387 		}
388 	}
389 
390 	if (unlikely(
391 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
392 		xfs_warn(mp,
393 		"filesystem is marked as having an external log; "
394 		"specify logdev on the mount command line.");
395 		return XFS_ERROR(EINVAL);
396 	}
397 
398 	if (unlikely(
399 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
400 		xfs_warn(mp,
401 		"filesystem is marked as having an internal log; "
402 		"do not specify logdev on the mount command line.");
403 		return XFS_ERROR(EINVAL);
404 	}
405 
406 	/*
407 	 * More sanity checking.  Most of these were stolen directly from
408 	 * xfs_repair.
409 	 */
410 	if (unlikely(
411 	    sbp->sb_agcount <= 0					||
412 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
413 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
414 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
415 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
416 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
417 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
418 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
419 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
420 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
421 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
422 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
423 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
424 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
425 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
426 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
427 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
428 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
429 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
430 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
431 	    sbp->sb_dblocks == 0					||
432 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
433 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
434 		XFS_CORRUPTION_ERROR("SB sanity check failed",
435 				XFS_ERRLEVEL_LOW, mp, sbp);
436 		return XFS_ERROR(EFSCORRUPTED);
437 	}
438 
439 	/*
440 	 * Until this is fixed only page-sized or smaller data blocks work.
441 	 */
442 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
443 		xfs_warn(mp,
444 		"File system with blocksize %d bytes. "
445 		"Only pagesize (%ld) or less will currently work.",
446 				sbp->sb_blocksize, PAGE_SIZE);
447 		return XFS_ERROR(ENOSYS);
448 	}
449 
450 	/*
451 	 * Currently only very few inode sizes are supported.
452 	 */
453 	switch (sbp->sb_inodesize) {
454 	case 256:
455 	case 512:
456 	case 1024:
457 	case 2048:
458 		break;
459 	default:
460 		xfs_warn(mp, "inode size of %d bytes not supported",
461 				sbp->sb_inodesize);
462 		return XFS_ERROR(ENOSYS);
463 	}
464 
465 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
466 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
467 		xfs_warn(mp,
468 		"file system too large to be mounted on this system.");
469 		return XFS_ERROR(EFBIG);
470 	}
471 
472 	if (check_inprogress && sbp->sb_inprogress) {
473 		xfs_warn(mp, "Offline file system operation in progress!");
474 		return XFS_ERROR(EFSCORRUPTED);
475 	}
476 
477 	/*
478 	 * Version 1 directory format has never worked on Linux.
479 	 */
480 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
481 		xfs_warn(mp, "file system using version 1 directory format");
482 		return XFS_ERROR(ENOSYS);
483 	}
484 
485 	return 0;
486 }
487 
488 int
489 xfs_initialize_perag(
490 	xfs_mount_t	*mp,
491 	xfs_agnumber_t	agcount,
492 	xfs_agnumber_t	*maxagi)
493 {
494 	xfs_agnumber_t	index;
495 	xfs_agnumber_t	first_initialised = 0;
496 	xfs_perag_t	*pag;
497 	xfs_agino_t	agino;
498 	xfs_ino_t	ino;
499 	xfs_sb_t	*sbp = &mp->m_sb;
500 	int		error = -ENOMEM;
501 
502 	/*
503 	 * Walk the current per-ag tree so we don't try to initialise AGs
504 	 * that already exist (growfs case). Allocate and insert all the
505 	 * AGs we don't find ready for initialisation.
506 	 */
507 	for (index = 0; index < agcount; index++) {
508 		pag = xfs_perag_get(mp, index);
509 		if (pag) {
510 			xfs_perag_put(pag);
511 			continue;
512 		}
513 		if (!first_initialised)
514 			first_initialised = index;
515 
516 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
517 		if (!pag)
518 			goto out_unwind;
519 		pag->pag_agno = index;
520 		pag->pag_mount = mp;
521 		spin_lock_init(&pag->pag_ici_lock);
522 		mutex_init(&pag->pag_ici_reclaim_lock);
523 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
524 		spin_lock_init(&pag->pag_buf_lock);
525 		pag->pag_buf_tree = RB_ROOT;
526 
527 		if (radix_tree_preload(GFP_NOFS))
528 			goto out_unwind;
529 
530 		spin_lock(&mp->m_perag_lock);
531 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
532 			BUG();
533 			spin_unlock(&mp->m_perag_lock);
534 			radix_tree_preload_end();
535 			error = -EEXIST;
536 			goto out_unwind;
537 		}
538 		spin_unlock(&mp->m_perag_lock);
539 		radix_tree_preload_end();
540 	}
541 
542 	/*
543 	 * If we mount with the inode64 option, or no inode overflows
544 	 * the legacy 32-bit address space clear the inode32 option.
545 	 */
546 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
547 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
548 
549 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
550 		mp->m_flags |= XFS_MOUNT_32BITINODES;
551 	else
552 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
553 
554 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
555 		index = xfs_set_inode32(mp);
556 	else
557 		index = xfs_set_inode64(mp);
558 
559 	if (maxagi)
560 		*maxagi = index;
561 	return 0;
562 
563 out_unwind:
564 	kmem_free(pag);
565 	for (; index > first_initialised; index--) {
566 		pag = radix_tree_delete(&mp->m_perag_tree, index);
567 		kmem_free(pag);
568 	}
569 	return error;
570 }
571 
572 static void
573 xfs_sb_quota_from_disk(struct xfs_sb *sbp)
574 {
575 	if (sbp->sb_qflags & XFS_OQUOTA_ENFD)
576 		sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ?
577 					XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD;
578 	if (sbp->sb_qflags & XFS_OQUOTA_CHKD)
579 		sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ?
580 					XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD;
581 	sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD);
582 }
583 
584 void
585 xfs_sb_from_disk(
586 	struct xfs_sb	*to,
587 	xfs_dsb_t	*from)
588 {
589 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
590 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
591 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
592 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
593 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
594 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
595 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
596 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
597 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
598 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
599 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
600 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
601 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
602 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
603 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
604 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
605 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
606 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
607 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
608 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
609 	to->sb_blocklog = from->sb_blocklog;
610 	to->sb_sectlog = from->sb_sectlog;
611 	to->sb_inodelog = from->sb_inodelog;
612 	to->sb_inopblog = from->sb_inopblog;
613 	to->sb_agblklog = from->sb_agblklog;
614 	to->sb_rextslog = from->sb_rextslog;
615 	to->sb_inprogress = from->sb_inprogress;
616 	to->sb_imax_pct = from->sb_imax_pct;
617 	to->sb_icount = be64_to_cpu(from->sb_icount);
618 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
619 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
620 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
621 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
622 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
623 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
624 	to->sb_flags = from->sb_flags;
625 	to->sb_shared_vn = from->sb_shared_vn;
626 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
627 	to->sb_unit = be32_to_cpu(from->sb_unit);
628 	to->sb_width = be32_to_cpu(from->sb_width);
629 	to->sb_dirblklog = from->sb_dirblklog;
630 	to->sb_logsectlog = from->sb_logsectlog;
631 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
632 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
633 	to->sb_features2 = be32_to_cpu(from->sb_features2);
634 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
635 	to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
636 	to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
637 	to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
638 	to->sb_features_log_incompat =
639 				be32_to_cpu(from->sb_features_log_incompat);
640 	to->sb_pad = 0;
641 	to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
642 	to->sb_lsn = be64_to_cpu(from->sb_lsn);
643 }
644 
645 static inline void
646 xfs_sb_quota_to_disk(
647 	xfs_dsb_t	*to,
648 	xfs_sb_t	*from,
649 	__int64_t	*fields)
650 {
651 	__uint16_t	qflags = from->sb_qflags;
652 
653 	if (*fields & XFS_SB_QFLAGS) {
654 		/*
655 		 * The in-core version of sb_qflags do not have
656 		 * XFS_OQUOTA_* flags, whereas the on-disk version
657 		 * does.  So, convert incore XFS_{PG}QUOTA_* flags
658 		 * to on-disk XFS_OQUOTA_* flags.
659 		 */
660 		qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD |
661 				XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD);
662 
663 		if (from->sb_qflags &
664 				(XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD))
665 			qflags |= XFS_OQUOTA_ENFD;
666 		if (from->sb_qflags &
667 				(XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD))
668 			qflags |= XFS_OQUOTA_CHKD;
669 		to->sb_qflags = cpu_to_be16(qflags);
670 		*fields &= ~XFS_SB_QFLAGS;
671 	}
672 }
673 
674 /*
675  * Copy in core superblock to ondisk one.
676  *
677  * The fields argument is mask of superblock fields to copy.
678  */
679 void
680 xfs_sb_to_disk(
681 	xfs_dsb_t	*to,
682 	xfs_sb_t	*from,
683 	__int64_t	fields)
684 {
685 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
686 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
687 	xfs_sb_field_t	f;
688 	int		first;
689 	int		size;
690 
691 	ASSERT(fields);
692 	if (!fields)
693 		return;
694 
695 	xfs_sb_quota_to_disk(to, from, &fields);
696 	while (fields) {
697 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
698 		first = xfs_sb_info[f].offset;
699 		size = xfs_sb_info[f + 1].offset - first;
700 
701 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
702 
703 		if (size == 1 || xfs_sb_info[f].type == 1) {
704 			memcpy(to_ptr + first, from_ptr + first, size);
705 		} else {
706 			switch (size) {
707 			case 2:
708 				*(__be16 *)(to_ptr + first) =
709 					cpu_to_be16(*(__u16 *)(from_ptr + first));
710 				break;
711 			case 4:
712 				*(__be32 *)(to_ptr + first) =
713 					cpu_to_be32(*(__u32 *)(from_ptr + first));
714 				break;
715 			case 8:
716 				*(__be64 *)(to_ptr + first) =
717 					cpu_to_be64(*(__u64 *)(from_ptr + first));
718 				break;
719 			default:
720 				ASSERT(0);
721 			}
722 		}
723 
724 		fields &= ~(1LL << f);
725 	}
726 }
727 
728 static int
729 xfs_sb_verify(
730 	struct xfs_buf	*bp,
731 	bool		check_version)
732 {
733 	struct xfs_mount *mp = bp->b_target->bt_mount;
734 	struct xfs_sb	sb;
735 
736 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
737 
738 	/*
739 	 * Only check the in progress field for the primary superblock as
740 	 * mkfs.xfs doesn't clear it from secondary superblocks.
741 	 */
742 	return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR,
743 				     check_version);
744 }
745 
746 /*
747  * If the superblock has the CRC feature bit set or the CRC field is non-null,
748  * check that the CRC is valid.  We check the CRC field is non-null because a
749  * single bit error could clear the feature bit and unused parts of the
750  * superblock are supposed to be zero. Hence a non-null crc field indicates that
751  * we've potentially lost a feature bit and we should check it anyway.
752  */
753 static void
754 xfs_sb_read_verify(
755 	struct xfs_buf	*bp)
756 {
757 	struct xfs_mount *mp = bp->b_target->bt_mount;
758 	struct xfs_dsb	*dsb = XFS_BUF_TO_SBP(bp);
759 	int		error;
760 
761 	/*
762 	 * open code the version check to avoid needing to convert the entire
763 	 * superblock from disk order just to check the version number
764 	 */
765 	if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
766 	    (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
767 						XFS_SB_VERSION_5) ||
768 	     dsb->sb_crc != 0)) {
769 
770 		if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
771 				      offsetof(struct xfs_sb, sb_crc))) {
772 			error = EFSCORRUPTED;
773 			goto out_error;
774 		}
775 	}
776 	error = xfs_sb_verify(bp, true);
777 
778 out_error:
779 	if (error) {
780 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
781 		xfs_buf_ioerror(bp, error);
782 	}
783 }
784 
785 /*
786  * We may be probed for a filesystem match, so we may not want to emit
787  * messages when the superblock buffer is not actually an XFS superblock.
788  * If we find an XFS superblock, the run a normal, noisy mount because we are
789  * really going to mount it and want to know about errors.
790  */
791 static void
792 xfs_sb_quiet_read_verify(
793 	struct xfs_buf	*bp)
794 {
795 	struct xfs_dsb	*dsb = XFS_BUF_TO_SBP(bp);
796 
797 
798 	if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
799 		/* XFS filesystem, verify noisily! */
800 		xfs_sb_read_verify(bp);
801 		return;
802 	}
803 	/* quietly fail */
804 	xfs_buf_ioerror(bp, EWRONGFS);
805 }
806 
807 static void
808 xfs_sb_write_verify(
809 	struct xfs_buf		*bp)
810 {
811 	struct xfs_mount	*mp = bp->b_target->bt_mount;
812 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
813 	int			error;
814 
815 	error = xfs_sb_verify(bp, false);
816 	if (error) {
817 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
818 		xfs_buf_ioerror(bp, error);
819 		return;
820 	}
821 
822 	if (!xfs_sb_version_hascrc(&mp->m_sb))
823 		return;
824 
825 	if (bip)
826 		XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
827 
828 	xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
829 			 offsetof(struct xfs_sb, sb_crc));
830 }
831 
832 const struct xfs_buf_ops xfs_sb_buf_ops = {
833 	.verify_read = xfs_sb_read_verify,
834 	.verify_write = xfs_sb_write_verify,
835 };
836 
837 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
838 	.verify_read = xfs_sb_quiet_read_verify,
839 	.verify_write = xfs_sb_write_verify,
840 };
841 
842 /*
843  * xfs_readsb
844  *
845  * Does the initial read of the superblock.
846  */
847 int
848 xfs_readsb(xfs_mount_t *mp, int flags)
849 {
850 	unsigned int	sector_size;
851 	struct xfs_buf	*bp;
852 	struct xfs_sb	*sbp = &mp->m_sb;
853 	int		error;
854 	int		loud = !(flags & XFS_MFSI_QUIET);
855 
856 	ASSERT(mp->m_sb_bp == NULL);
857 	ASSERT(mp->m_ddev_targp != NULL);
858 
859 	/*
860 	 * Allocate a (locked) buffer to hold the superblock.
861 	 * This will be kept around at all times to optimize
862 	 * access to the superblock.
863 	 */
864 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
865 
866 reread:
867 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
868 				   BTOBB(sector_size), 0,
869 				   loud ? &xfs_sb_buf_ops
870 				        : &xfs_sb_quiet_buf_ops);
871 	if (!bp) {
872 		if (loud)
873 			xfs_warn(mp, "SB buffer read failed");
874 		return EIO;
875 	}
876 	if (bp->b_error) {
877 		error = bp->b_error;
878 		if (loud)
879 			xfs_warn(mp, "SB validate failed with error %d.", error);
880 		goto release_buf;
881 	}
882 
883 	/*
884 	 * Initialize the mount structure from the superblock.
885 	 */
886 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
887 
888 	xfs_sb_quota_from_disk(&mp->m_sb);
889 	/*
890 	 * We must be able to do sector-sized and sector-aligned IO.
891 	 */
892 	if (sector_size > sbp->sb_sectsize) {
893 		if (loud)
894 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
895 				sector_size, sbp->sb_sectsize);
896 		error = ENOSYS;
897 		goto release_buf;
898 	}
899 
900 	/*
901 	 * If device sector size is smaller than the superblock size,
902 	 * re-read the superblock so the buffer is correctly sized.
903 	 */
904 	if (sector_size < sbp->sb_sectsize) {
905 		xfs_buf_relse(bp);
906 		sector_size = sbp->sb_sectsize;
907 		goto reread;
908 	}
909 
910 	/* Initialize per-cpu counters */
911 	xfs_icsb_reinit_counters(mp);
912 
913 	/* no need to be quiet anymore, so reset the buf ops */
914 	bp->b_ops = &xfs_sb_buf_ops;
915 
916 	mp->m_sb_bp = bp;
917 	xfs_buf_unlock(bp);
918 	return 0;
919 
920 release_buf:
921 	xfs_buf_relse(bp);
922 	return error;
923 }
924 
925 
926 /*
927  * xfs_mount_common
928  *
929  * Mount initialization code establishing various mount
930  * fields from the superblock associated with the given
931  * mount structure
932  */
933 STATIC void
934 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
935 {
936 	mp->m_agfrotor = mp->m_agirotor = 0;
937 	spin_lock_init(&mp->m_agirotor_lock);
938 	mp->m_maxagi = mp->m_sb.sb_agcount;
939 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
940 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
941 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
942 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
943 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
944 	mp->m_blockmask = sbp->sb_blocksize - 1;
945 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
946 	mp->m_blockwmask = mp->m_blockwsize - 1;
947 
948 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
949 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
950 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
951 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
952 
953 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
954 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
955 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
956 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
957 
958 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
959 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
960 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
961 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
962 
963 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
964 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
965 					sbp->sb_inopblock);
966 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
967 }
968 
969 /*
970  * xfs_initialize_perag_data
971  *
972  * Read in each per-ag structure so we can count up the number of
973  * allocated inodes, free inodes and used filesystem blocks as this
974  * information is no longer persistent in the superblock. Once we have
975  * this information, write it into the in-core superblock structure.
976  */
977 STATIC int
978 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
979 {
980 	xfs_agnumber_t	index;
981 	xfs_perag_t	*pag;
982 	xfs_sb_t	*sbp = &mp->m_sb;
983 	uint64_t	ifree = 0;
984 	uint64_t	ialloc = 0;
985 	uint64_t	bfree = 0;
986 	uint64_t	bfreelst = 0;
987 	uint64_t	btree = 0;
988 	int		error;
989 
990 	for (index = 0; index < agcount; index++) {
991 		/*
992 		 * read the agf, then the agi. This gets us
993 		 * all the information we need and populates the
994 		 * per-ag structures for us.
995 		 */
996 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
997 		if (error)
998 			return error;
999 
1000 		error = xfs_ialloc_pagi_init(mp, NULL, index);
1001 		if (error)
1002 			return error;
1003 		pag = xfs_perag_get(mp, index);
1004 		ifree += pag->pagi_freecount;
1005 		ialloc += pag->pagi_count;
1006 		bfree += pag->pagf_freeblks;
1007 		bfreelst += pag->pagf_flcount;
1008 		btree += pag->pagf_btreeblks;
1009 		xfs_perag_put(pag);
1010 	}
1011 	/*
1012 	 * Overwrite incore superblock counters with just-read data
1013 	 */
1014 	spin_lock(&mp->m_sb_lock);
1015 	sbp->sb_ifree = ifree;
1016 	sbp->sb_icount = ialloc;
1017 	sbp->sb_fdblocks = bfree + bfreelst + btree;
1018 	spin_unlock(&mp->m_sb_lock);
1019 
1020 	/* Fixup the per-cpu counters as well. */
1021 	xfs_icsb_reinit_counters(mp);
1022 
1023 	return 0;
1024 }
1025 
1026 /*
1027  * Update alignment values based on mount options and sb values
1028  */
1029 STATIC int
1030 xfs_update_alignment(xfs_mount_t *mp)
1031 {
1032 	xfs_sb_t	*sbp = &(mp->m_sb);
1033 
1034 	if (mp->m_dalign) {
1035 		/*
1036 		 * If stripe unit and stripe width are not multiples
1037 		 * of the fs blocksize turn off alignment.
1038 		 */
1039 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
1040 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
1041 			xfs_warn(mp,
1042 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
1043 				sbp->sb_blocksize);
1044 			return XFS_ERROR(EINVAL);
1045 		} else {
1046 			/*
1047 			 * Convert the stripe unit and width to FSBs.
1048 			 */
1049 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
1050 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
1051 				xfs_warn(mp,
1052 			"alignment check failed: sunit/swidth vs. agsize(%d)",
1053 					 sbp->sb_agblocks);
1054 				return XFS_ERROR(EINVAL);
1055 			} else if (mp->m_dalign) {
1056 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1057 			} else {
1058 				xfs_warn(mp,
1059 			"alignment check failed: sunit(%d) less than bsize(%d)",
1060 					 mp->m_dalign, sbp->sb_blocksize);
1061 				return XFS_ERROR(EINVAL);
1062 			}
1063 		}
1064 
1065 		/*
1066 		 * Update superblock with new values
1067 		 * and log changes
1068 		 */
1069 		if (xfs_sb_version_hasdalign(sbp)) {
1070 			if (sbp->sb_unit != mp->m_dalign) {
1071 				sbp->sb_unit = mp->m_dalign;
1072 				mp->m_update_flags |= XFS_SB_UNIT;
1073 			}
1074 			if (sbp->sb_width != mp->m_swidth) {
1075 				sbp->sb_width = mp->m_swidth;
1076 				mp->m_update_flags |= XFS_SB_WIDTH;
1077 			}
1078 		} else {
1079 			xfs_warn(mp,
1080 	"cannot change alignment: superblock does not support data alignment");
1081 			return XFS_ERROR(EINVAL);
1082 		}
1083 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1084 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
1085 			mp->m_dalign = sbp->sb_unit;
1086 			mp->m_swidth = sbp->sb_width;
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Set the maximum inode count for this filesystem
1094  */
1095 STATIC void
1096 xfs_set_maxicount(xfs_mount_t *mp)
1097 {
1098 	xfs_sb_t	*sbp = &(mp->m_sb);
1099 	__uint64_t	icount;
1100 
1101 	if (sbp->sb_imax_pct) {
1102 		/*
1103 		 * Make sure the maximum inode count is a multiple
1104 		 * of the units we allocate inodes in.
1105 		 */
1106 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1107 		do_div(icount, 100);
1108 		do_div(icount, mp->m_ialloc_blks);
1109 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
1110 				   sbp->sb_inopblog;
1111 	} else {
1112 		mp->m_maxicount = 0;
1113 	}
1114 }
1115 
1116 /*
1117  * Set the default minimum read and write sizes unless
1118  * already specified in a mount option.
1119  * We use smaller I/O sizes when the file system
1120  * is being used for NFS service (wsync mount option).
1121  */
1122 STATIC void
1123 xfs_set_rw_sizes(xfs_mount_t *mp)
1124 {
1125 	xfs_sb_t	*sbp = &(mp->m_sb);
1126 	int		readio_log, writeio_log;
1127 
1128 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1129 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
1130 			readio_log = XFS_WSYNC_READIO_LOG;
1131 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
1132 		} else {
1133 			readio_log = XFS_READIO_LOG_LARGE;
1134 			writeio_log = XFS_WRITEIO_LOG_LARGE;
1135 		}
1136 	} else {
1137 		readio_log = mp->m_readio_log;
1138 		writeio_log = mp->m_writeio_log;
1139 	}
1140 
1141 	if (sbp->sb_blocklog > readio_log) {
1142 		mp->m_readio_log = sbp->sb_blocklog;
1143 	} else {
1144 		mp->m_readio_log = readio_log;
1145 	}
1146 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1147 	if (sbp->sb_blocklog > writeio_log) {
1148 		mp->m_writeio_log = sbp->sb_blocklog;
1149 	} else {
1150 		mp->m_writeio_log = writeio_log;
1151 	}
1152 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1153 }
1154 
1155 /*
1156  * precalculate the low space thresholds for dynamic speculative preallocation.
1157  */
1158 void
1159 xfs_set_low_space_thresholds(
1160 	struct xfs_mount	*mp)
1161 {
1162 	int i;
1163 
1164 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
1165 		__uint64_t space = mp->m_sb.sb_dblocks;
1166 
1167 		do_div(space, 100);
1168 		mp->m_low_space[i] = space * (i + 1);
1169 	}
1170 }
1171 
1172 
1173 /*
1174  * Set whether we're using inode alignment.
1175  */
1176 STATIC void
1177 xfs_set_inoalignment(xfs_mount_t *mp)
1178 {
1179 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1180 	    mp->m_sb.sb_inoalignmt >=
1181 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1182 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1183 	else
1184 		mp->m_inoalign_mask = 0;
1185 	/*
1186 	 * If we are using stripe alignment, check whether
1187 	 * the stripe unit is a multiple of the inode alignment
1188 	 */
1189 	if (mp->m_dalign && mp->m_inoalign_mask &&
1190 	    !(mp->m_dalign & mp->m_inoalign_mask))
1191 		mp->m_sinoalign = mp->m_dalign;
1192 	else
1193 		mp->m_sinoalign = 0;
1194 }
1195 
1196 /*
1197  * Check that the data (and log if separate) are an ok size.
1198  */
1199 STATIC int
1200 xfs_check_sizes(xfs_mount_t *mp)
1201 {
1202 	xfs_buf_t	*bp;
1203 	xfs_daddr_t	d;
1204 
1205 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1206 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1207 		xfs_warn(mp, "filesystem size mismatch detected");
1208 		return XFS_ERROR(EFBIG);
1209 	}
1210 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1211 					d - XFS_FSS_TO_BB(mp, 1),
1212 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
1213 	if (!bp) {
1214 		xfs_warn(mp, "last sector read failed");
1215 		return EIO;
1216 	}
1217 	xfs_buf_relse(bp);
1218 
1219 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1220 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1221 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1222 			xfs_warn(mp, "log size mismatch detected");
1223 			return XFS_ERROR(EFBIG);
1224 		}
1225 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1226 					d - XFS_FSB_TO_BB(mp, 1),
1227 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
1228 		if (!bp) {
1229 			xfs_warn(mp, "log device read failed");
1230 			return EIO;
1231 		}
1232 		xfs_buf_relse(bp);
1233 	}
1234 	return 0;
1235 }
1236 
1237 /*
1238  * Clear the quotaflags in memory and in the superblock.
1239  */
1240 int
1241 xfs_mount_reset_sbqflags(
1242 	struct xfs_mount	*mp)
1243 {
1244 	int			error;
1245 	struct xfs_trans	*tp;
1246 
1247 	mp->m_qflags = 0;
1248 
1249 	/*
1250 	 * It is OK to look at sb_qflags here in mount path,
1251 	 * without m_sb_lock.
1252 	 */
1253 	if (mp->m_sb.sb_qflags == 0)
1254 		return 0;
1255 	spin_lock(&mp->m_sb_lock);
1256 	mp->m_sb.sb_qflags = 0;
1257 	spin_unlock(&mp->m_sb_lock);
1258 
1259 	/*
1260 	 * If the fs is readonly, let the incore superblock run
1261 	 * with quotas off but don't flush the update out to disk
1262 	 */
1263 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1264 		return 0;
1265 
1266 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1267 	error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1268 				  0, 0, XFS_DEFAULT_LOG_COUNT);
1269 	if (error) {
1270 		xfs_trans_cancel(tp, 0);
1271 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1272 		return error;
1273 	}
1274 
1275 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1276 	return xfs_trans_commit(tp, 0);
1277 }
1278 
1279 __uint64_t
1280 xfs_default_resblks(xfs_mount_t *mp)
1281 {
1282 	__uint64_t resblks;
1283 
1284 	/*
1285 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1286 	 * smaller.  This is intended to cover concurrent allocation
1287 	 * transactions when we initially hit enospc. These each require a 4
1288 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1289 	 * allocation reservations.
1290 	 */
1291 	resblks = mp->m_sb.sb_dblocks;
1292 	do_div(resblks, 20);
1293 	resblks = min_t(__uint64_t, resblks, 8192);
1294 	return resblks;
1295 }
1296 
1297 /*
1298  * This function does the following on an initial mount of a file system:
1299  *	- reads the superblock from disk and init the mount struct
1300  *	- if we're a 32-bit kernel, do a size check on the superblock
1301  *		so we don't mount terabyte filesystems
1302  *	- init mount struct realtime fields
1303  *	- allocate inode hash table for fs
1304  *	- init directory manager
1305  *	- perform recovery and init the log manager
1306  */
1307 int
1308 xfs_mountfs(
1309 	xfs_mount_t	*mp)
1310 {
1311 	xfs_sb_t	*sbp = &(mp->m_sb);
1312 	xfs_inode_t	*rip;
1313 	__uint64_t	resblks;
1314 	uint		quotamount = 0;
1315 	uint		quotaflags = 0;
1316 	int		error = 0;
1317 
1318 	xfs_mount_common(mp, sbp);
1319 
1320 	/*
1321 	 * Check for a mismatched features2 values.  Older kernels
1322 	 * read & wrote into the wrong sb offset for sb_features2
1323 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1324 	 * when sb_features2 was added, which made older superblock
1325 	 * reading/writing routines swap it as a 64-bit value.
1326 	 *
1327 	 * For backwards compatibility, we make both slots equal.
1328 	 *
1329 	 * If we detect a mismatched field, we OR the set bits into the
1330 	 * existing features2 field in case it has already been modified; we
1331 	 * don't want to lose any features.  We then update the bad location
1332 	 * with the ORed value so that older kernels will see any features2
1333 	 * flags, and mark the two fields as needing updates once the
1334 	 * transaction subsystem is online.
1335 	 */
1336 	if (xfs_sb_has_mismatched_features2(sbp)) {
1337 		xfs_warn(mp, "correcting sb_features alignment problem");
1338 		sbp->sb_features2 |= sbp->sb_bad_features2;
1339 		sbp->sb_bad_features2 = sbp->sb_features2;
1340 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1341 
1342 		/*
1343 		 * Re-check for ATTR2 in case it was found in bad_features2
1344 		 * slot.
1345 		 */
1346 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1347 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1348 			mp->m_flags |= XFS_MOUNT_ATTR2;
1349 	}
1350 
1351 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1352 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1353 		xfs_sb_version_removeattr2(&mp->m_sb);
1354 		mp->m_update_flags |= XFS_SB_FEATURES2;
1355 
1356 		/* update sb_versionnum for the clearing of the morebits */
1357 		if (!sbp->sb_features2)
1358 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1359 	}
1360 
1361 	/*
1362 	 * Check if sb_agblocks is aligned at stripe boundary
1363 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1364 	 * allocator alignment is within an ag, therefore ag has
1365 	 * to be aligned at stripe boundary.
1366 	 */
1367 	error = xfs_update_alignment(mp);
1368 	if (error)
1369 		goto out;
1370 
1371 	xfs_alloc_compute_maxlevels(mp);
1372 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1373 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1374 	xfs_ialloc_compute_maxlevels(mp);
1375 
1376 	xfs_set_maxicount(mp);
1377 
1378 	error = xfs_uuid_mount(mp);
1379 	if (error)
1380 		goto out;
1381 
1382 	/*
1383 	 * Set the minimum read and write sizes
1384 	 */
1385 	xfs_set_rw_sizes(mp);
1386 
1387 	/* set the low space thresholds for dynamic preallocation */
1388 	xfs_set_low_space_thresholds(mp);
1389 
1390 	/*
1391 	 * Set the inode cluster size.
1392 	 * This may still be overridden by the file system
1393 	 * block size if it is larger than the chosen cluster size.
1394 	 */
1395 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1396 
1397 	/*
1398 	 * Set inode alignment fields
1399 	 */
1400 	xfs_set_inoalignment(mp);
1401 
1402 	/*
1403 	 * Check that the data (and log if separate) are an ok size.
1404 	 */
1405 	error = xfs_check_sizes(mp);
1406 	if (error)
1407 		goto out_remove_uuid;
1408 
1409 	/*
1410 	 * Initialize realtime fields in the mount structure
1411 	 */
1412 	error = xfs_rtmount_init(mp);
1413 	if (error) {
1414 		xfs_warn(mp, "RT mount failed");
1415 		goto out_remove_uuid;
1416 	}
1417 
1418 	/*
1419 	 *  Copies the low order bits of the timestamp and the randomly
1420 	 *  set "sequence" number out of a UUID.
1421 	 */
1422 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1423 
1424 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1425 
1426 	xfs_dir_mount(mp);
1427 
1428 	/*
1429 	 * Initialize the attribute manager's entries.
1430 	 */
1431 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1432 
1433 	/*
1434 	 * Initialize the precomputed transaction reservations values.
1435 	 */
1436 	xfs_trans_init(mp);
1437 
1438 	/*
1439 	 * Allocate and initialize the per-ag data.
1440 	 */
1441 	spin_lock_init(&mp->m_perag_lock);
1442 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1443 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1444 	if (error) {
1445 		xfs_warn(mp, "Failed per-ag init: %d", error);
1446 		goto out_remove_uuid;
1447 	}
1448 
1449 	if (!sbp->sb_logblocks) {
1450 		xfs_warn(mp, "no log defined");
1451 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1452 		error = XFS_ERROR(EFSCORRUPTED);
1453 		goto out_free_perag;
1454 	}
1455 
1456 	/*
1457 	 * log's mount-time initialization. Perform 1st part recovery if needed
1458 	 */
1459 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1460 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1461 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1462 	if (error) {
1463 		xfs_warn(mp, "log mount failed");
1464 		goto out_fail_wait;
1465 	}
1466 
1467 	/*
1468 	 * Now the log is mounted, we know if it was an unclean shutdown or
1469 	 * not. If it was, with the first phase of recovery has completed, we
1470 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1471 	 * but they are recovered transactionally in the second recovery phase
1472 	 * later.
1473 	 *
1474 	 * Hence we can safely re-initialise incore superblock counters from
1475 	 * the per-ag data. These may not be correct if the filesystem was not
1476 	 * cleanly unmounted, so we need to wait for recovery to finish before
1477 	 * doing this.
1478 	 *
1479 	 * If the filesystem was cleanly unmounted, then we can trust the
1480 	 * values in the superblock to be correct and we don't need to do
1481 	 * anything here.
1482 	 *
1483 	 * If we are currently making the filesystem, the initialisation will
1484 	 * fail as the perag data is in an undefined state.
1485 	 */
1486 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1487 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1488 	     !mp->m_sb.sb_inprogress) {
1489 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1490 		if (error)
1491 			goto out_fail_wait;
1492 	}
1493 
1494 	/*
1495 	 * Get and sanity-check the root inode.
1496 	 * Save the pointer to it in the mount structure.
1497 	 */
1498 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1499 	if (error) {
1500 		xfs_warn(mp, "failed to read root inode");
1501 		goto out_log_dealloc;
1502 	}
1503 
1504 	ASSERT(rip != NULL);
1505 
1506 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1507 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1508 			(unsigned long long)rip->i_ino);
1509 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1510 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1511 				 mp);
1512 		error = XFS_ERROR(EFSCORRUPTED);
1513 		goto out_rele_rip;
1514 	}
1515 	mp->m_rootip = rip;	/* save it */
1516 
1517 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1518 
1519 	/*
1520 	 * Initialize realtime inode pointers in the mount structure
1521 	 */
1522 	error = xfs_rtmount_inodes(mp);
1523 	if (error) {
1524 		/*
1525 		 * Free up the root inode.
1526 		 */
1527 		xfs_warn(mp, "failed to read RT inodes");
1528 		goto out_rele_rip;
1529 	}
1530 
1531 	/*
1532 	 * If this is a read-only mount defer the superblock updates until
1533 	 * the next remount into writeable mode.  Otherwise we would never
1534 	 * perform the update e.g. for the root filesystem.
1535 	 */
1536 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1537 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1538 		if (error) {
1539 			xfs_warn(mp, "failed to write sb changes");
1540 			goto out_rtunmount;
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * Initialise the XFS quota management subsystem for this mount
1546 	 */
1547 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1548 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1549 		if (error)
1550 			goto out_rtunmount;
1551 	} else {
1552 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1553 
1554 		/*
1555 		 * If a file system had quotas running earlier, but decided to
1556 		 * mount without -o uquota/pquota/gquota options, revoke the
1557 		 * quotachecked license.
1558 		 */
1559 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1560 			xfs_notice(mp, "resetting quota flags");
1561 			error = xfs_mount_reset_sbqflags(mp);
1562 			if (error)
1563 				return error;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * Finish recovering the file system.  This part needed to be
1569 	 * delayed until after the root and real-time bitmap inodes
1570 	 * were consistently read in.
1571 	 */
1572 	error = xfs_log_mount_finish(mp);
1573 	if (error) {
1574 		xfs_warn(mp, "log mount finish failed");
1575 		goto out_rtunmount;
1576 	}
1577 
1578 	/*
1579 	 * Complete the quota initialisation, post-log-replay component.
1580 	 */
1581 	if (quotamount) {
1582 		ASSERT(mp->m_qflags == 0);
1583 		mp->m_qflags = quotaflags;
1584 
1585 		xfs_qm_mount_quotas(mp);
1586 	}
1587 
1588 	/*
1589 	 * Now we are mounted, reserve a small amount of unused space for
1590 	 * privileged transactions. This is needed so that transaction
1591 	 * space required for critical operations can dip into this pool
1592 	 * when at ENOSPC. This is needed for operations like create with
1593 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1594 	 * are not allowed to use this reserved space.
1595 	 *
1596 	 * This may drive us straight to ENOSPC on mount, but that implies
1597 	 * we were already there on the last unmount. Warn if this occurs.
1598 	 */
1599 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1600 		resblks = xfs_default_resblks(mp);
1601 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1602 		if (error)
1603 			xfs_warn(mp,
1604 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1605 	}
1606 
1607 	return 0;
1608 
1609  out_rtunmount:
1610 	xfs_rtunmount_inodes(mp);
1611  out_rele_rip:
1612 	IRELE(rip);
1613  out_log_dealloc:
1614 	xfs_log_unmount(mp);
1615  out_fail_wait:
1616 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1617 		xfs_wait_buftarg(mp->m_logdev_targp);
1618 	xfs_wait_buftarg(mp->m_ddev_targp);
1619  out_free_perag:
1620 	xfs_free_perag(mp);
1621  out_remove_uuid:
1622 	xfs_uuid_unmount(mp);
1623  out:
1624 	return error;
1625 }
1626 
1627 /*
1628  * This flushes out the inodes,dquots and the superblock, unmounts the
1629  * log and makes sure that incore structures are freed.
1630  */
1631 void
1632 xfs_unmountfs(
1633 	struct xfs_mount	*mp)
1634 {
1635 	__uint64_t		resblks;
1636 	int			error;
1637 
1638 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1639 
1640 	xfs_qm_unmount_quotas(mp);
1641 	xfs_rtunmount_inodes(mp);
1642 	IRELE(mp->m_rootip);
1643 
1644 	/*
1645 	 * We can potentially deadlock here if we have an inode cluster
1646 	 * that has been freed has its buffer still pinned in memory because
1647 	 * the transaction is still sitting in a iclog. The stale inodes
1648 	 * on that buffer will have their flush locks held until the
1649 	 * transaction hits the disk and the callbacks run. the inode
1650 	 * flush takes the flush lock unconditionally and with nothing to
1651 	 * push out the iclog we will never get that unlocked. hence we
1652 	 * need to force the log first.
1653 	 */
1654 	xfs_log_force(mp, XFS_LOG_SYNC);
1655 
1656 	/*
1657 	 * Flush all pending changes from the AIL.
1658 	 */
1659 	xfs_ail_push_all_sync(mp->m_ail);
1660 
1661 	/*
1662 	 * And reclaim all inodes.  At this point there should be no dirty
1663 	 * inodes and none should be pinned or locked, but use synchronous
1664 	 * reclaim just to be sure. We can stop background inode reclaim
1665 	 * here as well if it is still running.
1666 	 */
1667 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1668 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1669 
1670 	xfs_qm_unmount(mp);
1671 
1672 	/*
1673 	 * Unreserve any blocks we have so that when we unmount we don't account
1674 	 * the reserved free space as used. This is really only necessary for
1675 	 * lazy superblock counting because it trusts the incore superblock
1676 	 * counters to be absolutely correct on clean unmount.
1677 	 *
1678 	 * We don't bother correcting this elsewhere for lazy superblock
1679 	 * counting because on mount of an unclean filesystem we reconstruct the
1680 	 * correct counter value and this is irrelevant.
1681 	 *
1682 	 * For non-lazy counter filesystems, this doesn't matter at all because
1683 	 * we only every apply deltas to the superblock and hence the incore
1684 	 * value does not matter....
1685 	 */
1686 	resblks = 0;
1687 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1688 	if (error)
1689 		xfs_warn(mp, "Unable to free reserved block pool. "
1690 				"Freespace may not be correct on next mount.");
1691 
1692 	error = xfs_log_sbcount(mp);
1693 	if (error)
1694 		xfs_warn(mp, "Unable to update superblock counters. "
1695 				"Freespace may not be correct on next mount.");
1696 
1697 	xfs_log_unmount(mp);
1698 	xfs_uuid_unmount(mp);
1699 
1700 #if defined(DEBUG)
1701 	xfs_errortag_clearall(mp, 0);
1702 #endif
1703 	xfs_free_perag(mp);
1704 }
1705 
1706 int
1707 xfs_fs_writable(xfs_mount_t *mp)
1708 {
1709 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1710 		(mp->m_flags & XFS_MOUNT_RDONLY));
1711 }
1712 
1713 /*
1714  * xfs_log_sbcount
1715  *
1716  * Sync the superblock counters to disk.
1717  *
1718  * Note this code can be called during the process of freezing, so
1719  * we may need to use the transaction allocator which does not
1720  * block when the transaction subsystem is in its frozen state.
1721  */
1722 int
1723 xfs_log_sbcount(xfs_mount_t *mp)
1724 {
1725 	xfs_trans_t	*tp;
1726 	int		error;
1727 
1728 	if (!xfs_fs_writable(mp))
1729 		return 0;
1730 
1731 	xfs_icsb_sync_counters(mp, 0);
1732 
1733 	/*
1734 	 * we don't need to do this if we are updating the superblock
1735 	 * counters on every modification.
1736 	 */
1737 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1738 		return 0;
1739 
1740 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1741 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1742 				  XFS_DEFAULT_LOG_COUNT);
1743 	if (error) {
1744 		xfs_trans_cancel(tp, 0);
1745 		return error;
1746 	}
1747 
1748 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1749 	xfs_trans_set_sync(tp);
1750 	error = xfs_trans_commit(tp, 0);
1751 	return error;
1752 }
1753 
1754 /*
1755  * xfs_mod_sb() can be used to copy arbitrary changes to the
1756  * in-core superblock into the superblock buffer to be logged.
1757  * It does not provide the higher level of locking that is
1758  * needed to protect the in-core superblock from concurrent
1759  * access.
1760  */
1761 void
1762 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1763 {
1764 	xfs_buf_t	*bp;
1765 	int		first;
1766 	int		last;
1767 	xfs_mount_t	*mp;
1768 	xfs_sb_field_t	f;
1769 
1770 	ASSERT(fields);
1771 	if (!fields)
1772 		return;
1773 	mp = tp->t_mountp;
1774 	bp = xfs_trans_getsb(tp, mp, 0);
1775 	first = sizeof(xfs_sb_t);
1776 	last = 0;
1777 
1778 	/* translate/copy */
1779 
1780 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1781 
1782 	/* find modified range */
1783 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1784 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1785 	last = xfs_sb_info[f + 1].offset - 1;
1786 
1787 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1788 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1789 	first = xfs_sb_info[f].offset;
1790 
1791 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1792 	xfs_trans_log_buf(tp, bp, first, last);
1793 }
1794 
1795 
1796 /*
1797  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1798  * a delta to a specified field in the in-core superblock.  Simply
1799  * switch on the field indicated and apply the delta to that field.
1800  * Fields are not allowed to dip below zero, so if the delta would
1801  * do this do not apply it and return EINVAL.
1802  *
1803  * The m_sb_lock must be held when this routine is called.
1804  */
1805 STATIC int
1806 xfs_mod_incore_sb_unlocked(
1807 	xfs_mount_t	*mp,
1808 	xfs_sb_field_t	field,
1809 	int64_t		delta,
1810 	int		rsvd)
1811 {
1812 	int		scounter;	/* short counter for 32 bit fields */
1813 	long long	lcounter;	/* long counter for 64 bit fields */
1814 	long long	res_used, rem;
1815 
1816 	/*
1817 	 * With the in-core superblock spin lock held, switch
1818 	 * on the indicated field.  Apply the delta to the
1819 	 * proper field.  If the fields value would dip below
1820 	 * 0, then do not apply the delta and return EINVAL.
1821 	 */
1822 	switch (field) {
1823 	case XFS_SBS_ICOUNT:
1824 		lcounter = (long long)mp->m_sb.sb_icount;
1825 		lcounter += delta;
1826 		if (lcounter < 0) {
1827 			ASSERT(0);
1828 			return XFS_ERROR(EINVAL);
1829 		}
1830 		mp->m_sb.sb_icount = lcounter;
1831 		return 0;
1832 	case XFS_SBS_IFREE:
1833 		lcounter = (long long)mp->m_sb.sb_ifree;
1834 		lcounter += delta;
1835 		if (lcounter < 0) {
1836 			ASSERT(0);
1837 			return XFS_ERROR(EINVAL);
1838 		}
1839 		mp->m_sb.sb_ifree = lcounter;
1840 		return 0;
1841 	case XFS_SBS_FDBLOCKS:
1842 		lcounter = (long long)
1843 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1844 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1845 
1846 		if (delta > 0) {		/* Putting blocks back */
1847 			if (res_used > delta) {
1848 				mp->m_resblks_avail += delta;
1849 			} else {
1850 				rem = delta - res_used;
1851 				mp->m_resblks_avail = mp->m_resblks;
1852 				lcounter += rem;
1853 			}
1854 		} else {				/* Taking blocks away */
1855 			lcounter += delta;
1856 			if (lcounter >= 0) {
1857 				mp->m_sb.sb_fdblocks = lcounter +
1858 							XFS_ALLOC_SET_ASIDE(mp);
1859 				return 0;
1860 			}
1861 
1862 			/*
1863 			 * We are out of blocks, use any available reserved
1864 			 * blocks if were allowed to.
1865 			 */
1866 			if (!rsvd)
1867 				return XFS_ERROR(ENOSPC);
1868 
1869 			lcounter = (long long)mp->m_resblks_avail + delta;
1870 			if (lcounter >= 0) {
1871 				mp->m_resblks_avail = lcounter;
1872 				return 0;
1873 			}
1874 			printk_once(KERN_WARNING
1875 				"Filesystem \"%s\": reserve blocks depleted! "
1876 				"Consider increasing reserve pool size.",
1877 				mp->m_fsname);
1878 			return XFS_ERROR(ENOSPC);
1879 		}
1880 
1881 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1882 		return 0;
1883 	case XFS_SBS_FREXTENTS:
1884 		lcounter = (long long)mp->m_sb.sb_frextents;
1885 		lcounter += delta;
1886 		if (lcounter < 0) {
1887 			return XFS_ERROR(ENOSPC);
1888 		}
1889 		mp->m_sb.sb_frextents = lcounter;
1890 		return 0;
1891 	case XFS_SBS_DBLOCKS:
1892 		lcounter = (long long)mp->m_sb.sb_dblocks;
1893 		lcounter += delta;
1894 		if (lcounter < 0) {
1895 			ASSERT(0);
1896 			return XFS_ERROR(EINVAL);
1897 		}
1898 		mp->m_sb.sb_dblocks = lcounter;
1899 		return 0;
1900 	case XFS_SBS_AGCOUNT:
1901 		scounter = mp->m_sb.sb_agcount;
1902 		scounter += delta;
1903 		if (scounter < 0) {
1904 			ASSERT(0);
1905 			return XFS_ERROR(EINVAL);
1906 		}
1907 		mp->m_sb.sb_agcount = scounter;
1908 		return 0;
1909 	case XFS_SBS_IMAX_PCT:
1910 		scounter = mp->m_sb.sb_imax_pct;
1911 		scounter += delta;
1912 		if (scounter < 0) {
1913 			ASSERT(0);
1914 			return XFS_ERROR(EINVAL);
1915 		}
1916 		mp->m_sb.sb_imax_pct = scounter;
1917 		return 0;
1918 	case XFS_SBS_REXTSIZE:
1919 		scounter = mp->m_sb.sb_rextsize;
1920 		scounter += delta;
1921 		if (scounter < 0) {
1922 			ASSERT(0);
1923 			return XFS_ERROR(EINVAL);
1924 		}
1925 		mp->m_sb.sb_rextsize = scounter;
1926 		return 0;
1927 	case XFS_SBS_RBMBLOCKS:
1928 		scounter = mp->m_sb.sb_rbmblocks;
1929 		scounter += delta;
1930 		if (scounter < 0) {
1931 			ASSERT(0);
1932 			return XFS_ERROR(EINVAL);
1933 		}
1934 		mp->m_sb.sb_rbmblocks = scounter;
1935 		return 0;
1936 	case XFS_SBS_RBLOCKS:
1937 		lcounter = (long long)mp->m_sb.sb_rblocks;
1938 		lcounter += delta;
1939 		if (lcounter < 0) {
1940 			ASSERT(0);
1941 			return XFS_ERROR(EINVAL);
1942 		}
1943 		mp->m_sb.sb_rblocks = lcounter;
1944 		return 0;
1945 	case XFS_SBS_REXTENTS:
1946 		lcounter = (long long)mp->m_sb.sb_rextents;
1947 		lcounter += delta;
1948 		if (lcounter < 0) {
1949 			ASSERT(0);
1950 			return XFS_ERROR(EINVAL);
1951 		}
1952 		mp->m_sb.sb_rextents = lcounter;
1953 		return 0;
1954 	case XFS_SBS_REXTSLOG:
1955 		scounter = mp->m_sb.sb_rextslog;
1956 		scounter += delta;
1957 		if (scounter < 0) {
1958 			ASSERT(0);
1959 			return XFS_ERROR(EINVAL);
1960 		}
1961 		mp->m_sb.sb_rextslog = scounter;
1962 		return 0;
1963 	default:
1964 		ASSERT(0);
1965 		return XFS_ERROR(EINVAL);
1966 	}
1967 }
1968 
1969 /*
1970  * xfs_mod_incore_sb() is used to change a field in the in-core
1971  * superblock structure by the specified delta.  This modification
1972  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1973  * routine to do the work.
1974  */
1975 int
1976 xfs_mod_incore_sb(
1977 	struct xfs_mount	*mp,
1978 	xfs_sb_field_t		field,
1979 	int64_t			delta,
1980 	int			rsvd)
1981 {
1982 	int			status;
1983 
1984 #ifdef HAVE_PERCPU_SB
1985 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1986 #endif
1987 	spin_lock(&mp->m_sb_lock);
1988 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1989 	spin_unlock(&mp->m_sb_lock);
1990 
1991 	return status;
1992 }
1993 
1994 /*
1995  * Change more than one field in the in-core superblock structure at a time.
1996  *
1997  * The fields and changes to those fields are specified in the array of
1998  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1999  * will be applied or none of them will.  If any modified field dips below 0,
2000  * then all modifications will be backed out and EINVAL will be returned.
2001  *
2002  * Note that this function may not be used for the superblock values that
2003  * are tracked with the in-memory per-cpu counters - a direct call to
2004  * xfs_icsb_modify_counters is required for these.
2005  */
2006 int
2007 xfs_mod_incore_sb_batch(
2008 	struct xfs_mount	*mp,
2009 	xfs_mod_sb_t		*msb,
2010 	uint			nmsb,
2011 	int			rsvd)
2012 {
2013 	xfs_mod_sb_t		*msbp;
2014 	int			error = 0;
2015 
2016 	/*
2017 	 * Loop through the array of mod structures and apply each individually.
2018 	 * If any fail, then back out all those which have already been applied.
2019 	 * Do all of this within the scope of the m_sb_lock so that all of the
2020 	 * changes will be atomic.
2021 	 */
2022 	spin_lock(&mp->m_sb_lock);
2023 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
2024 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
2025 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
2026 
2027 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
2028 						   msbp->msb_delta, rsvd);
2029 		if (error)
2030 			goto unwind;
2031 	}
2032 	spin_unlock(&mp->m_sb_lock);
2033 	return 0;
2034 
2035 unwind:
2036 	while (--msbp >= msb) {
2037 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
2038 						   -msbp->msb_delta, rsvd);
2039 		ASSERT(error == 0);
2040 	}
2041 	spin_unlock(&mp->m_sb_lock);
2042 	return error;
2043 }
2044 
2045 /*
2046  * xfs_getsb() is called to obtain the buffer for the superblock.
2047  * The buffer is returned locked and read in from disk.
2048  * The buffer should be released with a call to xfs_brelse().
2049  *
2050  * If the flags parameter is BUF_TRYLOCK, then we'll only return
2051  * the superblock buffer if it can be locked without sleeping.
2052  * If it can't then we'll return NULL.
2053  */
2054 struct xfs_buf *
2055 xfs_getsb(
2056 	struct xfs_mount	*mp,
2057 	int			flags)
2058 {
2059 	struct xfs_buf		*bp = mp->m_sb_bp;
2060 
2061 	if (!xfs_buf_trylock(bp)) {
2062 		if (flags & XBF_TRYLOCK)
2063 			return NULL;
2064 		xfs_buf_lock(bp);
2065 	}
2066 
2067 	xfs_buf_hold(bp);
2068 	ASSERT(XFS_BUF_ISDONE(bp));
2069 	return bp;
2070 }
2071 
2072 /*
2073  * Used to free the superblock along various error paths.
2074  */
2075 void
2076 xfs_freesb(
2077 	struct xfs_mount	*mp)
2078 {
2079 	struct xfs_buf		*bp = mp->m_sb_bp;
2080 
2081 	xfs_buf_lock(bp);
2082 	mp->m_sb_bp = NULL;
2083 	xfs_buf_relse(bp);
2084 }
2085 
2086 /*
2087  * Used to log changes to the superblock unit and width fields which could
2088  * be altered by the mount options, as well as any potential sb_features2
2089  * fixup. Only the first superblock is updated.
2090  */
2091 int
2092 xfs_mount_log_sb(
2093 	xfs_mount_t	*mp,
2094 	__int64_t	fields)
2095 {
2096 	xfs_trans_t	*tp;
2097 	int		error;
2098 
2099 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2100 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2101 			 XFS_SB_VERSIONNUM));
2102 
2103 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2104 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2105 				  XFS_DEFAULT_LOG_COUNT);
2106 	if (error) {
2107 		xfs_trans_cancel(tp, 0);
2108 		return error;
2109 	}
2110 	xfs_mod_sb(tp, fields);
2111 	error = xfs_trans_commit(tp, 0);
2112 	return error;
2113 }
2114 
2115 /*
2116  * If the underlying (data/log/rt) device is readonly, there are some
2117  * operations that cannot proceed.
2118  */
2119 int
2120 xfs_dev_is_read_only(
2121 	struct xfs_mount	*mp,
2122 	char			*message)
2123 {
2124 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2125 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2126 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2127 		xfs_notice(mp, "%s required on read-only device.", message);
2128 		xfs_notice(mp, "write access unavailable, cannot proceed.");
2129 		return EROFS;
2130 	}
2131 	return 0;
2132 }
2133 
2134 #ifdef HAVE_PERCPU_SB
2135 /*
2136  * Per-cpu incore superblock counters
2137  *
2138  * Simple concept, difficult implementation
2139  *
2140  * Basically, replace the incore superblock counters with a distributed per cpu
2141  * counter for contended fields (e.g.  free block count).
2142  *
2143  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2144  * hence needs to be accurately read when we are running low on space. Hence
2145  * there is a method to enable and disable the per-cpu counters based on how
2146  * much "stuff" is available in them.
2147  *
2148  * Basically, a counter is enabled if there is enough free resource to justify
2149  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2150  * ENOSPC), then we disable the counters to synchronise all callers and
2151  * re-distribute the available resources.
2152  *
2153  * If, once we redistributed the available resources, we still get a failure,
2154  * we disable the per-cpu counter and go through the slow path.
2155  *
2156  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2157  * when we disable a per-cpu counter, we need to drain its resources back to
2158  * the global superblock. We do this after disabling the counter to prevent
2159  * more threads from queueing up on the counter.
2160  *
2161  * Essentially, this means that we still need a lock in the fast path to enable
2162  * synchronisation between the global counters and the per-cpu counters. This
2163  * is not a problem because the lock will be local to a CPU almost all the time
2164  * and have little contention except when we get to ENOSPC conditions.
2165  *
2166  * Basically, this lock becomes a barrier that enables us to lock out the fast
2167  * path while we do things like enabling and disabling counters and
2168  * synchronising the counters.
2169  *
2170  * Locking rules:
2171  *
2172  * 	1. m_sb_lock before picking up per-cpu locks
2173  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2174  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2175  * 	4. modifying per-cpu counters requires holding per-cpu lock
2176  * 	5. modifying global counters requires holding m_sb_lock
2177  *	6. enabling or disabling a counter requires holding the m_sb_lock
2178  *	   and _none_ of the per-cpu locks.
2179  *
2180  * Disabled counters are only ever re-enabled by a balance operation
2181  * that results in more free resources per CPU than a given threshold.
2182  * To ensure counters don't remain disabled, they are rebalanced when
2183  * the global resource goes above a higher threshold (i.e. some hysteresis
2184  * is present to prevent thrashing).
2185  */
2186 
2187 #ifdef CONFIG_HOTPLUG_CPU
2188 /*
2189  * hot-plug CPU notifier support.
2190  *
2191  * We need a notifier per filesystem as we need to be able to identify
2192  * the filesystem to balance the counters out. This is achieved by
2193  * having a notifier block embedded in the xfs_mount_t and doing pointer
2194  * magic to get the mount pointer from the notifier block address.
2195  */
2196 STATIC int
2197 xfs_icsb_cpu_notify(
2198 	struct notifier_block *nfb,
2199 	unsigned long action,
2200 	void *hcpu)
2201 {
2202 	xfs_icsb_cnts_t *cntp;
2203 	xfs_mount_t	*mp;
2204 
2205 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2206 	cntp = (xfs_icsb_cnts_t *)
2207 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2208 	switch (action) {
2209 	case CPU_UP_PREPARE:
2210 	case CPU_UP_PREPARE_FROZEN:
2211 		/* Easy Case - initialize the area and locks, and
2212 		 * then rebalance when online does everything else for us. */
2213 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2214 		break;
2215 	case CPU_ONLINE:
2216 	case CPU_ONLINE_FROZEN:
2217 		xfs_icsb_lock(mp);
2218 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2219 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2220 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2221 		xfs_icsb_unlock(mp);
2222 		break;
2223 	case CPU_DEAD:
2224 	case CPU_DEAD_FROZEN:
2225 		/* Disable all the counters, then fold the dead cpu's
2226 		 * count into the total on the global superblock and
2227 		 * re-enable the counters. */
2228 		xfs_icsb_lock(mp);
2229 		spin_lock(&mp->m_sb_lock);
2230 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2231 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2232 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2233 
2234 		mp->m_sb.sb_icount += cntp->icsb_icount;
2235 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2236 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2237 
2238 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2239 
2240 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2241 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2242 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2243 		spin_unlock(&mp->m_sb_lock);
2244 		xfs_icsb_unlock(mp);
2245 		break;
2246 	}
2247 
2248 	return NOTIFY_OK;
2249 }
2250 #endif /* CONFIG_HOTPLUG_CPU */
2251 
2252 int
2253 xfs_icsb_init_counters(
2254 	xfs_mount_t	*mp)
2255 {
2256 	xfs_icsb_cnts_t *cntp;
2257 	int		i;
2258 
2259 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2260 	if (mp->m_sb_cnts == NULL)
2261 		return -ENOMEM;
2262 
2263 #ifdef CONFIG_HOTPLUG_CPU
2264 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2265 	mp->m_icsb_notifier.priority = 0;
2266 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2267 #endif /* CONFIG_HOTPLUG_CPU */
2268 
2269 	for_each_online_cpu(i) {
2270 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2271 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2272 	}
2273 
2274 	mutex_init(&mp->m_icsb_mutex);
2275 
2276 	/*
2277 	 * start with all counters disabled so that the
2278 	 * initial balance kicks us off correctly
2279 	 */
2280 	mp->m_icsb_counters = -1;
2281 	return 0;
2282 }
2283 
2284 void
2285 xfs_icsb_reinit_counters(
2286 	xfs_mount_t	*mp)
2287 {
2288 	xfs_icsb_lock(mp);
2289 	/*
2290 	 * start with all counters disabled so that the
2291 	 * initial balance kicks us off correctly
2292 	 */
2293 	mp->m_icsb_counters = -1;
2294 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2295 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2296 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2297 	xfs_icsb_unlock(mp);
2298 }
2299 
2300 void
2301 xfs_icsb_destroy_counters(
2302 	xfs_mount_t	*mp)
2303 {
2304 	if (mp->m_sb_cnts) {
2305 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2306 		free_percpu(mp->m_sb_cnts);
2307 	}
2308 	mutex_destroy(&mp->m_icsb_mutex);
2309 }
2310 
2311 STATIC void
2312 xfs_icsb_lock_cntr(
2313 	xfs_icsb_cnts_t	*icsbp)
2314 {
2315 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2316 		ndelay(1000);
2317 	}
2318 }
2319 
2320 STATIC void
2321 xfs_icsb_unlock_cntr(
2322 	xfs_icsb_cnts_t	*icsbp)
2323 {
2324 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2325 }
2326 
2327 
2328 STATIC void
2329 xfs_icsb_lock_all_counters(
2330 	xfs_mount_t	*mp)
2331 {
2332 	xfs_icsb_cnts_t *cntp;
2333 	int		i;
2334 
2335 	for_each_online_cpu(i) {
2336 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2337 		xfs_icsb_lock_cntr(cntp);
2338 	}
2339 }
2340 
2341 STATIC void
2342 xfs_icsb_unlock_all_counters(
2343 	xfs_mount_t	*mp)
2344 {
2345 	xfs_icsb_cnts_t *cntp;
2346 	int		i;
2347 
2348 	for_each_online_cpu(i) {
2349 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2350 		xfs_icsb_unlock_cntr(cntp);
2351 	}
2352 }
2353 
2354 STATIC void
2355 xfs_icsb_count(
2356 	xfs_mount_t	*mp,
2357 	xfs_icsb_cnts_t	*cnt,
2358 	int		flags)
2359 {
2360 	xfs_icsb_cnts_t *cntp;
2361 	int		i;
2362 
2363 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2364 
2365 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2366 		xfs_icsb_lock_all_counters(mp);
2367 
2368 	for_each_online_cpu(i) {
2369 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2370 		cnt->icsb_icount += cntp->icsb_icount;
2371 		cnt->icsb_ifree += cntp->icsb_ifree;
2372 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2373 	}
2374 
2375 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2376 		xfs_icsb_unlock_all_counters(mp);
2377 }
2378 
2379 STATIC int
2380 xfs_icsb_counter_disabled(
2381 	xfs_mount_t	*mp,
2382 	xfs_sb_field_t	field)
2383 {
2384 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2385 	return test_bit(field, &mp->m_icsb_counters);
2386 }
2387 
2388 STATIC void
2389 xfs_icsb_disable_counter(
2390 	xfs_mount_t	*mp,
2391 	xfs_sb_field_t	field)
2392 {
2393 	xfs_icsb_cnts_t	cnt;
2394 
2395 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2396 
2397 	/*
2398 	 * If we are already disabled, then there is nothing to do
2399 	 * here. We check before locking all the counters to avoid
2400 	 * the expensive lock operation when being called in the
2401 	 * slow path and the counter is already disabled. This is
2402 	 * safe because the only time we set or clear this state is under
2403 	 * the m_icsb_mutex.
2404 	 */
2405 	if (xfs_icsb_counter_disabled(mp, field))
2406 		return;
2407 
2408 	xfs_icsb_lock_all_counters(mp);
2409 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2410 		/* drain back to superblock */
2411 
2412 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2413 		switch(field) {
2414 		case XFS_SBS_ICOUNT:
2415 			mp->m_sb.sb_icount = cnt.icsb_icount;
2416 			break;
2417 		case XFS_SBS_IFREE:
2418 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2419 			break;
2420 		case XFS_SBS_FDBLOCKS:
2421 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2422 			break;
2423 		default:
2424 			BUG();
2425 		}
2426 	}
2427 
2428 	xfs_icsb_unlock_all_counters(mp);
2429 }
2430 
2431 STATIC void
2432 xfs_icsb_enable_counter(
2433 	xfs_mount_t	*mp,
2434 	xfs_sb_field_t	field,
2435 	uint64_t	count,
2436 	uint64_t	resid)
2437 {
2438 	xfs_icsb_cnts_t	*cntp;
2439 	int		i;
2440 
2441 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2442 
2443 	xfs_icsb_lock_all_counters(mp);
2444 	for_each_online_cpu(i) {
2445 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2446 		switch (field) {
2447 		case XFS_SBS_ICOUNT:
2448 			cntp->icsb_icount = count + resid;
2449 			break;
2450 		case XFS_SBS_IFREE:
2451 			cntp->icsb_ifree = count + resid;
2452 			break;
2453 		case XFS_SBS_FDBLOCKS:
2454 			cntp->icsb_fdblocks = count + resid;
2455 			break;
2456 		default:
2457 			BUG();
2458 			break;
2459 		}
2460 		resid = 0;
2461 	}
2462 	clear_bit(field, &mp->m_icsb_counters);
2463 	xfs_icsb_unlock_all_counters(mp);
2464 }
2465 
2466 void
2467 xfs_icsb_sync_counters_locked(
2468 	xfs_mount_t	*mp,
2469 	int		flags)
2470 {
2471 	xfs_icsb_cnts_t	cnt;
2472 
2473 	xfs_icsb_count(mp, &cnt, flags);
2474 
2475 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2476 		mp->m_sb.sb_icount = cnt.icsb_icount;
2477 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2478 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2479 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2480 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2481 }
2482 
2483 /*
2484  * Accurate update of per-cpu counters to incore superblock
2485  */
2486 void
2487 xfs_icsb_sync_counters(
2488 	xfs_mount_t	*mp,
2489 	int		flags)
2490 {
2491 	spin_lock(&mp->m_sb_lock);
2492 	xfs_icsb_sync_counters_locked(mp, flags);
2493 	spin_unlock(&mp->m_sb_lock);
2494 }
2495 
2496 /*
2497  * Balance and enable/disable counters as necessary.
2498  *
2499  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2500  * chosen to be the same number as single on disk allocation chunk per CPU, and
2501  * free blocks is something far enough zero that we aren't going thrash when we
2502  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2503  * prevent looping endlessly when xfs_alloc_space asks for more than will
2504  * be distributed to a single CPU but each CPU has enough blocks to be
2505  * reenabled.
2506  *
2507  * Note that we can be called when counters are already disabled.
2508  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2509  * prevent locking every per-cpu counter needlessly.
2510  */
2511 
2512 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2513 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2514 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2515 STATIC void
2516 xfs_icsb_balance_counter_locked(
2517 	xfs_mount_t	*mp,
2518 	xfs_sb_field_t  field,
2519 	int		min_per_cpu)
2520 {
2521 	uint64_t	count, resid;
2522 	int		weight = num_online_cpus();
2523 	uint64_t	min = (uint64_t)min_per_cpu;
2524 
2525 	/* disable counter and sync counter */
2526 	xfs_icsb_disable_counter(mp, field);
2527 
2528 	/* update counters  - first CPU gets residual*/
2529 	switch (field) {
2530 	case XFS_SBS_ICOUNT:
2531 		count = mp->m_sb.sb_icount;
2532 		resid = do_div(count, weight);
2533 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2534 			return;
2535 		break;
2536 	case XFS_SBS_IFREE:
2537 		count = mp->m_sb.sb_ifree;
2538 		resid = do_div(count, weight);
2539 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2540 			return;
2541 		break;
2542 	case XFS_SBS_FDBLOCKS:
2543 		count = mp->m_sb.sb_fdblocks;
2544 		resid = do_div(count, weight);
2545 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2546 			return;
2547 		break;
2548 	default:
2549 		BUG();
2550 		count = resid = 0;	/* quiet, gcc */
2551 		break;
2552 	}
2553 
2554 	xfs_icsb_enable_counter(mp, field, count, resid);
2555 }
2556 
2557 STATIC void
2558 xfs_icsb_balance_counter(
2559 	xfs_mount_t	*mp,
2560 	xfs_sb_field_t  fields,
2561 	int		min_per_cpu)
2562 {
2563 	spin_lock(&mp->m_sb_lock);
2564 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2565 	spin_unlock(&mp->m_sb_lock);
2566 }
2567 
2568 int
2569 xfs_icsb_modify_counters(
2570 	xfs_mount_t	*mp,
2571 	xfs_sb_field_t	field,
2572 	int64_t		delta,
2573 	int		rsvd)
2574 {
2575 	xfs_icsb_cnts_t	*icsbp;
2576 	long long	lcounter;	/* long counter for 64 bit fields */
2577 	int		ret = 0;
2578 
2579 	might_sleep();
2580 again:
2581 	preempt_disable();
2582 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2583 
2584 	/*
2585 	 * if the counter is disabled, go to slow path
2586 	 */
2587 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2588 		goto slow_path;
2589 	xfs_icsb_lock_cntr(icsbp);
2590 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2591 		xfs_icsb_unlock_cntr(icsbp);
2592 		goto slow_path;
2593 	}
2594 
2595 	switch (field) {
2596 	case XFS_SBS_ICOUNT:
2597 		lcounter = icsbp->icsb_icount;
2598 		lcounter += delta;
2599 		if (unlikely(lcounter < 0))
2600 			goto balance_counter;
2601 		icsbp->icsb_icount = lcounter;
2602 		break;
2603 
2604 	case XFS_SBS_IFREE:
2605 		lcounter = icsbp->icsb_ifree;
2606 		lcounter += delta;
2607 		if (unlikely(lcounter < 0))
2608 			goto balance_counter;
2609 		icsbp->icsb_ifree = lcounter;
2610 		break;
2611 
2612 	case XFS_SBS_FDBLOCKS:
2613 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2614 
2615 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2616 		lcounter += delta;
2617 		if (unlikely(lcounter < 0))
2618 			goto balance_counter;
2619 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2620 		break;
2621 	default:
2622 		BUG();
2623 		break;
2624 	}
2625 	xfs_icsb_unlock_cntr(icsbp);
2626 	preempt_enable();
2627 	return 0;
2628 
2629 slow_path:
2630 	preempt_enable();
2631 
2632 	/*
2633 	 * serialise with a mutex so we don't burn lots of cpu on
2634 	 * the superblock lock. We still need to hold the superblock
2635 	 * lock, however, when we modify the global structures.
2636 	 */
2637 	xfs_icsb_lock(mp);
2638 
2639 	/*
2640 	 * Now running atomically.
2641 	 *
2642 	 * If the counter is enabled, someone has beaten us to rebalancing.
2643 	 * Drop the lock and try again in the fast path....
2644 	 */
2645 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2646 		xfs_icsb_unlock(mp);
2647 		goto again;
2648 	}
2649 
2650 	/*
2651 	 * The counter is currently disabled. Because we are
2652 	 * running atomically here, we know a rebalance cannot
2653 	 * be in progress. Hence we can go straight to operating
2654 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2655 	 * here even though we need to get the m_sb_lock. Doing so
2656 	 * will cause us to re-enter this function and deadlock.
2657 	 * Hence we get the m_sb_lock ourselves and then call
2658 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2659 	 * directly on the global counters.
2660 	 */
2661 	spin_lock(&mp->m_sb_lock);
2662 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2663 	spin_unlock(&mp->m_sb_lock);
2664 
2665 	/*
2666 	 * Now that we've modified the global superblock, we
2667 	 * may be able to re-enable the distributed counters
2668 	 * (e.g. lots of space just got freed). After that
2669 	 * we are done.
2670 	 */
2671 	if (ret != ENOSPC)
2672 		xfs_icsb_balance_counter(mp, field, 0);
2673 	xfs_icsb_unlock(mp);
2674 	return ret;
2675 
2676 balance_counter:
2677 	xfs_icsb_unlock_cntr(icsbp);
2678 	preempt_enable();
2679 
2680 	/*
2681 	 * We may have multiple threads here if multiple per-cpu
2682 	 * counters run dry at the same time. This will mean we can
2683 	 * do more balances than strictly necessary but it is not
2684 	 * the common slowpath case.
2685 	 */
2686 	xfs_icsb_lock(mp);
2687 
2688 	/*
2689 	 * running atomically.
2690 	 *
2691 	 * This will leave the counter in the correct state for future
2692 	 * accesses. After the rebalance, we simply try again and our retry
2693 	 * will either succeed through the fast path or slow path without
2694 	 * another balance operation being required.
2695 	 */
2696 	xfs_icsb_balance_counter(mp, field, delta);
2697 	xfs_icsb_unlock(mp);
2698 	goto again;
2699 }
2700 
2701 #endif
2702