1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_btree.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_alloc.h" 38 #include "xfs_rtalloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_error.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 #include "xfs_icache.h" 46 #include "xfs_cksum.h" 47 #include "xfs_buf_item.h" 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 56 #else 57 58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 60 #endif 61 62 static const struct { 63 short offset; 64 short type; /* 0 = integer 65 * 1 = binary / string (no translation) 66 */ 67 } xfs_sb_info[] = { 68 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 69 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 70 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 71 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 72 { offsetof(xfs_sb_t, sb_rextents), 0 }, 73 { offsetof(xfs_sb_t, sb_uuid), 1 }, 74 { offsetof(xfs_sb_t, sb_logstart), 0 }, 75 { offsetof(xfs_sb_t, sb_rootino), 0 }, 76 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 77 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 78 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 79 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_agcount), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 84 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 85 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 86 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 87 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 88 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 89 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 90 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 92 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 93 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 94 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 95 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 96 { offsetof(xfs_sb_t, sb_icount), 0 }, 97 { offsetof(xfs_sb_t, sb_ifree), 0 }, 98 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 99 { offsetof(xfs_sb_t, sb_frextents), 0 }, 100 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 101 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 102 { offsetof(xfs_sb_t, sb_qflags), 0 }, 103 { offsetof(xfs_sb_t, sb_flags), 0 }, 104 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 106 { offsetof(xfs_sb_t, sb_unit), 0 }, 107 { offsetof(xfs_sb_t, sb_width), 0 }, 108 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 109 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 110 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 111 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 112 { offsetof(xfs_sb_t, sb_features2), 0 }, 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 114 { offsetof(xfs_sb_t, sb_features_compat), 0 }, 115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 }, 116 { offsetof(xfs_sb_t, sb_features_incompat), 0 }, 117 { offsetof(xfs_sb_t, sb_features_log_incompat), 0 }, 118 { offsetof(xfs_sb_t, sb_crc), 0 }, 119 { offsetof(xfs_sb_t, sb_pad), 0 }, 120 { offsetof(xfs_sb_t, sb_pquotino), 0 }, 121 { offsetof(xfs_sb_t, sb_lsn), 0 }, 122 { sizeof(xfs_sb_t), 0 } 123 }; 124 125 static DEFINE_MUTEX(xfs_uuid_table_mutex); 126 static int xfs_uuid_table_size; 127 static uuid_t *xfs_uuid_table; 128 129 /* 130 * See if the UUID is unique among mounted XFS filesystems. 131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 132 */ 133 STATIC int 134 xfs_uuid_mount( 135 struct xfs_mount *mp) 136 { 137 uuid_t *uuid = &mp->m_sb.sb_uuid; 138 int hole, i; 139 140 if (mp->m_flags & XFS_MOUNT_NOUUID) 141 return 0; 142 143 if (uuid_is_nil(uuid)) { 144 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 145 return XFS_ERROR(EINVAL); 146 } 147 148 mutex_lock(&xfs_uuid_table_mutex); 149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 150 if (uuid_is_nil(&xfs_uuid_table[i])) { 151 hole = i; 152 continue; 153 } 154 if (uuid_equal(uuid, &xfs_uuid_table[i])) 155 goto out_duplicate; 156 } 157 158 if (hole < 0) { 159 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 161 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 162 KM_SLEEP); 163 hole = xfs_uuid_table_size++; 164 } 165 xfs_uuid_table[hole] = *uuid; 166 mutex_unlock(&xfs_uuid_table_mutex); 167 168 return 0; 169 170 out_duplicate: 171 mutex_unlock(&xfs_uuid_table_mutex); 172 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 173 return XFS_ERROR(EINVAL); 174 } 175 176 STATIC void 177 xfs_uuid_unmount( 178 struct xfs_mount *mp) 179 { 180 uuid_t *uuid = &mp->m_sb.sb_uuid; 181 int i; 182 183 if (mp->m_flags & XFS_MOUNT_NOUUID) 184 return; 185 186 mutex_lock(&xfs_uuid_table_mutex); 187 for (i = 0; i < xfs_uuid_table_size; i++) { 188 if (uuid_is_nil(&xfs_uuid_table[i])) 189 continue; 190 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 191 continue; 192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 193 break; 194 } 195 ASSERT(i < xfs_uuid_table_size); 196 mutex_unlock(&xfs_uuid_table_mutex); 197 } 198 199 200 /* 201 * Reference counting access wrappers to the perag structures. 202 * Because we never free per-ag structures, the only thing we 203 * have to protect against changes is the tree structure itself. 204 */ 205 struct xfs_perag * 206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 207 { 208 struct xfs_perag *pag; 209 int ref = 0; 210 211 rcu_read_lock(); 212 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 213 if (pag) { 214 ASSERT(atomic_read(&pag->pag_ref) >= 0); 215 ref = atomic_inc_return(&pag->pag_ref); 216 } 217 rcu_read_unlock(); 218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 219 return pag; 220 } 221 222 /* 223 * search from @first to find the next perag with the given tag set. 224 */ 225 struct xfs_perag * 226 xfs_perag_get_tag( 227 struct xfs_mount *mp, 228 xfs_agnumber_t first, 229 int tag) 230 { 231 struct xfs_perag *pag; 232 int found; 233 int ref; 234 235 rcu_read_lock(); 236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 237 (void **)&pag, first, 1, tag); 238 if (found <= 0) { 239 rcu_read_unlock(); 240 return NULL; 241 } 242 ref = atomic_inc_return(&pag->pag_ref); 243 rcu_read_unlock(); 244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 245 return pag; 246 } 247 248 void 249 xfs_perag_put(struct xfs_perag *pag) 250 { 251 int ref; 252 253 ASSERT(atomic_read(&pag->pag_ref) > 0); 254 ref = atomic_dec_return(&pag->pag_ref); 255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 256 } 257 258 STATIC void 259 __xfs_free_perag( 260 struct rcu_head *head) 261 { 262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 263 264 ASSERT(atomic_read(&pag->pag_ref) == 0); 265 kmem_free(pag); 266 } 267 268 /* 269 * Free up the per-ag resources associated with the mount structure. 270 */ 271 STATIC void 272 xfs_free_perag( 273 xfs_mount_t *mp) 274 { 275 xfs_agnumber_t agno; 276 struct xfs_perag *pag; 277 278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 279 spin_lock(&mp->m_perag_lock); 280 pag = radix_tree_delete(&mp->m_perag_tree, agno); 281 spin_unlock(&mp->m_perag_lock); 282 ASSERT(pag); 283 ASSERT(atomic_read(&pag->pag_ref) == 0); 284 call_rcu(&pag->rcu_head, __xfs_free_perag); 285 } 286 } 287 288 /* 289 * Check size of device based on the (data/realtime) block count. 290 * Note: this check is used by the growfs code as well as mount. 291 */ 292 int 293 xfs_sb_validate_fsb_count( 294 xfs_sb_t *sbp, 295 __uint64_t nblocks) 296 { 297 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 298 ASSERT(sbp->sb_blocklog >= BBSHIFT); 299 300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 301 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 302 return EFBIG; 303 #else /* Limited by UINT_MAX of sectors */ 304 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 305 return EFBIG; 306 #endif 307 return 0; 308 } 309 310 /* 311 * Check the validity of the SB found. 312 */ 313 STATIC int 314 xfs_mount_validate_sb( 315 xfs_mount_t *mp, 316 xfs_sb_t *sbp, 317 bool check_inprogress, 318 bool check_version) 319 { 320 321 /* 322 * If the log device and data device have the 323 * same device number, the log is internal. 324 * Consequently, the sb_logstart should be non-zero. If 325 * we have a zero sb_logstart in this case, we may be trying to mount 326 * a volume filesystem in a non-volume manner. 327 */ 328 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 329 xfs_warn(mp, "bad magic number"); 330 return XFS_ERROR(EWRONGFS); 331 } 332 333 334 if (!xfs_sb_good_version(sbp)) { 335 xfs_warn(mp, "bad version"); 336 return XFS_ERROR(EWRONGFS); 337 } 338 339 if ((sbp->sb_qflags & (XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD)) && 340 (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | 341 XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD))) { 342 xfs_notice(mp, 343 "Super block has XFS_OQUOTA bits along with XFS_PQUOTA and/or XFS_GQUOTA bits.\n"); 344 return XFS_ERROR(EFSCORRUPTED); 345 } 346 347 /* 348 * Version 5 superblock feature mask validation. Reject combinations the 349 * kernel cannot support up front before checking anything else. For 350 * write validation, we don't need to check feature masks. 351 */ 352 if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) { 353 xfs_alert(mp, 354 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n" 355 "Use of these features in this kernel is at your own risk!"); 356 357 if (xfs_sb_has_compat_feature(sbp, 358 XFS_SB_FEAT_COMPAT_UNKNOWN)) { 359 xfs_warn(mp, 360 "Superblock has unknown compatible features (0x%x) enabled.\n" 361 "Using a more recent kernel is recommended.", 362 (sbp->sb_features_compat & 363 XFS_SB_FEAT_COMPAT_UNKNOWN)); 364 } 365 366 if (xfs_sb_has_ro_compat_feature(sbp, 367 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 368 xfs_alert(mp, 369 "Superblock has unknown read-only compatible features (0x%x) enabled.", 370 (sbp->sb_features_ro_compat & 371 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 372 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 373 xfs_warn(mp, 374 "Attempted to mount read-only compatible filesystem read-write.\n" 375 "Filesystem can only be safely mounted read only."); 376 return XFS_ERROR(EINVAL); 377 } 378 } 379 if (xfs_sb_has_incompat_feature(sbp, 380 XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 381 xfs_warn(mp, 382 "Superblock has unknown incompatible features (0x%x) enabled.\n" 383 "Filesystem can not be safely mounted by this kernel.", 384 (sbp->sb_features_incompat & 385 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 386 return XFS_ERROR(EINVAL); 387 } 388 } 389 390 if (unlikely( 391 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 392 xfs_warn(mp, 393 "filesystem is marked as having an external log; " 394 "specify logdev on the mount command line."); 395 return XFS_ERROR(EINVAL); 396 } 397 398 if (unlikely( 399 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 400 xfs_warn(mp, 401 "filesystem is marked as having an internal log; " 402 "do not specify logdev on the mount command line."); 403 return XFS_ERROR(EINVAL); 404 } 405 406 /* 407 * More sanity checking. Most of these were stolen directly from 408 * xfs_repair. 409 */ 410 if (unlikely( 411 sbp->sb_agcount <= 0 || 412 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 413 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 414 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 415 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 416 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 417 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 418 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 419 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 420 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 421 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 422 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 423 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 424 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 425 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 426 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 427 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 428 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 429 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 430 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 431 sbp->sb_dblocks == 0 || 432 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 433 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) { 434 XFS_CORRUPTION_ERROR("SB sanity check failed", 435 XFS_ERRLEVEL_LOW, mp, sbp); 436 return XFS_ERROR(EFSCORRUPTED); 437 } 438 439 /* 440 * Until this is fixed only page-sized or smaller data blocks work. 441 */ 442 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 443 xfs_warn(mp, 444 "File system with blocksize %d bytes. " 445 "Only pagesize (%ld) or less will currently work.", 446 sbp->sb_blocksize, PAGE_SIZE); 447 return XFS_ERROR(ENOSYS); 448 } 449 450 /* 451 * Currently only very few inode sizes are supported. 452 */ 453 switch (sbp->sb_inodesize) { 454 case 256: 455 case 512: 456 case 1024: 457 case 2048: 458 break; 459 default: 460 xfs_warn(mp, "inode size of %d bytes not supported", 461 sbp->sb_inodesize); 462 return XFS_ERROR(ENOSYS); 463 } 464 465 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 466 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 467 xfs_warn(mp, 468 "file system too large to be mounted on this system."); 469 return XFS_ERROR(EFBIG); 470 } 471 472 if (check_inprogress && sbp->sb_inprogress) { 473 xfs_warn(mp, "Offline file system operation in progress!"); 474 return XFS_ERROR(EFSCORRUPTED); 475 } 476 477 /* 478 * Version 1 directory format has never worked on Linux. 479 */ 480 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 481 xfs_warn(mp, "file system using version 1 directory format"); 482 return XFS_ERROR(ENOSYS); 483 } 484 485 return 0; 486 } 487 488 int 489 xfs_initialize_perag( 490 xfs_mount_t *mp, 491 xfs_agnumber_t agcount, 492 xfs_agnumber_t *maxagi) 493 { 494 xfs_agnumber_t index; 495 xfs_agnumber_t first_initialised = 0; 496 xfs_perag_t *pag; 497 xfs_agino_t agino; 498 xfs_ino_t ino; 499 xfs_sb_t *sbp = &mp->m_sb; 500 int error = -ENOMEM; 501 502 /* 503 * Walk the current per-ag tree so we don't try to initialise AGs 504 * that already exist (growfs case). Allocate and insert all the 505 * AGs we don't find ready for initialisation. 506 */ 507 for (index = 0; index < agcount; index++) { 508 pag = xfs_perag_get(mp, index); 509 if (pag) { 510 xfs_perag_put(pag); 511 continue; 512 } 513 if (!first_initialised) 514 first_initialised = index; 515 516 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 517 if (!pag) 518 goto out_unwind; 519 pag->pag_agno = index; 520 pag->pag_mount = mp; 521 spin_lock_init(&pag->pag_ici_lock); 522 mutex_init(&pag->pag_ici_reclaim_lock); 523 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 524 spin_lock_init(&pag->pag_buf_lock); 525 pag->pag_buf_tree = RB_ROOT; 526 527 if (radix_tree_preload(GFP_NOFS)) 528 goto out_unwind; 529 530 spin_lock(&mp->m_perag_lock); 531 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 532 BUG(); 533 spin_unlock(&mp->m_perag_lock); 534 radix_tree_preload_end(); 535 error = -EEXIST; 536 goto out_unwind; 537 } 538 spin_unlock(&mp->m_perag_lock); 539 radix_tree_preload_end(); 540 } 541 542 /* 543 * If we mount with the inode64 option, or no inode overflows 544 * the legacy 32-bit address space clear the inode32 option. 545 */ 546 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 547 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 548 549 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 550 mp->m_flags |= XFS_MOUNT_32BITINODES; 551 else 552 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 553 554 if (mp->m_flags & XFS_MOUNT_32BITINODES) 555 index = xfs_set_inode32(mp); 556 else 557 index = xfs_set_inode64(mp); 558 559 if (maxagi) 560 *maxagi = index; 561 return 0; 562 563 out_unwind: 564 kmem_free(pag); 565 for (; index > first_initialised; index--) { 566 pag = radix_tree_delete(&mp->m_perag_tree, index); 567 kmem_free(pag); 568 } 569 return error; 570 } 571 572 static void 573 xfs_sb_quota_from_disk(struct xfs_sb *sbp) 574 { 575 if (sbp->sb_qflags & XFS_OQUOTA_ENFD) 576 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 577 XFS_PQUOTA_ENFD : XFS_GQUOTA_ENFD; 578 if (sbp->sb_qflags & XFS_OQUOTA_CHKD) 579 sbp->sb_qflags |= (sbp->sb_qflags & XFS_PQUOTA_ACCT) ? 580 XFS_PQUOTA_CHKD : XFS_GQUOTA_CHKD; 581 sbp->sb_qflags &= ~(XFS_OQUOTA_ENFD | XFS_OQUOTA_CHKD); 582 } 583 584 void 585 xfs_sb_from_disk( 586 struct xfs_sb *to, 587 xfs_dsb_t *from) 588 { 589 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 590 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 591 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 592 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 593 to->sb_rextents = be64_to_cpu(from->sb_rextents); 594 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 595 to->sb_logstart = be64_to_cpu(from->sb_logstart); 596 to->sb_rootino = be64_to_cpu(from->sb_rootino); 597 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 598 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 599 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 600 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 601 to->sb_agcount = be32_to_cpu(from->sb_agcount); 602 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 603 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 604 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 605 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 606 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 607 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 608 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 609 to->sb_blocklog = from->sb_blocklog; 610 to->sb_sectlog = from->sb_sectlog; 611 to->sb_inodelog = from->sb_inodelog; 612 to->sb_inopblog = from->sb_inopblog; 613 to->sb_agblklog = from->sb_agblklog; 614 to->sb_rextslog = from->sb_rextslog; 615 to->sb_inprogress = from->sb_inprogress; 616 to->sb_imax_pct = from->sb_imax_pct; 617 to->sb_icount = be64_to_cpu(from->sb_icount); 618 to->sb_ifree = be64_to_cpu(from->sb_ifree); 619 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 620 to->sb_frextents = be64_to_cpu(from->sb_frextents); 621 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 622 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 623 to->sb_qflags = be16_to_cpu(from->sb_qflags); 624 to->sb_flags = from->sb_flags; 625 to->sb_shared_vn = from->sb_shared_vn; 626 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 627 to->sb_unit = be32_to_cpu(from->sb_unit); 628 to->sb_width = be32_to_cpu(from->sb_width); 629 to->sb_dirblklog = from->sb_dirblklog; 630 to->sb_logsectlog = from->sb_logsectlog; 631 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 632 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 633 to->sb_features2 = be32_to_cpu(from->sb_features2); 634 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 635 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 636 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 637 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 638 to->sb_features_log_incompat = 639 be32_to_cpu(from->sb_features_log_incompat); 640 to->sb_pad = 0; 641 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 642 to->sb_lsn = be64_to_cpu(from->sb_lsn); 643 } 644 645 static inline void 646 xfs_sb_quota_to_disk( 647 xfs_dsb_t *to, 648 xfs_sb_t *from, 649 __int64_t *fields) 650 { 651 __uint16_t qflags = from->sb_qflags; 652 653 if (*fields & XFS_SB_QFLAGS) { 654 /* 655 * The in-core version of sb_qflags do not have 656 * XFS_OQUOTA_* flags, whereas the on-disk version 657 * does. So, convert incore XFS_{PG}QUOTA_* flags 658 * to on-disk XFS_OQUOTA_* flags. 659 */ 660 qflags &= ~(XFS_PQUOTA_ENFD | XFS_PQUOTA_CHKD | 661 XFS_GQUOTA_ENFD | XFS_GQUOTA_CHKD); 662 663 if (from->sb_qflags & 664 (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD)) 665 qflags |= XFS_OQUOTA_ENFD; 666 if (from->sb_qflags & 667 (XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) 668 qflags |= XFS_OQUOTA_CHKD; 669 to->sb_qflags = cpu_to_be16(qflags); 670 *fields &= ~XFS_SB_QFLAGS; 671 } 672 } 673 674 /* 675 * Copy in core superblock to ondisk one. 676 * 677 * The fields argument is mask of superblock fields to copy. 678 */ 679 void 680 xfs_sb_to_disk( 681 xfs_dsb_t *to, 682 xfs_sb_t *from, 683 __int64_t fields) 684 { 685 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 686 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 687 xfs_sb_field_t f; 688 int first; 689 int size; 690 691 ASSERT(fields); 692 if (!fields) 693 return; 694 695 xfs_sb_quota_to_disk(to, from, &fields); 696 while (fields) { 697 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 698 first = xfs_sb_info[f].offset; 699 size = xfs_sb_info[f + 1].offset - first; 700 701 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 702 703 if (size == 1 || xfs_sb_info[f].type == 1) { 704 memcpy(to_ptr + first, from_ptr + first, size); 705 } else { 706 switch (size) { 707 case 2: 708 *(__be16 *)(to_ptr + first) = 709 cpu_to_be16(*(__u16 *)(from_ptr + first)); 710 break; 711 case 4: 712 *(__be32 *)(to_ptr + first) = 713 cpu_to_be32(*(__u32 *)(from_ptr + first)); 714 break; 715 case 8: 716 *(__be64 *)(to_ptr + first) = 717 cpu_to_be64(*(__u64 *)(from_ptr + first)); 718 break; 719 default: 720 ASSERT(0); 721 } 722 } 723 724 fields &= ~(1LL << f); 725 } 726 } 727 728 static int 729 xfs_sb_verify( 730 struct xfs_buf *bp, 731 bool check_version) 732 { 733 struct xfs_mount *mp = bp->b_target->bt_mount; 734 struct xfs_sb sb; 735 736 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp)); 737 738 /* 739 * Only check the in progress field for the primary superblock as 740 * mkfs.xfs doesn't clear it from secondary superblocks. 741 */ 742 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR, 743 check_version); 744 } 745 746 /* 747 * If the superblock has the CRC feature bit set or the CRC field is non-null, 748 * check that the CRC is valid. We check the CRC field is non-null because a 749 * single bit error could clear the feature bit and unused parts of the 750 * superblock are supposed to be zero. Hence a non-null crc field indicates that 751 * we've potentially lost a feature bit and we should check it anyway. 752 */ 753 static void 754 xfs_sb_read_verify( 755 struct xfs_buf *bp) 756 { 757 struct xfs_mount *mp = bp->b_target->bt_mount; 758 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 759 int error; 760 761 /* 762 * open code the version check to avoid needing to convert the entire 763 * superblock from disk order just to check the version number 764 */ 765 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 766 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 767 XFS_SB_VERSION_5) || 768 dsb->sb_crc != 0)) { 769 770 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize), 771 offsetof(struct xfs_sb, sb_crc))) { 772 error = EFSCORRUPTED; 773 goto out_error; 774 } 775 } 776 error = xfs_sb_verify(bp, true); 777 778 out_error: 779 if (error) { 780 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); 781 xfs_buf_ioerror(bp, error); 782 } 783 } 784 785 /* 786 * We may be probed for a filesystem match, so we may not want to emit 787 * messages when the superblock buffer is not actually an XFS superblock. 788 * If we find an XFS superblock, the run a normal, noisy mount because we are 789 * really going to mount it and want to know about errors. 790 */ 791 static void 792 xfs_sb_quiet_read_verify( 793 struct xfs_buf *bp) 794 { 795 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 796 797 798 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 799 /* XFS filesystem, verify noisily! */ 800 xfs_sb_read_verify(bp); 801 return; 802 } 803 /* quietly fail */ 804 xfs_buf_ioerror(bp, EWRONGFS); 805 } 806 807 static void 808 xfs_sb_write_verify( 809 struct xfs_buf *bp) 810 { 811 struct xfs_mount *mp = bp->b_target->bt_mount; 812 struct xfs_buf_log_item *bip = bp->b_fspriv; 813 int error; 814 815 error = xfs_sb_verify(bp, false); 816 if (error) { 817 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); 818 xfs_buf_ioerror(bp, error); 819 return; 820 } 821 822 if (!xfs_sb_version_hascrc(&mp->m_sb)) 823 return; 824 825 if (bip) 826 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 827 828 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), 829 offsetof(struct xfs_sb, sb_crc)); 830 } 831 832 const struct xfs_buf_ops xfs_sb_buf_ops = { 833 .verify_read = xfs_sb_read_verify, 834 .verify_write = xfs_sb_write_verify, 835 }; 836 837 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 838 .verify_read = xfs_sb_quiet_read_verify, 839 .verify_write = xfs_sb_write_verify, 840 }; 841 842 /* 843 * xfs_readsb 844 * 845 * Does the initial read of the superblock. 846 */ 847 int 848 xfs_readsb(xfs_mount_t *mp, int flags) 849 { 850 unsigned int sector_size; 851 struct xfs_buf *bp; 852 struct xfs_sb *sbp = &mp->m_sb; 853 int error; 854 int loud = !(flags & XFS_MFSI_QUIET); 855 856 ASSERT(mp->m_sb_bp == NULL); 857 ASSERT(mp->m_ddev_targp != NULL); 858 859 /* 860 * Allocate a (locked) buffer to hold the superblock. 861 * This will be kept around at all times to optimize 862 * access to the superblock. 863 */ 864 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 865 866 reread: 867 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 868 BTOBB(sector_size), 0, 869 loud ? &xfs_sb_buf_ops 870 : &xfs_sb_quiet_buf_ops); 871 if (!bp) { 872 if (loud) 873 xfs_warn(mp, "SB buffer read failed"); 874 return EIO; 875 } 876 if (bp->b_error) { 877 error = bp->b_error; 878 if (loud) 879 xfs_warn(mp, "SB validate failed with error %d.", error); 880 goto release_buf; 881 } 882 883 /* 884 * Initialize the mount structure from the superblock. 885 */ 886 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 887 888 xfs_sb_quota_from_disk(&mp->m_sb); 889 /* 890 * We must be able to do sector-sized and sector-aligned IO. 891 */ 892 if (sector_size > sbp->sb_sectsize) { 893 if (loud) 894 xfs_warn(mp, "device supports %u byte sectors (not %u)", 895 sector_size, sbp->sb_sectsize); 896 error = ENOSYS; 897 goto release_buf; 898 } 899 900 /* 901 * If device sector size is smaller than the superblock size, 902 * re-read the superblock so the buffer is correctly sized. 903 */ 904 if (sector_size < sbp->sb_sectsize) { 905 xfs_buf_relse(bp); 906 sector_size = sbp->sb_sectsize; 907 goto reread; 908 } 909 910 /* Initialize per-cpu counters */ 911 xfs_icsb_reinit_counters(mp); 912 913 /* no need to be quiet anymore, so reset the buf ops */ 914 bp->b_ops = &xfs_sb_buf_ops; 915 916 mp->m_sb_bp = bp; 917 xfs_buf_unlock(bp); 918 return 0; 919 920 release_buf: 921 xfs_buf_relse(bp); 922 return error; 923 } 924 925 926 /* 927 * xfs_mount_common 928 * 929 * Mount initialization code establishing various mount 930 * fields from the superblock associated with the given 931 * mount structure 932 */ 933 STATIC void 934 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 935 { 936 mp->m_agfrotor = mp->m_agirotor = 0; 937 spin_lock_init(&mp->m_agirotor_lock); 938 mp->m_maxagi = mp->m_sb.sb_agcount; 939 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 940 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 941 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 942 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 943 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 944 mp->m_blockmask = sbp->sb_blocksize - 1; 945 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 946 mp->m_blockwmask = mp->m_blockwsize - 1; 947 948 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 949 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 950 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 951 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 952 953 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 954 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 955 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 956 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 957 958 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 959 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 960 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 961 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 962 963 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 964 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 965 sbp->sb_inopblock); 966 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 967 } 968 969 /* 970 * xfs_initialize_perag_data 971 * 972 * Read in each per-ag structure so we can count up the number of 973 * allocated inodes, free inodes and used filesystem blocks as this 974 * information is no longer persistent in the superblock. Once we have 975 * this information, write it into the in-core superblock structure. 976 */ 977 STATIC int 978 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 979 { 980 xfs_agnumber_t index; 981 xfs_perag_t *pag; 982 xfs_sb_t *sbp = &mp->m_sb; 983 uint64_t ifree = 0; 984 uint64_t ialloc = 0; 985 uint64_t bfree = 0; 986 uint64_t bfreelst = 0; 987 uint64_t btree = 0; 988 int error; 989 990 for (index = 0; index < agcount; index++) { 991 /* 992 * read the agf, then the agi. This gets us 993 * all the information we need and populates the 994 * per-ag structures for us. 995 */ 996 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 997 if (error) 998 return error; 999 1000 error = xfs_ialloc_pagi_init(mp, NULL, index); 1001 if (error) 1002 return error; 1003 pag = xfs_perag_get(mp, index); 1004 ifree += pag->pagi_freecount; 1005 ialloc += pag->pagi_count; 1006 bfree += pag->pagf_freeblks; 1007 bfreelst += pag->pagf_flcount; 1008 btree += pag->pagf_btreeblks; 1009 xfs_perag_put(pag); 1010 } 1011 /* 1012 * Overwrite incore superblock counters with just-read data 1013 */ 1014 spin_lock(&mp->m_sb_lock); 1015 sbp->sb_ifree = ifree; 1016 sbp->sb_icount = ialloc; 1017 sbp->sb_fdblocks = bfree + bfreelst + btree; 1018 spin_unlock(&mp->m_sb_lock); 1019 1020 /* Fixup the per-cpu counters as well. */ 1021 xfs_icsb_reinit_counters(mp); 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * Update alignment values based on mount options and sb values 1028 */ 1029 STATIC int 1030 xfs_update_alignment(xfs_mount_t *mp) 1031 { 1032 xfs_sb_t *sbp = &(mp->m_sb); 1033 1034 if (mp->m_dalign) { 1035 /* 1036 * If stripe unit and stripe width are not multiples 1037 * of the fs blocksize turn off alignment. 1038 */ 1039 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 1040 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 1041 xfs_warn(mp, 1042 "alignment check failed: sunit/swidth vs. blocksize(%d)", 1043 sbp->sb_blocksize); 1044 return XFS_ERROR(EINVAL); 1045 } else { 1046 /* 1047 * Convert the stripe unit and width to FSBs. 1048 */ 1049 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 1050 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 1051 xfs_warn(mp, 1052 "alignment check failed: sunit/swidth vs. agsize(%d)", 1053 sbp->sb_agblocks); 1054 return XFS_ERROR(EINVAL); 1055 } else if (mp->m_dalign) { 1056 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 1057 } else { 1058 xfs_warn(mp, 1059 "alignment check failed: sunit(%d) less than bsize(%d)", 1060 mp->m_dalign, sbp->sb_blocksize); 1061 return XFS_ERROR(EINVAL); 1062 } 1063 } 1064 1065 /* 1066 * Update superblock with new values 1067 * and log changes 1068 */ 1069 if (xfs_sb_version_hasdalign(sbp)) { 1070 if (sbp->sb_unit != mp->m_dalign) { 1071 sbp->sb_unit = mp->m_dalign; 1072 mp->m_update_flags |= XFS_SB_UNIT; 1073 } 1074 if (sbp->sb_width != mp->m_swidth) { 1075 sbp->sb_width = mp->m_swidth; 1076 mp->m_update_flags |= XFS_SB_WIDTH; 1077 } 1078 } else { 1079 xfs_warn(mp, 1080 "cannot change alignment: superblock does not support data alignment"); 1081 return XFS_ERROR(EINVAL); 1082 } 1083 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 1084 xfs_sb_version_hasdalign(&mp->m_sb)) { 1085 mp->m_dalign = sbp->sb_unit; 1086 mp->m_swidth = sbp->sb_width; 1087 } 1088 1089 return 0; 1090 } 1091 1092 /* 1093 * Set the maximum inode count for this filesystem 1094 */ 1095 STATIC void 1096 xfs_set_maxicount(xfs_mount_t *mp) 1097 { 1098 xfs_sb_t *sbp = &(mp->m_sb); 1099 __uint64_t icount; 1100 1101 if (sbp->sb_imax_pct) { 1102 /* 1103 * Make sure the maximum inode count is a multiple 1104 * of the units we allocate inodes in. 1105 */ 1106 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 1107 do_div(icount, 100); 1108 do_div(icount, mp->m_ialloc_blks); 1109 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 1110 sbp->sb_inopblog; 1111 } else { 1112 mp->m_maxicount = 0; 1113 } 1114 } 1115 1116 /* 1117 * Set the default minimum read and write sizes unless 1118 * already specified in a mount option. 1119 * We use smaller I/O sizes when the file system 1120 * is being used for NFS service (wsync mount option). 1121 */ 1122 STATIC void 1123 xfs_set_rw_sizes(xfs_mount_t *mp) 1124 { 1125 xfs_sb_t *sbp = &(mp->m_sb); 1126 int readio_log, writeio_log; 1127 1128 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 1129 if (mp->m_flags & XFS_MOUNT_WSYNC) { 1130 readio_log = XFS_WSYNC_READIO_LOG; 1131 writeio_log = XFS_WSYNC_WRITEIO_LOG; 1132 } else { 1133 readio_log = XFS_READIO_LOG_LARGE; 1134 writeio_log = XFS_WRITEIO_LOG_LARGE; 1135 } 1136 } else { 1137 readio_log = mp->m_readio_log; 1138 writeio_log = mp->m_writeio_log; 1139 } 1140 1141 if (sbp->sb_blocklog > readio_log) { 1142 mp->m_readio_log = sbp->sb_blocklog; 1143 } else { 1144 mp->m_readio_log = readio_log; 1145 } 1146 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 1147 if (sbp->sb_blocklog > writeio_log) { 1148 mp->m_writeio_log = sbp->sb_blocklog; 1149 } else { 1150 mp->m_writeio_log = writeio_log; 1151 } 1152 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 1153 } 1154 1155 /* 1156 * precalculate the low space thresholds for dynamic speculative preallocation. 1157 */ 1158 void 1159 xfs_set_low_space_thresholds( 1160 struct xfs_mount *mp) 1161 { 1162 int i; 1163 1164 for (i = 0; i < XFS_LOWSP_MAX; i++) { 1165 __uint64_t space = mp->m_sb.sb_dblocks; 1166 1167 do_div(space, 100); 1168 mp->m_low_space[i] = space * (i + 1); 1169 } 1170 } 1171 1172 1173 /* 1174 * Set whether we're using inode alignment. 1175 */ 1176 STATIC void 1177 xfs_set_inoalignment(xfs_mount_t *mp) 1178 { 1179 if (xfs_sb_version_hasalign(&mp->m_sb) && 1180 mp->m_sb.sb_inoalignmt >= 1181 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1182 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1183 else 1184 mp->m_inoalign_mask = 0; 1185 /* 1186 * If we are using stripe alignment, check whether 1187 * the stripe unit is a multiple of the inode alignment 1188 */ 1189 if (mp->m_dalign && mp->m_inoalign_mask && 1190 !(mp->m_dalign & mp->m_inoalign_mask)) 1191 mp->m_sinoalign = mp->m_dalign; 1192 else 1193 mp->m_sinoalign = 0; 1194 } 1195 1196 /* 1197 * Check that the data (and log if separate) are an ok size. 1198 */ 1199 STATIC int 1200 xfs_check_sizes(xfs_mount_t *mp) 1201 { 1202 xfs_buf_t *bp; 1203 xfs_daddr_t d; 1204 1205 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1206 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1207 xfs_warn(mp, "filesystem size mismatch detected"); 1208 return XFS_ERROR(EFBIG); 1209 } 1210 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 1211 d - XFS_FSS_TO_BB(mp, 1), 1212 XFS_FSS_TO_BB(mp, 1), 0, NULL); 1213 if (!bp) { 1214 xfs_warn(mp, "last sector read failed"); 1215 return EIO; 1216 } 1217 xfs_buf_relse(bp); 1218 1219 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1220 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1221 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1222 xfs_warn(mp, "log size mismatch detected"); 1223 return XFS_ERROR(EFBIG); 1224 } 1225 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 1226 d - XFS_FSB_TO_BB(mp, 1), 1227 XFS_FSB_TO_BB(mp, 1), 0, NULL); 1228 if (!bp) { 1229 xfs_warn(mp, "log device read failed"); 1230 return EIO; 1231 } 1232 xfs_buf_relse(bp); 1233 } 1234 return 0; 1235 } 1236 1237 /* 1238 * Clear the quotaflags in memory and in the superblock. 1239 */ 1240 int 1241 xfs_mount_reset_sbqflags( 1242 struct xfs_mount *mp) 1243 { 1244 int error; 1245 struct xfs_trans *tp; 1246 1247 mp->m_qflags = 0; 1248 1249 /* 1250 * It is OK to look at sb_qflags here in mount path, 1251 * without m_sb_lock. 1252 */ 1253 if (mp->m_sb.sb_qflags == 0) 1254 return 0; 1255 spin_lock(&mp->m_sb_lock); 1256 mp->m_sb.sb_qflags = 0; 1257 spin_unlock(&mp->m_sb_lock); 1258 1259 /* 1260 * If the fs is readonly, let the incore superblock run 1261 * with quotas off but don't flush the update out to disk 1262 */ 1263 if (mp->m_flags & XFS_MOUNT_RDONLY) 1264 return 0; 1265 1266 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1267 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp), 1268 0, 0, XFS_DEFAULT_LOG_COUNT); 1269 if (error) { 1270 xfs_trans_cancel(tp, 0); 1271 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1272 return error; 1273 } 1274 1275 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1276 return xfs_trans_commit(tp, 0); 1277 } 1278 1279 __uint64_t 1280 xfs_default_resblks(xfs_mount_t *mp) 1281 { 1282 __uint64_t resblks; 1283 1284 /* 1285 * We default to 5% or 8192 fsbs of space reserved, whichever is 1286 * smaller. This is intended to cover concurrent allocation 1287 * transactions when we initially hit enospc. These each require a 4 1288 * block reservation. Hence by default we cover roughly 2000 concurrent 1289 * allocation reservations. 1290 */ 1291 resblks = mp->m_sb.sb_dblocks; 1292 do_div(resblks, 20); 1293 resblks = min_t(__uint64_t, resblks, 8192); 1294 return resblks; 1295 } 1296 1297 /* 1298 * This function does the following on an initial mount of a file system: 1299 * - reads the superblock from disk and init the mount struct 1300 * - if we're a 32-bit kernel, do a size check on the superblock 1301 * so we don't mount terabyte filesystems 1302 * - init mount struct realtime fields 1303 * - allocate inode hash table for fs 1304 * - init directory manager 1305 * - perform recovery and init the log manager 1306 */ 1307 int 1308 xfs_mountfs( 1309 xfs_mount_t *mp) 1310 { 1311 xfs_sb_t *sbp = &(mp->m_sb); 1312 xfs_inode_t *rip; 1313 __uint64_t resblks; 1314 uint quotamount = 0; 1315 uint quotaflags = 0; 1316 int error = 0; 1317 1318 xfs_mount_common(mp, sbp); 1319 1320 /* 1321 * Check for a mismatched features2 values. Older kernels 1322 * read & wrote into the wrong sb offset for sb_features2 1323 * on some platforms due to xfs_sb_t not being 64bit size aligned 1324 * when sb_features2 was added, which made older superblock 1325 * reading/writing routines swap it as a 64-bit value. 1326 * 1327 * For backwards compatibility, we make both slots equal. 1328 * 1329 * If we detect a mismatched field, we OR the set bits into the 1330 * existing features2 field in case it has already been modified; we 1331 * don't want to lose any features. We then update the bad location 1332 * with the ORed value so that older kernels will see any features2 1333 * flags, and mark the two fields as needing updates once the 1334 * transaction subsystem is online. 1335 */ 1336 if (xfs_sb_has_mismatched_features2(sbp)) { 1337 xfs_warn(mp, "correcting sb_features alignment problem"); 1338 sbp->sb_features2 |= sbp->sb_bad_features2; 1339 sbp->sb_bad_features2 = sbp->sb_features2; 1340 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1341 1342 /* 1343 * Re-check for ATTR2 in case it was found in bad_features2 1344 * slot. 1345 */ 1346 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1347 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1348 mp->m_flags |= XFS_MOUNT_ATTR2; 1349 } 1350 1351 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1352 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1353 xfs_sb_version_removeattr2(&mp->m_sb); 1354 mp->m_update_flags |= XFS_SB_FEATURES2; 1355 1356 /* update sb_versionnum for the clearing of the morebits */ 1357 if (!sbp->sb_features2) 1358 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1359 } 1360 1361 /* 1362 * Check if sb_agblocks is aligned at stripe boundary 1363 * If sb_agblocks is NOT aligned turn off m_dalign since 1364 * allocator alignment is within an ag, therefore ag has 1365 * to be aligned at stripe boundary. 1366 */ 1367 error = xfs_update_alignment(mp); 1368 if (error) 1369 goto out; 1370 1371 xfs_alloc_compute_maxlevels(mp); 1372 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1373 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1374 xfs_ialloc_compute_maxlevels(mp); 1375 1376 xfs_set_maxicount(mp); 1377 1378 error = xfs_uuid_mount(mp); 1379 if (error) 1380 goto out; 1381 1382 /* 1383 * Set the minimum read and write sizes 1384 */ 1385 xfs_set_rw_sizes(mp); 1386 1387 /* set the low space thresholds for dynamic preallocation */ 1388 xfs_set_low_space_thresholds(mp); 1389 1390 /* 1391 * Set the inode cluster size. 1392 * This may still be overridden by the file system 1393 * block size if it is larger than the chosen cluster size. 1394 */ 1395 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1396 1397 /* 1398 * Set inode alignment fields 1399 */ 1400 xfs_set_inoalignment(mp); 1401 1402 /* 1403 * Check that the data (and log if separate) are an ok size. 1404 */ 1405 error = xfs_check_sizes(mp); 1406 if (error) 1407 goto out_remove_uuid; 1408 1409 /* 1410 * Initialize realtime fields in the mount structure 1411 */ 1412 error = xfs_rtmount_init(mp); 1413 if (error) { 1414 xfs_warn(mp, "RT mount failed"); 1415 goto out_remove_uuid; 1416 } 1417 1418 /* 1419 * Copies the low order bits of the timestamp and the randomly 1420 * set "sequence" number out of a UUID. 1421 */ 1422 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1423 1424 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1425 1426 xfs_dir_mount(mp); 1427 1428 /* 1429 * Initialize the attribute manager's entries. 1430 */ 1431 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1432 1433 /* 1434 * Initialize the precomputed transaction reservations values. 1435 */ 1436 xfs_trans_init(mp); 1437 1438 /* 1439 * Allocate and initialize the per-ag data. 1440 */ 1441 spin_lock_init(&mp->m_perag_lock); 1442 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1443 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1444 if (error) { 1445 xfs_warn(mp, "Failed per-ag init: %d", error); 1446 goto out_remove_uuid; 1447 } 1448 1449 if (!sbp->sb_logblocks) { 1450 xfs_warn(mp, "no log defined"); 1451 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1452 error = XFS_ERROR(EFSCORRUPTED); 1453 goto out_free_perag; 1454 } 1455 1456 /* 1457 * log's mount-time initialization. Perform 1st part recovery if needed 1458 */ 1459 error = xfs_log_mount(mp, mp->m_logdev_targp, 1460 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1461 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1462 if (error) { 1463 xfs_warn(mp, "log mount failed"); 1464 goto out_fail_wait; 1465 } 1466 1467 /* 1468 * Now the log is mounted, we know if it was an unclean shutdown or 1469 * not. If it was, with the first phase of recovery has completed, we 1470 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1471 * but they are recovered transactionally in the second recovery phase 1472 * later. 1473 * 1474 * Hence we can safely re-initialise incore superblock counters from 1475 * the per-ag data. These may not be correct if the filesystem was not 1476 * cleanly unmounted, so we need to wait for recovery to finish before 1477 * doing this. 1478 * 1479 * If the filesystem was cleanly unmounted, then we can trust the 1480 * values in the superblock to be correct and we don't need to do 1481 * anything here. 1482 * 1483 * If we are currently making the filesystem, the initialisation will 1484 * fail as the perag data is in an undefined state. 1485 */ 1486 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1487 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1488 !mp->m_sb.sb_inprogress) { 1489 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1490 if (error) 1491 goto out_fail_wait; 1492 } 1493 1494 /* 1495 * Get and sanity-check the root inode. 1496 * Save the pointer to it in the mount structure. 1497 */ 1498 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1499 if (error) { 1500 xfs_warn(mp, "failed to read root inode"); 1501 goto out_log_dealloc; 1502 } 1503 1504 ASSERT(rip != NULL); 1505 1506 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 1507 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1508 (unsigned long long)rip->i_ino); 1509 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1510 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1511 mp); 1512 error = XFS_ERROR(EFSCORRUPTED); 1513 goto out_rele_rip; 1514 } 1515 mp->m_rootip = rip; /* save it */ 1516 1517 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1518 1519 /* 1520 * Initialize realtime inode pointers in the mount structure 1521 */ 1522 error = xfs_rtmount_inodes(mp); 1523 if (error) { 1524 /* 1525 * Free up the root inode. 1526 */ 1527 xfs_warn(mp, "failed to read RT inodes"); 1528 goto out_rele_rip; 1529 } 1530 1531 /* 1532 * If this is a read-only mount defer the superblock updates until 1533 * the next remount into writeable mode. Otherwise we would never 1534 * perform the update e.g. for the root filesystem. 1535 */ 1536 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1537 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1538 if (error) { 1539 xfs_warn(mp, "failed to write sb changes"); 1540 goto out_rtunmount; 1541 } 1542 } 1543 1544 /* 1545 * Initialise the XFS quota management subsystem for this mount 1546 */ 1547 if (XFS_IS_QUOTA_RUNNING(mp)) { 1548 error = xfs_qm_newmount(mp, "amount, "aflags); 1549 if (error) 1550 goto out_rtunmount; 1551 } else { 1552 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1553 1554 /* 1555 * If a file system had quotas running earlier, but decided to 1556 * mount without -o uquota/pquota/gquota options, revoke the 1557 * quotachecked license. 1558 */ 1559 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1560 xfs_notice(mp, "resetting quota flags"); 1561 error = xfs_mount_reset_sbqflags(mp); 1562 if (error) 1563 return error; 1564 } 1565 } 1566 1567 /* 1568 * Finish recovering the file system. This part needed to be 1569 * delayed until after the root and real-time bitmap inodes 1570 * were consistently read in. 1571 */ 1572 error = xfs_log_mount_finish(mp); 1573 if (error) { 1574 xfs_warn(mp, "log mount finish failed"); 1575 goto out_rtunmount; 1576 } 1577 1578 /* 1579 * Complete the quota initialisation, post-log-replay component. 1580 */ 1581 if (quotamount) { 1582 ASSERT(mp->m_qflags == 0); 1583 mp->m_qflags = quotaflags; 1584 1585 xfs_qm_mount_quotas(mp); 1586 } 1587 1588 /* 1589 * Now we are mounted, reserve a small amount of unused space for 1590 * privileged transactions. This is needed so that transaction 1591 * space required for critical operations can dip into this pool 1592 * when at ENOSPC. This is needed for operations like create with 1593 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1594 * are not allowed to use this reserved space. 1595 * 1596 * This may drive us straight to ENOSPC on mount, but that implies 1597 * we were already there on the last unmount. Warn if this occurs. 1598 */ 1599 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1600 resblks = xfs_default_resblks(mp); 1601 error = xfs_reserve_blocks(mp, &resblks, NULL); 1602 if (error) 1603 xfs_warn(mp, 1604 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1605 } 1606 1607 return 0; 1608 1609 out_rtunmount: 1610 xfs_rtunmount_inodes(mp); 1611 out_rele_rip: 1612 IRELE(rip); 1613 out_log_dealloc: 1614 xfs_log_unmount(mp); 1615 out_fail_wait: 1616 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1617 xfs_wait_buftarg(mp->m_logdev_targp); 1618 xfs_wait_buftarg(mp->m_ddev_targp); 1619 out_free_perag: 1620 xfs_free_perag(mp); 1621 out_remove_uuid: 1622 xfs_uuid_unmount(mp); 1623 out: 1624 return error; 1625 } 1626 1627 /* 1628 * This flushes out the inodes,dquots and the superblock, unmounts the 1629 * log and makes sure that incore structures are freed. 1630 */ 1631 void 1632 xfs_unmountfs( 1633 struct xfs_mount *mp) 1634 { 1635 __uint64_t resblks; 1636 int error; 1637 1638 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1639 1640 xfs_qm_unmount_quotas(mp); 1641 xfs_rtunmount_inodes(mp); 1642 IRELE(mp->m_rootip); 1643 1644 /* 1645 * We can potentially deadlock here if we have an inode cluster 1646 * that has been freed has its buffer still pinned in memory because 1647 * the transaction is still sitting in a iclog. The stale inodes 1648 * on that buffer will have their flush locks held until the 1649 * transaction hits the disk and the callbacks run. the inode 1650 * flush takes the flush lock unconditionally and with nothing to 1651 * push out the iclog we will never get that unlocked. hence we 1652 * need to force the log first. 1653 */ 1654 xfs_log_force(mp, XFS_LOG_SYNC); 1655 1656 /* 1657 * Flush all pending changes from the AIL. 1658 */ 1659 xfs_ail_push_all_sync(mp->m_ail); 1660 1661 /* 1662 * And reclaim all inodes. At this point there should be no dirty 1663 * inodes and none should be pinned or locked, but use synchronous 1664 * reclaim just to be sure. We can stop background inode reclaim 1665 * here as well if it is still running. 1666 */ 1667 cancel_delayed_work_sync(&mp->m_reclaim_work); 1668 xfs_reclaim_inodes(mp, SYNC_WAIT); 1669 1670 xfs_qm_unmount(mp); 1671 1672 /* 1673 * Unreserve any blocks we have so that when we unmount we don't account 1674 * the reserved free space as used. This is really only necessary for 1675 * lazy superblock counting because it trusts the incore superblock 1676 * counters to be absolutely correct on clean unmount. 1677 * 1678 * We don't bother correcting this elsewhere for lazy superblock 1679 * counting because on mount of an unclean filesystem we reconstruct the 1680 * correct counter value and this is irrelevant. 1681 * 1682 * For non-lazy counter filesystems, this doesn't matter at all because 1683 * we only every apply deltas to the superblock and hence the incore 1684 * value does not matter.... 1685 */ 1686 resblks = 0; 1687 error = xfs_reserve_blocks(mp, &resblks, NULL); 1688 if (error) 1689 xfs_warn(mp, "Unable to free reserved block pool. " 1690 "Freespace may not be correct on next mount."); 1691 1692 error = xfs_log_sbcount(mp); 1693 if (error) 1694 xfs_warn(mp, "Unable to update superblock counters. " 1695 "Freespace may not be correct on next mount."); 1696 1697 xfs_log_unmount(mp); 1698 xfs_uuid_unmount(mp); 1699 1700 #if defined(DEBUG) 1701 xfs_errortag_clearall(mp, 0); 1702 #endif 1703 xfs_free_perag(mp); 1704 } 1705 1706 int 1707 xfs_fs_writable(xfs_mount_t *mp) 1708 { 1709 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1710 (mp->m_flags & XFS_MOUNT_RDONLY)); 1711 } 1712 1713 /* 1714 * xfs_log_sbcount 1715 * 1716 * Sync the superblock counters to disk. 1717 * 1718 * Note this code can be called during the process of freezing, so 1719 * we may need to use the transaction allocator which does not 1720 * block when the transaction subsystem is in its frozen state. 1721 */ 1722 int 1723 xfs_log_sbcount(xfs_mount_t *mp) 1724 { 1725 xfs_trans_t *tp; 1726 int error; 1727 1728 if (!xfs_fs_writable(mp)) 1729 return 0; 1730 1731 xfs_icsb_sync_counters(mp, 0); 1732 1733 /* 1734 * we don't need to do this if we are updating the superblock 1735 * counters on every modification. 1736 */ 1737 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1738 return 0; 1739 1740 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1741 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0, 1742 XFS_DEFAULT_LOG_COUNT); 1743 if (error) { 1744 xfs_trans_cancel(tp, 0); 1745 return error; 1746 } 1747 1748 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1749 xfs_trans_set_sync(tp); 1750 error = xfs_trans_commit(tp, 0); 1751 return error; 1752 } 1753 1754 /* 1755 * xfs_mod_sb() can be used to copy arbitrary changes to the 1756 * in-core superblock into the superblock buffer to be logged. 1757 * It does not provide the higher level of locking that is 1758 * needed to protect the in-core superblock from concurrent 1759 * access. 1760 */ 1761 void 1762 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1763 { 1764 xfs_buf_t *bp; 1765 int first; 1766 int last; 1767 xfs_mount_t *mp; 1768 xfs_sb_field_t f; 1769 1770 ASSERT(fields); 1771 if (!fields) 1772 return; 1773 mp = tp->t_mountp; 1774 bp = xfs_trans_getsb(tp, mp, 0); 1775 first = sizeof(xfs_sb_t); 1776 last = 0; 1777 1778 /* translate/copy */ 1779 1780 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1781 1782 /* find modified range */ 1783 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1784 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1785 last = xfs_sb_info[f + 1].offset - 1; 1786 1787 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1788 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1789 first = xfs_sb_info[f].offset; 1790 1791 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 1792 xfs_trans_log_buf(tp, bp, first, last); 1793 } 1794 1795 1796 /* 1797 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1798 * a delta to a specified field in the in-core superblock. Simply 1799 * switch on the field indicated and apply the delta to that field. 1800 * Fields are not allowed to dip below zero, so if the delta would 1801 * do this do not apply it and return EINVAL. 1802 * 1803 * The m_sb_lock must be held when this routine is called. 1804 */ 1805 STATIC int 1806 xfs_mod_incore_sb_unlocked( 1807 xfs_mount_t *mp, 1808 xfs_sb_field_t field, 1809 int64_t delta, 1810 int rsvd) 1811 { 1812 int scounter; /* short counter for 32 bit fields */ 1813 long long lcounter; /* long counter for 64 bit fields */ 1814 long long res_used, rem; 1815 1816 /* 1817 * With the in-core superblock spin lock held, switch 1818 * on the indicated field. Apply the delta to the 1819 * proper field. If the fields value would dip below 1820 * 0, then do not apply the delta and return EINVAL. 1821 */ 1822 switch (field) { 1823 case XFS_SBS_ICOUNT: 1824 lcounter = (long long)mp->m_sb.sb_icount; 1825 lcounter += delta; 1826 if (lcounter < 0) { 1827 ASSERT(0); 1828 return XFS_ERROR(EINVAL); 1829 } 1830 mp->m_sb.sb_icount = lcounter; 1831 return 0; 1832 case XFS_SBS_IFREE: 1833 lcounter = (long long)mp->m_sb.sb_ifree; 1834 lcounter += delta; 1835 if (lcounter < 0) { 1836 ASSERT(0); 1837 return XFS_ERROR(EINVAL); 1838 } 1839 mp->m_sb.sb_ifree = lcounter; 1840 return 0; 1841 case XFS_SBS_FDBLOCKS: 1842 lcounter = (long long) 1843 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1844 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1845 1846 if (delta > 0) { /* Putting blocks back */ 1847 if (res_used > delta) { 1848 mp->m_resblks_avail += delta; 1849 } else { 1850 rem = delta - res_used; 1851 mp->m_resblks_avail = mp->m_resblks; 1852 lcounter += rem; 1853 } 1854 } else { /* Taking blocks away */ 1855 lcounter += delta; 1856 if (lcounter >= 0) { 1857 mp->m_sb.sb_fdblocks = lcounter + 1858 XFS_ALLOC_SET_ASIDE(mp); 1859 return 0; 1860 } 1861 1862 /* 1863 * We are out of blocks, use any available reserved 1864 * blocks if were allowed to. 1865 */ 1866 if (!rsvd) 1867 return XFS_ERROR(ENOSPC); 1868 1869 lcounter = (long long)mp->m_resblks_avail + delta; 1870 if (lcounter >= 0) { 1871 mp->m_resblks_avail = lcounter; 1872 return 0; 1873 } 1874 printk_once(KERN_WARNING 1875 "Filesystem \"%s\": reserve blocks depleted! " 1876 "Consider increasing reserve pool size.", 1877 mp->m_fsname); 1878 return XFS_ERROR(ENOSPC); 1879 } 1880 1881 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1882 return 0; 1883 case XFS_SBS_FREXTENTS: 1884 lcounter = (long long)mp->m_sb.sb_frextents; 1885 lcounter += delta; 1886 if (lcounter < 0) { 1887 return XFS_ERROR(ENOSPC); 1888 } 1889 mp->m_sb.sb_frextents = lcounter; 1890 return 0; 1891 case XFS_SBS_DBLOCKS: 1892 lcounter = (long long)mp->m_sb.sb_dblocks; 1893 lcounter += delta; 1894 if (lcounter < 0) { 1895 ASSERT(0); 1896 return XFS_ERROR(EINVAL); 1897 } 1898 mp->m_sb.sb_dblocks = lcounter; 1899 return 0; 1900 case XFS_SBS_AGCOUNT: 1901 scounter = mp->m_sb.sb_agcount; 1902 scounter += delta; 1903 if (scounter < 0) { 1904 ASSERT(0); 1905 return XFS_ERROR(EINVAL); 1906 } 1907 mp->m_sb.sb_agcount = scounter; 1908 return 0; 1909 case XFS_SBS_IMAX_PCT: 1910 scounter = mp->m_sb.sb_imax_pct; 1911 scounter += delta; 1912 if (scounter < 0) { 1913 ASSERT(0); 1914 return XFS_ERROR(EINVAL); 1915 } 1916 mp->m_sb.sb_imax_pct = scounter; 1917 return 0; 1918 case XFS_SBS_REXTSIZE: 1919 scounter = mp->m_sb.sb_rextsize; 1920 scounter += delta; 1921 if (scounter < 0) { 1922 ASSERT(0); 1923 return XFS_ERROR(EINVAL); 1924 } 1925 mp->m_sb.sb_rextsize = scounter; 1926 return 0; 1927 case XFS_SBS_RBMBLOCKS: 1928 scounter = mp->m_sb.sb_rbmblocks; 1929 scounter += delta; 1930 if (scounter < 0) { 1931 ASSERT(0); 1932 return XFS_ERROR(EINVAL); 1933 } 1934 mp->m_sb.sb_rbmblocks = scounter; 1935 return 0; 1936 case XFS_SBS_RBLOCKS: 1937 lcounter = (long long)mp->m_sb.sb_rblocks; 1938 lcounter += delta; 1939 if (lcounter < 0) { 1940 ASSERT(0); 1941 return XFS_ERROR(EINVAL); 1942 } 1943 mp->m_sb.sb_rblocks = lcounter; 1944 return 0; 1945 case XFS_SBS_REXTENTS: 1946 lcounter = (long long)mp->m_sb.sb_rextents; 1947 lcounter += delta; 1948 if (lcounter < 0) { 1949 ASSERT(0); 1950 return XFS_ERROR(EINVAL); 1951 } 1952 mp->m_sb.sb_rextents = lcounter; 1953 return 0; 1954 case XFS_SBS_REXTSLOG: 1955 scounter = mp->m_sb.sb_rextslog; 1956 scounter += delta; 1957 if (scounter < 0) { 1958 ASSERT(0); 1959 return XFS_ERROR(EINVAL); 1960 } 1961 mp->m_sb.sb_rextslog = scounter; 1962 return 0; 1963 default: 1964 ASSERT(0); 1965 return XFS_ERROR(EINVAL); 1966 } 1967 } 1968 1969 /* 1970 * xfs_mod_incore_sb() is used to change a field in the in-core 1971 * superblock structure by the specified delta. This modification 1972 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1973 * routine to do the work. 1974 */ 1975 int 1976 xfs_mod_incore_sb( 1977 struct xfs_mount *mp, 1978 xfs_sb_field_t field, 1979 int64_t delta, 1980 int rsvd) 1981 { 1982 int status; 1983 1984 #ifdef HAVE_PERCPU_SB 1985 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1986 #endif 1987 spin_lock(&mp->m_sb_lock); 1988 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1989 spin_unlock(&mp->m_sb_lock); 1990 1991 return status; 1992 } 1993 1994 /* 1995 * Change more than one field in the in-core superblock structure at a time. 1996 * 1997 * The fields and changes to those fields are specified in the array of 1998 * xfs_mod_sb structures passed in. Either all of the specified deltas 1999 * will be applied or none of them will. If any modified field dips below 0, 2000 * then all modifications will be backed out and EINVAL will be returned. 2001 * 2002 * Note that this function may not be used for the superblock values that 2003 * are tracked with the in-memory per-cpu counters - a direct call to 2004 * xfs_icsb_modify_counters is required for these. 2005 */ 2006 int 2007 xfs_mod_incore_sb_batch( 2008 struct xfs_mount *mp, 2009 xfs_mod_sb_t *msb, 2010 uint nmsb, 2011 int rsvd) 2012 { 2013 xfs_mod_sb_t *msbp; 2014 int error = 0; 2015 2016 /* 2017 * Loop through the array of mod structures and apply each individually. 2018 * If any fail, then back out all those which have already been applied. 2019 * Do all of this within the scope of the m_sb_lock so that all of the 2020 * changes will be atomic. 2021 */ 2022 spin_lock(&mp->m_sb_lock); 2023 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 2024 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 2025 msbp->msb_field > XFS_SBS_FDBLOCKS); 2026 2027 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 2028 msbp->msb_delta, rsvd); 2029 if (error) 2030 goto unwind; 2031 } 2032 spin_unlock(&mp->m_sb_lock); 2033 return 0; 2034 2035 unwind: 2036 while (--msbp >= msb) { 2037 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 2038 -msbp->msb_delta, rsvd); 2039 ASSERT(error == 0); 2040 } 2041 spin_unlock(&mp->m_sb_lock); 2042 return error; 2043 } 2044 2045 /* 2046 * xfs_getsb() is called to obtain the buffer for the superblock. 2047 * The buffer is returned locked and read in from disk. 2048 * The buffer should be released with a call to xfs_brelse(). 2049 * 2050 * If the flags parameter is BUF_TRYLOCK, then we'll only return 2051 * the superblock buffer if it can be locked without sleeping. 2052 * If it can't then we'll return NULL. 2053 */ 2054 struct xfs_buf * 2055 xfs_getsb( 2056 struct xfs_mount *mp, 2057 int flags) 2058 { 2059 struct xfs_buf *bp = mp->m_sb_bp; 2060 2061 if (!xfs_buf_trylock(bp)) { 2062 if (flags & XBF_TRYLOCK) 2063 return NULL; 2064 xfs_buf_lock(bp); 2065 } 2066 2067 xfs_buf_hold(bp); 2068 ASSERT(XFS_BUF_ISDONE(bp)); 2069 return bp; 2070 } 2071 2072 /* 2073 * Used to free the superblock along various error paths. 2074 */ 2075 void 2076 xfs_freesb( 2077 struct xfs_mount *mp) 2078 { 2079 struct xfs_buf *bp = mp->m_sb_bp; 2080 2081 xfs_buf_lock(bp); 2082 mp->m_sb_bp = NULL; 2083 xfs_buf_relse(bp); 2084 } 2085 2086 /* 2087 * Used to log changes to the superblock unit and width fields which could 2088 * be altered by the mount options, as well as any potential sb_features2 2089 * fixup. Only the first superblock is updated. 2090 */ 2091 int 2092 xfs_mount_log_sb( 2093 xfs_mount_t *mp, 2094 __int64_t fields) 2095 { 2096 xfs_trans_t *tp; 2097 int error; 2098 2099 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 2100 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 2101 XFS_SB_VERSIONNUM)); 2102 2103 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 2104 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0, 2105 XFS_DEFAULT_LOG_COUNT); 2106 if (error) { 2107 xfs_trans_cancel(tp, 0); 2108 return error; 2109 } 2110 xfs_mod_sb(tp, fields); 2111 error = xfs_trans_commit(tp, 0); 2112 return error; 2113 } 2114 2115 /* 2116 * If the underlying (data/log/rt) device is readonly, there are some 2117 * operations that cannot proceed. 2118 */ 2119 int 2120 xfs_dev_is_read_only( 2121 struct xfs_mount *mp, 2122 char *message) 2123 { 2124 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 2125 xfs_readonly_buftarg(mp->m_logdev_targp) || 2126 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2127 xfs_notice(mp, "%s required on read-only device.", message); 2128 xfs_notice(mp, "write access unavailable, cannot proceed."); 2129 return EROFS; 2130 } 2131 return 0; 2132 } 2133 2134 #ifdef HAVE_PERCPU_SB 2135 /* 2136 * Per-cpu incore superblock counters 2137 * 2138 * Simple concept, difficult implementation 2139 * 2140 * Basically, replace the incore superblock counters with a distributed per cpu 2141 * counter for contended fields (e.g. free block count). 2142 * 2143 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2144 * hence needs to be accurately read when we are running low on space. Hence 2145 * there is a method to enable and disable the per-cpu counters based on how 2146 * much "stuff" is available in them. 2147 * 2148 * Basically, a counter is enabled if there is enough free resource to justify 2149 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2150 * ENOSPC), then we disable the counters to synchronise all callers and 2151 * re-distribute the available resources. 2152 * 2153 * If, once we redistributed the available resources, we still get a failure, 2154 * we disable the per-cpu counter and go through the slow path. 2155 * 2156 * The slow path is the current xfs_mod_incore_sb() function. This means that 2157 * when we disable a per-cpu counter, we need to drain its resources back to 2158 * the global superblock. We do this after disabling the counter to prevent 2159 * more threads from queueing up on the counter. 2160 * 2161 * Essentially, this means that we still need a lock in the fast path to enable 2162 * synchronisation between the global counters and the per-cpu counters. This 2163 * is not a problem because the lock will be local to a CPU almost all the time 2164 * and have little contention except when we get to ENOSPC conditions. 2165 * 2166 * Basically, this lock becomes a barrier that enables us to lock out the fast 2167 * path while we do things like enabling and disabling counters and 2168 * synchronising the counters. 2169 * 2170 * Locking rules: 2171 * 2172 * 1. m_sb_lock before picking up per-cpu locks 2173 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2174 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2175 * 4. modifying per-cpu counters requires holding per-cpu lock 2176 * 5. modifying global counters requires holding m_sb_lock 2177 * 6. enabling or disabling a counter requires holding the m_sb_lock 2178 * and _none_ of the per-cpu locks. 2179 * 2180 * Disabled counters are only ever re-enabled by a balance operation 2181 * that results in more free resources per CPU than a given threshold. 2182 * To ensure counters don't remain disabled, they are rebalanced when 2183 * the global resource goes above a higher threshold (i.e. some hysteresis 2184 * is present to prevent thrashing). 2185 */ 2186 2187 #ifdef CONFIG_HOTPLUG_CPU 2188 /* 2189 * hot-plug CPU notifier support. 2190 * 2191 * We need a notifier per filesystem as we need to be able to identify 2192 * the filesystem to balance the counters out. This is achieved by 2193 * having a notifier block embedded in the xfs_mount_t and doing pointer 2194 * magic to get the mount pointer from the notifier block address. 2195 */ 2196 STATIC int 2197 xfs_icsb_cpu_notify( 2198 struct notifier_block *nfb, 2199 unsigned long action, 2200 void *hcpu) 2201 { 2202 xfs_icsb_cnts_t *cntp; 2203 xfs_mount_t *mp; 2204 2205 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2206 cntp = (xfs_icsb_cnts_t *) 2207 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2208 switch (action) { 2209 case CPU_UP_PREPARE: 2210 case CPU_UP_PREPARE_FROZEN: 2211 /* Easy Case - initialize the area and locks, and 2212 * then rebalance when online does everything else for us. */ 2213 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2214 break; 2215 case CPU_ONLINE: 2216 case CPU_ONLINE_FROZEN: 2217 xfs_icsb_lock(mp); 2218 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2219 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2220 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2221 xfs_icsb_unlock(mp); 2222 break; 2223 case CPU_DEAD: 2224 case CPU_DEAD_FROZEN: 2225 /* Disable all the counters, then fold the dead cpu's 2226 * count into the total on the global superblock and 2227 * re-enable the counters. */ 2228 xfs_icsb_lock(mp); 2229 spin_lock(&mp->m_sb_lock); 2230 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2231 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2232 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2233 2234 mp->m_sb.sb_icount += cntp->icsb_icount; 2235 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2236 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2237 2238 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2239 2240 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2241 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2242 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2243 spin_unlock(&mp->m_sb_lock); 2244 xfs_icsb_unlock(mp); 2245 break; 2246 } 2247 2248 return NOTIFY_OK; 2249 } 2250 #endif /* CONFIG_HOTPLUG_CPU */ 2251 2252 int 2253 xfs_icsb_init_counters( 2254 xfs_mount_t *mp) 2255 { 2256 xfs_icsb_cnts_t *cntp; 2257 int i; 2258 2259 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2260 if (mp->m_sb_cnts == NULL) 2261 return -ENOMEM; 2262 2263 #ifdef CONFIG_HOTPLUG_CPU 2264 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2265 mp->m_icsb_notifier.priority = 0; 2266 register_hotcpu_notifier(&mp->m_icsb_notifier); 2267 #endif /* CONFIG_HOTPLUG_CPU */ 2268 2269 for_each_online_cpu(i) { 2270 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2271 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2272 } 2273 2274 mutex_init(&mp->m_icsb_mutex); 2275 2276 /* 2277 * start with all counters disabled so that the 2278 * initial balance kicks us off correctly 2279 */ 2280 mp->m_icsb_counters = -1; 2281 return 0; 2282 } 2283 2284 void 2285 xfs_icsb_reinit_counters( 2286 xfs_mount_t *mp) 2287 { 2288 xfs_icsb_lock(mp); 2289 /* 2290 * start with all counters disabled so that the 2291 * initial balance kicks us off correctly 2292 */ 2293 mp->m_icsb_counters = -1; 2294 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2295 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2296 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2297 xfs_icsb_unlock(mp); 2298 } 2299 2300 void 2301 xfs_icsb_destroy_counters( 2302 xfs_mount_t *mp) 2303 { 2304 if (mp->m_sb_cnts) { 2305 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2306 free_percpu(mp->m_sb_cnts); 2307 } 2308 mutex_destroy(&mp->m_icsb_mutex); 2309 } 2310 2311 STATIC void 2312 xfs_icsb_lock_cntr( 2313 xfs_icsb_cnts_t *icsbp) 2314 { 2315 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2316 ndelay(1000); 2317 } 2318 } 2319 2320 STATIC void 2321 xfs_icsb_unlock_cntr( 2322 xfs_icsb_cnts_t *icsbp) 2323 { 2324 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2325 } 2326 2327 2328 STATIC void 2329 xfs_icsb_lock_all_counters( 2330 xfs_mount_t *mp) 2331 { 2332 xfs_icsb_cnts_t *cntp; 2333 int i; 2334 2335 for_each_online_cpu(i) { 2336 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2337 xfs_icsb_lock_cntr(cntp); 2338 } 2339 } 2340 2341 STATIC void 2342 xfs_icsb_unlock_all_counters( 2343 xfs_mount_t *mp) 2344 { 2345 xfs_icsb_cnts_t *cntp; 2346 int i; 2347 2348 for_each_online_cpu(i) { 2349 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2350 xfs_icsb_unlock_cntr(cntp); 2351 } 2352 } 2353 2354 STATIC void 2355 xfs_icsb_count( 2356 xfs_mount_t *mp, 2357 xfs_icsb_cnts_t *cnt, 2358 int flags) 2359 { 2360 xfs_icsb_cnts_t *cntp; 2361 int i; 2362 2363 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2364 2365 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2366 xfs_icsb_lock_all_counters(mp); 2367 2368 for_each_online_cpu(i) { 2369 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2370 cnt->icsb_icount += cntp->icsb_icount; 2371 cnt->icsb_ifree += cntp->icsb_ifree; 2372 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2373 } 2374 2375 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2376 xfs_icsb_unlock_all_counters(mp); 2377 } 2378 2379 STATIC int 2380 xfs_icsb_counter_disabled( 2381 xfs_mount_t *mp, 2382 xfs_sb_field_t field) 2383 { 2384 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2385 return test_bit(field, &mp->m_icsb_counters); 2386 } 2387 2388 STATIC void 2389 xfs_icsb_disable_counter( 2390 xfs_mount_t *mp, 2391 xfs_sb_field_t field) 2392 { 2393 xfs_icsb_cnts_t cnt; 2394 2395 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2396 2397 /* 2398 * If we are already disabled, then there is nothing to do 2399 * here. We check before locking all the counters to avoid 2400 * the expensive lock operation when being called in the 2401 * slow path and the counter is already disabled. This is 2402 * safe because the only time we set or clear this state is under 2403 * the m_icsb_mutex. 2404 */ 2405 if (xfs_icsb_counter_disabled(mp, field)) 2406 return; 2407 2408 xfs_icsb_lock_all_counters(mp); 2409 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2410 /* drain back to superblock */ 2411 2412 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2413 switch(field) { 2414 case XFS_SBS_ICOUNT: 2415 mp->m_sb.sb_icount = cnt.icsb_icount; 2416 break; 2417 case XFS_SBS_IFREE: 2418 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2419 break; 2420 case XFS_SBS_FDBLOCKS: 2421 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2422 break; 2423 default: 2424 BUG(); 2425 } 2426 } 2427 2428 xfs_icsb_unlock_all_counters(mp); 2429 } 2430 2431 STATIC void 2432 xfs_icsb_enable_counter( 2433 xfs_mount_t *mp, 2434 xfs_sb_field_t field, 2435 uint64_t count, 2436 uint64_t resid) 2437 { 2438 xfs_icsb_cnts_t *cntp; 2439 int i; 2440 2441 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2442 2443 xfs_icsb_lock_all_counters(mp); 2444 for_each_online_cpu(i) { 2445 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2446 switch (field) { 2447 case XFS_SBS_ICOUNT: 2448 cntp->icsb_icount = count + resid; 2449 break; 2450 case XFS_SBS_IFREE: 2451 cntp->icsb_ifree = count + resid; 2452 break; 2453 case XFS_SBS_FDBLOCKS: 2454 cntp->icsb_fdblocks = count + resid; 2455 break; 2456 default: 2457 BUG(); 2458 break; 2459 } 2460 resid = 0; 2461 } 2462 clear_bit(field, &mp->m_icsb_counters); 2463 xfs_icsb_unlock_all_counters(mp); 2464 } 2465 2466 void 2467 xfs_icsb_sync_counters_locked( 2468 xfs_mount_t *mp, 2469 int flags) 2470 { 2471 xfs_icsb_cnts_t cnt; 2472 2473 xfs_icsb_count(mp, &cnt, flags); 2474 2475 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2476 mp->m_sb.sb_icount = cnt.icsb_icount; 2477 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2478 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2479 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2480 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2481 } 2482 2483 /* 2484 * Accurate update of per-cpu counters to incore superblock 2485 */ 2486 void 2487 xfs_icsb_sync_counters( 2488 xfs_mount_t *mp, 2489 int flags) 2490 { 2491 spin_lock(&mp->m_sb_lock); 2492 xfs_icsb_sync_counters_locked(mp, flags); 2493 spin_unlock(&mp->m_sb_lock); 2494 } 2495 2496 /* 2497 * Balance and enable/disable counters as necessary. 2498 * 2499 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2500 * chosen to be the same number as single on disk allocation chunk per CPU, and 2501 * free blocks is something far enough zero that we aren't going thrash when we 2502 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2503 * prevent looping endlessly when xfs_alloc_space asks for more than will 2504 * be distributed to a single CPU but each CPU has enough blocks to be 2505 * reenabled. 2506 * 2507 * Note that we can be called when counters are already disabled. 2508 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2509 * prevent locking every per-cpu counter needlessly. 2510 */ 2511 2512 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2513 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2514 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2515 STATIC void 2516 xfs_icsb_balance_counter_locked( 2517 xfs_mount_t *mp, 2518 xfs_sb_field_t field, 2519 int min_per_cpu) 2520 { 2521 uint64_t count, resid; 2522 int weight = num_online_cpus(); 2523 uint64_t min = (uint64_t)min_per_cpu; 2524 2525 /* disable counter and sync counter */ 2526 xfs_icsb_disable_counter(mp, field); 2527 2528 /* update counters - first CPU gets residual*/ 2529 switch (field) { 2530 case XFS_SBS_ICOUNT: 2531 count = mp->m_sb.sb_icount; 2532 resid = do_div(count, weight); 2533 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2534 return; 2535 break; 2536 case XFS_SBS_IFREE: 2537 count = mp->m_sb.sb_ifree; 2538 resid = do_div(count, weight); 2539 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2540 return; 2541 break; 2542 case XFS_SBS_FDBLOCKS: 2543 count = mp->m_sb.sb_fdblocks; 2544 resid = do_div(count, weight); 2545 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2546 return; 2547 break; 2548 default: 2549 BUG(); 2550 count = resid = 0; /* quiet, gcc */ 2551 break; 2552 } 2553 2554 xfs_icsb_enable_counter(mp, field, count, resid); 2555 } 2556 2557 STATIC void 2558 xfs_icsb_balance_counter( 2559 xfs_mount_t *mp, 2560 xfs_sb_field_t fields, 2561 int min_per_cpu) 2562 { 2563 spin_lock(&mp->m_sb_lock); 2564 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2565 spin_unlock(&mp->m_sb_lock); 2566 } 2567 2568 int 2569 xfs_icsb_modify_counters( 2570 xfs_mount_t *mp, 2571 xfs_sb_field_t field, 2572 int64_t delta, 2573 int rsvd) 2574 { 2575 xfs_icsb_cnts_t *icsbp; 2576 long long lcounter; /* long counter for 64 bit fields */ 2577 int ret = 0; 2578 2579 might_sleep(); 2580 again: 2581 preempt_disable(); 2582 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2583 2584 /* 2585 * if the counter is disabled, go to slow path 2586 */ 2587 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2588 goto slow_path; 2589 xfs_icsb_lock_cntr(icsbp); 2590 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2591 xfs_icsb_unlock_cntr(icsbp); 2592 goto slow_path; 2593 } 2594 2595 switch (field) { 2596 case XFS_SBS_ICOUNT: 2597 lcounter = icsbp->icsb_icount; 2598 lcounter += delta; 2599 if (unlikely(lcounter < 0)) 2600 goto balance_counter; 2601 icsbp->icsb_icount = lcounter; 2602 break; 2603 2604 case XFS_SBS_IFREE: 2605 lcounter = icsbp->icsb_ifree; 2606 lcounter += delta; 2607 if (unlikely(lcounter < 0)) 2608 goto balance_counter; 2609 icsbp->icsb_ifree = lcounter; 2610 break; 2611 2612 case XFS_SBS_FDBLOCKS: 2613 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2614 2615 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2616 lcounter += delta; 2617 if (unlikely(lcounter < 0)) 2618 goto balance_counter; 2619 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2620 break; 2621 default: 2622 BUG(); 2623 break; 2624 } 2625 xfs_icsb_unlock_cntr(icsbp); 2626 preempt_enable(); 2627 return 0; 2628 2629 slow_path: 2630 preempt_enable(); 2631 2632 /* 2633 * serialise with a mutex so we don't burn lots of cpu on 2634 * the superblock lock. We still need to hold the superblock 2635 * lock, however, when we modify the global structures. 2636 */ 2637 xfs_icsb_lock(mp); 2638 2639 /* 2640 * Now running atomically. 2641 * 2642 * If the counter is enabled, someone has beaten us to rebalancing. 2643 * Drop the lock and try again in the fast path.... 2644 */ 2645 if (!(xfs_icsb_counter_disabled(mp, field))) { 2646 xfs_icsb_unlock(mp); 2647 goto again; 2648 } 2649 2650 /* 2651 * The counter is currently disabled. Because we are 2652 * running atomically here, we know a rebalance cannot 2653 * be in progress. Hence we can go straight to operating 2654 * on the global superblock. We do not call xfs_mod_incore_sb() 2655 * here even though we need to get the m_sb_lock. Doing so 2656 * will cause us to re-enter this function and deadlock. 2657 * Hence we get the m_sb_lock ourselves and then call 2658 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2659 * directly on the global counters. 2660 */ 2661 spin_lock(&mp->m_sb_lock); 2662 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2663 spin_unlock(&mp->m_sb_lock); 2664 2665 /* 2666 * Now that we've modified the global superblock, we 2667 * may be able to re-enable the distributed counters 2668 * (e.g. lots of space just got freed). After that 2669 * we are done. 2670 */ 2671 if (ret != ENOSPC) 2672 xfs_icsb_balance_counter(mp, field, 0); 2673 xfs_icsb_unlock(mp); 2674 return ret; 2675 2676 balance_counter: 2677 xfs_icsb_unlock_cntr(icsbp); 2678 preempt_enable(); 2679 2680 /* 2681 * We may have multiple threads here if multiple per-cpu 2682 * counters run dry at the same time. This will mean we can 2683 * do more balances than strictly necessary but it is not 2684 * the common slowpath case. 2685 */ 2686 xfs_icsb_lock(mp); 2687 2688 /* 2689 * running atomically. 2690 * 2691 * This will leave the counter in the correct state for future 2692 * accesses. After the rebalance, we simply try again and our retry 2693 * will either succeed through the fast path or slow path without 2694 * another balance operation being required. 2695 */ 2696 xfs_icsb_balance_counter(mp, field, delta); 2697 xfs_icsb_unlock(mp); 2698 goto again; 2699 } 2700 2701 #endif 2702