xref: /linux/fs/xfs/xfs_mount.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "scrub/stats.h"
38 
39 static DEFINE_MUTEX(xfs_uuid_table_mutex);
40 static int xfs_uuid_table_size;
41 static uuid_t *xfs_uuid_table;
42 
43 void
44 xfs_uuid_table_free(void)
45 {
46 	if (xfs_uuid_table_size == 0)
47 		return;
48 	kmem_free(xfs_uuid_table);
49 	xfs_uuid_table = NULL;
50 	xfs_uuid_table_size = 0;
51 }
52 
53 /*
54  * See if the UUID is unique among mounted XFS filesystems.
55  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
56  */
57 STATIC int
58 xfs_uuid_mount(
59 	struct xfs_mount	*mp)
60 {
61 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
62 	int			hole, i;
63 
64 	/* Publish UUID in struct super_block */
65 	uuid_copy(&mp->m_super->s_uuid, uuid);
66 
67 	if (xfs_has_nouuid(mp))
68 		return 0;
69 
70 	if (uuid_is_null(uuid)) {
71 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
72 		return -EINVAL;
73 	}
74 
75 	mutex_lock(&xfs_uuid_table_mutex);
76 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
77 		if (uuid_is_null(&xfs_uuid_table[i])) {
78 			hole = i;
79 			continue;
80 		}
81 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
82 			goto out_duplicate;
83 	}
84 
85 	if (hole < 0) {
86 		xfs_uuid_table = krealloc(xfs_uuid_table,
87 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
88 			GFP_KERNEL | __GFP_NOFAIL);
89 		hole = xfs_uuid_table_size++;
90 	}
91 	xfs_uuid_table[hole] = *uuid;
92 	mutex_unlock(&xfs_uuid_table_mutex);
93 
94 	return 0;
95 
96  out_duplicate:
97 	mutex_unlock(&xfs_uuid_table_mutex);
98 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
99 	return -EINVAL;
100 }
101 
102 STATIC void
103 xfs_uuid_unmount(
104 	struct xfs_mount	*mp)
105 {
106 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
107 	int			i;
108 
109 	if (xfs_has_nouuid(mp))
110 		return;
111 
112 	mutex_lock(&xfs_uuid_table_mutex);
113 	for (i = 0; i < xfs_uuid_table_size; i++) {
114 		if (uuid_is_null(&xfs_uuid_table[i]))
115 			continue;
116 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
117 			continue;
118 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119 		break;
120 	}
121 	ASSERT(i < xfs_uuid_table_size);
122 	mutex_unlock(&xfs_uuid_table_mutex);
123 }
124 
125 /*
126  * Check size of device based on the (data/realtime) block count.
127  * Note: this check is used by the growfs code as well as mount.
128  */
129 int
130 xfs_sb_validate_fsb_count(
131 	xfs_sb_t	*sbp,
132 	uint64_t	nblocks)
133 {
134 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
135 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
136 
137 	/* Limited by ULONG_MAX of page cache index */
138 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
139 		return -EFBIG;
140 	return 0;
141 }
142 
143 /*
144  * xfs_readsb
145  *
146  * Does the initial read of the superblock.
147  */
148 int
149 xfs_readsb(
150 	struct xfs_mount *mp,
151 	int		flags)
152 {
153 	unsigned int	sector_size;
154 	struct xfs_buf	*bp;
155 	struct xfs_sb	*sbp = &mp->m_sb;
156 	int		error;
157 	int		loud = !(flags & XFS_MFSI_QUIET);
158 	const struct xfs_buf_ops *buf_ops;
159 
160 	ASSERT(mp->m_sb_bp == NULL);
161 	ASSERT(mp->m_ddev_targp != NULL);
162 
163 	/*
164 	 * For the initial read, we must guess at the sector
165 	 * size based on the block device.  It's enough to
166 	 * get the sb_sectsize out of the superblock and
167 	 * then reread with the proper length.
168 	 * We don't verify it yet, because it may not be complete.
169 	 */
170 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
171 	buf_ops = NULL;
172 
173 	/*
174 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
175 	 * around at all times to optimize access to the superblock. Therefore,
176 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
177 	 * elevated.
178 	 */
179 reread:
180 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
181 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
182 				      buf_ops);
183 	if (error) {
184 		if (loud)
185 			xfs_warn(mp, "SB validate failed with error %d.", error);
186 		/* bad CRC means corrupted metadata */
187 		if (error == -EFSBADCRC)
188 			error = -EFSCORRUPTED;
189 		return error;
190 	}
191 
192 	/*
193 	 * Initialize the mount structure from the superblock.
194 	 */
195 	xfs_sb_from_disk(sbp, bp->b_addr);
196 
197 	/*
198 	 * If we haven't validated the superblock, do so now before we try
199 	 * to check the sector size and reread the superblock appropriately.
200 	 */
201 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
202 		if (loud)
203 			xfs_warn(mp, "Invalid superblock magic number");
204 		error = -EINVAL;
205 		goto release_buf;
206 	}
207 
208 	/*
209 	 * We must be able to do sector-sized and sector-aligned IO.
210 	 */
211 	if (sector_size > sbp->sb_sectsize) {
212 		if (loud)
213 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
214 				sector_size, sbp->sb_sectsize);
215 		error = -ENOSYS;
216 		goto release_buf;
217 	}
218 
219 	if (buf_ops == NULL) {
220 		/*
221 		 * Re-read the superblock so the buffer is correctly sized,
222 		 * and properly verified.
223 		 */
224 		xfs_buf_relse(bp);
225 		sector_size = sbp->sb_sectsize;
226 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
227 		goto reread;
228 	}
229 
230 	mp->m_features |= xfs_sb_version_to_features(sbp);
231 	xfs_reinit_percpu_counters(mp);
232 
233 	/* no need to be quiet anymore, so reset the buf ops */
234 	bp->b_ops = &xfs_sb_buf_ops;
235 
236 	mp->m_sb_bp = bp;
237 	xfs_buf_unlock(bp);
238 	return 0;
239 
240 release_buf:
241 	xfs_buf_relse(bp);
242 	return error;
243 }
244 
245 /*
246  * If the sunit/swidth change would move the precomputed root inode value, we
247  * must reject the ondisk change because repair will stumble over that.
248  * However, we allow the mount to proceed because we never rejected this
249  * combination before.  Returns true to update the sb, false otherwise.
250  */
251 static inline int
252 xfs_check_new_dalign(
253 	struct xfs_mount	*mp,
254 	int			new_dalign,
255 	bool			*update_sb)
256 {
257 	struct xfs_sb		*sbp = &mp->m_sb;
258 	xfs_ino_t		calc_ino;
259 
260 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
261 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
262 
263 	if (sbp->sb_rootino == calc_ino) {
264 		*update_sb = true;
265 		return 0;
266 	}
267 
268 	xfs_warn(mp,
269 "Cannot change stripe alignment; would require moving root inode.");
270 
271 	/*
272 	 * XXX: Next time we add a new incompat feature, this should start
273 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
274 	 * that we're ignoring the administrator's instructions.
275 	 */
276 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
277 	*update_sb = false;
278 	return 0;
279 }
280 
281 /*
282  * If we were provided with new sunit/swidth values as mount options, make sure
283  * that they pass basic alignment and superblock feature checks, and convert
284  * them into the same units (FSB) that everything else expects.  This step
285  * /must/ be done before computing the inode geometry.
286  */
287 STATIC int
288 xfs_validate_new_dalign(
289 	struct xfs_mount	*mp)
290 {
291 	if (mp->m_dalign == 0)
292 		return 0;
293 
294 	/*
295 	 * If stripe unit and stripe width are not multiples
296 	 * of the fs blocksize turn off alignment.
297 	 */
298 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
299 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
300 		xfs_warn(mp,
301 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
302 			mp->m_sb.sb_blocksize);
303 		return -EINVAL;
304 	}
305 
306 	/*
307 	 * Convert the stripe unit and width to FSBs.
308 	 */
309 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
310 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
311 		xfs_warn(mp,
312 	"alignment check failed: sunit/swidth vs. agsize(%d)",
313 			mp->m_sb.sb_agblocks);
314 		return -EINVAL;
315 	}
316 
317 	if (!mp->m_dalign) {
318 		xfs_warn(mp,
319 	"alignment check failed: sunit(%d) less than bsize(%d)",
320 			mp->m_dalign, mp->m_sb.sb_blocksize);
321 		return -EINVAL;
322 	}
323 
324 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
325 
326 	if (!xfs_has_dalign(mp)) {
327 		xfs_warn(mp,
328 "cannot change alignment: superblock does not support data alignment");
329 		return -EINVAL;
330 	}
331 
332 	return 0;
333 }
334 
335 /* Update alignment values based on mount options and sb values. */
336 STATIC int
337 xfs_update_alignment(
338 	struct xfs_mount	*mp)
339 {
340 	struct xfs_sb		*sbp = &mp->m_sb;
341 
342 	if (mp->m_dalign) {
343 		bool		update_sb;
344 		int		error;
345 
346 		if (sbp->sb_unit == mp->m_dalign &&
347 		    sbp->sb_width == mp->m_swidth)
348 			return 0;
349 
350 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
351 		if (error || !update_sb)
352 			return error;
353 
354 		sbp->sb_unit = mp->m_dalign;
355 		sbp->sb_width = mp->m_swidth;
356 		mp->m_update_sb = true;
357 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
358 		mp->m_dalign = sbp->sb_unit;
359 		mp->m_swidth = sbp->sb_width;
360 	}
361 
362 	return 0;
363 }
364 
365 /*
366  * precalculate the low space thresholds for dynamic speculative preallocation.
367  */
368 void
369 xfs_set_low_space_thresholds(
370 	struct xfs_mount	*mp)
371 {
372 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
373 	uint64_t		rtexts = mp->m_sb.sb_rextents;
374 	int			i;
375 
376 	do_div(dblocks, 100);
377 	do_div(rtexts, 100);
378 
379 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
380 		mp->m_low_space[i] = dblocks * (i + 1);
381 		mp->m_low_rtexts[i] = rtexts * (i + 1);
382 	}
383 }
384 
385 /*
386  * Check that the data (and log if separate) is an ok size.
387  */
388 STATIC int
389 xfs_check_sizes(
390 	struct xfs_mount *mp)
391 {
392 	struct xfs_buf	*bp;
393 	xfs_daddr_t	d;
394 	int		error;
395 
396 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
397 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
398 		xfs_warn(mp, "filesystem size mismatch detected");
399 		return -EFBIG;
400 	}
401 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
402 					d - XFS_FSS_TO_BB(mp, 1),
403 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
404 	if (error) {
405 		xfs_warn(mp, "last sector read failed");
406 		return error;
407 	}
408 	xfs_buf_relse(bp);
409 
410 	if (mp->m_logdev_targp == mp->m_ddev_targp)
411 		return 0;
412 
413 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
414 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
415 		xfs_warn(mp, "log size mismatch detected");
416 		return -EFBIG;
417 	}
418 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
419 					d - XFS_FSB_TO_BB(mp, 1),
420 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
421 	if (error) {
422 		xfs_warn(mp, "log device read failed");
423 		return error;
424 	}
425 	xfs_buf_relse(bp);
426 	return 0;
427 }
428 
429 /*
430  * Clear the quotaflags in memory and in the superblock.
431  */
432 int
433 xfs_mount_reset_sbqflags(
434 	struct xfs_mount	*mp)
435 {
436 	mp->m_qflags = 0;
437 
438 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
439 	if (mp->m_sb.sb_qflags == 0)
440 		return 0;
441 	spin_lock(&mp->m_sb_lock);
442 	mp->m_sb.sb_qflags = 0;
443 	spin_unlock(&mp->m_sb_lock);
444 
445 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
446 		return 0;
447 
448 	return xfs_sync_sb(mp, false);
449 }
450 
451 uint64_t
452 xfs_default_resblks(xfs_mount_t *mp)
453 {
454 	uint64_t resblks;
455 
456 	/*
457 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
458 	 * smaller.  This is intended to cover concurrent allocation
459 	 * transactions when we initially hit enospc. These each require a 4
460 	 * block reservation. Hence by default we cover roughly 2000 concurrent
461 	 * allocation reservations.
462 	 */
463 	resblks = mp->m_sb.sb_dblocks;
464 	do_div(resblks, 20);
465 	resblks = min_t(uint64_t, resblks, 8192);
466 	return resblks;
467 }
468 
469 /* Ensure the summary counts are correct. */
470 STATIC int
471 xfs_check_summary_counts(
472 	struct xfs_mount	*mp)
473 {
474 	int			error = 0;
475 
476 	/*
477 	 * The AG0 superblock verifier rejects in-progress filesystems,
478 	 * so we should never see the flag set this far into mounting.
479 	 */
480 	if (mp->m_sb.sb_inprogress) {
481 		xfs_err(mp, "sb_inprogress set after log recovery??");
482 		WARN_ON(1);
483 		return -EFSCORRUPTED;
484 	}
485 
486 	/*
487 	 * Now the log is mounted, we know if it was an unclean shutdown or
488 	 * not. If it was, with the first phase of recovery has completed, we
489 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
490 	 * but they are recovered transactionally in the second recovery phase
491 	 * later.
492 	 *
493 	 * If the log was clean when we mounted, we can check the summary
494 	 * counters.  If any of them are obviously incorrect, we can recompute
495 	 * them from the AGF headers in the next step.
496 	 */
497 	if (xfs_is_clean(mp) &&
498 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
499 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
500 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
501 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
502 
503 	/*
504 	 * We can safely re-initialise incore superblock counters from the
505 	 * per-ag data. These may not be correct if the filesystem was not
506 	 * cleanly unmounted, so we waited for recovery to finish before doing
507 	 * this.
508 	 *
509 	 * If the filesystem was cleanly unmounted or the previous check did
510 	 * not flag anything weird, then we can trust the values in the
511 	 * superblock to be correct and we don't need to do anything here.
512 	 * Otherwise, recalculate the summary counters.
513 	 */
514 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
515 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
516 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
517 		if (error)
518 			return error;
519 	}
520 
521 	/*
522 	 * Older kernels misused sb_frextents to reflect both incore
523 	 * reservations made by running transactions and the actual count of
524 	 * free rt extents in the ondisk metadata.  Transactions committed
525 	 * during runtime can therefore contain a superblock update that
526 	 * undercounts the number of free rt extents tracked in the rt bitmap.
527 	 * A clean unmount record will have the correct frextents value since
528 	 * there can be no other transactions running at that point.
529 	 *
530 	 * If we're mounting the rt volume after recovering the log, recompute
531 	 * frextents from the rtbitmap file to fix the inconsistency.
532 	 */
533 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
534 		error = xfs_rtalloc_reinit_frextents(mp);
535 		if (error)
536 			return error;
537 	}
538 
539 	return 0;
540 }
541 
542 static void
543 xfs_unmount_check(
544 	struct xfs_mount	*mp)
545 {
546 	if (xfs_is_shutdown(mp))
547 		return;
548 
549 	if (percpu_counter_sum(&mp->m_ifree) >
550 			percpu_counter_sum(&mp->m_icount)) {
551 		xfs_alert(mp, "ifree/icount mismatch at unmount");
552 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
553 	}
554 }
555 
556 /*
557  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
558  * internal inode structures can be sitting in the CIL and AIL at this point,
559  * so we need to unpin them, write them back and/or reclaim them before unmount
560  * can proceed.  In other words, callers are required to have inactivated all
561  * inodes.
562  *
563  * An inode cluster that has been freed can have its buffer still pinned in
564  * memory because the transaction is still sitting in a iclog. The stale inodes
565  * on that buffer will be pinned to the buffer until the transaction hits the
566  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
567  * may never see the pinned buffer, so nothing will push out the iclog and
568  * unpin the buffer.
569  *
570  * Hence we need to force the log to unpin everything first. However, log
571  * forces don't wait for the discards they issue to complete, so we have to
572  * explicitly wait for them to complete here as well.
573  *
574  * Then we can tell the world we are unmounting so that error handling knows
575  * that the filesystem is going away and we should error out anything that we
576  * have been retrying in the background.  This will prevent never-ending
577  * retries in AIL pushing from hanging the unmount.
578  *
579  * Finally, we can push the AIL to clean all the remaining dirty objects, then
580  * reclaim the remaining inodes that are still in memory at this point in time.
581  */
582 static void
583 xfs_unmount_flush_inodes(
584 	struct xfs_mount	*mp)
585 {
586 	xfs_log_force(mp, XFS_LOG_SYNC);
587 	xfs_extent_busy_wait_all(mp);
588 	flush_workqueue(xfs_discard_wq);
589 
590 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
591 
592 	xfs_ail_push_all_sync(mp->m_ail);
593 	xfs_inodegc_stop(mp);
594 	cancel_delayed_work_sync(&mp->m_reclaim_work);
595 	xfs_reclaim_inodes(mp);
596 	xfs_health_unmount(mp);
597 }
598 
599 static void
600 xfs_mount_setup_inode_geom(
601 	struct xfs_mount	*mp)
602 {
603 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
604 
605 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
606 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
607 
608 	xfs_ialloc_setup_geometry(mp);
609 }
610 
611 /* Compute maximum possible height for per-AG btree types for this fs. */
612 static inline void
613 xfs_agbtree_compute_maxlevels(
614 	struct xfs_mount	*mp)
615 {
616 	unsigned int		levels;
617 
618 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
619 	levels = max(levels, mp->m_rmap_maxlevels);
620 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
621 }
622 
623 /*
624  * This function does the following on an initial mount of a file system:
625  *	- reads the superblock from disk and init the mount struct
626  *	- if we're a 32-bit kernel, do a size check on the superblock
627  *		so we don't mount terabyte filesystems
628  *	- init mount struct realtime fields
629  *	- allocate inode hash table for fs
630  *	- init directory manager
631  *	- perform recovery and init the log manager
632  */
633 int
634 xfs_mountfs(
635 	struct xfs_mount	*mp)
636 {
637 	struct xfs_sb		*sbp = &(mp->m_sb);
638 	struct xfs_inode	*rip;
639 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
640 	uint64_t		resblks;
641 	uint			quotamount = 0;
642 	uint			quotaflags = 0;
643 	int			error = 0;
644 
645 	xfs_sb_mount_common(mp, sbp);
646 
647 	/*
648 	 * Check for a mismatched features2 values.  Older kernels read & wrote
649 	 * into the wrong sb offset for sb_features2 on some platforms due to
650 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
651 	 * which made older superblock reading/writing routines swap it as a
652 	 * 64-bit value.
653 	 *
654 	 * For backwards compatibility, we make both slots equal.
655 	 *
656 	 * If we detect a mismatched field, we OR the set bits into the existing
657 	 * features2 field in case it has already been modified; we don't want
658 	 * to lose any features.  We then update the bad location with the ORed
659 	 * value so that older kernels will see any features2 flags. The
660 	 * superblock writeback code ensures the new sb_features2 is copied to
661 	 * sb_bad_features2 before it is logged or written to disk.
662 	 */
663 	if (xfs_sb_has_mismatched_features2(sbp)) {
664 		xfs_warn(mp, "correcting sb_features alignment problem");
665 		sbp->sb_features2 |= sbp->sb_bad_features2;
666 		mp->m_update_sb = true;
667 	}
668 
669 
670 	/* always use v2 inodes by default now */
671 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
672 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
673 		mp->m_features |= XFS_FEAT_NLINK;
674 		mp->m_update_sb = true;
675 	}
676 
677 	/*
678 	 * If we were given new sunit/swidth options, do some basic validation
679 	 * checks and convert the incore dalign and swidth values to the
680 	 * same units (FSB) that everything else uses.  This /must/ happen
681 	 * before computing the inode geometry.
682 	 */
683 	error = xfs_validate_new_dalign(mp);
684 	if (error)
685 		goto out;
686 
687 	xfs_alloc_compute_maxlevels(mp);
688 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
689 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
690 	xfs_mount_setup_inode_geom(mp);
691 	xfs_rmapbt_compute_maxlevels(mp);
692 	xfs_refcountbt_compute_maxlevels(mp);
693 
694 	xfs_agbtree_compute_maxlevels(mp);
695 
696 	/*
697 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
698 	 * is NOT aligned turn off m_dalign since allocator alignment is within
699 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
700 	 * we must compute the free space and rmap btree geometry before doing
701 	 * this.
702 	 */
703 	error = xfs_update_alignment(mp);
704 	if (error)
705 		goto out;
706 
707 	/* enable fail_at_unmount as default */
708 	mp->m_fail_unmount = true;
709 
710 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
711 			       NULL, mp->m_super->s_id);
712 	if (error)
713 		goto out;
714 
715 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
716 			       &mp->m_kobj, "stats");
717 	if (error)
718 		goto out_remove_sysfs;
719 
720 	xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
721 
722 	error = xfs_error_sysfs_init(mp);
723 	if (error)
724 		goto out_remove_scrub_stats;
725 
726 	error = xfs_errortag_init(mp);
727 	if (error)
728 		goto out_remove_error_sysfs;
729 
730 	error = xfs_uuid_mount(mp);
731 	if (error)
732 		goto out_remove_errortag;
733 
734 	/*
735 	 * Update the preferred write size based on the information from the
736 	 * on-disk superblock.
737 	 */
738 	mp->m_allocsize_log =
739 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
740 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
741 
742 	/* set the low space thresholds for dynamic preallocation */
743 	xfs_set_low_space_thresholds(mp);
744 
745 	/*
746 	 * If enabled, sparse inode chunk alignment is expected to match the
747 	 * cluster size. Full inode chunk alignment must match the chunk size,
748 	 * but that is checked on sb read verification...
749 	 */
750 	if (xfs_has_sparseinodes(mp) &&
751 	    mp->m_sb.sb_spino_align !=
752 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
753 		xfs_warn(mp,
754 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
755 			 mp->m_sb.sb_spino_align,
756 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
757 		error = -EINVAL;
758 		goto out_remove_uuid;
759 	}
760 
761 	/*
762 	 * Check that the data (and log if separate) is an ok size.
763 	 */
764 	error = xfs_check_sizes(mp);
765 	if (error)
766 		goto out_remove_uuid;
767 
768 	/*
769 	 * Initialize realtime fields in the mount structure
770 	 */
771 	error = xfs_rtmount_init(mp);
772 	if (error) {
773 		xfs_warn(mp, "RT mount failed");
774 		goto out_remove_uuid;
775 	}
776 
777 	/*
778 	 *  Copies the low order bits of the timestamp and the randomly
779 	 *  set "sequence" number out of a UUID.
780 	 */
781 	mp->m_fixedfsid[0] =
782 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
783 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
784 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
785 
786 	error = xfs_da_mount(mp);
787 	if (error) {
788 		xfs_warn(mp, "Failed dir/attr init: %d", error);
789 		goto out_remove_uuid;
790 	}
791 
792 	/*
793 	 * Initialize the precomputed transaction reservations values.
794 	 */
795 	xfs_trans_init(mp);
796 
797 	/*
798 	 * Allocate and initialize the per-ag data.
799 	 */
800 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
801 			&mp->m_maxagi);
802 	if (error) {
803 		xfs_warn(mp, "Failed per-ag init: %d", error);
804 		goto out_free_dir;
805 	}
806 
807 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
808 		xfs_warn(mp, "no log defined");
809 		error = -EFSCORRUPTED;
810 		goto out_free_perag;
811 	}
812 
813 	error = xfs_inodegc_register_shrinker(mp);
814 	if (error)
815 		goto out_fail_wait;
816 
817 	/*
818 	 * Log's mount-time initialization. The first part of recovery can place
819 	 * some items on the AIL, to be handled when recovery is finished or
820 	 * cancelled.
821 	 */
822 	error = xfs_log_mount(mp, mp->m_logdev_targp,
823 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
824 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
825 	if (error) {
826 		xfs_warn(mp, "log mount failed");
827 		goto out_inodegc_shrinker;
828 	}
829 
830 	/* Enable background inode inactivation workers. */
831 	xfs_inodegc_start(mp);
832 	xfs_blockgc_start(mp);
833 
834 	/*
835 	 * Now that we've recovered any pending superblock feature bit
836 	 * additions, we can finish setting up the attr2 behaviour for the
837 	 * mount. The noattr2 option overrides the superblock flag, so only
838 	 * check the superblock feature flag if the mount option is not set.
839 	 */
840 	if (xfs_has_noattr2(mp)) {
841 		mp->m_features &= ~XFS_FEAT_ATTR2;
842 	} else if (!xfs_has_attr2(mp) &&
843 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
844 		mp->m_features |= XFS_FEAT_ATTR2;
845 	}
846 
847 	/*
848 	 * Get and sanity-check the root inode.
849 	 * Save the pointer to it in the mount structure.
850 	 */
851 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
852 			 XFS_ILOCK_EXCL, &rip);
853 	if (error) {
854 		xfs_warn(mp,
855 			"Failed to read root inode 0x%llx, error %d",
856 			sbp->sb_rootino, -error);
857 		goto out_log_dealloc;
858 	}
859 
860 	ASSERT(rip != NULL);
861 
862 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
863 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
864 			(unsigned long long)rip->i_ino);
865 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
866 		error = -EFSCORRUPTED;
867 		goto out_rele_rip;
868 	}
869 	mp->m_rootip = rip;	/* save it */
870 
871 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
872 
873 	/*
874 	 * Initialize realtime inode pointers in the mount structure
875 	 */
876 	error = xfs_rtmount_inodes(mp);
877 	if (error) {
878 		/*
879 		 * Free up the root inode.
880 		 */
881 		xfs_warn(mp, "failed to read RT inodes");
882 		goto out_rele_rip;
883 	}
884 
885 	/* Make sure the summary counts are ok. */
886 	error = xfs_check_summary_counts(mp);
887 	if (error)
888 		goto out_rtunmount;
889 
890 	/*
891 	 * If this is a read-only mount defer the superblock updates until
892 	 * the next remount into writeable mode.  Otherwise we would never
893 	 * perform the update e.g. for the root filesystem.
894 	 */
895 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
896 		error = xfs_sync_sb(mp, false);
897 		if (error) {
898 			xfs_warn(mp, "failed to write sb changes");
899 			goto out_rtunmount;
900 		}
901 	}
902 
903 	/*
904 	 * Initialise the XFS quota management subsystem for this mount
905 	 */
906 	if (XFS_IS_QUOTA_ON(mp)) {
907 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
908 		if (error)
909 			goto out_rtunmount;
910 	} else {
911 		/*
912 		 * If a file system had quotas running earlier, but decided to
913 		 * mount without -o uquota/pquota/gquota options, revoke the
914 		 * quotachecked license.
915 		 */
916 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
917 			xfs_notice(mp, "resetting quota flags");
918 			error = xfs_mount_reset_sbqflags(mp);
919 			if (error)
920 				goto out_rtunmount;
921 		}
922 	}
923 
924 	/*
925 	 * Finish recovering the file system.  This part needed to be delayed
926 	 * until after the root and real-time bitmap inodes were consistently
927 	 * read in.  Temporarily create per-AG space reservations for metadata
928 	 * btree shape changes because space freeing transactions (for inode
929 	 * inactivation) require the per-AG reservation in lieu of reserving
930 	 * blocks.
931 	 */
932 	error = xfs_fs_reserve_ag_blocks(mp);
933 	if (error && error == -ENOSPC)
934 		xfs_warn(mp,
935 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
936 	error = xfs_log_mount_finish(mp);
937 	xfs_fs_unreserve_ag_blocks(mp);
938 	if (error) {
939 		xfs_warn(mp, "log mount finish failed");
940 		goto out_rtunmount;
941 	}
942 
943 	/*
944 	 * Now the log is fully replayed, we can transition to full read-only
945 	 * mode for read-only mounts. This will sync all the metadata and clean
946 	 * the log so that the recovery we just performed does not have to be
947 	 * replayed again on the next mount.
948 	 *
949 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
950 	 * semantically identical operations.
951 	 */
952 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
953 		xfs_log_clean(mp);
954 
955 	/*
956 	 * Complete the quota initialisation, post-log-replay component.
957 	 */
958 	if (quotamount) {
959 		ASSERT(mp->m_qflags == 0);
960 		mp->m_qflags = quotaflags;
961 
962 		xfs_qm_mount_quotas(mp);
963 	}
964 
965 	/*
966 	 * Now we are mounted, reserve a small amount of unused space for
967 	 * privileged transactions. This is needed so that transaction
968 	 * space required for critical operations can dip into this pool
969 	 * when at ENOSPC. This is needed for operations like create with
970 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
971 	 * are not allowed to use this reserved space.
972 	 *
973 	 * This may drive us straight to ENOSPC on mount, but that implies
974 	 * we were already there on the last unmount. Warn if this occurs.
975 	 */
976 	if (!xfs_is_readonly(mp)) {
977 		resblks = xfs_default_resblks(mp);
978 		error = xfs_reserve_blocks(mp, &resblks, NULL);
979 		if (error)
980 			xfs_warn(mp,
981 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
982 
983 		/* Reserve AG blocks for future btree expansion. */
984 		error = xfs_fs_reserve_ag_blocks(mp);
985 		if (error && error != -ENOSPC)
986 			goto out_agresv;
987 	}
988 
989 	return 0;
990 
991  out_agresv:
992 	xfs_fs_unreserve_ag_blocks(mp);
993 	xfs_qm_unmount_quotas(mp);
994  out_rtunmount:
995 	xfs_rtunmount_inodes(mp);
996  out_rele_rip:
997 	xfs_irele(rip);
998 	/* Clean out dquots that might be in memory after quotacheck. */
999 	xfs_qm_unmount(mp);
1000 
1001 	/*
1002 	 * Inactivate all inodes that might still be in memory after a log
1003 	 * intent recovery failure so that reclaim can free them.  Metadata
1004 	 * inodes and the root directory shouldn't need inactivation, but the
1005 	 * mount failed for some reason, so pull down all the state and flee.
1006 	 */
1007 	xfs_inodegc_flush(mp);
1008 
1009 	/*
1010 	 * Flush all inode reclamation work and flush the log.
1011 	 * We have to do this /after/ rtunmount and qm_unmount because those
1012 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1013 	 *
1014 	 * This is slightly different from the unmountfs call sequence
1015 	 * because we could be tearing down a partially set up mount.  In
1016 	 * particular, if log_mount_finish fails we bail out without calling
1017 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1018 	 * quota inodes.
1019 	 */
1020 	xfs_unmount_flush_inodes(mp);
1021  out_log_dealloc:
1022 	xfs_log_mount_cancel(mp);
1023  out_inodegc_shrinker:
1024 	unregister_shrinker(&mp->m_inodegc_shrinker);
1025  out_fail_wait:
1026 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1027 		xfs_buftarg_drain(mp->m_logdev_targp);
1028 	xfs_buftarg_drain(mp->m_ddev_targp);
1029  out_free_perag:
1030 	xfs_free_perag(mp);
1031  out_free_dir:
1032 	xfs_da_unmount(mp);
1033  out_remove_uuid:
1034 	xfs_uuid_unmount(mp);
1035  out_remove_errortag:
1036 	xfs_errortag_del(mp);
1037  out_remove_error_sysfs:
1038 	xfs_error_sysfs_del(mp);
1039  out_remove_scrub_stats:
1040 	xchk_stats_unregister(mp->m_scrub_stats);
1041 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1042  out_remove_sysfs:
1043 	xfs_sysfs_del(&mp->m_kobj);
1044  out:
1045 	return error;
1046 }
1047 
1048 /*
1049  * This flushes out the inodes,dquots and the superblock, unmounts the
1050  * log and makes sure that incore structures are freed.
1051  */
1052 void
1053 xfs_unmountfs(
1054 	struct xfs_mount	*mp)
1055 {
1056 	uint64_t		resblks;
1057 	int			error;
1058 
1059 	/*
1060 	 * Perform all on-disk metadata updates required to inactivate inodes
1061 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1062 	 * and discarding CoW fork preallocations can cause shape changes to
1063 	 * the free inode and refcount btrees, respectively, so we must finish
1064 	 * this before we discard the metadata space reservations.  Metadata
1065 	 * inodes and the root directory do not require inactivation.
1066 	 */
1067 	xfs_inodegc_flush(mp);
1068 
1069 	xfs_blockgc_stop(mp);
1070 	xfs_fs_unreserve_ag_blocks(mp);
1071 	xfs_qm_unmount_quotas(mp);
1072 	xfs_rtunmount_inodes(mp);
1073 	xfs_irele(mp->m_rootip);
1074 
1075 	xfs_unmount_flush_inodes(mp);
1076 
1077 	xfs_qm_unmount(mp);
1078 
1079 	/*
1080 	 * Unreserve any blocks we have so that when we unmount we don't account
1081 	 * the reserved free space as used. This is really only necessary for
1082 	 * lazy superblock counting because it trusts the incore superblock
1083 	 * counters to be absolutely correct on clean unmount.
1084 	 *
1085 	 * We don't bother correcting this elsewhere for lazy superblock
1086 	 * counting because on mount of an unclean filesystem we reconstruct the
1087 	 * correct counter value and this is irrelevant.
1088 	 *
1089 	 * For non-lazy counter filesystems, this doesn't matter at all because
1090 	 * we only every apply deltas to the superblock and hence the incore
1091 	 * value does not matter....
1092 	 */
1093 	resblks = 0;
1094 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1095 	if (error)
1096 		xfs_warn(mp, "Unable to free reserved block pool. "
1097 				"Freespace may not be correct on next mount.");
1098 	xfs_unmount_check(mp);
1099 
1100 	xfs_log_unmount(mp);
1101 	xfs_da_unmount(mp);
1102 	xfs_uuid_unmount(mp);
1103 
1104 #if defined(DEBUG)
1105 	xfs_errortag_clearall(mp);
1106 #endif
1107 	unregister_shrinker(&mp->m_inodegc_shrinker);
1108 	xfs_free_perag(mp);
1109 
1110 	xfs_errortag_del(mp);
1111 	xfs_error_sysfs_del(mp);
1112 	xchk_stats_unregister(mp->m_scrub_stats);
1113 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1114 	xfs_sysfs_del(&mp->m_kobj);
1115 }
1116 
1117 /*
1118  * Determine whether modifications can proceed. The caller specifies the minimum
1119  * freeze level for which modifications should not be allowed. This allows
1120  * certain operations to proceed while the freeze sequence is in progress, if
1121  * necessary.
1122  */
1123 bool
1124 xfs_fs_writable(
1125 	struct xfs_mount	*mp,
1126 	int			level)
1127 {
1128 	ASSERT(level > SB_UNFROZEN);
1129 	if ((mp->m_super->s_writers.frozen >= level) ||
1130 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1131 		return false;
1132 
1133 	return true;
1134 }
1135 
1136 /* Adjust m_fdblocks or m_frextents. */
1137 int
1138 xfs_mod_freecounter(
1139 	struct xfs_mount	*mp,
1140 	struct percpu_counter	*counter,
1141 	int64_t			delta,
1142 	bool			rsvd)
1143 {
1144 	int64_t			lcounter;
1145 	long long		res_used;
1146 	uint64_t		set_aside = 0;
1147 	s32			batch;
1148 	bool			has_resv_pool;
1149 
1150 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1151 	has_resv_pool = (counter == &mp->m_fdblocks);
1152 	if (rsvd)
1153 		ASSERT(has_resv_pool);
1154 
1155 	if (delta > 0) {
1156 		/*
1157 		 * If the reserve pool is depleted, put blocks back into it
1158 		 * first. Most of the time the pool is full.
1159 		 */
1160 		if (likely(!has_resv_pool ||
1161 			   mp->m_resblks == mp->m_resblks_avail)) {
1162 			percpu_counter_add(counter, delta);
1163 			return 0;
1164 		}
1165 
1166 		spin_lock(&mp->m_sb_lock);
1167 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1168 
1169 		if (res_used > delta) {
1170 			mp->m_resblks_avail += delta;
1171 		} else {
1172 			delta -= res_used;
1173 			mp->m_resblks_avail = mp->m_resblks;
1174 			percpu_counter_add(counter, delta);
1175 		}
1176 		spin_unlock(&mp->m_sb_lock);
1177 		return 0;
1178 	}
1179 
1180 	/*
1181 	 * Taking blocks away, need to be more accurate the closer we
1182 	 * are to zero.
1183 	 *
1184 	 * If the counter has a value of less than 2 * max batch size,
1185 	 * then make everything serialise as we are real close to
1186 	 * ENOSPC.
1187 	 */
1188 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1189 				     XFS_FDBLOCKS_BATCH) < 0)
1190 		batch = 1;
1191 	else
1192 		batch = XFS_FDBLOCKS_BATCH;
1193 
1194 	/*
1195 	 * Set aside allocbt blocks because these blocks are tracked as free
1196 	 * space but not available for allocation. Technically this means that a
1197 	 * single reservation cannot consume all remaining free space, but the
1198 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1199 	 * The tradeoff without this is that filesystems that maintain high
1200 	 * perag block reservations can over reserve physical block availability
1201 	 * and fail physical allocation, which leads to much more serious
1202 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1203 	 * slightly premature -ENOSPC.
1204 	 */
1205 	if (has_resv_pool)
1206 		set_aside = xfs_fdblocks_unavailable(mp);
1207 	percpu_counter_add_batch(counter, delta, batch);
1208 	if (__percpu_counter_compare(counter, set_aside,
1209 				     XFS_FDBLOCKS_BATCH) >= 0) {
1210 		/* we had space! */
1211 		return 0;
1212 	}
1213 
1214 	/*
1215 	 * lock up the sb for dipping into reserves before releasing the space
1216 	 * that took us to ENOSPC.
1217 	 */
1218 	spin_lock(&mp->m_sb_lock);
1219 	percpu_counter_add(counter, -delta);
1220 	if (!has_resv_pool || !rsvd)
1221 		goto fdblocks_enospc;
1222 
1223 	lcounter = (long long)mp->m_resblks_avail + delta;
1224 	if (lcounter >= 0) {
1225 		mp->m_resblks_avail = lcounter;
1226 		spin_unlock(&mp->m_sb_lock);
1227 		return 0;
1228 	}
1229 	xfs_warn_once(mp,
1230 "Reserve blocks depleted! Consider increasing reserve pool size.");
1231 
1232 fdblocks_enospc:
1233 	spin_unlock(&mp->m_sb_lock);
1234 	return -ENOSPC;
1235 }
1236 
1237 /*
1238  * Used to free the superblock along various error paths.
1239  */
1240 void
1241 xfs_freesb(
1242 	struct xfs_mount	*mp)
1243 {
1244 	struct xfs_buf		*bp = mp->m_sb_bp;
1245 
1246 	xfs_buf_lock(bp);
1247 	mp->m_sb_bp = NULL;
1248 	xfs_buf_relse(bp);
1249 }
1250 
1251 /*
1252  * If the underlying (data/log/rt) device is readonly, there are some
1253  * operations that cannot proceed.
1254  */
1255 int
1256 xfs_dev_is_read_only(
1257 	struct xfs_mount	*mp,
1258 	char			*message)
1259 {
1260 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1261 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1262 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1263 		xfs_notice(mp, "%s required on read-only device.", message);
1264 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1265 		return -EROFS;
1266 	}
1267 	return 0;
1268 }
1269 
1270 /* Force the summary counters to be recalculated at next mount. */
1271 void
1272 xfs_force_summary_recalc(
1273 	struct xfs_mount	*mp)
1274 {
1275 	if (!xfs_has_lazysbcount(mp))
1276 		return;
1277 
1278 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1279 }
1280 
1281 /*
1282  * Enable a log incompat feature flag in the primary superblock.  The caller
1283  * cannot have any other transactions in progress.
1284  */
1285 int
1286 xfs_add_incompat_log_feature(
1287 	struct xfs_mount	*mp,
1288 	uint32_t		feature)
1289 {
1290 	struct xfs_dsb		*dsb;
1291 	int			error;
1292 
1293 	ASSERT(hweight32(feature) == 1);
1294 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1295 
1296 	/*
1297 	 * Force the log to disk and kick the background AIL thread to reduce
1298 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1299 	 * the primary superblock buffer.  This isn't a data integrity
1300 	 * operation, so we don't need a synchronous push.
1301 	 */
1302 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1303 	if (error)
1304 		return error;
1305 	xfs_ail_push_all(mp->m_ail);
1306 
1307 	/*
1308 	 * Lock the primary superblock buffer to serialize all callers that
1309 	 * are trying to set feature bits.
1310 	 */
1311 	xfs_buf_lock(mp->m_sb_bp);
1312 	xfs_buf_hold(mp->m_sb_bp);
1313 
1314 	if (xfs_is_shutdown(mp)) {
1315 		error = -EIO;
1316 		goto rele;
1317 	}
1318 
1319 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1320 		goto rele;
1321 
1322 	/*
1323 	 * Write the primary superblock to disk immediately, because we need
1324 	 * the log_incompat bit to be set in the primary super now to protect
1325 	 * the log items that we're going to commit later.
1326 	 */
1327 	dsb = mp->m_sb_bp->b_addr;
1328 	xfs_sb_to_disk(dsb, &mp->m_sb);
1329 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1330 	error = xfs_bwrite(mp->m_sb_bp);
1331 	if (error)
1332 		goto shutdown;
1333 
1334 	/*
1335 	 * Add the feature bits to the incore superblock before we unlock the
1336 	 * buffer.
1337 	 */
1338 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1339 	xfs_buf_relse(mp->m_sb_bp);
1340 
1341 	/* Log the superblock to disk. */
1342 	return xfs_sync_sb(mp, false);
1343 shutdown:
1344 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1345 rele:
1346 	xfs_buf_relse(mp->m_sb_bp);
1347 	return error;
1348 }
1349 
1350 /*
1351  * Clear all the log incompat flags from the superblock.
1352  *
1353  * The caller cannot be in a transaction, must ensure that the log does not
1354  * contain any log items protected by any log incompat bit, and must ensure
1355  * that there are no other threads that depend on the state of the log incompat
1356  * feature flags in the primary super.
1357  *
1358  * Returns true if the superblock is dirty.
1359  */
1360 bool
1361 xfs_clear_incompat_log_features(
1362 	struct xfs_mount	*mp)
1363 {
1364 	bool			ret = false;
1365 
1366 	if (!xfs_has_crc(mp) ||
1367 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1368 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1369 	    xfs_is_shutdown(mp))
1370 		return false;
1371 
1372 	/*
1373 	 * Update the incore superblock.  We synchronize on the primary super
1374 	 * buffer lock to be consistent with the add function, though at least
1375 	 * in theory this shouldn't be necessary.
1376 	 */
1377 	xfs_buf_lock(mp->m_sb_bp);
1378 	xfs_buf_hold(mp->m_sb_bp);
1379 
1380 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1381 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1382 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1383 		ret = true;
1384 	}
1385 
1386 	xfs_buf_relse(mp->m_sb_bp);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Update the in-core delayed block counter.
1392  *
1393  * We prefer to update the counter without having to take a spinlock for every
1394  * counter update (i.e. batching).  Each change to delayed allocation
1395  * reservations can change can easily exceed the default percpu counter
1396  * batching, so we use a larger batch factor here.
1397  *
1398  * Note that we don't currently have any callers requiring fast summation
1399  * (e.g. percpu_counter_read) so we can use a big batch value here.
1400  */
1401 #define XFS_DELALLOC_BATCH	(4096)
1402 void
1403 xfs_mod_delalloc(
1404 	struct xfs_mount	*mp,
1405 	int64_t			delta)
1406 {
1407 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1408 			XFS_DELALLOC_BATCH);
1409 }
1410