1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 #include "xfs_rtbitmap.h" 38 #include "xfs_metafile.h" 39 #include "xfs_rtgroup.h" 40 #include "xfs_rtrmap_btree.h" 41 #include "xfs_rtrefcount_btree.h" 42 #include "scrub/stats.h" 43 44 static DEFINE_MUTEX(xfs_uuid_table_mutex); 45 static int xfs_uuid_table_size; 46 static uuid_t *xfs_uuid_table; 47 48 void 49 xfs_uuid_table_free(void) 50 { 51 if (xfs_uuid_table_size == 0) 52 return; 53 kfree(xfs_uuid_table); 54 xfs_uuid_table = NULL; 55 xfs_uuid_table_size = 0; 56 } 57 58 /* 59 * See if the UUID is unique among mounted XFS filesystems. 60 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 61 */ 62 STATIC int 63 xfs_uuid_mount( 64 struct xfs_mount *mp) 65 { 66 uuid_t *uuid = &mp->m_sb.sb_uuid; 67 int hole, i; 68 69 /* Publish UUID in struct super_block */ 70 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid)); 71 72 if (xfs_has_nouuid(mp)) 73 return 0; 74 75 if (uuid_is_null(uuid)) { 76 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 77 return -EINVAL; 78 } 79 80 mutex_lock(&xfs_uuid_table_mutex); 81 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 82 if (uuid_is_null(&xfs_uuid_table[i])) { 83 hole = i; 84 continue; 85 } 86 if (uuid_equal(uuid, &xfs_uuid_table[i])) 87 goto out_duplicate; 88 } 89 90 if (hole < 0) { 91 xfs_uuid_table = krealloc(xfs_uuid_table, 92 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 93 GFP_KERNEL | __GFP_NOFAIL); 94 hole = xfs_uuid_table_size++; 95 } 96 xfs_uuid_table[hole] = *uuid; 97 mutex_unlock(&xfs_uuid_table_mutex); 98 99 return 0; 100 101 out_duplicate: 102 mutex_unlock(&xfs_uuid_table_mutex); 103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 104 return -EINVAL; 105 } 106 107 STATIC void 108 xfs_uuid_unmount( 109 struct xfs_mount *mp) 110 { 111 uuid_t *uuid = &mp->m_sb.sb_uuid; 112 int i; 113 114 if (xfs_has_nouuid(mp)) 115 return; 116 117 mutex_lock(&xfs_uuid_table_mutex); 118 for (i = 0; i < xfs_uuid_table_size; i++) { 119 if (uuid_is_null(&xfs_uuid_table[i])) 120 continue; 121 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 122 continue; 123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 124 break; 125 } 126 ASSERT(i < xfs_uuid_table_size); 127 mutex_unlock(&xfs_uuid_table_mutex); 128 } 129 130 /* 131 * Check size of device based on the (data/realtime) block count. 132 * Note: this check is used by the growfs code as well as mount. 133 */ 134 int 135 xfs_sb_validate_fsb_count( 136 xfs_sb_t *sbp, 137 uint64_t nblocks) 138 { 139 uint64_t max_bytes; 140 141 ASSERT(sbp->sb_blocklog >= BBSHIFT); 142 143 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes)) 144 return -EFBIG; 145 146 /* Limited by ULONG_MAX of page cache index */ 147 if (max_bytes >> PAGE_SHIFT > ULONG_MAX) 148 return -EFBIG; 149 return 0; 150 } 151 152 /* 153 * xfs_readsb 154 * 155 * Does the initial read of the superblock. 156 */ 157 int 158 xfs_readsb( 159 struct xfs_mount *mp, 160 int flags) 161 { 162 unsigned int sector_size; 163 struct xfs_buf *bp; 164 struct xfs_sb *sbp = &mp->m_sb; 165 int error; 166 int loud = !(flags & XFS_MFSI_QUIET); 167 const struct xfs_buf_ops *buf_ops; 168 169 ASSERT(mp->m_sb_bp == NULL); 170 ASSERT(mp->m_ddev_targp != NULL); 171 172 /* 173 * For the initial read, we must guess at the sector 174 * size based on the block device. It's enough to 175 * get the sb_sectsize out of the superblock and 176 * then reread with the proper length. 177 * We don't verify it yet, because it may not be complete. 178 */ 179 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 180 buf_ops = NULL; 181 182 /* 183 * Allocate a (locked) buffer to hold the superblock. This will be kept 184 * around at all times to optimize access to the superblock. 185 */ 186 reread: 187 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 188 BTOBB(sector_size), 0, &bp, buf_ops); 189 if (error) { 190 if (loud) 191 xfs_warn(mp, "SB validate failed with error %d.", error); 192 /* bad CRC means corrupted metadata */ 193 if (error == -EFSBADCRC) 194 error = -EFSCORRUPTED; 195 return error; 196 } 197 198 /* 199 * Initialize the mount structure from the superblock. 200 */ 201 xfs_sb_from_disk(sbp, bp->b_addr); 202 203 /* 204 * If we haven't validated the superblock, do so now before we try 205 * to check the sector size and reread the superblock appropriately. 206 */ 207 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 208 if (loud) 209 xfs_warn(mp, "Invalid superblock magic number"); 210 error = -EINVAL; 211 goto release_buf; 212 } 213 214 /* 215 * We must be able to do sector-sized and sector-aligned IO. 216 */ 217 if (sector_size > sbp->sb_sectsize) { 218 if (loud) 219 xfs_warn(mp, "device supports %u byte sectors (not %u)", 220 sector_size, sbp->sb_sectsize); 221 error = -ENOSYS; 222 goto release_buf; 223 } 224 225 if (buf_ops == NULL) { 226 /* 227 * Re-read the superblock so the buffer is correctly sized, 228 * and properly verified. 229 */ 230 xfs_buf_relse(bp); 231 sector_size = sbp->sb_sectsize; 232 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 233 goto reread; 234 } 235 236 mp->m_features |= xfs_sb_version_to_features(sbp); 237 xfs_reinit_percpu_counters(mp); 238 239 /* 240 * If logged xattrs are enabled after log recovery finishes, then set 241 * the opstate so that log recovery will work properly. 242 */ 243 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 244 xfs_set_using_logged_xattrs(mp); 245 246 /* no need to be quiet anymore, so reset the buf ops */ 247 bp->b_ops = &xfs_sb_buf_ops; 248 249 mp->m_sb_bp = bp; 250 xfs_buf_unlock(bp); 251 return 0; 252 253 release_buf: 254 xfs_buf_relse(bp); 255 return error; 256 } 257 258 /* 259 * If the sunit/swidth change would move the precomputed root inode value, we 260 * must reject the ondisk change because repair will stumble over that. 261 * However, we allow the mount to proceed because we never rejected this 262 * combination before. Returns true to update the sb, false otherwise. 263 */ 264 static inline int 265 xfs_check_new_dalign( 266 struct xfs_mount *mp, 267 int new_dalign, 268 bool *update_sb) 269 { 270 struct xfs_sb *sbp = &mp->m_sb; 271 xfs_ino_t calc_ino; 272 273 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 274 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 275 276 if (sbp->sb_rootino == calc_ino) { 277 *update_sb = true; 278 return 0; 279 } 280 281 xfs_warn(mp, 282 "Cannot change stripe alignment; would require moving root inode."); 283 284 /* 285 * XXX: Next time we add a new incompat feature, this should start 286 * returning -EINVAL to fail the mount. Until then, spit out a warning 287 * that we're ignoring the administrator's instructions. 288 */ 289 xfs_warn(mp, "Skipping superblock stripe alignment update."); 290 *update_sb = false; 291 return 0; 292 } 293 294 /* 295 * If we were provided with new sunit/swidth values as mount options, make sure 296 * that they pass basic alignment and superblock feature checks, and convert 297 * them into the same units (FSB) that everything else expects. This step 298 * /must/ be done before computing the inode geometry. 299 */ 300 STATIC int 301 xfs_validate_new_dalign( 302 struct xfs_mount *mp) 303 { 304 if (mp->m_dalign == 0) 305 return 0; 306 307 /* 308 * If stripe unit and stripe width are not multiples 309 * of the fs blocksize turn off alignment. 310 */ 311 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 312 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 313 xfs_warn(mp, 314 "alignment check failed: sunit/swidth vs. blocksize(%d)", 315 mp->m_sb.sb_blocksize); 316 return -EINVAL; 317 } 318 319 /* 320 * Convert the stripe unit and width to FSBs. 321 */ 322 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 323 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 324 xfs_warn(mp, 325 "alignment check failed: sunit/swidth vs. agsize(%d)", 326 mp->m_sb.sb_agblocks); 327 return -EINVAL; 328 } 329 330 if (!mp->m_dalign) { 331 xfs_warn(mp, 332 "alignment check failed: sunit(%d) less than bsize(%d)", 333 mp->m_dalign, mp->m_sb.sb_blocksize); 334 return -EINVAL; 335 } 336 337 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 338 339 if (!xfs_has_dalign(mp)) { 340 xfs_warn(mp, 341 "cannot change alignment: superblock does not support data alignment"); 342 return -EINVAL; 343 } 344 345 return 0; 346 } 347 348 /* Update alignment values based on mount options and sb values. */ 349 STATIC int 350 xfs_update_alignment( 351 struct xfs_mount *mp) 352 { 353 struct xfs_sb *sbp = &mp->m_sb; 354 355 if (mp->m_dalign) { 356 bool update_sb; 357 int error; 358 359 if (sbp->sb_unit == mp->m_dalign && 360 sbp->sb_width == mp->m_swidth) 361 return 0; 362 363 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 364 if (error || !update_sb) 365 return error; 366 367 sbp->sb_unit = mp->m_dalign; 368 sbp->sb_width = mp->m_swidth; 369 mp->m_update_sb = true; 370 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 371 mp->m_dalign = sbp->sb_unit; 372 mp->m_swidth = sbp->sb_width; 373 } 374 375 return 0; 376 } 377 378 /* 379 * precalculate the low space thresholds for dynamic speculative preallocation. 380 */ 381 void 382 xfs_set_low_space_thresholds( 383 struct xfs_mount *mp) 384 { 385 uint64_t dblocks = mp->m_sb.sb_dblocks; 386 uint64_t rtexts = mp->m_sb.sb_rextents; 387 int i; 388 389 do_div(dblocks, 100); 390 do_div(rtexts, 100); 391 392 for (i = 0; i < XFS_LOWSP_MAX; i++) { 393 mp->m_low_space[i] = dblocks * (i + 1); 394 mp->m_low_rtexts[i] = rtexts * (i + 1); 395 } 396 } 397 398 /* 399 * Check that the data (and log if separate) is an ok size. 400 */ 401 STATIC int 402 xfs_check_sizes( 403 struct xfs_mount *mp) 404 { 405 struct xfs_buf *bp; 406 xfs_daddr_t d; 407 int error; 408 409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 411 xfs_warn(mp, "filesystem size mismatch detected"); 412 return -EFBIG; 413 } 414 error = xfs_buf_read_uncached(mp->m_ddev_targp, 415 d - XFS_FSS_TO_BB(mp, 1), 416 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 417 if (error) { 418 xfs_warn(mp, "last sector read failed"); 419 return error; 420 } 421 xfs_buf_relse(bp); 422 423 if (mp->m_logdev_targp == mp->m_ddev_targp) 424 return 0; 425 426 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 427 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 428 xfs_warn(mp, "log size mismatch detected"); 429 return -EFBIG; 430 } 431 error = xfs_buf_read_uncached(mp->m_logdev_targp, 432 d - XFS_FSB_TO_BB(mp, 1), 433 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 434 if (error) { 435 xfs_warn(mp, "log device read failed"); 436 return error; 437 } 438 xfs_buf_relse(bp); 439 return 0; 440 } 441 442 /* 443 * Clear the quotaflags in memory and in the superblock. 444 */ 445 int 446 xfs_mount_reset_sbqflags( 447 struct xfs_mount *mp) 448 { 449 mp->m_qflags = 0; 450 451 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 452 if (mp->m_sb.sb_qflags == 0) 453 return 0; 454 spin_lock(&mp->m_sb_lock); 455 mp->m_sb.sb_qflags = 0; 456 spin_unlock(&mp->m_sb_lock); 457 458 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 459 return 0; 460 461 return xfs_sync_sb(mp, false); 462 } 463 464 uint64_t 465 xfs_default_resblks(xfs_mount_t *mp) 466 { 467 uint64_t resblks; 468 469 /* 470 * We default to 5% or 8192 fsbs of space reserved, whichever is 471 * smaller. This is intended to cover concurrent allocation 472 * transactions when we initially hit enospc. These each require a 4 473 * block reservation. Hence by default we cover roughly 2000 concurrent 474 * allocation reservations. 475 */ 476 resblks = mp->m_sb.sb_dblocks; 477 do_div(resblks, 20); 478 resblks = min_t(uint64_t, resblks, 8192); 479 return resblks; 480 } 481 482 /* Ensure the summary counts are correct. */ 483 STATIC int 484 xfs_check_summary_counts( 485 struct xfs_mount *mp) 486 { 487 int error = 0; 488 489 /* 490 * The AG0 superblock verifier rejects in-progress filesystems, 491 * so we should never see the flag set this far into mounting. 492 */ 493 if (mp->m_sb.sb_inprogress) { 494 xfs_err(mp, "sb_inprogress set after log recovery??"); 495 WARN_ON(1); 496 return -EFSCORRUPTED; 497 } 498 499 /* 500 * Now the log is mounted, we know if it was an unclean shutdown or 501 * not. If it was, with the first phase of recovery has completed, we 502 * have consistent AG blocks on disk. We have not recovered EFIs yet, 503 * but they are recovered transactionally in the second recovery phase 504 * later. 505 * 506 * If the log was clean when we mounted, we can check the summary 507 * counters. If any of them are obviously incorrect, we can recompute 508 * them from the AGF headers in the next step. 509 */ 510 if (xfs_is_clean(mp) && 511 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 512 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 513 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 514 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 515 516 /* 517 * We can safely re-initialise incore superblock counters from the 518 * per-ag data. These may not be correct if the filesystem was not 519 * cleanly unmounted, so we waited for recovery to finish before doing 520 * this. 521 * 522 * If the filesystem was cleanly unmounted or the previous check did 523 * not flag anything weird, then we can trust the values in the 524 * superblock to be correct and we don't need to do anything here. 525 * Otherwise, recalculate the summary counters. 526 */ 527 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || 528 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { 529 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 530 if (error) 531 return error; 532 } 533 534 /* 535 * Older kernels misused sb_frextents to reflect both incore 536 * reservations made by running transactions and the actual count of 537 * free rt extents in the ondisk metadata. Transactions committed 538 * during runtime can therefore contain a superblock update that 539 * undercounts the number of free rt extents tracked in the rt bitmap. 540 * A clean unmount record will have the correct frextents value since 541 * there can be no other transactions running at that point. 542 * 543 * If we're mounting the rt volume after recovering the log, recompute 544 * frextents from the rtbitmap file to fix the inconsistency. 545 */ 546 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { 547 error = xfs_rtalloc_reinit_frextents(mp); 548 if (error) 549 return error; 550 } 551 552 return 0; 553 } 554 555 static void 556 xfs_unmount_check( 557 struct xfs_mount *mp) 558 { 559 if (xfs_is_shutdown(mp)) 560 return; 561 562 if (percpu_counter_sum(&mp->m_ifree) > 563 percpu_counter_sum(&mp->m_icount)) { 564 xfs_alert(mp, "ifree/icount mismatch at unmount"); 565 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 566 } 567 } 568 569 /* 570 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 571 * internal inode structures can be sitting in the CIL and AIL at this point, 572 * so we need to unpin them, write them back and/or reclaim them before unmount 573 * can proceed. In other words, callers are required to have inactivated all 574 * inodes. 575 * 576 * An inode cluster that has been freed can have its buffer still pinned in 577 * memory because the transaction is still sitting in a iclog. The stale inodes 578 * on that buffer will be pinned to the buffer until the transaction hits the 579 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 580 * may never see the pinned buffer, so nothing will push out the iclog and 581 * unpin the buffer. 582 * 583 * Hence we need to force the log to unpin everything first. However, log 584 * forces don't wait for the discards they issue to complete, so we have to 585 * explicitly wait for them to complete here as well. 586 * 587 * Then we can tell the world we are unmounting so that error handling knows 588 * that the filesystem is going away and we should error out anything that we 589 * have been retrying in the background. This will prevent never-ending 590 * retries in AIL pushing from hanging the unmount. 591 * 592 * Finally, we can push the AIL to clean all the remaining dirty objects, then 593 * reclaim the remaining inodes that are still in memory at this point in time. 594 */ 595 static void 596 xfs_unmount_flush_inodes( 597 struct xfs_mount *mp) 598 { 599 xfs_log_force(mp, XFS_LOG_SYNC); 600 xfs_extent_busy_wait_all(mp); 601 flush_workqueue(xfs_discard_wq); 602 603 xfs_set_unmounting(mp); 604 605 xfs_ail_push_all_sync(mp->m_ail); 606 xfs_inodegc_stop(mp); 607 cancel_delayed_work_sync(&mp->m_reclaim_work); 608 xfs_reclaim_inodes(mp); 609 xfs_health_unmount(mp); 610 } 611 612 static void 613 xfs_mount_setup_inode_geom( 614 struct xfs_mount *mp) 615 { 616 struct xfs_ino_geometry *igeo = M_IGEO(mp); 617 618 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 619 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 620 621 xfs_ialloc_setup_geometry(mp); 622 } 623 624 /* Mount the metadata directory tree root. */ 625 STATIC int 626 xfs_mount_setup_metadir( 627 struct xfs_mount *mp) 628 { 629 int error; 630 631 /* Load the metadata directory root inode into memory. */ 632 error = xfs_metafile_iget(mp, mp->m_sb.sb_metadirino, XFS_METAFILE_DIR, 633 &mp->m_metadirip); 634 if (error) 635 xfs_warn(mp, "Failed to load metadir root directory, error %d", 636 error); 637 return error; 638 } 639 640 /* Compute maximum possible height for per-AG btree types for this fs. */ 641 static inline void 642 xfs_agbtree_compute_maxlevels( 643 struct xfs_mount *mp) 644 { 645 unsigned int levels; 646 647 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 648 levels = max(levels, mp->m_rmap_maxlevels); 649 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 650 } 651 652 /* Compute maximum possible height for realtime btree types for this fs. */ 653 static inline void 654 xfs_rtbtree_compute_maxlevels( 655 struct xfs_mount *mp) 656 { 657 mp->m_rtbtree_maxlevels = max(mp->m_rtrmap_maxlevels, 658 mp->m_rtrefc_maxlevels); 659 } 660 661 /* 662 * This function does the following on an initial mount of a file system: 663 * - reads the superblock from disk and init the mount struct 664 * - if we're a 32-bit kernel, do a size check on the superblock 665 * so we don't mount terabyte filesystems 666 * - init mount struct realtime fields 667 * - allocate inode hash table for fs 668 * - init directory manager 669 * - perform recovery and init the log manager 670 */ 671 int 672 xfs_mountfs( 673 struct xfs_mount *mp) 674 { 675 struct xfs_sb *sbp = &(mp->m_sb); 676 struct xfs_inode *rip; 677 struct xfs_ino_geometry *igeo = M_IGEO(mp); 678 uint quotamount = 0; 679 uint quotaflags = 0; 680 int error = 0; 681 682 xfs_sb_mount_common(mp, sbp); 683 684 /* 685 * Check for a mismatched features2 values. Older kernels read & wrote 686 * into the wrong sb offset for sb_features2 on some platforms due to 687 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 688 * which made older superblock reading/writing routines swap it as a 689 * 64-bit value. 690 * 691 * For backwards compatibility, we make both slots equal. 692 * 693 * If we detect a mismatched field, we OR the set bits into the existing 694 * features2 field in case it has already been modified; we don't want 695 * to lose any features. We then update the bad location with the ORed 696 * value so that older kernels will see any features2 flags. The 697 * superblock writeback code ensures the new sb_features2 is copied to 698 * sb_bad_features2 before it is logged or written to disk. 699 */ 700 if (xfs_sb_has_mismatched_features2(sbp)) { 701 xfs_warn(mp, "correcting sb_features alignment problem"); 702 sbp->sb_features2 |= sbp->sb_bad_features2; 703 mp->m_update_sb = true; 704 } 705 706 707 /* always use v2 inodes by default now */ 708 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 709 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 710 mp->m_features |= XFS_FEAT_NLINK; 711 mp->m_update_sb = true; 712 } 713 714 /* 715 * If we were given new sunit/swidth options, do some basic validation 716 * checks and convert the incore dalign and swidth values to the 717 * same units (FSB) that everything else uses. This /must/ happen 718 * before computing the inode geometry. 719 */ 720 error = xfs_validate_new_dalign(mp); 721 if (error) 722 goto out; 723 724 xfs_alloc_compute_maxlevels(mp); 725 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 726 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 727 xfs_mount_setup_inode_geom(mp); 728 xfs_rmapbt_compute_maxlevels(mp); 729 xfs_rtrmapbt_compute_maxlevels(mp); 730 xfs_refcountbt_compute_maxlevels(mp); 731 xfs_rtrefcountbt_compute_maxlevels(mp); 732 733 xfs_agbtree_compute_maxlevels(mp); 734 xfs_rtbtree_compute_maxlevels(mp); 735 736 /* 737 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 738 * is NOT aligned turn off m_dalign since allocator alignment is within 739 * an ag, therefore ag has to be aligned at stripe boundary. Note that 740 * we must compute the free space and rmap btree geometry before doing 741 * this. 742 */ 743 error = xfs_update_alignment(mp); 744 if (error) 745 goto out; 746 747 /* enable fail_at_unmount as default */ 748 mp->m_fail_unmount = true; 749 750 super_set_sysfs_name_id(mp->m_super); 751 752 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 753 NULL, mp->m_super->s_id); 754 if (error) 755 goto out; 756 757 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 758 &mp->m_kobj, "stats"); 759 if (error) 760 goto out_remove_sysfs; 761 762 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs); 763 764 error = xfs_error_sysfs_init(mp); 765 if (error) 766 goto out_remove_scrub_stats; 767 768 error = xfs_errortag_init(mp); 769 if (error) 770 goto out_remove_error_sysfs; 771 772 error = xfs_uuid_mount(mp); 773 if (error) 774 goto out_remove_errortag; 775 776 /* 777 * Update the preferred write size based on the information from the 778 * on-disk superblock. 779 */ 780 mp->m_allocsize_log = 781 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 782 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 783 784 /* set the low space thresholds for dynamic preallocation */ 785 xfs_set_low_space_thresholds(mp); 786 787 /* 788 * If enabled, sparse inode chunk alignment is expected to match the 789 * cluster size. Full inode chunk alignment must match the chunk size, 790 * but that is checked on sb read verification... 791 */ 792 if (xfs_has_sparseinodes(mp) && 793 mp->m_sb.sb_spino_align != 794 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 795 xfs_warn(mp, 796 "Sparse inode block alignment (%u) must match cluster size (%llu).", 797 mp->m_sb.sb_spino_align, 798 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 799 error = -EINVAL; 800 goto out_remove_uuid; 801 } 802 803 /* 804 * Check that the data (and log if separate) is an ok size. 805 */ 806 error = xfs_check_sizes(mp); 807 if (error) 808 goto out_remove_uuid; 809 810 /* 811 * Initialize realtime fields in the mount structure 812 */ 813 error = xfs_rtmount_init(mp); 814 if (error) { 815 xfs_warn(mp, "RT mount failed"); 816 goto out_remove_uuid; 817 } 818 819 /* 820 * Copies the low order bits of the timestamp and the randomly 821 * set "sequence" number out of a UUID. 822 */ 823 mp->m_fixedfsid[0] = 824 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 825 get_unaligned_be16(&sbp->sb_uuid.b[4]); 826 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 827 828 error = xfs_da_mount(mp); 829 if (error) { 830 xfs_warn(mp, "Failed dir/attr init: %d", error); 831 goto out_remove_uuid; 832 } 833 834 /* 835 * Initialize the precomputed transaction reservations values. 836 */ 837 xfs_trans_init(mp); 838 839 /* 840 * Allocate and initialize the per-ag data. 841 */ 842 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount, 843 mp->m_sb.sb_dblocks, &mp->m_maxagi); 844 if (error) { 845 xfs_warn(mp, "Failed per-ag init: %d", error); 846 goto out_free_dir; 847 } 848 849 error = xfs_initialize_rtgroups(mp, 0, sbp->sb_rgcount, 850 mp->m_sb.sb_rextents); 851 if (error) { 852 xfs_warn(mp, "Failed rtgroup init: %d", error); 853 goto out_free_perag; 854 } 855 856 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 857 xfs_warn(mp, "no log defined"); 858 error = -EFSCORRUPTED; 859 goto out_free_rtgroup; 860 } 861 862 error = xfs_inodegc_register_shrinker(mp); 863 if (error) 864 goto out_fail_wait; 865 866 /* 867 * If we're resuming quota status, pick up the preliminary qflags from 868 * the ondisk superblock so that we know if we should recover dquots. 869 */ 870 if (xfs_is_resuming_quotaon(mp)) 871 xfs_qm_resume_quotaon(mp); 872 873 /* 874 * Log's mount-time initialization. The first part of recovery can place 875 * some items on the AIL, to be handled when recovery is finished or 876 * cancelled. 877 */ 878 error = xfs_log_mount(mp, mp->m_logdev_targp, 879 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 880 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 881 if (error) { 882 xfs_warn(mp, "log mount failed"); 883 goto out_inodegc_shrinker; 884 } 885 886 /* 887 * If we're resuming quota status and recovered the log, re-sample the 888 * qflags from the ondisk superblock now that we've recovered it, just 889 * in case someone shut down enforcement just before a crash. 890 */ 891 if (xfs_clear_resuming_quotaon(mp) && xlog_recovery_needed(mp->m_log)) 892 xfs_qm_resume_quotaon(mp); 893 894 /* 895 * If logged xattrs are still enabled after log recovery finishes, then 896 * they'll be available until unmount. Otherwise, turn them off. 897 */ 898 if (xfs_sb_version_haslogxattrs(&mp->m_sb)) 899 xfs_set_using_logged_xattrs(mp); 900 else 901 xfs_clear_using_logged_xattrs(mp); 902 903 /* Enable background inode inactivation workers. */ 904 xfs_inodegc_start(mp); 905 xfs_blockgc_start(mp); 906 907 /* 908 * Now that we've recovered any pending superblock feature bit 909 * additions, we can finish setting up the attr2 behaviour for the 910 * mount. The noattr2 option overrides the superblock flag, so only 911 * check the superblock feature flag if the mount option is not set. 912 */ 913 if (xfs_has_noattr2(mp)) { 914 mp->m_features &= ~XFS_FEAT_ATTR2; 915 } else if (!xfs_has_attr2(mp) && 916 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 917 mp->m_features |= XFS_FEAT_ATTR2; 918 } 919 920 if (xfs_has_metadir(mp)) { 921 error = xfs_mount_setup_metadir(mp); 922 if (error) 923 goto out_free_metadir; 924 } 925 926 /* 927 * Get and sanity-check the root inode. 928 * Save the pointer to it in the mount structure. 929 */ 930 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 931 XFS_ILOCK_EXCL, &rip); 932 if (error) { 933 xfs_warn(mp, 934 "Failed to read root inode 0x%llx, error %d", 935 sbp->sb_rootino, -error); 936 goto out_free_metadir; 937 } 938 939 ASSERT(rip != NULL); 940 941 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 942 xfs_warn(mp, "corrupted root inode %llu: not a directory", 943 (unsigned long long)rip->i_ino); 944 xfs_iunlock(rip, XFS_ILOCK_EXCL); 945 error = -EFSCORRUPTED; 946 goto out_rele_rip; 947 } 948 mp->m_rootip = rip; /* save it */ 949 950 xfs_iunlock(rip, XFS_ILOCK_EXCL); 951 952 /* 953 * Initialize realtime inode pointers in the mount structure 954 */ 955 error = xfs_rtmount_inodes(mp); 956 if (error) { 957 /* 958 * Free up the root inode. 959 */ 960 xfs_warn(mp, "failed to read RT inodes"); 961 goto out_rele_rip; 962 } 963 964 /* Make sure the summary counts are ok. */ 965 error = xfs_check_summary_counts(mp); 966 if (error) 967 goto out_rtunmount; 968 969 /* 970 * If this is a read-only mount defer the superblock updates until 971 * the next remount into writeable mode. Otherwise we would never 972 * perform the update e.g. for the root filesystem. 973 */ 974 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 975 error = xfs_sync_sb(mp, false); 976 if (error) { 977 xfs_warn(mp, "failed to write sb changes"); 978 goto out_rtunmount; 979 } 980 } 981 982 /* 983 * Initialise the XFS quota management subsystem for this mount 984 */ 985 if (XFS_IS_QUOTA_ON(mp)) { 986 error = xfs_qm_newmount(mp, "amount, "aflags); 987 if (error) 988 goto out_rtunmount; 989 } else { 990 /* 991 * If a file system had quotas running earlier, but decided to 992 * mount without -o uquota/pquota/gquota options, revoke the 993 * quotachecked license. 994 */ 995 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 996 xfs_notice(mp, "resetting quota flags"); 997 error = xfs_mount_reset_sbqflags(mp); 998 if (error) 999 goto out_rtunmount; 1000 } 1001 } 1002 1003 /* 1004 * Finish recovering the file system. This part needed to be delayed 1005 * until after the root and real-time bitmap inodes were consistently 1006 * read in. Temporarily create per-AG space reservations for metadata 1007 * btree shape changes because space freeing transactions (for inode 1008 * inactivation) require the per-AG reservation in lieu of reserving 1009 * blocks. 1010 */ 1011 error = xfs_fs_reserve_ag_blocks(mp); 1012 if (error && error == -ENOSPC) 1013 xfs_warn(mp, 1014 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 1015 error = xfs_log_mount_finish(mp); 1016 xfs_fs_unreserve_ag_blocks(mp); 1017 if (error) { 1018 xfs_warn(mp, "log mount finish failed"); 1019 goto out_rtunmount; 1020 } 1021 1022 /* 1023 * Now the log is fully replayed, we can transition to full read-only 1024 * mode for read-only mounts. This will sync all the metadata and clean 1025 * the log so that the recovery we just performed does not have to be 1026 * replayed again on the next mount. 1027 * 1028 * We use the same quiesce mechanism as the rw->ro remount, as they are 1029 * semantically identical operations. 1030 */ 1031 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 1032 xfs_log_clean(mp); 1033 1034 /* 1035 * Complete the quota initialisation, post-log-replay component. 1036 */ 1037 if (quotamount) { 1038 ASSERT(mp->m_qflags == 0); 1039 mp->m_qflags = quotaflags; 1040 1041 xfs_qm_mount_quotas(mp); 1042 } 1043 1044 /* 1045 * Now we are mounted, reserve a small amount of unused space for 1046 * privileged transactions. This is needed so that transaction 1047 * space required for critical operations can dip into this pool 1048 * when at ENOSPC. This is needed for operations like create with 1049 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1050 * are not allowed to use this reserved space. 1051 * 1052 * This may drive us straight to ENOSPC on mount, but that implies 1053 * we were already there on the last unmount. Warn if this occurs. 1054 */ 1055 if (!xfs_is_readonly(mp)) { 1056 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp)); 1057 if (error) 1058 xfs_warn(mp, 1059 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1060 1061 /* Reserve AG blocks for future btree expansion. */ 1062 error = xfs_fs_reserve_ag_blocks(mp); 1063 if (error && error != -ENOSPC) 1064 goto out_agresv; 1065 } 1066 1067 return 0; 1068 1069 out_agresv: 1070 xfs_fs_unreserve_ag_blocks(mp); 1071 xfs_qm_unmount_quotas(mp); 1072 out_rtunmount: 1073 xfs_rtunmount_inodes(mp); 1074 out_rele_rip: 1075 xfs_irele(rip); 1076 /* Clean out dquots that might be in memory after quotacheck. */ 1077 xfs_qm_unmount(mp); 1078 out_free_metadir: 1079 if (mp->m_metadirip) 1080 xfs_irele(mp->m_metadirip); 1081 1082 /* 1083 * Inactivate all inodes that might still be in memory after a log 1084 * intent recovery failure so that reclaim can free them. Metadata 1085 * inodes and the root directory shouldn't need inactivation, but the 1086 * mount failed for some reason, so pull down all the state and flee. 1087 */ 1088 xfs_inodegc_flush(mp); 1089 1090 /* 1091 * Flush all inode reclamation work and flush the log. 1092 * We have to do this /after/ rtunmount and qm_unmount because those 1093 * two will have scheduled delayed reclaim for the rt/quota inodes. 1094 * 1095 * This is slightly different from the unmountfs call sequence 1096 * because we could be tearing down a partially set up mount. In 1097 * particular, if log_mount_finish fails we bail out without calling 1098 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1099 * quota inodes. 1100 */ 1101 xfs_unmount_flush_inodes(mp); 1102 xfs_log_mount_cancel(mp); 1103 out_inodegc_shrinker: 1104 shrinker_free(mp->m_inodegc_shrinker); 1105 out_fail_wait: 1106 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1107 xfs_buftarg_drain(mp->m_logdev_targp); 1108 xfs_buftarg_drain(mp->m_ddev_targp); 1109 out_free_rtgroup: 1110 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1111 out_free_perag: 1112 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1113 out_free_dir: 1114 xfs_da_unmount(mp); 1115 out_remove_uuid: 1116 xfs_uuid_unmount(mp); 1117 out_remove_errortag: 1118 xfs_errortag_del(mp); 1119 out_remove_error_sysfs: 1120 xfs_error_sysfs_del(mp); 1121 out_remove_scrub_stats: 1122 xchk_stats_unregister(mp->m_scrub_stats); 1123 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1124 out_remove_sysfs: 1125 xfs_sysfs_del(&mp->m_kobj); 1126 out: 1127 return error; 1128 } 1129 1130 /* 1131 * This flushes out the inodes,dquots and the superblock, unmounts the 1132 * log and makes sure that incore structures are freed. 1133 */ 1134 void 1135 xfs_unmountfs( 1136 struct xfs_mount *mp) 1137 { 1138 int error; 1139 1140 /* 1141 * Perform all on-disk metadata updates required to inactivate inodes 1142 * that the VFS evicted earlier in the unmount process. Freeing inodes 1143 * and discarding CoW fork preallocations can cause shape changes to 1144 * the free inode and refcount btrees, respectively, so we must finish 1145 * this before we discard the metadata space reservations. Metadata 1146 * inodes and the root directory do not require inactivation. 1147 */ 1148 xfs_inodegc_flush(mp); 1149 1150 xfs_blockgc_stop(mp); 1151 xfs_fs_unreserve_ag_blocks(mp); 1152 xfs_qm_unmount_quotas(mp); 1153 xfs_rtunmount_inodes(mp); 1154 xfs_irele(mp->m_rootip); 1155 if (mp->m_metadirip) 1156 xfs_irele(mp->m_metadirip); 1157 1158 xfs_unmount_flush_inodes(mp); 1159 1160 xfs_qm_unmount(mp); 1161 1162 /* 1163 * Unreserve any blocks we have so that when we unmount we don't account 1164 * the reserved free space as used. This is really only necessary for 1165 * lazy superblock counting because it trusts the incore superblock 1166 * counters to be absolutely correct on clean unmount. 1167 * 1168 * We don't bother correcting this elsewhere for lazy superblock 1169 * counting because on mount of an unclean filesystem we reconstruct the 1170 * correct counter value and this is irrelevant. 1171 * 1172 * For non-lazy counter filesystems, this doesn't matter at all because 1173 * we only every apply deltas to the superblock and hence the incore 1174 * value does not matter.... 1175 */ 1176 error = xfs_reserve_blocks(mp, 0); 1177 if (error) 1178 xfs_warn(mp, "Unable to free reserved block pool. " 1179 "Freespace may not be correct on next mount."); 1180 xfs_unmount_check(mp); 1181 1182 /* 1183 * Indicate that it's ok to clear log incompat bits before cleaning 1184 * the log and writing the unmount record. 1185 */ 1186 xfs_set_done_with_log_incompat(mp); 1187 xfs_log_unmount(mp); 1188 xfs_da_unmount(mp); 1189 xfs_uuid_unmount(mp); 1190 1191 #if defined(DEBUG) 1192 xfs_errortag_clearall(mp); 1193 #endif 1194 shrinker_free(mp->m_inodegc_shrinker); 1195 xfs_free_rtgroups(mp, 0, mp->m_sb.sb_rgcount); 1196 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount); 1197 xfs_errortag_del(mp); 1198 xfs_error_sysfs_del(mp); 1199 xchk_stats_unregister(mp->m_scrub_stats); 1200 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1201 xfs_sysfs_del(&mp->m_kobj); 1202 } 1203 1204 /* 1205 * Determine whether modifications can proceed. The caller specifies the minimum 1206 * freeze level for which modifications should not be allowed. This allows 1207 * certain operations to proceed while the freeze sequence is in progress, if 1208 * necessary. 1209 */ 1210 bool 1211 xfs_fs_writable( 1212 struct xfs_mount *mp, 1213 int level) 1214 { 1215 ASSERT(level > SB_UNFROZEN); 1216 if ((mp->m_super->s_writers.frozen >= level) || 1217 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1218 return false; 1219 1220 return true; 1221 } 1222 1223 void 1224 xfs_add_freecounter( 1225 struct xfs_mount *mp, 1226 struct percpu_counter *counter, 1227 uint64_t delta) 1228 { 1229 bool has_resv_pool = (counter == &mp->m_fdblocks); 1230 uint64_t res_used; 1231 1232 /* 1233 * If the reserve pool is depleted, put blocks back into it first. 1234 * Most of the time the pool is full. 1235 */ 1236 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) { 1237 percpu_counter_add(counter, delta); 1238 return; 1239 } 1240 1241 spin_lock(&mp->m_sb_lock); 1242 res_used = mp->m_resblks - mp->m_resblks_avail; 1243 if (res_used > delta) { 1244 mp->m_resblks_avail += delta; 1245 } else { 1246 delta -= res_used; 1247 mp->m_resblks_avail = mp->m_resblks; 1248 percpu_counter_add(counter, delta); 1249 } 1250 spin_unlock(&mp->m_sb_lock); 1251 } 1252 1253 int 1254 xfs_dec_freecounter( 1255 struct xfs_mount *mp, 1256 struct percpu_counter *counter, 1257 uint64_t delta, 1258 bool rsvd) 1259 { 1260 int64_t lcounter; 1261 uint64_t set_aside = 0; 1262 s32 batch; 1263 bool has_resv_pool; 1264 1265 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); 1266 has_resv_pool = (counter == &mp->m_fdblocks); 1267 if (rsvd) 1268 ASSERT(has_resv_pool); 1269 1270 /* 1271 * Taking blocks away, need to be more accurate the closer we 1272 * are to zero. 1273 * 1274 * If the counter has a value of less than 2 * max batch size, 1275 * then make everything serialise as we are real close to 1276 * ENOSPC. 1277 */ 1278 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, 1279 XFS_FDBLOCKS_BATCH) < 0) 1280 batch = 1; 1281 else 1282 batch = XFS_FDBLOCKS_BATCH; 1283 1284 /* 1285 * Set aside allocbt blocks because these blocks are tracked as free 1286 * space but not available for allocation. Technically this means that a 1287 * single reservation cannot consume all remaining free space, but the 1288 * ratio of allocbt blocks to usable free blocks should be rather small. 1289 * The tradeoff without this is that filesystems that maintain high 1290 * perag block reservations can over reserve physical block availability 1291 * and fail physical allocation, which leads to much more serious 1292 * problems (i.e. transaction abort, pagecache discards, etc.) than 1293 * slightly premature -ENOSPC. 1294 */ 1295 if (has_resv_pool) 1296 set_aside = xfs_fdblocks_unavailable(mp); 1297 percpu_counter_add_batch(counter, -((int64_t)delta), batch); 1298 if (__percpu_counter_compare(counter, set_aside, 1299 XFS_FDBLOCKS_BATCH) >= 0) { 1300 /* we had space! */ 1301 return 0; 1302 } 1303 1304 /* 1305 * lock up the sb for dipping into reserves before releasing the space 1306 * that took us to ENOSPC. 1307 */ 1308 spin_lock(&mp->m_sb_lock); 1309 percpu_counter_add(counter, delta); 1310 if (!has_resv_pool || !rsvd) 1311 goto fdblocks_enospc; 1312 1313 lcounter = (long long)mp->m_resblks_avail - delta; 1314 if (lcounter >= 0) { 1315 mp->m_resblks_avail = lcounter; 1316 spin_unlock(&mp->m_sb_lock); 1317 return 0; 1318 } 1319 xfs_warn_once(mp, 1320 "Reserve blocks depleted! Consider increasing reserve pool size."); 1321 1322 fdblocks_enospc: 1323 spin_unlock(&mp->m_sb_lock); 1324 return -ENOSPC; 1325 } 1326 1327 /* 1328 * Used to free the superblock along various error paths. 1329 */ 1330 void 1331 xfs_freesb( 1332 struct xfs_mount *mp) 1333 { 1334 struct xfs_buf *bp = mp->m_sb_bp; 1335 1336 xfs_buf_lock(bp); 1337 mp->m_sb_bp = NULL; 1338 xfs_buf_relse(bp); 1339 } 1340 1341 /* 1342 * If the underlying (data/log/rt) device is readonly, there are some 1343 * operations that cannot proceed. 1344 */ 1345 int 1346 xfs_dev_is_read_only( 1347 struct xfs_mount *mp, 1348 char *message) 1349 { 1350 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1351 xfs_readonly_buftarg(mp->m_logdev_targp) || 1352 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1353 xfs_notice(mp, "%s required on read-only device.", message); 1354 xfs_notice(mp, "write access unavailable, cannot proceed."); 1355 return -EROFS; 1356 } 1357 return 0; 1358 } 1359 1360 /* Force the summary counters to be recalculated at next mount. */ 1361 void 1362 xfs_force_summary_recalc( 1363 struct xfs_mount *mp) 1364 { 1365 if (!xfs_has_lazysbcount(mp)) 1366 return; 1367 1368 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1369 } 1370 1371 /* 1372 * Enable a log incompat feature flag in the primary superblock. The caller 1373 * cannot have any other transactions in progress. 1374 */ 1375 int 1376 xfs_add_incompat_log_feature( 1377 struct xfs_mount *mp, 1378 uint32_t feature) 1379 { 1380 struct xfs_dsb *dsb; 1381 int error; 1382 1383 ASSERT(hweight32(feature) == 1); 1384 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1385 1386 /* 1387 * Force the log to disk and kick the background AIL thread to reduce 1388 * the chances that the bwrite will stall waiting for the AIL to unpin 1389 * the primary superblock buffer. This isn't a data integrity 1390 * operation, so we don't need a synchronous push. 1391 */ 1392 error = xfs_log_force(mp, XFS_LOG_SYNC); 1393 if (error) 1394 return error; 1395 xfs_ail_push_all(mp->m_ail); 1396 1397 /* 1398 * Lock the primary superblock buffer to serialize all callers that 1399 * are trying to set feature bits. 1400 */ 1401 xfs_buf_lock(mp->m_sb_bp); 1402 xfs_buf_hold(mp->m_sb_bp); 1403 1404 if (xfs_is_shutdown(mp)) { 1405 error = -EIO; 1406 goto rele; 1407 } 1408 1409 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1410 goto rele; 1411 1412 /* 1413 * Write the primary superblock to disk immediately, because we need 1414 * the log_incompat bit to be set in the primary super now to protect 1415 * the log items that we're going to commit later. 1416 */ 1417 dsb = mp->m_sb_bp->b_addr; 1418 xfs_sb_to_disk(dsb, &mp->m_sb); 1419 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1420 error = xfs_bwrite(mp->m_sb_bp); 1421 if (error) 1422 goto shutdown; 1423 1424 /* 1425 * Add the feature bits to the incore superblock before we unlock the 1426 * buffer. 1427 */ 1428 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1429 xfs_buf_relse(mp->m_sb_bp); 1430 1431 /* Log the superblock to disk. */ 1432 return xfs_sync_sb(mp, false); 1433 shutdown: 1434 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1435 rele: 1436 xfs_buf_relse(mp->m_sb_bp); 1437 return error; 1438 } 1439 1440 /* 1441 * Clear all the log incompat flags from the superblock. 1442 * 1443 * The caller cannot be in a transaction, must ensure that the log does not 1444 * contain any log items protected by any log incompat bit, and must ensure 1445 * that there are no other threads that depend on the state of the log incompat 1446 * feature flags in the primary super. 1447 * 1448 * Returns true if the superblock is dirty. 1449 */ 1450 bool 1451 xfs_clear_incompat_log_features( 1452 struct xfs_mount *mp) 1453 { 1454 bool ret = false; 1455 1456 if (!xfs_has_crc(mp) || 1457 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1458 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1459 xfs_is_shutdown(mp) || 1460 !xfs_is_done_with_log_incompat(mp)) 1461 return false; 1462 1463 /* 1464 * Update the incore superblock. We synchronize on the primary super 1465 * buffer lock to be consistent with the add function, though at least 1466 * in theory this shouldn't be necessary. 1467 */ 1468 xfs_buf_lock(mp->m_sb_bp); 1469 xfs_buf_hold(mp->m_sb_bp); 1470 1471 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1472 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1473 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1474 ret = true; 1475 } 1476 1477 xfs_buf_relse(mp->m_sb_bp); 1478 return ret; 1479 } 1480 1481 /* 1482 * Update the in-core delayed block counter. 1483 * 1484 * We prefer to update the counter without having to take a spinlock for every 1485 * counter update (i.e. batching). Each change to delayed allocation 1486 * reservations can change can easily exceed the default percpu counter 1487 * batching, so we use a larger batch factor here. 1488 * 1489 * Note that we don't currently have any callers requiring fast summation 1490 * (e.g. percpu_counter_read) so we can use a big batch value here. 1491 */ 1492 #define XFS_DELALLOC_BATCH (4096) 1493 void 1494 xfs_mod_delalloc( 1495 struct xfs_inode *ip, 1496 int64_t data_delta, 1497 int64_t ind_delta) 1498 { 1499 struct xfs_mount *mp = ip->i_mount; 1500 1501 if (XFS_IS_REALTIME_INODE(ip)) { 1502 percpu_counter_add_batch(&mp->m_delalloc_rtextents, 1503 xfs_blen_to_rtbxlen(mp, data_delta), 1504 XFS_DELALLOC_BATCH); 1505 if (!ind_delta) 1506 return; 1507 data_delta = 0; 1508 } 1509 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta, 1510 XFS_DELALLOC_BATCH); 1511 } 1512