1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "xfs_metafile.h" 39 #include "xfs_rtgroup.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtrefcount_btree.h" 42 #include "scrub/stats.h" 43 #include "xfs_zone_alloc.h" 44 45 static DEFINE_MUTEX(xfs_uuid_table_mutex); 46 static int xfs_uuid_table_size; 47 static uuid_t *xfs_uuid_table; 48 49 void 50 xfs_uuid_table_free(void) 51 { 52 if (xfs_uuid_table_size == 0) 53 return; 54 kfree(xfs_uuid_table); 55 xfs_uuid_table = NULL; 56 xfs_uuid_table_size = 0; 57 } 58 59 /* 60 * See if the UUID is unique among mounted XFS filesystems. 61 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 62 */ 63 STATIC int 64 xfs_uuid_mount( 65 struct xfs_mount *mp) 66 { 67 uuid_t *uuid = &mp->m_sb.sb_uuid; 68 int hole, i; 69 70 /* Publish UUID in struct super_block */ 71 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 72 73 if (xfs_has_nouuid(mp)) 74 return 0; 75 76 if (uuid_is_null(uuid)) { 77 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 78 return -EINVAL; 79 } 80 81 mutex_lock(&xfs_uuid_table_mutex); 82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 83 if (uuid_is_null(&xfs_uuid_table[i])) { 84 hole = i; 85 continue; 86 } 87 if (uuid_equal(uuid, &xfs_uuid_table[i])) 88 goto out_duplicate; 89 } 90 91 if (hole < 0) { 92 xfs_uuid_table = krealloc(xfs_uuid_table, 93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 94 GFP_KERNEL | __GFP_NOFAIL); 95 hole = xfs_uuid_table_size++; 96 } 97 xfs_uuid_table[hole] = *uuid; 98 mutex_unlock(&xfs_uuid_table_mutex); 99 100 return 0; 101 102 out_duplicate: 103 mutex_unlock(&xfs_uuid_table_mutex); 104 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 105 return -EINVAL; 106 } 107 108 STATIC void 109 xfs_uuid_unmount( 110 struct xfs_mount *mp) 111 { 112 uuid_t *uuid = &mp->m_sb.sb_uuid; 113 int i; 114 115 if (xfs_has_nouuid(mp)) 116 return; 117 118 mutex_lock(&xfs_uuid_table_mutex); 119 for (i = 0; i < xfs_uuid_table_size; i++) { 120 if (uuid_is_null(&xfs_uuid_table[i])) 121 continue; 122 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 123 continue; 124 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 125 break; 126 } 127 ASSERT(i < xfs_uuid_table_size); 128 mutex_unlock(&xfs_uuid_table_mutex); 129 } 130 131 /* 132 * Check size of device based on the (data/realtime) block count. 133 * Note: this check is used by the growfs code as well as mount. 134 */ 135 int 136 xfs_sb_validate_fsb_count( 137 xfs_sb_t *sbp, 138 uint64_t nblocks) 139 { 140 uint64_t max_bytes; 141 142 ASSERT(sbp->sb_blocklog >= BBSHIFT); 143 144 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 145 return -EFBIG; 146 147 /* Limited by ULONG_MAX of page cache index */ 148 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 149 return -EFBIG; 150 return 0; 151 } 152 153 /* 154 * xfs_readsb 155 * 156 * Does the initial read of the superblock. 157 */ 158 int 159 xfs_readsb( 160 struct xfs_mount *mp, 161 int flags) 162 { 163 unsigned int sector_size; 164 struct xfs_buf *bp; 165 struct xfs_sb *sbp = &mp->m_sb; 166 int error; 167 int loud = !(flags & XFS_MFSI_QUIET); 168 const struct xfs_buf_ops *buf_ops; 169 170 ASSERT(mp->m_sb_bp == NULL); 171 ASSERT(mp->m_ddev_targp != NULL); 172 173 /* 174 * For the initial read, we must guess at the sector 175 * size based on the block device. It's enough to 176 * get the sb_sectsize out of the superblock and 177 * then reread with the proper length. 178 * We don't verify it yet, because it may not be complete. 179 */ 180 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 181 buf_ops = NULL; 182 183 /* 184 * Allocate a (locked) buffer to hold the superblock. This will be kept 185 * around at all times to optimize access to the superblock. 186 */ 187 reread: 188 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 189 BTOBB(sector_size), &bp, buf_ops); 190 if (error) { 191 if (loud) 192 xfs_warn(mp, "SB validate failed with error %d.", error); 193 /* bad CRC means corrupted metadata */ 194 if (error == -EFSBADCRC) 195 error = -EFSCORRUPTED; 196 return error; 197 } 198 199 /* 200 * Initialize the mount structure from the superblock. 201 */ 202 xfs_sb_from_disk(sbp, bp->b_addr); 203 204 /* 205 * If we haven't validated the superblock, do so now before we try 206 * to check the sector size and reread the superblock appropriately. 207 */ 208 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 209 if (loud) 210 xfs_warn(mp, "Invalid superblock magic number"); 211 error = -EINVAL; 212 goto release_buf; 213 } 214 215 /* 216 * We must be able to do sector-sized and sector-aligned IO. 217 */ 218 if (sector_size > sbp->sb_sectsize) { 219 if (loud) 220 xfs_warn(mp, "device supports %u byte sectors (not %u)", 221 sector_size, sbp->sb_sectsize); 222 error = -ENOSYS; 223 goto release_buf; 224 } 225 226 if (buf_ops == NULL) { 227 /* 228 * Re-read the superblock so the buffer is correctly sized, 229 * and properly verified. 230 */ 231 xfs_buf_relse(bp); 232 sector_size = sbp->sb_sectsize; 233 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 234 goto reread; 235 } 236 237 mp->m_features |= xfs_sb_version_to_features(sbp); 238 xfs_reinit_percpu_counters(mp); 239 240 /* 241 * If logged xattrs are enabled after log recovery finishes, then set 242 * the opstate so that log recovery will work properly. 243 */ 244 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 245 xfs_set_using_logged_xattrs(mp); 246 247 /* no need to be quiet anymore, so reset the buf ops */ 248 bp->b_ops = &xfs_sb_buf_ops; 249 250 mp->m_sb_bp = bp; 251 xfs_buf_unlock(bp); 252 return 0; 253 254 release_buf: 255 xfs_buf_relse(bp); 256 return error; 257 } 258 259 /* 260 * If the sunit/swidth change would move the precomputed root inode value, we 261 * must reject the ondisk change because repair will stumble over that. 262 * However, we allow the mount to proceed because we never rejected this 263 * combination before. Returns true to update the sb, false otherwise. 264 */ 265 static inline int 266 xfs_check_new_dalign( 267 struct xfs_mount *mp, 268 int new_dalign, 269 bool *update_sb) 270 { 271 struct xfs_sb *sbp = &mp->m_sb; 272 xfs_ino_t calc_ino; 273 274 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 275 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 276 277 if (sbp->sb_rootino == calc_ino) { 278 *update_sb = true; 279 return 0; 280 } 281 282 xfs_warn(mp, 283 "Cannot change stripe alignment; would require moving root inode."); 284 285 /* 286 * XXX: Next time we add a new incompat feature, this should start 287 * returning -EINVAL to fail the mount. Until then, spit out a warning 288 * that we're ignoring the administrator's instructions. 289 */ 290 xfs_warn(mp, "Skipping superblock stripe alignment update."); 291 *update_sb = false; 292 return 0; 293 } 294 295 /* 296 * If we were provided with new sunit/swidth values as mount options, make sure 297 * that they pass basic alignment and superblock feature checks, and convert 298 * them into the same units (FSB) that everything else expects. This step 299 * /must/ be done before computing the inode geometry. 300 */ 301 STATIC int 302 xfs_validate_new_dalign( 303 struct xfs_mount *mp) 304 { 305 if (mp->m_dalign == 0) 306 return 0; 307 308 /* 309 * If stripe unit and stripe width are not multiples 310 * of the fs blocksize turn off alignment. 311 */ 312 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 313 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 314 xfs_warn(mp, 315 "alignment check failed: sunit/swidth vs. blocksize(%d)", 316 mp->m_sb.sb_blocksize); 317 return -EINVAL; 318 } 319 320 /* 321 * Convert the stripe unit and width to FSBs. 322 */ 323 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 324 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 325 xfs_warn(mp, 326 "alignment check failed: sunit/swidth vs. agsize(%d)", 327 mp->m_sb.sb_agblocks); 328 return -EINVAL; 329 } 330 331 if (!mp->m_dalign) { 332 xfs_warn(mp, 333 "alignment check failed: sunit(%d) less than bsize(%d)", 334 mp->m_dalign, mp->m_sb.sb_blocksize); 335 return -EINVAL; 336 } 337 338 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 339 340 if (!xfs_has_dalign(mp)) { 341 xfs_warn(mp, 342 "cannot change alignment: superblock does not support data alignment"); 343 return -EINVAL; 344 } 345 346 return 0; 347 } 348 349 /* Update alignment values based on mount options and sb values. */ 350 STATIC int 351 xfs_update_alignment( 352 struct xfs_mount *mp) 353 { 354 struct xfs_sb *sbp = &mp->m_sb; 355 356 if (mp->m_dalign) { 357 bool update_sb; 358 int error; 359 360 if (sbp->sb_unit == mp->m_dalign && 361 sbp->sb_width == mp->m_swidth) 362 return 0; 363 364 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 365 if (error || !update_sb) 366 return error; 367 368 sbp->sb_unit = mp->m_dalign; 369 sbp->sb_width = mp->m_swidth; 370 mp->m_update_sb = true; 371 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 372 mp->m_dalign = sbp->sb_unit; 373 mp->m_swidth = sbp->sb_width; 374 } 375 376 return 0; 377 } 378 379 /* 380 * precalculate the low space thresholds for dynamic speculative preallocation. 381 */ 382 void 383 xfs_set_low_space_thresholds( 384 struct xfs_mount *mp) 385 { 386 uint64_t dblocks = mp->m_sb.sb_dblocks; 387 uint64_t rtexts = mp->m_sb.sb_rextents; 388 int i; 389 390 do_div(dblocks, 100); 391 do_div(rtexts, 100); 392 393 for (i = 0; i < XFS_LOWSP_MAX; i++) { 394 mp->m_low_space[i] = dblocks * (i + 1); 395 mp->m_low_rtexts[i] = rtexts * (i + 1); 396 } 397 } 398 399 /* 400 * Check that the data (and log if separate) is an ok size. 401 */ 402 STATIC int 403 xfs_check_sizes( 404 struct xfs_mount *mp) 405 { 406 struct xfs_buf *bp; 407 xfs_daddr_t d; 408 int error; 409 410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 412 xfs_warn(mp, "filesystem size mismatch detected"); 413 return -EFBIG; 414 } 415 error = xfs_buf_read_uncached(mp->m_ddev_targp, 416 d - XFS_FSS_TO_BB(mp, 1), 417 XFS_FSS_TO_BB(mp, 1), &bp, NULL); 418 if (error) { 419 xfs_warn(mp, "last sector read failed"); 420 return error; 421 } 422 xfs_buf_relse(bp); 423 424 if (mp->m_logdev_targp == mp->m_ddev_targp) 425 return 0; 426 427 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 428 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 429 xfs_warn(mp, "log size mismatch detected"); 430 return -EFBIG; 431 } 432 error = xfs_buf_read_uncached(mp->m_logdev_targp, 433 d - XFS_FSB_TO_BB(mp, 1), 434 XFS_FSB_TO_BB(mp, 1), &bp, NULL); 435 if (error) { 436 xfs_warn(mp, "log device read failed"); 437 return error; 438 } 439 xfs_buf_relse(bp); 440 return 0; 441 } 442 443 /* 444 * Clear the quotaflags in memory and in the superblock. 445 */ 446 int 447 xfs_mount_reset_sbqflags( 448 struct xfs_mount *mp) 449 { 450 mp->m_qflags = 0; 451 452 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 453 if (mp->m_sb.sb_qflags == 0) 454 return 0; 455 spin_lock(&mp->m_sb_lock); 456 mp->m_sb.sb_qflags = 0; 457 spin_unlock(&mp->m_sb_lock); 458 459 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 460 return 0; 461 462 return xfs_sync_sb(mp, false); 463 } 464 465 static const char *const xfs_free_pool_name[] = { 466 [XC_FREE_BLOCKS] = "free blocks", 467 [XC_FREE_RTEXTENTS] = "free rt extents", 468 [XC_FREE_RTAVAILABLE] = "available rt extents", 469 }; 470 471 uint64_t 472 xfs_default_resblks( 473 struct xfs_mount *mp, 474 enum xfs_free_counter ctr) 475 { 476 switch (ctr) { 477 case XC_FREE_BLOCKS: 478 /* 479 * Default to 5% or 8192 FSBs of space reserved, whichever is 480 * smaller. 481 * 482 * This is intended to cover concurrent allocation transactions 483 * when we initially hit ENOSPC. These each require a 4 block 484 * reservation. Hence by default we cover roughly 2000 485 * concurrent allocation reservations. 486 */ 487 return min(div_u64(mp->m_sb.sb_dblocks, 20), 8192ULL); 488 case XC_FREE_RTEXTENTS: 489 case XC_FREE_RTAVAILABLE: 490 if (IS_ENABLED(CONFIG_XFS_RT) && xfs_has_zoned(mp)) 491 return xfs_zoned_default_resblks(mp, ctr); 492 return 0; 493 default: 494 ASSERT(0); 495 return 0; 496 } 497 } 498 499 /* Ensure the summary counts are correct. */ 500 STATIC int 501 xfs_check_summary_counts( 502 struct xfs_mount *mp) 503 { 504 int error = 0; 505 506 /* 507 * The AG0 superblock verifier rejects in-progress filesystems, 508 * so we should never see the flag set this far into mounting. 509 */ 510 if (mp->m_sb.sb_inprogress) { 511 xfs_err(mp, "sb_inprogress set after log recovery??"); 512 WARN_ON(1); 513 return -EFSCORRUPTED; 514 } 515 516 /* 517 * Now the log is mounted, we know if it was an unclean shutdown or 518 * not. If it was, with the first phase of recovery has completed, we 519 * have consistent AG blocks on disk. We have not recovered EFIs yet, 520 * but they are recovered transactionally in the second recovery phase 521 * later. 522 * 523 * If the log was clean when we mounted, we can check the summary 524 * counters. If any of them are obviously incorrect, we can recompute 525 * them from the AGF headers in the next step. 526 */ 527 if (xfs_is_clean(mp) && 528 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 529 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 530 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 531 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 532 533 /* 534 * We can safely re-initialise incore superblock counters from the 535 * per-ag data. These may not be correct if the filesystem was not 536 * cleanly unmounted, so we waited for recovery to finish before doing 537 * this. 538 * 539 * If the filesystem was cleanly unmounted or the previous check did 540 * not flag anything weird, then we can trust the values in the 541 * superblock to be correct and we don't need to do anything here. 542 * Otherwise, recalculate the summary counters. 543 */ 544 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 545 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 546 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 547 if (error) 548 return error; 549 } 550 551 /* 552 * Older kernels misused sb_frextents to reflect both incore 553 * reservations made by running transactions and the actual count of 554 * free rt extents in the ondisk metadata. Transactions committed 555 * during runtime can therefore contain a superblock update that 556 * undercounts the number of free rt extents tracked in the rt bitmap. 557 * A clean unmount record will have the correct frextents value since 558 * there can be no other transactions running at that point. 559 * 560 * If we're mounting the rt volume after recovering the log, recompute 561 * frextents from the rtbitmap file to fix the inconsistency. 562 */ 563 if (xfs_has_realtime(mp) && !xfs_has_zoned(mp) && !xfs_is_clean(mp)) { 564 error = xfs_rtalloc_reinit_frextents(mp); 565 if (error) 566 return error; 567 } 568 569 return 0; 570 } 571 572 static void 573 xfs_unmount_check( 574 struct xfs_mount *mp) 575 { 576 if (xfs_is_shutdown(mp)) 577 return; 578 579 if (percpu_counter_sum(&mp->m_ifree) > 580 percpu_counter_sum(&mp->m_icount)) { 581 xfs_alert(mp, "ifree/icount mismatch at unmount"); 582 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 583 } 584 } 585 586 /* 587 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 588 * internal inode structures can be sitting in the CIL and AIL at this point, 589 * so we need to unpin them, write them back and/or reclaim them before unmount 590 * can proceed. In other words, callers are required to have inactivated all 591 * inodes. 592 * 593 * An inode cluster that has been freed can have its buffer still pinned in 594 * memory because the transaction is still sitting in a iclog. The stale inodes 595 * on that buffer will be pinned to the buffer until the transaction hits the 596 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 597 * may never see the pinned buffer, so nothing will push out the iclog and 598 * unpin the buffer. 599 * 600 * Hence we need to force the log to unpin everything first. However, log 601 * forces don't wait for the discards they issue to complete, so we have to 602 * explicitly wait for them to complete here as well. 603 * 604 * Then we can tell the world we are unmounting so that error handling knows 605 * that the filesystem is going away and we should error out anything that we 606 * have been retrying in the background. This will prevent never-ending 607 * retries in AIL pushing from hanging the unmount. 608 * 609 * Finally, we can push the AIL to clean all the remaining dirty objects, then 610 * reclaim the remaining inodes that are still in memory at this point in time. 611 */ 612 static void 613 xfs_unmount_flush_inodes( 614 struct xfs_mount *mp) 615 { 616 xfs_log_force(mp, XFS_LOG_SYNC); 617 xfs_extent_busy_wait_all(mp); 618 flush_workqueue(xfs_discard_wq); 619 620 xfs_set_unmounting(mp); 621 622 xfs_ail_push_all_sync(mp->m_ail); 623 xfs_inodegc_stop(mp); 624 cancel_delayed_work_sync(&mp->m_reclaim_work); 625 xfs_reclaim_inodes(mp); 626 xfs_health_unmount(mp); 627 } 628 629 static void 630 xfs_mount_setup_inode_geom( 631 struct xfs_mount *mp) 632 { 633 struct xfs_ino_geometry *igeo = M_IGEO(mp); 634 635 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 636 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 637 638 xfs_ialloc_setup_geometry(mp); 639 } 640 641 /* Mount the metadata directory tree root. */ 642 STATIC int 643 xfs_mount_setup_metadir( 644 struct xfs_mount *mp) 645 { 646 int error; 647 648 /* Load the metadata directory root inode into memory. */ 649 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, 650 &mp->m_metadirip); 651 if (error) 652 xfs_warn(mp, "Failed to load metadir root directory, error %d", 653 error); 654 return error; 655 } 656 657 /* Compute maximum possible height for per-AG btree types for this fs. */ 658 static inline void 659 xfs_agbtree_compute_maxlevels( 660 struct xfs_mount *mp) 661 { 662 unsigned int levels; 663 664 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 665 levels = max(levels, mp->m_rmap_maxlevels); 666 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 667 } 668 669 /* Compute maximum possible height for realtime btree types for this fs. */ 670 static inline void 671 xfs_rtbtree_compute_maxlevels( 672 struct xfs_mount *mp) 673 { 674 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, 675 mp->m_rtrefc_maxlevels); 676 } 677 678 /* 679 * This function does the following on an initial mount of a file system: 680 * - reads the superblock from disk and init the mount struct 681 * - if we're a 32-bit kernel, do a size check on the superblock 682 * so we don't mount terabyte filesystems 683 * - init mount struct realtime fields 684 * - allocate inode hash table for fs 685 * - init directory manager 686 * - perform recovery and init the log manager 687 */ 688 int 689 xfs_mountfs( 690 struct xfs_mount *mp) 691 { 692 struct xfs_sb *sbp = &(mp->m_sb); 693 struct xfs_inode *rip; 694 struct xfs_ino_geometry *igeo = M_IGEO(mp); 695 uint quotamount = 0; 696 uint quotaflags = 0; 697 int error = 0; 698 int i; 699 700 xfs_sb_mount_common(mp, sbp); 701 702 /* 703 * Check for a mismatched features2 values. Older kernels read & wrote 704 * into the wrong sb offset for sb_features2 on some platforms due to 705 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 706 * which made older superblock reading/writing routines swap it as a 707 * 64-bit value. 708 * 709 * For backwards compatibility, we make both slots equal. 710 * 711 * If we detect a mismatched field, we OR the set bits into the existing 712 * features2 field in case it has already been modified; we don't want 713 * to lose any features. We then update the bad location with the ORed 714 * value so that older kernels will see any features2 flags. The 715 * superblock writeback code ensures the new sb_features2 is copied to 716 * sb_bad_features2 before it is logged or written to disk. 717 */ 718 if (xfs_sb_has_mismatched_features2(sbp)) { 719 xfs_warn(mp, "correcting sb_features alignment problem"); 720 sbp->sb_features2 |= sbp->sb_bad_features2; 721 mp->m_update_sb = true; 722 } 723 724 725 /* always use v2 inodes by default now */ 726 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 727 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 728 mp->m_features |= XFS_FEAT_NLINK; 729 mp->m_update_sb = true; 730 } 731 732 /* 733 * If we were given new sunit/swidth options, do some basic validation 734 * checks and convert the incore dalign and swidth values to the 735 * same units (FSB) that everything else uses. This /must/ happen 736 * before computing the inode geometry. 737 */ 738 error = xfs_validate_new_dalign(mp); 739 if (error) 740 goto out; 741 742 xfs_alloc_compute_maxlevels(mp); 743 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 744 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 745 xfs_mount_setup_inode_geom(mp); 746 xfs_rmapbt_compute_maxlevels(mp); 747 xfs_rtrmapbt_compute_maxlevels(mp); 748 xfs_refcountbt_compute_maxlevels(mp); 749 xfs_rtrefcountbt_compute_maxlevels(mp); 750 751 xfs_agbtree_compute_maxlevels(mp); 752 xfs_rtbtree_compute_maxlevels(mp); 753 754 /* 755 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 756 * is NOT aligned turn off m_dalign since allocator alignment is within 757 * an ag, therefore ag has to be aligned at stripe boundary. Note that 758 * we must compute the free space and rmap btree geometry before doing 759 * this. 760 */ 761 error = xfs_update_alignment(mp); 762 if (error) 763 goto out; 764 765 /* enable fail_at_unmount as default */ 766 mp->m_fail_unmount = true; 767 768 error = xfs_mount_sysfs_init(mp); 769 if (error) 770 goto out_remove_scrub_stats; 771 772 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 773 774 error = xfs_errortag_init(mp); 775 if (error) 776 goto out_remove_sysfs; 777 778 error = xfs_uuid_mount(mp); 779 if (error) 780 goto out_remove_errortag; 781 782 /* 783 * Update the preferred write size based on the information from the 784 * on-disk superblock. 785 */ 786 mp->m_allocsize_log = 787 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 788 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 789 790 /* set the low space thresholds for dynamic preallocation */ 791 xfs_set_low_space_thresholds(mp); 792 793 /* 794 * If enabled, sparse inode chunk alignment is expected to match the 795 * cluster size. Full inode chunk alignment must match the chunk size, 796 * but that is checked on sb read verification... 797 */ 798 if (xfs_has_sparseinodes(mp) && 799 mp->m_sb.sb_spino_align != 800 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 801 xfs_warn(mp, 802 "Sparse inode block alignment (%u) must match cluster size (%llu).", 803 mp->m_sb.sb_spino_align, 804 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 805 error = -EINVAL; 806 goto out_remove_uuid; 807 } 808 809 /* 810 * Check that the data (and log if separate) is an ok size. 811 */ 812 error = xfs_check_sizes(mp); 813 if (error) 814 goto out_remove_uuid; 815 816 /* 817 * Initialize realtime fields in the mount structure 818 */ 819 error = xfs_rtmount_init(mp); 820 if (error) { 821 xfs_warn(mp, "RT mount failed"); 822 goto out_remove_uuid; 823 } 824 825 /* 826 * Copies the low order bits of the timestamp and the randomly 827 * set "sequence" number out of a UUID. 828 */ 829 mp->m_fixedfsid[0] = 830 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 831 get_unaligned_be16(&sbp->sb_uuid.b[4]); 832 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 833 834 error = xfs_da_mount(mp); 835 if (error) { 836 xfs_warn(mp, "Failed dir/attr init: %d", error); 837 goto out_remove_uuid; 838 } 839 840 /* 841 * Initialize the precomputed transaction reservations values. 842 */ 843 xfs_trans_init(mp); 844 845 /* 846 * Allocate and initialize the per-ag data. 847 */ 848 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 849 mp->m_sb.sb_dblocks, &mp->m_maxagi); 850 if (error) { 851 xfs_warn(mp, "Failed per-ag init: %d", error); 852 goto out_free_dir; 853 } 854 855 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, 856 mp->m_sb.sb_rextents); 857 if (error) { 858 xfs_warn(mp, "Failed rtgroup init: %d", error); 859 goto out_free_perag; 860 } 861 862 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 863 xfs_warn(mp, "no log defined"); 864 error = -EFSCORRUPTED; 865 goto out_free_rtgroup; 866 } 867 868 error = xfs_inodegc_register_shrinker(mp); 869 if (error) 870 goto out_fail_wait; 871 872 /* 873 * If we're resuming quota status, pick up the preliminary qflags from 874 * the ondisk superblock so that we know if we should recover dquots. 875 */ 876 if (xfs_is_resuming_quotaon(mp)) 877 xfs_qm_resume_quotaon(mp); 878 879 /* 880 * Log's mount-time initialization. The first part of recovery can place 881 * some items on the AIL, to be handled when recovery is finished or 882 * cancelled. 883 */ 884 error = xfs_log_mount(mp, mp->m_logdev_targp, 885 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 886 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 887 if (error) { 888 xfs_warn(mp, "log mount failed"); 889 goto out_inodegc_shrinker; 890 } 891 892 /* 893 * If we're resuming quota status and recovered the log, re-sample the 894 * qflags from the ondisk superblock now that we've recovered it, just 895 * in case someone shut down enforcement just before a crash. 896 */ 897 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log)) 898 xfs_qm_resume_quotaon(mp); 899 900 /* 901 * If logged xattrs are still enabled after log recovery finishes, then 902 * they'll be available until unmount. Otherwise, turn them off. 903 */ 904 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 905 xfs_set_using_logged_xattrs(mp); 906 else 907 xfs_clear_using_logged_xattrs(mp); 908 909 /* Enable background inode inactivation workers. */ 910 xfs_inodegc_start(mp); 911 xfs_blockgc_start(mp); 912 913 /* 914 * Now that we've recovered any pending superblock feature bit 915 * additions, we can finish setting up the attr2 behaviour for the 916 * mount. The noattr2 option overrides the superblock flag, so only 917 * check the superblock feature flag if the mount option is not set. 918 */ 919 if (xfs_has_noattr2(mp)) { 920 mp->m_features &= ~XFS_FEAT_ATTR2; 921 } else if (!xfs_has_attr2(mp) && 922 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 923 mp->m_features |= XFS_FEAT_ATTR2; 924 } 925 926 if (xfs_has_metadir(mp)) { 927 error = xfs_mount_setup_metadir(mp); 928 if (error) 929 goto out_free_metadir; 930 } 931 932 /* 933 * Get and sanity-check the root inode. 934 * Save the pointer to it in the mount structure. 935 */ 936 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 937 XFS_ILOCK_EXCL, &rip); 938 if (error) { 939 xfs_warn(mp, 940 "Failed to read root inode 0x%llx, error %d", 941 sbp->sb_rootino, -error); 942 goto out_free_metadir; 943 } 944 945 ASSERT(rip != NULL); 946 947 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 948 xfs_warn(mp, "corrupted root inode %llu: not a directory", 949 (unsigned long long)rip->i_ino); 950 xfs_iunlock(rip, XFS_ILOCK_EXCL); 951 error = -EFSCORRUPTED; 952 goto out_rele_rip; 953 } 954 mp->m_rootip = rip; /* save it */ 955 956 xfs_iunlock(rip, XFS_ILOCK_EXCL); 957 958 /* 959 * Initialize realtime inode pointers in the mount structure 960 */ 961 error = xfs_rtmount_inodes(mp); 962 if (error) { 963 /* 964 * Free up the root inode. 965 */ 966 xfs_warn(mp, "failed to read RT inodes"); 967 goto out_rele_rip; 968 } 969 970 /* Make sure the summary counts are ok. */ 971 error = xfs_check_summary_counts(mp); 972 if (error) 973 goto out_rtunmount; 974 975 /* 976 * If this is a read-only mount defer the superblock updates until 977 * the next remount into writeable mode. Otherwise we would never 978 * perform the update e.g. for the root filesystem. 979 */ 980 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 981 error = xfs_sync_sb(mp, false); 982 if (error) { 983 xfs_warn(mp, "failed to write sb changes"); 984 goto out_rtunmount; 985 } 986 } 987 988 /* 989 * Initialise the XFS quota management subsystem for this mount 990 */ 991 if (XFS_IS_QUOTA_ON(mp)) { 992 error = xfs_qm_newmount(mp, "amount, "aflags); 993 if (error) 994 goto out_rtunmount; 995 } else { 996 /* 997 * If a file system had quotas running earlier, but decided to 998 * mount without -o uquota/pquota/gquota options, revoke the 999 * quotachecked license. 1000 */ 1001 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1002 xfs_notice(mp, "resetting quota flags"); 1003 error = xfs_mount_reset_sbqflags(mp); 1004 if (error) 1005 goto out_rtunmount; 1006 } 1007 } 1008 1009 /* 1010 * Finish recovering the file system. This part needed to be delayed 1011 * until after the root and real-time bitmap inodes were consistently 1012 * read in. Temporarily create per-AG space reservations for metadata 1013 * btree shape changes because space freeing transactions (for inode 1014 * inactivation) require the per-AG reservation in lieu of reserving 1015 * blocks. 1016 */ 1017 error = xfs_fs_reserve_ag_blocks(mp); 1018 if (error && error == -ENOSPC) 1019 xfs_warn(mp, 1020 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 1021 error = xfs_log_mount_finish(mp); 1022 xfs_fs_unreserve_ag_blocks(mp); 1023 if (error) { 1024 xfs_warn(mp, "log mount finish failed"); 1025 goto out_rtunmount; 1026 } 1027 1028 /* 1029 * Now the log is fully replayed, we can transition to full read-only 1030 * mode for read-only mounts. This will sync all the metadata and clean 1031 * the log so that the recovery we just performed does not have to be 1032 * replayed again on the next mount. 1033 * 1034 * We use the same quiesce mechanism as the rw->ro remount, as they are 1035 * semantically identical operations. 1036 */ 1037 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 1038 xfs_log_clean(mp); 1039 1040 if (xfs_has_zoned(mp)) { 1041 error = xfs_mount_zones(mp); 1042 if (error) 1043 goto out_rtunmount; 1044 } 1045 1046 /* 1047 * Complete the quota initialisation, post-log-replay component. 1048 */ 1049 if (quotamount) { 1050 ASSERT(mp->m_qflags == 0); 1051 mp->m_qflags = quotaflags; 1052 1053 xfs_qm_mount_quotas(mp); 1054 } 1055 1056 /* 1057 * Now we are mounted, reserve a small amount of unused space for 1058 * privileged transactions. This is needed so that transaction 1059 * space required for critical operations can dip into this pool 1060 * when at ENOSPC. This is needed for operations like create with 1061 * attr, unwritten extent conversion at ENOSPC, garbage collection 1062 * etc. Data allocations are not allowed to use this reserved space. 1063 * 1064 * This may drive us straight to ENOSPC on mount, but that implies 1065 * we were already there on the last unmount. Warn if this occurs. 1066 */ 1067 if (!xfs_is_readonly(mp)) { 1068 for (i = 0; i < XC_FREE_NR; i++) { 1069 error = xfs_reserve_blocks(mp, i, 1070 xfs_default_resblks(mp, i)); 1071 if (error) 1072 xfs_warn(mp, 1073 "Unable to allocate reserve blocks. Continuing without reserve pool for %s.", 1074 xfs_free_pool_name[i]); 1075 } 1076 1077 /* Reserve AG blocks for future btree expansion. */ 1078 error = xfs_fs_reserve_ag_blocks(mp); 1079 if (error && error != -ENOSPC) 1080 goto out_agresv; 1081 1082 xfs_zone_gc_start(mp); 1083 } 1084 1085 return 0; 1086 1087 out_agresv: 1088 xfs_fs_unreserve_ag_blocks(mp); 1089 xfs_qm_unmount_quotas(mp); 1090 if (xfs_has_zoned(mp)) 1091 xfs_unmount_zones(mp); 1092 out_rtunmount: 1093 xfs_rtunmount_inodes(mp); 1094 out_rele_rip: 1095 xfs_irele(rip); 1096 /* Clean out dquots that might be in memory after quotacheck. */ 1097 xfs_qm_unmount(mp); 1098 out_free_metadir: 1099 if (mp->m_metadirip) 1100 xfs_irele(mp->m_metadirip); 1101 1102 /* 1103 * Inactivate all inodes that might still be in memory after a log 1104 * intent recovery failure so that reclaim can free them. Metadata 1105 * inodes and the root directory shouldn't need inactivation, but the 1106 * mount failed for some reason, so pull down all the state and flee. 1107 */ 1108 xfs_inodegc_flush(mp); 1109 1110 /* 1111 * Flush all inode reclamation work and flush the log. 1112 * We have to do this /after/ rtunmount and qm_unmount because those 1113 * two will have scheduled delayed reclaim for the rt/quota inodes. 1114 * 1115 * This is slightly different from the unmountfs call sequence 1116 * because we could be tearing down a partially set up mount. In 1117 * particular, if log_mount_finish fails we bail out without calling 1118 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1119 * quota inodes. 1120 */ 1121 xfs_unmount_flush_inodes(mp); 1122 xfs_log_mount_cancel(mp); 1123 out_inodegc_shrinker: 1124 shrinker_free(mp->m_inodegc_shrinker); 1125 out_fail_wait: 1126 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1127 xfs_buftarg_drain(mp->m_logdev_targp); 1128 xfs_buftarg_drain(mp->m_ddev_targp); 1129 out_free_rtgroup: 1130 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1131 out_free_perag: 1132 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1133 out_free_dir: 1134 xfs_da_unmount(mp); 1135 out_remove_uuid: 1136 xfs_uuid_unmount(mp); 1137 out_remove_errortag: 1138 xfs_errortag_del(mp); 1139 out_remove_sysfs: 1140 xfs_mount_sysfs_del(mp); 1141 out_remove_scrub_stats: 1142 xchk_stats_unregister(mp->m_scrub_stats); 1143 out: 1144 return error; 1145 } 1146 1147 /* 1148 * This flushes out the inodes,dquots and the superblock, unmounts the 1149 * log and makes sure that incore structures are freed. 1150 */ 1151 void 1152 xfs_unmountfs( 1153 struct xfs_mount *mp) 1154 { 1155 int error; 1156 1157 /* 1158 * Perform all on-disk metadata updates required to inactivate inodes 1159 * that the VFS evicted earlier in the unmount process. Freeing inodes 1160 * and discarding CoW fork preallocations can cause shape changes to 1161 * the free inode and refcount btrees, respectively, so we must finish 1162 * this before we discard the metadata space reservations. Metadata 1163 * inodes and the root directory do not require inactivation. 1164 */ 1165 xfs_inodegc_flush(mp); 1166 1167 xfs_blockgc_stop(mp); 1168 if (!test_bit(XFS_OPSTATE_READONLY, &mp->m_opstate)) 1169 xfs_zone_gc_stop(mp); 1170 xfs_fs_unreserve_ag_blocks(mp); 1171 xfs_qm_unmount_quotas(mp); 1172 if (xfs_has_zoned(mp)) 1173 xfs_unmount_zones(mp); 1174 xfs_rtunmount_inodes(mp); 1175 xfs_irele(mp->m_rootip); 1176 if (mp->m_metadirip) 1177 xfs_irele(mp->m_metadirip); 1178 1179 xfs_unmount_flush_inodes(mp); 1180 1181 xfs_qm_unmount(mp); 1182 1183 /* 1184 * Unreserve any blocks we have so that when we unmount we don't account 1185 * the reserved free space as used. This is really only necessary for 1186 * lazy superblock counting because it trusts the incore superblock 1187 * counters to be absolutely correct on clean unmount. 1188 * 1189 * We don't bother correcting this elsewhere for lazy superblock 1190 * counting because on mount of an unclean filesystem we reconstruct the 1191 * correct counter value and this is irrelevant. 1192 * 1193 * For non-lazy counter filesystems, this doesn't matter at all because 1194 * we only every apply deltas to the superblock and hence the incore 1195 * value does not matter.... 1196 */ 1197 error = xfs_reserve_blocks(mp, XC_FREE_BLOCKS, 0); 1198 if (error) 1199 xfs_warn(mp, "Unable to free reserved block pool. " 1200 "Freespace may not be correct on next mount."); 1201 xfs_unmount_check(mp); 1202 1203 /* 1204 * Indicate that it's ok to clear log incompat bits before cleaning 1205 * the log and writing the unmount record. 1206 */ 1207 xfs_set_done_with_log_incompat(mp); 1208 xfs_log_unmount(mp); 1209 xfs_da_unmount(mp); 1210 xfs_uuid_unmount(mp); 1211 1212 #if defined(DEBUG) 1213 xfs_errortag_clearall(mp); 1214 #endif 1215 shrinker_free(mp->m_inodegc_shrinker); 1216 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1217 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1218 xfs_errortag_del(mp); 1219 xchk_stats_unregister(mp->m_scrub_stats); 1220 xfs_mount_sysfs_del(mp); 1221 } 1222 1223 /* 1224 * Determine whether modifications can proceed. The caller specifies the minimum 1225 * freeze level for which modifications should not be allowed. This allows 1226 * certain operations to proceed while the freeze sequence is in progress, if 1227 * necessary. 1228 */ 1229 bool 1230 xfs_fs_writable( 1231 struct xfs_mount *mp, 1232 int level) 1233 { 1234 ASSERT(level > SB_UNFROZEN); 1235 if ((mp->m_super->s_writers.frozen >= level) || 1236 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1237 return false; 1238 1239 return true; 1240 } 1241 1242 /* 1243 * Estimate the amount of free space that is not available to userspace and is 1244 * not explicitly reserved from the incore fdblocks. This includes: 1245 * 1246 * - The minimum number of blocks needed to support splitting a bmap btree 1247 * - The blocks currently in use by the freespace btrees because they record 1248 * the actual blocks that will fill per-AG metadata space reservations 1249 */ 1250 uint64_t 1251 xfs_freecounter_unavailable( 1252 struct xfs_mount *mp, 1253 enum xfs_free_counter ctr) 1254 { 1255 if (ctr != XC_FREE_BLOCKS) 1256 return 0; 1257 return mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1258 } 1259 1260 void 1261 xfs_add_freecounter( 1262 struct xfs_mount *mp, 1263 enum xfs_free_counter ctr, 1264 uint64_t delta) 1265 { 1266 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1267 uint64_t res_used; 1268 1269 /* 1270 * If the reserve pool is depleted, put blocks back into it first. 1271 * Most of the time the pool is full. 1272 */ 1273 if (likely(counter->res_avail == counter->res_total)) { 1274 percpu_counter_add(&counter->count, delta); 1275 return; 1276 } 1277 1278 spin_lock(&mp->m_sb_lock); 1279 res_used = counter->res_total - counter->res_avail; 1280 if (res_used > delta) { 1281 counter->res_avail += delta; 1282 } else { 1283 delta -= res_used; 1284 counter->res_avail = counter->res_total; 1285 percpu_counter_add(&counter->count, delta); 1286 } 1287 spin_unlock(&mp->m_sb_lock); 1288 } 1289 1290 1291 /* Adjust in-core free blocks or RT extents. */ 1292 int 1293 xfs_dec_freecounter( 1294 struct xfs_mount *mp, 1295 enum xfs_free_counter ctr, 1296 uint64_t delta, 1297 bool rsvd) 1298 { 1299 struct xfs_freecounter *counter = &mp->m_free[ctr]; 1300 s32 batch; 1301 1302 ASSERT(ctr < XC_FREE_NR); 1303 1304 /* 1305 * Taking blocks away, need to be more accurate the closer we 1306 * are to zero. 1307 * 1308 * If the counter has a value of less than 2 * max batch size, 1309 * then make everything serialise as we are real close to 1310 * ENOSPC. 1311 */ 1312 if (__percpu_counter_compare(&counter->count, 2 * XFS_FDBLOCKS_BATCH, 1313 XFS_FDBLOCKS_BATCH) < 0) 1314 batch = 1; 1315 else 1316 batch = XFS_FDBLOCKS_BATCH; 1317 1318 /* 1319 * Set aside allocbt blocks because these blocks are tracked as free 1320 * space but not available for allocation. Technically this means that a 1321 * single reservation cannot consume all remaining free space, but the 1322 * ratio of allocbt blocks to usable free blocks should be rather small. 1323 * The tradeoff without this is that filesystems that maintain high 1324 * perag block reservations can over reserve physical block availability 1325 * and fail physical allocation, which leads to much more serious 1326 * problems (i.e. transaction abort, pagecache discards, etc.) than 1327 * slightly premature -ENOSPC. 1328 */ 1329 percpu_counter_add_batch(&counter->count, -((int64_t)delta), batch); 1330 if (__percpu_counter_compare(&counter->count, 1331 xfs_freecounter_unavailable(mp, ctr), 1332 XFS_FDBLOCKS_BATCH) < 0) { 1333 /* 1334 * Lock up the sb for dipping into reserves before releasing the 1335 * space that took us to ENOSPC. 1336 */ 1337 spin_lock(&mp->m_sb_lock); 1338 percpu_counter_add(&counter->count, delta); 1339 if (!rsvd) 1340 goto fdblocks_enospc; 1341 if (delta > counter->res_avail) { 1342 if (ctr == XC_FREE_BLOCKS) 1343 xfs_warn_once(mp, 1344 "Reserve blocks depleted! Consider increasing reserve pool size."); 1345 goto fdblocks_enospc; 1346 } 1347 counter->res_avail -= delta; 1348 trace_xfs_freecounter_reserved(mp, ctr, delta, _RET_IP_); 1349 spin_unlock(&mp->m_sb_lock); 1350 } 1351 1352 /* we had space! */ 1353 return 0; 1354 1355 fdblocks_enospc: 1356 trace_xfs_freecounter_enospc(mp, ctr, delta, _RET_IP_); 1357 spin_unlock(&mp->m_sb_lock); 1358 return -ENOSPC; 1359 } 1360 1361 /* 1362 * Used to free the superblock along various error paths. 1363 */ 1364 void 1365 xfs_freesb( 1366 struct xfs_mount *mp) 1367 { 1368 struct xfs_buf *bp = mp->m_sb_bp; 1369 1370 xfs_buf_lock(bp); 1371 mp->m_sb_bp = NULL; 1372 xfs_buf_relse(bp); 1373 } 1374 1375 /* 1376 * If the underlying (data/log/rt) device is readonly, there are some 1377 * operations that cannot proceed. 1378 */ 1379 int 1380 xfs_dev_is_read_only( 1381 struct xfs_mount *mp, 1382 char *message) 1383 { 1384 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1385 xfs_readonly_buftarg(mp->m_logdev_targp) || 1386 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1387 xfs_notice(mp, "%s required on read-only device.", message); 1388 xfs_notice(mp, "write access unavailable, cannot proceed."); 1389 return -EROFS; 1390 } 1391 return 0; 1392 } 1393 1394 /* Force the summary counters to be recalculated at next mount. */ 1395 void 1396 xfs_force_summary_recalc( 1397 struct xfs_mount *mp) 1398 { 1399 if (!xfs_has_lazysbcount(mp)) 1400 return; 1401 1402 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1403 } 1404 1405 /* 1406 * Enable a log incompat feature flag in the primary superblock. The caller 1407 * cannot have any other transactions in progress. 1408 */ 1409 int 1410 xfs_add_incompat_log_feature( 1411 struct xfs_mount *mp, 1412 uint32_t feature) 1413 { 1414 struct xfs_dsb *dsb; 1415 int error; 1416 1417 ASSERT(hweight32(feature) == 1); 1418 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1419 1420 /* 1421 * Force the log to disk and kick the background AIL thread to reduce 1422 * the chances that the bwrite will stall waiting for the AIL to unpin 1423 * the primary superblock buffer. This isn't a data integrity 1424 * operation, so we don't need a synchronous push. 1425 */ 1426 error = xfs_log_force(mp, XFS_LOG_SYNC); 1427 if (error) 1428 return error; 1429 xfs_ail_push_all(mp->m_ail); 1430 1431 /* 1432 * Lock the primary superblock buffer to serialize all callers that 1433 * are trying to set feature bits. 1434 */ 1435 xfs_buf_lock(mp->m_sb_bp); 1436 xfs_buf_hold(mp->m_sb_bp); 1437 1438 if (xfs_is_shutdown(mp)) { 1439 error = -EIO; 1440 goto rele; 1441 } 1442 1443 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1444 goto rele; 1445 1446 /* 1447 * Write the primary superblock to disk immediately, because we need 1448 * the log_incompat bit to be set in the primary super now to protect 1449 * the log items that we're going to commit later. 1450 */ 1451 dsb = mp->m_sb_bp->b_addr; 1452 xfs_sb_to_disk(dsb, &mp->m_sb); 1453 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1454 error = xfs_bwrite(mp->m_sb_bp); 1455 if (error) 1456 goto shutdown; 1457 1458 /* 1459 * Add the feature bits to the incore superblock before we unlock the 1460 * buffer. 1461 */ 1462 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1463 xfs_buf_relse(mp->m_sb_bp); 1464 1465 /* Log the superblock to disk. */ 1466 return xfs_sync_sb(mp, false); 1467 shutdown: 1468 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1469 rele: 1470 xfs_buf_relse(mp->m_sb_bp); 1471 return error; 1472 } 1473 1474 /* 1475 * Clear all the log incompat flags from the superblock. 1476 * 1477 * The caller cannot be in a transaction, must ensure that the log does not 1478 * contain any log items protected by any log incompat bit, and must ensure 1479 * that there are no other threads that depend on the state of the log incompat 1480 * feature flags in the primary super. 1481 * 1482 * Returns true if the superblock is dirty. 1483 */ 1484 bool 1485 xfs_clear_incompat_log_features( 1486 struct xfs_mount *mp) 1487 { 1488 bool ret = false; 1489 1490 if (!xfs_has_crc(mp) || 1491 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1492 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1493 xfs_is_shutdown(mp) || 1494 !xfs_is_done_with_log_incompat(mp)) 1495 return false; 1496 1497 /* 1498 * Update the incore superblock. We synchronize on the primary super 1499 * buffer lock to be consistent with the add function, though at least 1500 * in theory this shouldn't be necessary. 1501 */ 1502 xfs_buf_lock(mp->m_sb_bp); 1503 xfs_buf_hold(mp->m_sb_bp); 1504 1505 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1506 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1507 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1508 ret = true; 1509 } 1510 1511 xfs_buf_relse(mp->m_sb_bp); 1512 return ret; 1513 } 1514 1515 /* 1516 * Update the in-core delayed block counter. 1517 * 1518 * We prefer to update the counter without having to take a spinlock for every 1519 * counter update (i.e. batching). Each change to delayed allocation 1520 * reservations can change can easily exceed the default percpu counter 1521 * batching, so we use a larger batch factor here. 1522 * 1523 * Note that we don't currently have any callers requiring fast summation 1524 * (e.g. percpu_counter_read) so we can use a big batch value here. 1525 */ 1526 #define XFS_DELALLOC_BATCH (4096) 1527 void 1528 xfs_mod_delalloc( 1529 struct xfs_inode *ip, 1530 int64_t data_delta, 1531 int64_t ind_delta) 1532 { 1533 struct xfs_mount *mp = ip->i_mount; 1534 1535 if (XFS_IS_REALTIME_INODE(ip)) { 1536 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1537 xfs_blen_to_rtbxlen(mp, data_delta), 1538 XFS_DELALLOC_BATCH); 1539 if (!ind_delta) 1540 return; 1541 data_delta = 0; 1542 } 1543 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1544 XFS_DELALLOC_BATCH); 1545 } 1546