1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_error.h" 31 #include "xfs_bmap_btree.h" 32 #include "xfs_alloc_btree.h" 33 #include "xfs_ialloc_btree.h" 34 #include "xfs_dir2_sf.h" 35 #include "xfs_attr_sf.h" 36 #include "xfs_dinode.h" 37 #include "xfs_inode.h" 38 #include "xfs_inode_item.h" 39 #include "xfs_imap.h" 40 #include "xfs_alloc.h" 41 #include "xfs_ialloc.h" 42 #include "xfs_log_priv.h" 43 #include "xfs_buf_item.h" 44 #include "xfs_log_recover.h" 45 #include "xfs_extfree_item.h" 46 #include "xfs_trans_priv.h" 47 #include "xfs_quota.h" 48 #include "xfs_rw.h" 49 50 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 51 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 52 STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, 53 xlog_recover_item_t *item); 54 #if defined(DEBUG) 55 STATIC void xlog_recover_check_summary(xlog_t *); 56 STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); 57 #else 58 #define xlog_recover_check_summary(log) 59 #define xlog_recover_check_ail(mp, lip, gen) 60 #endif 61 62 63 /* 64 * Sector aligned buffer routines for buffer create/read/write/access 65 */ 66 67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ 68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ 69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) 70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) 71 72 xfs_buf_t * 73 xlog_get_bp( 74 xlog_t *log, 75 int num_bblks) 76 { 77 ASSERT(num_bblks > 0); 78 79 if (log->l_sectbb_log) { 80 if (num_bblks > 1) 81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); 83 } 84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); 85 } 86 87 void 88 xlog_put_bp( 89 xfs_buf_t *bp) 90 { 91 xfs_buf_free(bp); 92 } 93 94 95 /* 96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 97 */ 98 int 99 xlog_bread( 100 xlog_t *log, 101 xfs_daddr_t blk_no, 102 int nbblks, 103 xfs_buf_t *bp) 104 { 105 int error; 106 107 if (log->l_sectbb_log) { 108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 110 } 111 112 ASSERT(nbblks > 0); 113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 114 ASSERT(bp); 115 116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 117 XFS_BUF_READ(bp); 118 XFS_BUF_BUSY(bp); 119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 121 122 xfsbdstrat(log->l_mp, bp); 123 if ((error = xfs_iowait(bp))) 124 xfs_ioerror_alert("xlog_bread", log->l_mp, 125 bp, XFS_BUF_ADDR(bp)); 126 return error; 127 } 128 129 /* 130 * Write out the buffer at the given block for the given number of blocks. 131 * The buffer is kept locked across the write and is returned locked. 132 * This can only be used for synchronous log writes. 133 */ 134 STATIC int 135 xlog_bwrite( 136 xlog_t *log, 137 xfs_daddr_t blk_no, 138 int nbblks, 139 xfs_buf_t *bp) 140 { 141 int error; 142 143 if (log->l_sectbb_log) { 144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); 145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); 146 } 147 148 ASSERT(nbblks > 0); 149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 150 151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 152 XFS_BUF_ZEROFLAGS(bp); 153 XFS_BUF_BUSY(bp); 154 XFS_BUF_HOLD(bp); 155 XFS_BUF_PSEMA(bp, PRIBIO); 156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); 158 159 if ((error = xfs_bwrite(log->l_mp, bp))) 160 xfs_ioerror_alert("xlog_bwrite", log->l_mp, 161 bp, XFS_BUF_ADDR(bp)); 162 return error; 163 } 164 165 STATIC xfs_caddr_t 166 xlog_align( 167 xlog_t *log, 168 xfs_daddr_t blk_no, 169 int nbblks, 170 xfs_buf_t *bp) 171 { 172 xfs_caddr_t ptr; 173 174 if (!log->l_sectbb_log) 175 return XFS_BUF_PTR(bp); 176 177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); 178 ASSERT(XFS_BUF_SIZE(bp) >= 179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); 180 return ptr; 181 } 182 183 #ifdef DEBUG 184 /* 185 * dump debug superblock and log record information 186 */ 187 STATIC void 188 xlog_header_check_dump( 189 xfs_mount_t *mp, 190 xlog_rec_header_t *head) 191 { 192 int b; 193 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__); 195 for (b = 0; b < 16; b++) 196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]); 197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT); 198 cmn_err(CE_DEBUG, " log : uuid = "); 199 for (b = 0; b < 16; b++) 200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]); 201 cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); 202 } 203 #else 204 #define xlog_header_check_dump(mp, head) 205 #endif 206 207 /* 208 * check log record header for recovery 209 */ 210 STATIC int 211 xlog_header_check_recover( 212 xfs_mount_t *mp, 213 xlog_rec_header_t *head) 214 { 215 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 216 217 /* 218 * IRIX doesn't write the h_fmt field and leaves it zeroed 219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 220 * a dirty log created in IRIX. 221 */ 222 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { 223 xlog_warn( 224 "XFS: dirty log written in incompatible format - can't recover"); 225 xlog_header_check_dump(mp, head); 226 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 227 XFS_ERRLEVEL_HIGH, mp); 228 return XFS_ERROR(EFSCORRUPTED); 229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 230 xlog_warn( 231 "XFS: dirty log entry has mismatched uuid - can't recover"); 232 xlog_header_check_dump(mp, head); 233 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 234 XFS_ERRLEVEL_HIGH, mp); 235 return XFS_ERROR(EFSCORRUPTED); 236 } 237 return 0; 238 } 239 240 /* 241 * read the head block of the log and check the header 242 */ 243 STATIC int 244 xlog_header_check_mount( 245 xfs_mount_t *mp, 246 xlog_rec_header_t *head) 247 { 248 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); 249 250 if (uuid_is_nil(&head->h_fs_uuid)) { 251 /* 252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 253 * h_fs_uuid is nil, we assume this log was last mounted 254 * by IRIX and continue. 255 */ 256 xlog_warn("XFS: nil uuid in log - IRIX style log"); 257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 258 xlog_warn("XFS: log has mismatched uuid - can't recover"); 259 xlog_header_check_dump(mp, head); 260 XFS_ERROR_REPORT("xlog_header_check_mount", 261 XFS_ERRLEVEL_HIGH, mp); 262 return XFS_ERROR(EFSCORRUPTED); 263 } 264 return 0; 265 } 266 267 STATIC void 268 xlog_recover_iodone( 269 struct xfs_buf *bp) 270 { 271 xfs_mount_t *mp; 272 273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); 274 275 if (XFS_BUF_GETERROR(bp)) { 276 /* 277 * We're not going to bother about retrying 278 * this during recovery. One strike! 279 */ 280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); 281 xfs_ioerror_alert("xlog_recover_iodone", 282 mp, bp, XFS_BUF_ADDR(bp)); 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 284 } 285 XFS_BUF_SET_FSPRIVATE(bp, NULL); 286 XFS_BUF_CLR_IODONE_FUNC(bp); 287 xfs_biodone(bp); 288 } 289 290 /* 291 * This routine finds (to an approximation) the first block in the physical 292 * log which contains the given cycle. It uses a binary search algorithm. 293 * Note that the algorithm can not be perfect because the disk will not 294 * necessarily be perfect. 295 */ 296 int 297 xlog_find_cycle_start( 298 xlog_t *log, 299 xfs_buf_t *bp, 300 xfs_daddr_t first_blk, 301 xfs_daddr_t *last_blk, 302 uint cycle) 303 { 304 xfs_caddr_t offset; 305 xfs_daddr_t mid_blk; 306 uint mid_cycle; 307 int error; 308 309 mid_blk = BLK_AVG(first_blk, *last_blk); 310 while (mid_blk != first_blk && mid_blk != *last_blk) { 311 if ((error = xlog_bread(log, mid_blk, 1, bp))) 312 return error; 313 offset = xlog_align(log, mid_blk, 1, bp); 314 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); 315 if (mid_cycle == cycle) { 316 *last_blk = mid_blk; 317 /* last_half_cycle == mid_cycle */ 318 } else { 319 first_blk = mid_blk; 320 /* first_half_cycle == mid_cycle */ 321 } 322 mid_blk = BLK_AVG(first_blk, *last_blk); 323 } 324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || 325 (mid_blk == *last_blk && mid_blk-1 == first_blk)); 326 327 return 0; 328 } 329 330 /* 331 * Check that the range of blocks does not contain the cycle number 332 * given. The scan needs to occur from front to back and the ptr into the 333 * region must be updated since a later routine will need to perform another 334 * test. If the region is completely good, we end up returning the same 335 * last block number. 336 * 337 * Set blkno to -1 if we encounter no errors. This is an invalid block number 338 * since we don't ever expect logs to get this large. 339 */ 340 STATIC int 341 xlog_find_verify_cycle( 342 xlog_t *log, 343 xfs_daddr_t start_blk, 344 int nbblks, 345 uint stop_on_cycle_no, 346 xfs_daddr_t *new_blk) 347 { 348 xfs_daddr_t i, j; 349 uint cycle; 350 xfs_buf_t *bp; 351 xfs_daddr_t bufblks; 352 xfs_caddr_t buf = NULL; 353 int error = 0; 354 355 bufblks = 1 << ffs(nbblks); 356 357 while (!(bp = xlog_get_bp(log, bufblks))) { 358 /* can't get enough memory to do everything in one big buffer */ 359 bufblks >>= 1; 360 if (bufblks <= log->l_sectbb_log) 361 return ENOMEM; 362 } 363 364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 365 int bcount; 366 367 bcount = min(bufblks, (start_blk + nbblks - i)); 368 369 if ((error = xlog_bread(log, i, bcount, bp))) 370 goto out; 371 372 buf = xlog_align(log, i, bcount, bp); 373 for (j = 0; j < bcount; j++) { 374 cycle = GET_CYCLE(buf, ARCH_CONVERT); 375 if (cycle == stop_on_cycle_no) { 376 *new_blk = i+j; 377 goto out; 378 } 379 380 buf += BBSIZE; 381 } 382 } 383 384 *new_blk = -1; 385 386 out: 387 xlog_put_bp(bp); 388 return error; 389 } 390 391 /* 392 * Potentially backup over partial log record write. 393 * 394 * In the typical case, last_blk is the number of the block directly after 395 * a good log record. Therefore, we subtract one to get the block number 396 * of the last block in the given buffer. extra_bblks contains the number 397 * of blocks we would have read on a previous read. This happens when the 398 * last log record is split over the end of the physical log. 399 * 400 * extra_bblks is the number of blocks potentially verified on a previous 401 * call to this routine. 402 */ 403 STATIC int 404 xlog_find_verify_log_record( 405 xlog_t *log, 406 xfs_daddr_t start_blk, 407 xfs_daddr_t *last_blk, 408 int extra_bblks) 409 { 410 xfs_daddr_t i; 411 xfs_buf_t *bp; 412 xfs_caddr_t offset = NULL; 413 xlog_rec_header_t *head = NULL; 414 int error = 0; 415 int smallmem = 0; 416 int num_blks = *last_blk - start_blk; 417 int xhdrs; 418 419 ASSERT(start_blk != 0 || *last_blk != start_blk); 420 421 if (!(bp = xlog_get_bp(log, num_blks))) { 422 if (!(bp = xlog_get_bp(log, 1))) 423 return ENOMEM; 424 smallmem = 1; 425 } else { 426 if ((error = xlog_bread(log, start_blk, num_blks, bp))) 427 goto out; 428 offset = xlog_align(log, start_blk, num_blks, bp); 429 offset += ((num_blks - 1) << BBSHIFT); 430 } 431 432 for (i = (*last_blk) - 1; i >= 0; i--) { 433 if (i < start_blk) { 434 /* valid log record not found */ 435 xlog_warn( 436 "XFS: Log inconsistent (didn't find previous header)"); 437 ASSERT(0); 438 error = XFS_ERROR(EIO); 439 goto out; 440 } 441 442 if (smallmem) { 443 if ((error = xlog_bread(log, i, 1, bp))) 444 goto out; 445 offset = xlog_align(log, i, 1, bp); 446 } 447 448 head = (xlog_rec_header_t *)offset; 449 450 if (XLOG_HEADER_MAGIC_NUM == 451 INT_GET(head->h_magicno, ARCH_CONVERT)) 452 break; 453 454 if (!smallmem) 455 offset -= BBSIZE; 456 } 457 458 /* 459 * We hit the beginning of the physical log & still no header. Return 460 * to caller. If caller can handle a return of -1, then this routine 461 * will be called again for the end of the physical log. 462 */ 463 if (i == -1) { 464 error = -1; 465 goto out; 466 } 467 468 /* 469 * We have the final block of the good log (the first block 470 * of the log record _before_ the head. So we check the uuid. 471 */ 472 if ((error = xlog_header_check_mount(log->l_mp, head))) 473 goto out; 474 475 /* 476 * We may have found a log record header before we expected one. 477 * last_blk will be the 1st block # with a given cycle #. We may end 478 * up reading an entire log record. In this case, we don't want to 479 * reset last_blk. Only when last_blk points in the middle of a log 480 * record do we update last_blk. 481 */ 482 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 483 uint h_size = INT_GET(head->h_size, ARCH_CONVERT); 484 485 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 486 if (h_size % XLOG_HEADER_CYCLE_SIZE) 487 xhdrs++; 488 } else { 489 xhdrs = 1; 490 } 491 492 if (*last_blk - i + extra_bblks 493 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) 494 *last_blk = i; 495 496 out: 497 xlog_put_bp(bp); 498 return error; 499 } 500 501 /* 502 * Head is defined to be the point of the log where the next log write 503 * write could go. This means that incomplete LR writes at the end are 504 * eliminated when calculating the head. We aren't guaranteed that previous 505 * LR have complete transactions. We only know that a cycle number of 506 * current cycle number -1 won't be present in the log if we start writing 507 * from our current block number. 508 * 509 * last_blk contains the block number of the first block with a given 510 * cycle number. 511 * 512 * Return: zero if normal, non-zero if error. 513 */ 514 STATIC int 515 xlog_find_head( 516 xlog_t *log, 517 xfs_daddr_t *return_head_blk) 518 { 519 xfs_buf_t *bp; 520 xfs_caddr_t offset; 521 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 522 int num_scan_bblks; 523 uint first_half_cycle, last_half_cycle; 524 uint stop_on_cycle; 525 int error, log_bbnum = log->l_logBBsize; 526 527 /* Is the end of the log device zeroed? */ 528 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 529 *return_head_blk = first_blk; 530 531 /* Is the whole lot zeroed? */ 532 if (!first_blk) { 533 /* Linux XFS shouldn't generate totally zeroed logs - 534 * mkfs etc write a dummy unmount record to a fresh 535 * log so we can store the uuid in there 536 */ 537 xlog_warn("XFS: totally zeroed log"); 538 } 539 540 return 0; 541 } else if (error) { 542 xlog_warn("XFS: empty log check failed"); 543 return error; 544 } 545 546 first_blk = 0; /* get cycle # of 1st block */ 547 bp = xlog_get_bp(log, 1); 548 if (!bp) 549 return ENOMEM; 550 if ((error = xlog_bread(log, 0, 1, bp))) 551 goto bp_err; 552 offset = xlog_align(log, 0, 1, bp); 553 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 554 555 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 556 if ((error = xlog_bread(log, last_blk, 1, bp))) 557 goto bp_err; 558 offset = xlog_align(log, last_blk, 1, bp); 559 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); 560 ASSERT(last_half_cycle != 0); 561 562 /* 563 * If the 1st half cycle number is equal to the last half cycle number, 564 * then the entire log is stamped with the same cycle number. In this 565 * case, head_blk can't be set to zero (which makes sense). The below 566 * math doesn't work out properly with head_blk equal to zero. Instead, 567 * we set it to log_bbnum which is an invalid block number, but this 568 * value makes the math correct. If head_blk doesn't changed through 569 * all the tests below, *head_blk is set to zero at the very end rather 570 * than log_bbnum. In a sense, log_bbnum and zero are the same block 571 * in a circular file. 572 */ 573 if (first_half_cycle == last_half_cycle) { 574 /* 575 * In this case we believe that the entire log should have 576 * cycle number last_half_cycle. We need to scan backwards 577 * from the end verifying that there are no holes still 578 * containing last_half_cycle - 1. If we find such a hole, 579 * then the start of that hole will be the new head. The 580 * simple case looks like 581 * x | x ... | x - 1 | x 582 * Another case that fits this picture would be 583 * x | x + 1 | x ... | x 584 * In this case the head really is somewhere at the end of the 585 * log, as one of the latest writes at the beginning was 586 * incomplete. 587 * One more case is 588 * x | x + 1 | x ... | x - 1 | x 589 * This is really the combination of the above two cases, and 590 * the head has to end up at the start of the x-1 hole at the 591 * end of the log. 592 * 593 * In the 256k log case, we will read from the beginning to the 594 * end of the log and search for cycle numbers equal to x-1. 595 * We don't worry about the x+1 blocks that we encounter, 596 * because we know that they cannot be the head since the log 597 * started with x. 598 */ 599 head_blk = log_bbnum; 600 stop_on_cycle = last_half_cycle - 1; 601 } else { 602 /* 603 * In this case we want to find the first block with cycle 604 * number matching last_half_cycle. We expect the log to be 605 * some variation on 606 * x + 1 ... | x ... 607 * The first block with cycle number x (last_half_cycle) will 608 * be where the new head belongs. First we do a binary search 609 * for the first occurrence of last_half_cycle. The binary 610 * search may not be totally accurate, so then we scan back 611 * from there looking for occurrences of last_half_cycle before 612 * us. If that backwards scan wraps around the beginning of 613 * the log, then we look for occurrences of last_half_cycle - 1 614 * at the end of the log. The cases we're looking for look 615 * like 616 * x + 1 ... | x | x + 1 | x ... 617 * ^ binary search stopped here 618 * or 619 * x + 1 ... | x ... | x - 1 | x 620 * <---------> less than scan distance 621 */ 622 stop_on_cycle = last_half_cycle; 623 if ((error = xlog_find_cycle_start(log, bp, first_blk, 624 &head_blk, last_half_cycle))) 625 goto bp_err; 626 } 627 628 /* 629 * Now validate the answer. Scan back some number of maximum possible 630 * blocks and make sure each one has the expected cycle number. The 631 * maximum is determined by the total possible amount of buffering 632 * in the in-core log. The following number can be made tighter if 633 * we actually look at the block size of the filesystem. 634 */ 635 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 636 if (head_blk >= num_scan_bblks) { 637 /* 638 * We are guaranteed that the entire check can be performed 639 * in one buffer. 640 */ 641 start_blk = head_blk - num_scan_bblks; 642 if ((error = xlog_find_verify_cycle(log, 643 start_blk, num_scan_bblks, 644 stop_on_cycle, &new_blk))) 645 goto bp_err; 646 if (new_blk != -1) 647 head_blk = new_blk; 648 } else { /* need to read 2 parts of log */ 649 /* 650 * We are going to scan backwards in the log in two parts. 651 * First we scan the physical end of the log. In this part 652 * of the log, we are looking for blocks with cycle number 653 * last_half_cycle - 1. 654 * If we find one, then we know that the log starts there, as 655 * we've found a hole that didn't get written in going around 656 * the end of the physical log. The simple case for this is 657 * x + 1 ... | x ... | x - 1 | x 658 * <---------> less than scan distance 659 * If all of the blocks at the end of the log have cycle number 660 * last_half_cycle, then we check the blocks at the start of 661 * the log looking for occurrences of last_half_cycle. If we 662 * find one, then our current estimate for the location of the 663 * first occurrence of last_half_cycle is wrong and we move 664 * back to the hole we've found. This case looks like 665 * x + 1 ... | x | x + 1 | x ... 666 * ^ binary search stopped here 667 * Another case we need to handle that only occurs in 256k 668 * logs is 669 * x + 1 ... | x ... | x+1 | x ... 670 * ^ binary search stops here 671 * In a 256k log, the scan at the end of the log will see the 672 * x + 1 blocks. We need to skip past those since that is 673 * certainly not the head of the log. By searching for 674 * last_half_cycle-1 we accomplish that. 675 */ 676 start_blk = log_bbnum - num_scan_bblks + head_blk; 677 ASSERT(head_blk <= INT_MAX && 678 (xfs_daddr_t) num_scan_bblks - head_blk >= 0); 679 if ((error = xlog_find_verify_cycle(log, start_blk, 680 num_scan_bblks - (int)head_blk, 681 (stop_on_cycle - 1), &new_blk))) 682 goto bp_err; 683 if (new_blk != -1) { 684 head_blk = new_blk; 685 goto bad_blk; 686 } 687 688 /* 689 * Scan beginning of log now. The last part of the physical 690 * log is good. This scan needs to verify that it doesn't find 691 * the last_half_cycle. 692 */ 693 start_blk = 0; 694 ASSERT(head_blk <= INT_MAX); 695 if ((error = xlog_find_verify_cycle(log, 696 start_blk, (int)head_blk, 697 stop_on_cycle, &new_blk))) 698 goto bp_err; 699 if (new_blk != -1) 700 head_blk = new_blk; 701 } 702 703 bad_blk: 704 /* 705 * Now we need to make sure head_blk is not pointing to a block in 706 * the middle of a log record. 707 */ 708 num_scan_bblks = XLOG_REC_SHIFT(log); 709 if (head_blk >= num_scan_bblks) { 710 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 711 712 /* start ptr at last block ptr before head_blk */ 713 if ((error = xlog_find_verify_log_record(log, start_blk, 714 &head_blk, 0)) == -1) { 715 error = XFS_ERROR(EIO); 716 goto bp_err; 717 } else if (error) 718 goto bp_err; 719 } else { 720 start_blk = 0; 721 ASSERT(head_blk <= INT_MAX); 722 if ((error = xlog_find_verify_log_record(log, start_blk, 723 &head_blk, 0)) == -1) { 724 /* We hit the beginning of the log during our search */ 725 start_blk = log_bbnum - num_scan_bblks + head_blk; 726 new_blk = log_bbnum; 727 ASSERT(start_blk <= INT_MAX && 728 (xfs_daddr_t) log_bbnum-start_blk >= 0); 729 ASSERT(head_blk <= INT_MAX); 730 if ((error = xlog_find_verify_log_record(log, 731 start_blk, &new_blk, 732 (int)head_blk)) == -1) { 733 error = XFS_ERROR(EIO); 734 goto bp_err; 735 } else if (error) 736 goto bp_err; 737 if (new_blk != log_bbnum) 738 head_blk = new_blk; 739 } else if (error) 740 goto bp_err; 741 } 742 743 xlog_put_bp(bp); 744 if (head_blk == log_bbnum) 745 *return_head_blk = 0; 746 else 747 *return_head_blk = head_blk; 748 /* 749 * When returning here, we have a good block number. Bad block 750 * means that during a previous crash, we didn't have a clean break 751 * from cycle number N to cycle number N-1. In this case, we need 752 * to find the first block with cycle number N-1. 753 */ 754 return 0; 755 756 bp_err: 757 xlog_put_bp(bp); 758 759 if (error) 760 xlog_warn("XFS: failed to find log head"); 761 return error; 762 } 763 764 /* 765 * Find the sync block number or the tail of the log. 766 * 767 * This will be the block number of the last record to have its 768 * associated buffers synced to disk. Every log record header has 769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 770 * to get a sync block number. The only concern is to figure out which 771 * log record header to believe. 772 * 773 * The following algorithm uses the log record header with the largest 774 * lsn. The entire log record does not need to be valid. We only care 775 * that the header is valid. 776 * 777 * We could speed up search by using current head_blk buffer, but it is not 778 * available. 779 */ 780 int 781 xlog_find_tail( 782 xlog_t *log, 783 xfs_daddr_t *head_blk, 784 xfs_daddr_t *tail_blk) 785 { 786 xlog_rec_header_t *rhead; 787 xlog_op_header_t *op_head; 788 xfs_caddr_t offset = NULL; 789 xfs_buf_t *bp; 790 int error, i, found; 791 xfs_daddr_t umount_data_blk; 792 xfs_daddr_t after_umount_blk; 793 xfs_lsn_t tail_lsn; 794 int hblks; 795 796 found = 0; 797 798 /* 799 * Find previous log record 800 */ 801 if ((error = xlog_find_head(log, head_blk))) 802 return error; 803 804 bp = xlog_get_bp(log, 1); 805 if (!bp) 806 return ENOMEM; 807 if (*head_blk == 0) { /* special case */ 808 if ((error = xlog_bread(log, 0, 1, bp))) 809 goto bread_err; 810 offset = xlog_align(log, 0, 1, bp); 811 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { 812 *tail_blk = 0; 813 /* leave all other log inited values alone */ 814 goto exit; 815 } 816 } 817 818 /* 819 * Search backwards looking for log record header block 820 */ 821 ASSERT(*head_blk < INT_MAX); 822 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 823 if ((error = xlog_bread(log, i, 1, bp))) 824 goto bread_err; 825 offset = xlog_align(log, i, 1, bp); 826 if (XLOG_HEADER_MAGIC_NUM == 827 INT_GET(*(uint *)offset, ARCH_CONVERT)) { 828 found = 1; 829 break; 830 } 831 } 832 /* 833 * If we haven't found the log record header block, start looking 834 * again from the end of the physical log. XXXmiken: There should be 835 * a check here to make sure we didn't search more than N blocks in 836 * the previous code. 837 */ 838 if (!found) { 839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 840 if ((error = xlog_bread(log, i, 1, bp))) 841 goto bread_err; 842 offset = xlog_align(log, i, 1, bp); 843 if (XLOG_HEADER_MAGIC_NUM == 844 INT_GET(*(uint*)offset, ARCH_CONVERT)) { 845 found = 2; 846 break; 847 } 848 } 849 } 850 if (!found) { 851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); 852 ASSERT(0); 853 return XFS_ERROR(EIO); 854 } 855 856 /* find blk_no of tail of log */ 857 rhead = (xlog_rec_header_t *)offset; 858 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); 859 860 /* 861 * Reset log values according to the state of the log when we 862 * crashed. In the case where head_blk == 0, we bump curr_cycle 863 * one because the next write starts a new cycle rather than 864 * continuing the cycle of the last good log record. At this 865 * point we have guaranteed that all partial log records have been 866 * accounted for. Therefore, we know that the last good log record 867 * written was complete and ended exactly on the end boundary 868 * of the physical log. 869 */ 870 log->l_prev_block = i; 871 log->l_curr_block = (int)*head_blk; 872 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); 873 if (found == 2) 874 log->l_curr_cycle++; 875 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); 876 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); 877 log->l_grant_reserve_cycle = log->l_curr_cycle; 878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); 879 log->l_grant_write_cycle = log->l_curr_cycle; 880 log->l_grant_write_bytes = BBTOB(log->l_curr_block); 881 882 /* 883 * Look for unmount record. If we find it, then we know there 884 * was a clean unmount. Since 'i' could be the last block in 885 * the physical log, we convert to a log block before comparing 886 * to the head_blk. 887 * 888 * Save the current tail lsn to use to pass to 889 * xlog_clear_stale_blocks() below. We won't want to clear the 890 * unmount record if there is one, so we pass the lsn of the 891 * unmount record rather than the block after it. 892 */ 893 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 894 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 895 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); 896 897 if ((h_version & XLOG_VERSION_2) && 898 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 900 if (h_size % XLOG_HEADER_CYCLE_SIZE) 901 hblks++; 902 } else { 903 hblks = 1; 904 } 905 } else { 906 hblks = 1; 907 } 908 after_umount_blk = (i + hblks + (int) 909 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; 910 tail_lsn = log->l_tail_lsn; 911 if (*head_blk == after_umount_blk && 912 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { 913 umount_data_blk = (i + hblks) % log->l_logBBsize; 914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { 915 goto bread_err; 916 } 917 offset = xlog_align(log, umount_data_blk, 1, bp); 918 op_head = (xlog_op_header_t *)offset; 919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 920 /* 921 * Set tail and last sync so that newly written 922 * log records will point recovery to after the 923 * current unmount record. 924 */ 925 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, 926 after_umount_blk); 927 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, 928 after_umount_blk); 929 *tail_blk = after_umount_blk; 930 } 931 } 932 933 /* 934 * Make sure that there are no blocks in front of the head 935 * with the same cycle number as the head. This can happen 936 * because we allow multiple outstanding log writes concurrently, 937 * and the later writes might make it out before earlier ones. 938 * 939 * We use the lsn from before modifying it so that we'll never 940 * overwrite the unmount record after a clean unmount. 941 * 942 * Do this only if we are going to recover the filesystem 943 * 944 * NOTE: This used to say "if (!readonly)" 945 * However on Linux, we can & do recover a read-only filesystem. 946 * We only skip recovery if NORECOVERY is specified on mount, 947 * in which case we would not be here. 948 * 949 * But... if the -device- itself is readonly, just skip this. 950 * We can't recover this device anyway, so it won't matter. 951 */ 952 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { 953 error = xlog_clear_stale_blocks(log, tail_lsn); 954 } 955 956 bread_err: 957 exit: 958 xlog_put_bp(bp); 959 960 if (error) 961 xlog_warn("XFS: failed to locate log tail"); 962 return error; 963 } 964 965 /* 966 * Is the log zeroed at all? 967 * 968 * The last binary search should be changed to perform an X block read 969 * once X becomes small enough. You can then search linearly through 970 * the X blocks. This will cut down on the number of reads we need to do. 971 * 972 * If the log is partially zeroed, this routine will pass back the blkno 973 * of the first block with cycle number 0. It won't have a complete LR 974 * preceding it. 975 * 976 * Return: 977 * 0 => the log is completely written to 978 * -1 => use *blk_no as the first block of the log 979 * >0 => error has occurred 980 */ 981 int 982 xlog_find_zeroed( 983 xlog_t *log, 984 xfs_daddr_t *blk_no) 985 { 986 xfs_buf_t *bp; 987 xfs_caddr_t offset; 988 uint first_cycle, last_cycle; 989 xfs_daddr_t new_blk, last_blk, start_blk; 990 xfs_daddr_t num_scan_bblks; 991 int error, log_bbnum = log->l_logBBsize; 992 993 /* check totally zeroed log */ 994 bp = xlog_get_bp(log, 1); 995 if (!bp) 996 return ENOMEM; 997 if ((error = xlog_bread(log, 0, 1, bp))) 998 goto bp_err; 999 offset = xlog_align(log, 0, 1, bp); 1000 first_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1001 if (first_cycle == 0) { /* completely zeroed log */ 1002 *blk_no = 0; 1003 xlog_put_bp(bp); 1004 return -1; 1005 } 1006 1007 /* check partially zeroed log */ 1008 if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) 1009 goto bp_err; 1010 offset = xlog_align(log, log_bbnum-1, 1, bp); 1011 last_cycle = GET_CYCLE(offset, ARCH_CONVERT); 1012 if (last_cycle != 0) { /* log completely written to */ 1013 xlog_put_bp(bp); 1014 return 0; 1015 } else if (first_cycle != 1) { 1016 /* 1017 * If the cycle of the last block is zero, the cycle of 1018 * the first block must be 1. If it's not, maybe we're 1019 * not looking at a log... Bail out. 1020 */ 1021 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); 1022 return XFS_ERROR(EINVAL); 1023 } 1024 1025 /* we have a partially zeroed log */ 1026 last_blk = log_bbnum-1; 1027 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1028 goto bp_err; 1029 1030 /* 1031 * Validate the answer. Because there is no way to guarantee that 1032 * the entire log is made up of log records which are the same size, 1033 * we scan over the defined maximum blocks. At this point, the maximum 1034 * is not chosen to mean anything special. XXXmiken 1035 */ 1036 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1037 ASSERT(num_scan_bblks <= INT_MAX); 1038 1039 if (last_blk < num_scan_bblks) 1040 num_scan_bblks = last_blk; 1041 start_blk = last_blk - num_scan_bblks; 1042 1043 /* 1044 * We search for any instances of cycle number 0 that occur before 1045 * our current estimate of the head. What we're trying to detect is 1046 * 1 ... | 0 | 1 | 0... 1047 * ^ binary search ends here 1048 */ 1049 if ((error = xlog_find_verify_cycle(log, start_blk, 1050 (int)num_scan_bblks, 0, &new_blk))) 1051 goto bp_err; 1052 if (new_blk != -1) 1053 last_blk = new_blk; 1054 1055 /* 1056 * Potentially backup over partial log record write. We don't need 1057 * to search the end of the log because we know it is zero. 1058 */ 1059 if ((error = xlog_find_verify_log_record(log, start_blk, 1060 &last_blk, 0)) == -1) { 1061 error = XFS_ERROR(EIO); 1062 goto bp_err; 1063 } else if (error) 1064 goto bp_err; 1065 1066 *blk_no = last_blk; 1067 bp_err: 1068 xlog_put_bp(bp); 1069 if (error) 1070 return error; 1071 return -1; 1072 } 1073 1074 /* 1075 * These are simple subroutines used by xlog_clear_stale_blocks() below 1076 * to initialize a buffer full of empty log record headers and write 1077 * them into the log. 1078 */ 1079 STATIC void 1080 xlog_add_record( 1081 xlog_t *log, 1082 xfs_caddr_t buf, 1083 int cycle, 1084 int block, 1085 int tail_cycle, 1086 int tail_block) 1087 { 1088 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1089 1090 memset(buf, 0, BBSIZE); 1091 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); 1092 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); 1093 INT_SET(recp->h_version, ARCH_CONVERT, 1094 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); 1095 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); 1096 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); 1097 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); 1098 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1099 } 1100 1101 STATIC int 1102 xlog_write_log_records( 1103 xlog_t *log, 1104 int cycle, 1105 int start_block, 1106 int blocks, 1107 int tail_cycle, 1108 int tail_block) 1109 { 1110 xfs_caddr_t offset; 1111 xfs_buf_t *bp; 1112 int balign, ealign; 1113 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); 1114 int end_block = start_block + blocks; 1115 int bufblks; 1116 int error = 0; 1117 int i, j = 0; 1118 1119 bufblks = 1 << ffs(blocks); 1120 while (!(bp = xlog_get_bp(log, bufblks))) { 1121 bufblks >>= 1; 1122 if (bufblks <= log->l_sectbb_log) 1123 return ENOMEM; 1124 } 1125 1126 /* We may need to do a read at the start to fill in part of 1127 * the buffer in the starting sector not covered by the first 1128 * write below. 1129 */ 1130 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); 1131 if (balign != start_block) { 1132 if ((error = xlog_bread(log, start_block, 1, bp))) { 1133 xlog_put_bp(bp); 1134 return error; 1135 } 1136 j = start_block - balign; 1137 } 1138 1139 for (i = start_block; i < end_block; i += bufblks) { 1140 int bcount, endcount; 1141 1142 bcount = min(bufblks, end_block - start_block); 1143 endcount = bcount - j; 1144 1145 /* We may need to do a read at the end to fill in part of 1146 * the buffer in the final sector not covered by the write. 1147 * If this is the same sector as the above read, skip it. 1148 */ 1149 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); 1150 if (j == 0 && (start_block + endcount > ealign)) { 1151 offset = XFS_BUF_PTR(bp); 1152 balign = BBTOB(ealign - start_block); 1153 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); 1154 if ((error = xlog_bread(log, ealign, sectbb, bp))) 1155 break; 1156 XFS_BUF_SET_PTR(bp, offset, bufblks); 1157 } 1158 1159 offset = xlog_align(log, start_block, endcount, bp); 1160 for (; j < endcount; j++) { 1161 xlog_add_record(log, offset, cycle, i+j, 1162 tail_cycle, tail_block); 1163 offset += BBSIZE; 1164 } 1165 error = xlog_bwrite(log, start_block, endcount, bp); 1166 if (error) 1167 break; 1168 start_block += endcount; 1169 j = 0; 1170 } 1171 xlog_put_bp(bp); 1172 return error; 1173 } 1174 1175 /* 1176 * This routine is called to blow away any incomplete log writes out 1177 * in front of the log head. We do this so that we won't become confused 1178 * if we come up, write only a little bit more, and then crash again. 1179 * If we leave the partial log records out there, this situation could 1180 * cause us to think those partial writes are valid blocks since they 1181 * have the current cycle number. We get rid of them by overwriting them 1182 * with empty log records with the old cycle number rather than the 1183 * current one. 1184 * 1185 * The tail lsn is passed in rather than taken from 1186 * the log so that we will not write over the unmount record after a 1187 * clean unmount in a 512 block log. Doing so would leave the log without 1188 * any valid log records in it until a new one was written. If we crashed 1189 * during that time we would not be able to recover. 1190 */ 1191 STATIC int 1192 xlog_clear_stale_blocks( 1193 xlog_t *log, 1194 xfs_lsn_t tail_lsn) 1195 { 1196 int tail_cycle, head_cycle; 1197 int tail_block, head_block; 1198 int tail_distance, max_distance; 1199 int distance; 1200 int error; 1201 1202 tail_cycle = CYCLE_LSN(tail_lsn); 1203 tail_block = BLOCK_LSN(tail_lsn); 1204 head_cycle = log->l_curr_cycle; 1205 head_block = log->l_curr_block; 1206 1207 /* 1208 * Figure out the distance between the new head of the log 1209 * and the tail. We want to write over any blocks beyond the 1210 * head that we may have written just before the crash, but 1211 * we don't want to overwrite the tail of the log. 1212 */ 1213 if (head_cycle == tail_cycle) { 1214 /* 1215 * The tail is behind the head in the physical log, 1216 * so the distance from the head to the tail is the 1217 * distance from the head to the end of the log plus 1218 * the distance from the beginning of the log to the 1219 * tail. 1220 */ 1221 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1222 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1223 XFS_ERRLEVEL_LOW, log->l_mp); 1224 return XFS_ERROR(EFSCORRUPTED); 1225 } 1226 tail_distance = tail_block + (log->l_logBBsize - head_block); 1227 } else { 1228 /* 1229 * The head is behind the tail in the physical log, 1230 * so the distance from the head to the tail is just 1231 * the tail block minus the head block. 1232 */ 1233 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1234 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1235 XFS_ERRLEVEL_LOW, log->l_mp); 1236 return XFS_ERROR(EFSCORRUPTED); 1237 } 1238 tail_distance = tail_block - head_block; 1239 } 1240 1241 /* 1242 * If the head is right up against the tail, we can't clear 1243 * anything. 1244 */ 1245 if (tail_distance <= 0) { 1246 ASSERT(tail_distance == 0); 1247 return 0; 1248 } 1249 1250 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1251 /* 1252 * Take the smaller of the maximum amount of outstanding I/O 1253 * we could have and the distance to the tail to clear out. 1254 * We take the smaller so that we don't overwrite the tail and 1255 * we don't waste all day writing from the head to the tail 1256 * for no reason. 1257 */ 1258 max_distance = MIN(max_distance, tail_distance); 1259 1260 if ((head_block + max_distance) <= log->l_logBBsize) { 1261 /* 1262 * We can stomp all the blocks we need to without 1263 * wrapping around the end of the log. Just do it 1264 * in a single write. Use the cycle number of the 1265 * current cycle minus one so that the log will look like: 1266 * n ... | n - 1 ... 1267 */ 1268 error = xlog_write_log_records(log, (head_cycle - 1), 1269 head_block, max_distance, tail_cycle, 1270 tail_block); 1271 if (error) 1272 return error; 1273 } else { 1274 /* 1275 * We need to wrap around the end of the physical log in 1276 * order to clear all the blocks. Do it in two separate 1277 * I/Os. The first write should be from the head to the 1278 * end of the physical log, and it should use the current 1279 * cycle number minus one just like above. 1280 */ 1281 distance = log->l_logBBsize - head_block; 1282 error = xlog_write_log_records(log, (head_cycle - 1), 1283 head_block, distance, tail_cycle, 1284 tail_block); 1285 1286 if (error) 1287 return error; 1288 1289 /* 1290 * Now write the blocks at the start of the physical log. 1291 * This writes the remainder of the blocks we want to clear. 1292 * It uses the current cycle number since we're now on the 1293 * same cycle as the head so that we get: 1294 * n ... n ... | n - 1 ... 1295 * ^^^^^ blocks we're writing 1296 */ 1297 distance = max_distance - (log->l_logBBsize - head_block); 1298 error = xlog_write_log_records(log, head_cycle, 0, distance, 1299 tail_cycle, tail_block); 1300 if (error) 1301 return error; 1302 } 1303 1304 return 0; 1305 } 1306 1307 /****************************************************************************** 1308 * 1309 * Log recover routines 1310 * 1311 ****************************************************************************** 1312 */ 1313 1314 STATIC xlog_recover_t * 1315 xlog_recover_find_tid( 1316 xlog_recover_t *q, 1317 xlog_tid_t tid) 1318 { 1319 xlog_recover_t *p = q; 1320 1321 while (p != NULL) { 1322 if (p->r_log_tid == tid) 1323 break; 1324 p = p->r_next; 1325 } 1326 return p; 1327 } 1328 1329 STATIC void 1330 xlog_recover_put_hashq( 1331 xlog_recover_t **q, 1332 xlog_recover_t *trans) 1333 { 1334 trans->r_next = *q; 1335 *q = trans; 1336 } 1337 1338 STATIC void 1339 xlog_recover_add_item( 1340 xlog_recover_item_t **itemq) 1341 { 1342 xlog_recover_item_t *item; 1343 1344 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1345 xlog_recover_insert_item_backq(itemq, item); 1346 } 1347 1348 STATIC int 1349 xlog_recover_add_to_cont_trans( 1350 xlog_recover_t *trans, 1351 xfs_caddr_t dp, 1352 int len) 1353 { 1354 xlog_recover_item_t *item; 1355 xfs_caddr_t ptr, old_ptr; 1356 int old_len; 1357 1358 item = trans->r_itemq; 1359 if (item == 0) { 1360 /* finish copying rest of trans header */ 1361 xlog_recover_add_item(&trans->r_itemq); 1362 ptr = (xfs_caddr_t) &trans->r_theader + 1363 sizeof(xfs_trans_header_t) - len; 1364 memcpy(ptr, dp, len); /* d, s, l */ 1365 return 0; 1366 } 1367 item = item->ri_prev; 1368 1369 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1370 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1371 1372 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1373 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1374 item->ri_buf[item->ri_cnt-1].i_len += len; 1375 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1376 return 0; 1377 } 1378 1379 /* 1380 * The next region to add is the start of a new region. It could be 1381 * a whole region or it could be the first part of a new region. Because 1382 * of this, the assumption here is that the type and size fields of all 1383 * format structures fit into the first 32 bits of the structure. 1384 * 1385 * This works because all regions must be 32 bit aligned. Therefore, we 1386 * either have both fields or we have neither field. In the case we have 1387 * neither field, the data part of the region is zero length. We only have 1388 * a log_op_header and can throw away the header since a new one will appear 1389 * later. If we have at least 4 bytes, then we can determine how many regions 1390 * will appear in the current log item. 1391 */ 1392 STATIC int 1393 xlog_recover_add_to_trans( 1394 xlog_recover_t *trans, 1395 xfs_caddr_t dp, 1396 int len) 1397 { 1398 xfs_inode_log_format_t *in_f; /* any will do */ 1399 xlog_recover_item_t *item; 1400 xfs_caddr_t ptr; 1401 1402 if (!len) 1403 return 0; 1404 item = trans->r_itemq; 1405 if (item == 0) { 1406 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); 1407 if (len == sizeof(xfs_trans_header_t)) 1408 xlog_recover_add_item(&trans->r_itemq); 1409 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1410 return 0; 1411 } 1412 1413 ptr = kmem_alloc(len, KM_SLEEP); 1414 memcpy(ptr, dp, len); 1415 in_f = (xfs_inode_log_format_t *)ptr; 1416 1417 if (item->ri_prev->ri_total != 0 && 1418 item->ri_prev->ri_total == item->ri_prev->ri_cnt) { 1419 xlog_recover_add_item(&trans->r_itemq); 1420 } 1421 item = trans->r_itemq; 1422 item = item->ri_prev; 1423 1424 if (item->ri_total == 0) { /* first region to be added */ 1425 item->ri_total = in_f->ilf_size; 1426 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); 1427 item->ri_buf = kmem_zalloc((item->ri_total * 1428 sizeof(xfs_log_iovec_t)), KM_SLEEP); 1429 } 1430 ASSERT(item->ri_total > item->ri_cnt); 1431 /* Description region is ri_buf[0] */ 1432 item->ri_buf[item->ri_cnt].i_addr = ptr; 1433 item->ri_buf[item->ri_cnt].i_len = len; 1434 item->ri_cnt++; 1435 return 0; 1436 } 1437 1438 STATIC void 1439 xlog_recover_new_tid( 1440 xlog_recover_t **q, 1441 xlog_tid_t tid, 1442 xfs_lsn_t lsn) 1443 { 1444 xlog_recover_t *trans; 1445 1446 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1447 trans->r_log_tid = tid; 1448 trans->r_lsn = lsn; 1449 xlog_recover_put_hashq(q, trans); 1450 } 1451 1452 STATIC int 1453 xlog_recover_unlink_tid( 1454 xlog_recover_t **q, 1455 xlog_recover_t *trans) 1456 { 1457 xlog_recover_t *tp; 1458 int found = 0; 1459 1460 ASSERT(trans != 0); 1461 if (trans == *q) { 1462 *q = (*q)->r_next; 1463 } else { 1464 tp = *q; 1465 while (tp != 0) { 1466 if (tp->r_next == trans) { 1467 found = 1; 1468 break; 1469 } 1470 tp = tp->r_next; 1471 } 1472 if (!found) { 1473 xlog_warn( 1474 "XFS: xlog_recover_unlink_tid: trans not found"); 1475 ASSERT(0); 1476 return XFS_ERROR(EIO); 1477 } 1478 tp->r_next = tp->r_next->r_next; 1479 } 1480 return 0; 1481 } 1482 1483 STATIC void 1484 xlog_recover_insert_item_backq( 1485 xlog_recover_item_t **q, 1486 xlog_recover_item_t *item) 1487 { 1488 if (*q == 0) { 1489 item->ri_prev = item->ri_next = item; 1490 *q = item; 1491 } else { 1492 item->ri_next = *q; 1493 item->ri_prev = (*q)->ri_prev; 1494 (*q)->ri_prev = item; 1495 item->ri_prev->ri_next = item; 1496 } 1497 } 1498 1499 STATIC void 1500 xlog_recover_insert_item_frontq( 1501 xlog_recover_item_t **q, 1502 xlog_recover_item_t *item) 1503 { 1504 xlog_recover_insert_item_backq(q, item); 1505 *q = item; 1506 } 1507 1508 STATIC int 1509 xlog_recover_reorder_trans( 1510 xlog_t *log, 1511 xlog_recover_t *trans) 1512 { 1513 xlog_recover_item_t *first_item, *itemq, *itemq_next; 1514 xfs_buf_log_format_t *buf_f; 1515 xfs_buf_log_format_v1_t *obuf_f; 1516 ushort flags = 0; 1517 1518 first_item = itemq = trans->r_itemq; 1519 trans->r_itemq = NULL; 1520 do { 1521 itemq_next = itemq->ri_next; 1522 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; 1523 switch (ITEM_TYPE(itemq)) { 1524 case XFS_LI_BUF: 1525 flags = buf_f->blf_flags; 1526 break; 1527 case XFS_LI_6_1_BUF: 1528 case XFS_LI_5_3_BUF: 1529 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1530 flags = obuf_f->blf_flags; 1531 break; 1532 } 1533 1534 switch (ITEM_TYPE(itemq)) { 1535 case XFS_LI_BUF: 1536 case XFS_LI_6_1_BUF: 1537 case XFS_LI_5_3_BUF: 1538 if (!(flags & XFS_BLI_CANCEL)) { 1539 xlog_recover_insert_item_frontq(&trans->r_itemq, 1540 itemq); 1541 break; 1542 } 1543 case XFS_LI_INODE: 1544 case XFS_LI_6_1_INODE: 1545 case XFS_LI_5_3_INODE: 1546 case XFS_LI_DQUOT: 1547 case XFS_LI_QUOTAOFF: 1548 case XFS_LI_EFD: 1549 case XFS_LI_EFI: 1550 xlog_recover_insert_item_backq(&trans->r_itemq, itemq); 1551 break; 1552 default: 1553 xlog_warn( 1554 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); 1555 ASSERT(0); 1556 return XFS_ERROR(EIO); 1557 } 1558 itemq = itemq_next; 1559 } while (first_item != itemq); 1560 return 0; 1561 } 1562 1563 /* 1564 * Build up the table of buf cancel records so that we don't replay 1565 * cancelled data in the second pass. For buffer records that are 1566 * not cancel records, there is nothing to do here so we just return. 1567 * 1568 * If we get a cancel record which is already in the table, this indicates 1569 * that the buffer was cancelled multiple times. In order to ensure 1570 * that during pass 2 we keep the record in the table until we reach its 1571 * last occurrence in the log, we keep a reference count in the cancel 1572 * record in the table to tell us how many times we expect to see this 1573 * record during the second pass. 1574 */ 1575 STATIC void 1576 xlog_recover_do_buffer_pass1( 1577 xlog_t *log, 1578 xfs_buf_log_format_t *buf_f) 1579 { 1580 xfs_buf_cancel_t *bcp; 1581 xfs_buf_cancel_t *nextp; 1582 xfs_buf_cancel_t *prevp; 1583 xfs_buf_cancel_t **bucket; 1584 xfs_buf_log_format_v1_t *obuf_f; 1585 xfs_daddr_t blkno = 0; 1586 uint len = 0; 1587 ushort flags = 0; 1588 1589 switch (buf_f->blf_type) { 1590 case XFS_LI_BUF: 1591 blkno = buf_f->blf_blkno; 1592 len = buf_f->blf_len; 1593 flags = buf_f->blf_flags; 1594 break; 1595 case XFS_LI_6_1_BUF: 1596 case XFS_LI_5_3_BUF: 1597 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1598 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1599 len = obuf_f->blf_len; 1600 flags = obuf_f->blf_flags; 1601 break; 1602 } 1603 1604 /* 1605 * If this isn't a cancel buffer item, then just return. 1606 */ 1607 if (!(flags & XFS_BLI_CANCEL)) 1608 return; 1609 1610 /* 1611 * Insert an xfs_buf_cancel record into the hash table of 1612 * them. If there is already an identical record, bump 1613 * its reference count. 1614 */ 1615 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1616 XLOG_BC_TABLE_SIZE]; 1617 /* 1618 * If the hash bucket is empty then just insert a new record into 1619 * the bucket. 1620 */ 1621 if (*bucket == NULL) { 1622 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1623 KM_SLEEP); 1624 bcp->bc_blkno = blkno; 1625 bcp->bc_len = len; 1626 bcp->bc_refcount = 1; 1627 bcp->bc_next = NULL; 1628 *bucket = bcp; 1629 return; 1630 } 1631 1632 /* 1633 * The hash bucket is not empty, so search for duplicates of our 1634 * record. If we find one them just bump its refcount. If not 1635 * then add us at the end of the list. 1636 */ 1637 prevp = NULL; 1638 nextp = *bucket; 1639 while (nextp != NULL) { 1640 if (nextp->bc_blkno == blkno && nextp->bc_len == len) { 1641 nextp->bc_refcount++; 1642 return; 1643 } 1644 prevp = nextp; 1645 nextp = nextp->bc_next; 1646 } 1647 ASSERT(prevp != NULL); 1648 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), 1649 KM_SLEEP); 1650 bcp->bc_blkno = blkno; 1651 bcp->bc_len = len; 1652 bcp->bc_refcount = 1; 1653 bcp->bc_next = NULL; 1654 prevp->bc_next = bcp; 1655 } 1656 1657 /* 1658 * Check to see whether the buffer being recovered has a corresponding 1659 * entry in the buffer cancel record table. If it does then return 1 1660 * so that it will be cancelled, otherwise return 0. If the buffer is 1661 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement 1662 * the refcount on the entry in the table and remove it from the table 1663 * if this is the last reference. 1664 * 1665 * We remove the cancel record from the table when we encounter its 1666 * last occurrence in the log so that if the same buffer is re-used 1667 * again after its last cancellation we actually replay the changes 1668 * made at that point. 1669 */ 1670 STATIC int 1671 xlog_check_buffer_cancelled( 1672 xlog_t *log, 1673 xfs_daddr_t blkno, 1674 uint len, 1675 ushort flags) 1676 { 1677 xfs_buf_cancel_t *bcp; 1678 xfs_buf_cancel_t *prevp; 1679 xfs_buf_cancel_t **bucket; 1680 1681 if (log->l_buf_cancel_table == NULL) { 1682 /* 1683 * There is nothing in the table built in pass one, 1684 * so this buffer must not be cancelled. 1685 */ 1686 ASSERT(!(flags & XFS_BLI_CANCEL)); 1687 return 0; 1688 } 1689 1690 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % 1691 XLOG_BC_TABLE_SIZE]; 1692 bcp = *bucket; 1693 if (bcp == NULL) { 1694 /* 1695 * There is no corresponding entry in the table built 1696 * in pass one, so this buffer has not been cancelled. 1697 */ 1698 ASSERT(!(flags & XFS_BLI_CANCEL)); 1699 return 0; 1700 } 1701 1702 /* 1703 * Search for an entry in the buffer cancel table that 1704 * matches our buffer. 1705 */ 1706 prevp = NULL; 1707 while (bcp != NULL) { 1708 if (bcp->bc_blkno == blkno && bcp->bc_len == len) { 1709 /* 1710 * We've go a match, so return 1 so that the 1711 * recovery of this buffer is cancelled. 1712 * If this buffer is actually a buffer cancel 1713 * log item, then decrement the refcount on the 1714 * one in the table and remove it if this is the 1715 * last reference. 1716 */ 1717 if (flags & XFS_BLI_CANCEL) { 1718 bcp->bc_refcount--; 1719 if (bcp->bc_refcount == 0) { 1720 if (prevp == NULL) { 1721 *bucket = bcp->bc_next; 1722 } else { 1723 prevp->bc_next = bcp->bc_next; 1724 } 1725 kmem_free(bcp, 1726 sizeof(xfs_buf_cancel_t)); 1727 } 1728 } 1729 return 1; 1730 } 1731 prevp = bcp; 1732 bcp = bcp->bc_next; 1733 } 1734 /* 1735 * We didn't find a corresponding entry in the table, so 1736 * return 0 so that the buffer is NOT cancelled. 1737 */ 1738 ASSERT(!(flags & XFS_BLI_CANCEL)); 1739 return 0; 1740 } 1741 1742 STATIC int 1743 xlog_recover_do_buffer_pass2( 1744 xlog_t *log, 1745 xfs_buf_log_format_t *buf_f) 1746 { 1747 xfs_buf_log_format_v1_t *obuf_f; 1748 xfs_daddr_t blkno = 0; 1749 ushort flags = 0; 1750 uint len = 0; 1751 1752 switch (buf_f->blf_type) { 1753 case XFS_LI_BUF: 1754 blkno = buf_f->blf_blkno; 1755 flags = buf_f->blf_flags; 1756 len = buf_f->blf_len; 1757 break; 1758 case XFS_LI_6_1_BUF: 1759 case XFS_LI_5_3_BUF: 1760 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1761 blkno = (xfs_daddr_t) obuf_f->blf_blkno; 1762 flags = obuf_f->blf_flags; 1763 len = (xfs_daddr_t) obuf_f->blf_len; 1764 break; 1765 } 1766 1767 return xlog_check_buffer_cancelled(log, blkno, len, flags); 1768 } 1769 1770 /* 1771 * Perform recovery for a buffer full of inodes. In these buffers, 1772 * the only data which should be recovered is that which corresponds 1773 * to the di_next_unlinked pointers in the on disk inode structures. 1774 * The rest of the data for the inodes is always logged through the 1775 * inodes themselves rather than the inode buffer and is recovered 1776 * in xlog_recover_do_inode_trans(). 1777 * 1778 * The only time when buffers full of inodes are fully recovered is 1779 * when the buffer is full of newly allocated inodes. In this case 1780 * the buffer will not be marked as an inode buffer and so will be 1781 * sent to xlog_recover_do_reg_buffer() below during recovery. 1782 */ 1783 STATIC int 1784 xlog_recover_do_inode_buffer( 1785 xfs_mount_t *mp, 1786 xlog_recover_item_t *item, 1787 xfs_buf_t *bp, 1788 xfs_buf_log_format_t *buf_f) 1789 { 1790 int i; 1791 int item_index; 1792 int bit; 1793 int nbits; 1794 int reg_buf_offset; 1795 int reg_buf_bytes; 1796 int next_unlinked_offset; 1797 int inodes_per_buf; 1798 xfs_agino_t *logged_nextp; 1799 xfs_agino_t *buffer_nextp; 1800 xfs_buf_log_format_v1_t *obuf_f; 1801 unsigned int *data_map = NULL; 1802 unsigned int map_size = 0; 1803 1804 switch (buf_f->blf_type) { 1805 case XFS_LI_BUF: 1806 data_map = buf_f->blf_data_map; 1807 map_size = buf_f->blf_map_size; 1808 break; 1809 case XFS_LI_6_1_BUF: 1810 case XFS_LI_5_3_BUF: 1811 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1812 data_map = obuf_f->blf_data_map; 1813 map_size = obuf_f->blf_map_size; 1814 break; 1815 } 1816 /* 1817 * Set the variables corresponding to the current region to 1818 * 0 so that we'll initialize them on the first pass through 1819 * the loop. 1820 */ 1821 reg_buf_offset = 0; 1822 reg_buf_bytes = 0; 1823 bit = 0; 1824 nbits = 0; 1825 item_index = 0; 1826 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1827 for (i = 0; i < inodes_per_buf; i++) { 1828 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1829 offsetof(xfs_dinode_t, di_next_unlinked); 1830 1831 while (next_unlinked_offset >= 1832 (reg_buf_offset + reg_buf_bytes)) { 1833 /* 1834 * The next di_next_unlinked field is beyond 1835 * the current logged region. Find the next 1836 * logged region that contains or is beyond 1837 * the current di_next_unlinked field. 1838 */ 1839 bit += nbits; 1840 bit = xfs_next_bit(data_map, map_size, bit); 1841 1842 /* 1843 * If there are no more logged regions in the 1844 * buffer, then we're done. 1845 */ 1846 if (bit == -1) { 1847 return 0; 1848 } 1849 1850 nbits = xfs_contig_bits(data_map, map_size, 1851 bit); 1852 ASSERT(nbits > 0); 1853 reg_buf_offset = bit << XFS_BLI_SHIFT; 1854 reg_buf_bytes = nbits << XFS_BLI_SHIFT; 1855 item_index++; 1856 } 1857 1858 /* 1859 * If the current logged region starts after the current 1860 * di_next_unlinked field, then move on to the next 1861 * di_next_unlinked field. 1862 */ 1863 if (next_unlinked_offset < reg_buf_offset) { 1864 continue; 1865 } 1866 1867 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1868 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); 1869 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1870 1871 /* 1872 * The current logged region contains a copy of the 1873 * current di_next_unlinked field. Extract its value 1874 * and copy it to the buffer copy. 1875 */ 1876 logged_nextp = (xfs_agino_t *) 1877 ((char *)(item->ri_buf[item_index].i_addr) + 1878 (next_unlinked_offset - reg_buf_offset)); 1879 if (unlikely(*logged_nextp == 0)) { 1880 xfs_fs_cmn_err(CE_ALERT, mp, 1881 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", 1882 item, bp); 1883 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1884 XFS_ERRLEVEL_LOW, mp); 1885 return XFS_ERROR(EFSCORRUPTED); 1886 } 1887 1888 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1889 next_unlinked_offset); 1890 *buffer_nextp = *logged_nextp; 1891 } 1892 1893 return 0; 1894 } 1895 1896 /* 1897 * Perform a 'normal' buffer recovery. Each logged region of the 1898 * buffer should be copied over the corresponding region in the 1899 * given buffer. The bitmap in the buf log format structure indicates 1900 * where to place the logged data. 1901 */ 1902 /*ARGSUSED*/ 1903 STATIC void 1904 xlog_recover_do_reg_buffer( 1905 xfs_mount_t *mp, 1906 xlog_recover_item_t *item, 1907 xfs_buf_t *bp, 1908 xfs_buf_log_format_t *buf_f) 1909 { 1910 int i; 1911 int bit; 1912 int nbits; 1913 xfs_buf_log_format_v1_t *obuf_f; 1914 unsigned int *data_map = NULL; 1915 unsigned int map_size = 0; 1916 int error; 1917 1918 switch (buf_f->blf_type) { 1919 case XFS_LI_BUF: 1920 data_map = buf_f->blf_data_map; 1921 map_size = buf_f->blf_map_size; 1922 break; 1923 case XFS_LI_6_1_BUF: 1924 case XFS_LI_5_3_BUF: 1925 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 1926 data_map = obuf_f->blf_data_map; 1927 map_size = obuf_f->blf_map_size; 1928 break; 1929 } 1930 bit = 0; 1931 i = 1; /* 0 is the buf format structure */ 1932 while (1) { 1933 bit = xfs_next_bit(data_map, map_size, bit); 1934 if (bit == -1) 1935 break; 1936 nbits = xfs_contig_bits(data_map, map_size, bit); 1937 ASSERT(nbits > 0); 1938 ASSERT(item->ri_buf[i].i_addr != 0); 1939 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); 1940 ASSERT(XFS_BUF_COUNT(bp) >= 1941 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); 1942 1943 /* 1944 * Do a sanity check if this is a dquot buffer. Just checking 1945 * the first dquot in the buffer should do. XXXThis is 1946 * probably a good thing to do for other buf types also. 1947 */ 1948 error = 0; 1949 if (buf_f->blf_flags & 1950 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 1951 error = xfs_qm_dqcheck((xfs_disk_dquot_t *) 1952 item->ri_buf[i].i_addr, 1953 -1, 0, XFS_QMOPT_DOWARN, 1954 "dquot_buf_recover"); 1955 } 1956 if (!error) 1957 memcpy(xfs_buf_offset(bp, 1958 (uint)bit << XFS_BLI_SHIFT), /* dest */ 1959 item->ri_buf[i].i_addr, /* source */ 1960 nbits<<XFS_BLI_SHIFT); /* length */ 1961 i++; 1962 bit += nbits; 1963 } 1964 1965 /* Shouldn't be any more regions */ 1966 ASSERT(i == item->ri_total); 1967 } 1968 1969 /* 1970 * Do some primitive error checking on ondisk dquot data structures. 1971 */ 1972 int 1973 xfs_qm_dqcheck( 1974 xfs_disk_dquot_t *ddq, 1975 xfs_dqid_t id, 1976 uint type, /* used only when IO_dorepair is true */ 1977 uint flags, 1978 char *str) 1979 { 1980 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1981 int errs = 0; 1982 1983 /* 1984 * We can encounter an uninitialized dquot buffer for 2 reasons: 1985 * 1. If we crash while deleting the quotainode(s), and those blks got 1986 * used for user data. This is because we take the path of regular 1987 * file deletion; however, the size field of quotainodes is never 1988 * updated, so all the tricks that we play in itruncate_finish 1989 * don't quite matter. 1990 * 1991 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1992 * But the allocation will be replayed so we'll end up with an 1993 * uninitialized quota block. 1994 * 1995 * This is all fine; things are still consistent, and we haven't lost 1996 * any quota information. Just don't complain about bad dquot blks. 1997 */ 1998 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) { 1999 if (flags & XFS_QMOPT_DOWARN) 2000 cmn_err(CE_ALERT, 2001 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 2002 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 2003 errs++; 2004 } 2005 if (ddq->d_version != XFS_DQUOT_VERSION) { 2006 if (flags & XFS_QMOPT_DOWARN) 2007 cmn_err(CE_ALERT, 2008 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 2009 str, id, ddq->d_version, XFS_DQUOT_VERSION); 2010 errs++; 2011 } 2012 2013 if (ddq->d_flags != XFS_DQ_USER && 2014 ddq->d_flags != XFS_DQ_PROJ && 2015 ddq->d_flags != XFS_DQ_GROUP) { 2016 if (flags & XFS_QMOPT_DOWARN) 2017 cmn_err(CE_ALERT, 2018 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 2019 str, id, ddq->d_flags); 2020 errs++; 2021 } 2022 2023 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 2024 if (flags & XFS_QMOPT_DOWARN) 2025 cmn_err(CE_ALERT, 2026 "%s : ondisk-dquot 0x%p, ID mismatch: " 2027 "0x%x expected, found id 0x%x", 2028 str, ddq, id, be32_to_cpu(ddq->d_id)); 2029 errs++; 2030 } 2031 2032 if (!errs && ddq->d_id) { 2033 if (ddq->d_blk_softlimit && 2034 be64_to_cpu(ddq->d_bcount) >= 2035 be64_to_cpu(ddq->d_blk_softlimit)) { 2036 if (!ddq->d_btimer) { 2037 if (flags & XFS_QMOPT_DOWARN) 2038 cmn_err(CE_ALERT, 2039 "%s : Dquot ID 0x%x (0x%p) " 2040 "BLK TIMER NOT STARTED", 2041 str, (int)be32_to_cpu(ddq->d_id), ddq); 2042 errs++; 2043 } 2044 } 2045 if (ddq->d_ino_softlimit && 2046 be64_to_cpu(ddq->d_icount) >= 2047 be64_to_cpu(ddq->d_ino_softlimit)) { 2048 if (!ddq->d_itimer) { 2049 if (flags & XFS_QMOPT_DOWARN) 2050 cmn_err(CE_ALERT, 2051 "%s : Dquot ID 0x%x (0x%p) " 2052 "INODE TIMER NOT STARTED", 2053 str, (int)be32_to_cpu(ddq->d_id), ddq); 2054 errs++; 2055 } 2056 } 2057 if (ddq->d_rtb_softlimit && 2058 be64_to_cpu(ddq->d_rtbcount) >= 2059 be64_to_cpu(ddq->d_rtb_softlimit)) { 2060 if (!ddq->d_rtbtimer) { 2061 if (flags & XFS_QMOPT_DOWARN) 2062 cmn_err(CE_ALERT, 2063 "%s : Dquot ID 0x%x (0x%p) " 2064 "RTBLK TIMER NOT STARTED", 2065 str, (int)be32_to_cpu(ddq->d_id), ddq); 2066 errs++; 2067 } 2068 } 2069 } 2070 2071 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2072 return errs; 2073 2074 if (flags & XFS_QMOPT_DOWARN) 2075 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); 2076 2077 /* 2078 * Typically, a repair is only requested by quotacheck. 2079 */ 2080 ASSERT(id != -1); 2081 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2082 memset(d, 0, sizeof(xfs_dqblk_t)); 2083 2084 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2085 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2086 d->dd_diskdq.d_flags = type; 2087 d->dd_diskdq.d_id = cpu_to_be32(id); 2088 2089 return errs; 2090 } 2091 2092 /* 2093 * Perform a dquot buffer recovery. 2094 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2095 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2096 * Else, treat it as a regular buffer and do recovery. 2097 */ 2098 STATIC void 2099 xlog_recover_do_dquot_buffer( 2100 xfs_mount_t *mp, 2101 xlog_t *log, 2102 xlog_recover_item_t *item, 2103 xfs_buf_t *bp, 2104 xfs_buf_log_format_t *buf_f) 2105 { 2106 uint type; 2107 2108 /* 2109 * Filesystems are required to send in quota flags at mount time. 2110 */ 2111 if (mp->m_qflags == 0) { 2112 return; 2113 } 2114 2115 type = 0; 2116 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) 2117 type |= XFS_DQ_USER; 2118 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF) 2119 type |= XFS_DQ_PROJ; 2120 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) 2121 type |= XFS_DQ_GROUP; 2122 /* 2123 * This type of quotas was turned off, so ignore this buffer 2124 */ 2125 if (log->l_quotaoffs_flag & type) 2126 return; 2127 2128 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2129 } 2130 2131 /* 2132 * This routine replays a modification made to a buffer at runtime. 2133 * There are actually two types of buffer, regular and inode, which 2134 * are handled differently. Inode buffers are handled differently 2135 * in that we only recover a specific set of data from them, namely 2136 * the inode di_next_unlinked fields. This is because all other inode 2137 * data is actually logged via inode records and any data we replay 2138 * here which overlaps that may be stale. 2139 * 2140 * When meta-data buffers are freed at run time we log a buffer item 2141 * with the XFS_BLI_CANCEL bit set to indicate that previous copies 2142 * of the buffer in the log should not be replayed at recovery time. 2143 * This is so that if the blocks covered by the buffer are reused for 2144 * file data before we crash we don't end up replaying old, freed 2145 * meta-data into a user's file. 2146 * 2147 * To handle the cancellation of buffer log items, we make two passes 2148 * over the log during recovery. During the first we build a table of 2149 * those buffers which have been cancelled, and during the second we 2150 * only replay those buffers which do not have corresponding cancel 2151 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2152 * for more details on the implementation of the table of cancel records. 2153 */ 2154 STATIC int 2155 xlog_recover_do_buffer_trans( 2156 xlog_t *log, 2157 xlog_recover_item_t *item, 2158 int pass) 2159 { 2160 xfs_buf_log_format_t *buf_f; 2161 xfs_buf_log_format_v1_t *obuf_f; 2162 xfs_mount_t *mp; 2163 xfs_buf_t *bp; 2164 int error; 2165 int cancel; 2166 xfs_daddr_t blkno; 2167 int len; 2168 ushort flags; 2169 2170 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; 2171 2172 if (pass == XLOG_RECOVER_PASS1) { 2173 /* 2174 * In this pass we're only looking for buf items 2175 * with the XFS_BLI_CANCEL bit set. 2176 */ 2177 xlog_recover_do_buffer_pass1(log, buf_f); 2178 return 0; 2179 } else { 2180 /* 2181 * In this pass we want to recover all the buffers 2182 * which have not been cancelled and are not 2183 * cancellation buffers themselves. The routine 2184 * we call here will tell us whether or not to 2185 * continue with the replay of this buffer. 2186 */ 2187 cancel = xlog_recover_do_buffer_pass2(log, buf_f); 2188 if (cancel) { 2189 return 0; 2190 } 2191 } 2192 switch (buf_f->blf_type) { 2193 case XFS_LI_BUF: 2194 blkno = buf_f->blf_blkno; 2195 len = buf_f->blf_len; 2196 flags = buf_f->blf_flags; 2197 break; 2198 case XFS_LI_6_1_BUF: 2199 case XFS_LI_5_3_BUF: 2200 obuf_f = (xfs_buf_log_format_v1_t*)buf_f; 2201 blkno = obuf_f->blf_blkno; 2202 len = obuf_f->blf_len; 2203 flags = obuf_f->blf_flags; 2204 break; 2205 default: 2206 xfs_fs_cmn_err(CE_ALERT, log->l_mp, 2207 "xfs_log_recover: unknown buffer type 0x%x, logdev %s", 2208 buf_f->blf_type, log->l_mp->m_logname ? 2209 log->l_mp->m_logname : "internal"); 2210 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", 2211 XFS_ERRLEVEL_LOW, log->l_mp); 2212 return XFS_ERROR(EFSCORRUPTED); 2213 } 2214 2215 mp = log->l_mp; 2216 if (flags & XFS_BLI_INODE_BUF) { 2217 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, 2218 XFS_BUF_LOCK); 2219 } else { 2220 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); 2221 } 2222 if (XFS_BUF_ISERROR(bp)) { 2223 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, 2224 bp, blkno); 2225 error = XFS_BUF_GETERROR(bp); 2226 xfs_buf_relse(bp); 2227 return error; 2228 } 2229 2230 error = 0; 2231 if (flags & XFS_BLI_INODE_BUF) { 2232 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2233 } else if (flags & 2234 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { 2235 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2236 } else { 2237 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2238 } 2239 if (error) 2240 return XFS_ERROR(error); 2241 2242 /* 2243 * Perform delayed write on the buffer. Asynchronous writes will be 2244 * slower when taking into account all the buffers to be flushed. 2245 * 2246 * Also make sure that only inode buffers with good sizes stay in 2247 * the buffer cache. The kernel moves inodes in buffers of 1 block 2248 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2249 * buffers in the log can be a different size if the log was generated 2250 * by an older kernel using unclustered inode buffers or a newer kernel 2251 * running with a different inode cluster size. Regardless, if the 2252 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2253 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2254 * the buffer out of the buffer cache so that the buffer won't 2255 * overlap with future reads of those inodes. 2256 */ 2257 if (XFS_DINODE_MAGIC == 2258 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && 2259 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2260 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2261 XFS_BUF_STALE(bp); 2262 error = xfs_bwrite(mp, bp); 2263 } else { 2264 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2265 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2266 XFS_BUF_SET_FSPRIVATE(bp, mp); 2267 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2268 xfs_bdwrite(mp, bp); 2269 } 2270 2271 return (error); 2272 } 2273 2274 STATIC int 2275 xlog_recover_do_inode_trans( 2276 xlog_t *log, 2277 xlog_recover_item_t *item, 2278 int pass) 2279 { 2280 xfs_inode_log_format_t *in_f; 2281 xfs_mount_t *mp; 2282 xfs_buf_t *bp; 2283 xfs_imap_t imap; 2284 xfs_dinode_t *dip; 2285 xfs_ino_t ino; 2286 int len; 2287 xfs_caddr_t src; 2288 xfs_caddr_t dest; 2289 int error; 2290 int attr_index; 2291 uint fields; 2292 xfs_dinode_core_t *dicp; 2293 int need_free = 0; 2294 2295 if (pass == XLOG_RECOVER_PASS1) { 2296 return 0; 2297 } 2298 2299 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2300 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; 2301 } else { 2302 in_f = (xfs_inode_log_format_t *)kmem_alloc( 2303 sizeof(xfs_inode_log_format_t), KM_SLEEP); 2304 need_free = 1; 2305 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2306 if (error) 2307 goto error; 2308 } 2309 ino = in_f->ilf_ino; 2310 mp = log->l_mp; 2311 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2312 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; 2313 imap.im_len = in_f->ilf_len; 2314 imap.im_boffset = in_f->ilf_boffset; 2315 } else { 2316 /* 2317 * It's an old inode format record. We don't know where 2318 * its cluster is located on disk, and we can't allow 2319 * xfs_imap() to figure it out because the inode btrees 2320 * are not ready to be used. Therefore do not pass the 2321 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give 2322 * us only the single block in which the inode lives 2323 * rather than its cluster, so we must make sure to 2324 * invalidate the buffer when we write it out below. 2325 */ 2326 imap.im_blkno = 0; 2327 xfs_imap(log->l_mp, NULL, ino, &imap, 0); 2328 } 2329 2330 /* 2331 * Inode buffers can be freed, look out for it, 2332 * and do not replay the inode. 2333 */ 2334 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) { 2335 error = 0; 2336 goto error; 2337 } 2338 2339 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, 2340 XFS_BUF_LOCK); 2341 if (XFS_BUF_ISERROR(bp)) { 2342 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, 2343 bp, imap.im_blkno); 2344 error = XFS_BUF_GETERROR(bp); 2345 xfs_buf_relse(bp); 2346 goto error; 2347 } 2348 error = 0; 2349 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2350 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); 2351 2352 /* 2353 * Make sure the place we're flushing out to really looks 2354 * like an inode! 2355 */ 2356 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { 2357 xfs_buf_relse(bp); 2358 xfs_fs_cmn_err(CE_ALERT, mp, 2359 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", 2360 dip, bp, ino); 2361 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", 2362 XFS_ERRLEVEL_LOW, mp); 2363 error = EFSCORRUPTED; 2364 goto error; 2365 } 2366 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); 2367 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2368 xfs_buf_relse(bp); 2369 xfs_fs_cmn_err(CE_ALERT, mp, 2370 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", 2371 item, ino); 2372 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", 2373 XFS_ERRLEVEL_LOW, mp); 2374 error = EFSCORRUPTED; 2375 goto error; 2376 } 2377 2378 /* Skip replay when the on disk inode is newer than the log one */ 2379 if (dicp->di_flushiter < 2380 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { 2381 /* 2382 * Deal with the wrap case, DI_MAX_FLUSH is less 2383 * than smaller numbers 2384 */ 2385 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) 2386 == DI_MAX_FLUSH) && 2387 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { 2388 /* do nothing */ 2389 } else { 2390 xfs_buf_relse(bp); 2391 error = 0; 2392 goto error; 2393 } 2394 } 2395 /* Take the opportunity to reset the flush iteration count */ 2396 dicp->di_flushiter = 0; 2397 2398 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { 2399 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2400 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2401 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", 2402 XFS_ERRLEVEL_LOW, mp, dicp); 2403 xfs_buf_relse(bp); 2404 xfs_fs_cmn_err(CE_ALERT, mp, 2405 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2406 item, dip, bp, ino); 2407 error = EFSCORRUPTED; 2408 goto error; 2409 } 2410 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { 2411 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2412 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2413 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2414 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", 2415 XFS_ERRLEVEL_LOW, mp, dicp); 2416 xfs_buf_relse(bp); 2417 xfs_fs_cmn_err(CE_ALERT, mp, 2418 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2419 item, dip, bp, ino); 2420 error = EFSCORRUPTED; 2421 goto error; 2422 } 2423 } 2424 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2425 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", 2426 XFS_ERRLEVEL_LOW, mp, dicp); 2427 xfs_buf_relse(bp); 2428 xfs_fs_cmn_err(CE_ALERT, mp, 2429 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2430 item, dip, bp, ino, 2431 dicp->di_nextents + dicp->di_anextents, 2432 dicp->di_nblocks); 2433 error = EFSCORRUPTED; 2434 goto error; 2435 } 2436 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2437 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", 2438 XFS_ERRLEVEL_LOW, mp, dicp); 2439 xfs_buf_relse(bp); 2440 xfs_fs_cmn_err(CE_ALERT, mp, 2441 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", 2442 item, dip, bp, ino, dicp->di_forkoff); 2443 error = EFSCORRUPTED; 2444 goto error; 2445 } 2446 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { 2447 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", 2448 XFS_ERRLEVEL_LOW, mp, dicp); 2449 xfs_buf_relse(bp); 2450 xfs_fs_cmn_err(CE_ALERT, mp, 2451 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", 2452 item->ri_buf[1].i_len, item); 2453 error = EFSCORRUPTED; 2454 goto error; 2455 } 2456 2457 /* The core is in in-core format */ 2458 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, 2459 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); 2460 2461 /* the rest is in on-disk format */ 2462 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { 2463 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), 2464 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), 2465 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); 2466 } 2467 2468 fields = in_f->ilf_fields; 2469 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2470 case XFS_ILOG_DEV: 2471 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); 2472 2473 break; 2474 case XFS_ILOG_UUID: 2475 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; 2476 break; 2477 } 2478 2479 if (in_f->ilf_size == 2) 2480 goto write_inode_buffer; 2481 len = item->ri_buf[2].i_len; 2482 src = item->ri_buf[2].i_addr; 2483 ASSERT(in_f->ilf_size <= 4); 2484 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2485 ASSERT(!(fields & XFS_ILOG_DFORK) || 2486 (len == in_f->ilf_dsize)); 2487 2488 switch (fields & XFS_ILOG_DFORK) { 2489 case XFS_ILOG_DDATA: 2490 case XFS_ILOG_DEXT: 2491 memcpy(&dip->di_u, src, len); 2492 break; 2493 2494 case XFS_ILOG_DBROOT: 2495 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2496 &(dip->di_u.di_bmbt), 2497 XFS_DFORK_DSIZE(dip, mp)); 2498 break; 2499 2500 default: 2501 /* 2502 * There are no data fork flags set. 2503 */ 2504 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2505 break; 2506 } 2507 2508 /* 2509 * If we logged any attribute data, recover it. There may or 2510 * may not have been any other non-core data logged in this 2511 * transaction. 2512 */ 2513 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2514 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2515 attr_index = 3; 2516 } else { 2517 attr_index = 2; 2518 } 2519 len = item->ri_buf[attr_index].i_len; 2520 src = item->ri_buf[attr_index].i_addr; 2521 ASSERT(len == in_f->ilf_asize); 2522 2523 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2524 case XFS_ILOG_ADATA: 2525 case XFS_ILOG_AEXT: 2526 dest = XFS_DFORK_APTR(dip); 2527 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2528 memcpy(dest, src, len); 2529 break; 2530 2531 case XFS_ILOG_ABROOT: 2532 dest = XFS_DFORK_APTR(dip); 2533 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, 2534 (xfs_bmdr_block_t*)dest, 2535 XFS_DFORK_ASIZE(dip, mp)); 2536 break; 2537 2538 default: 2539 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); 2540 ASSERT(0); 2541 xfs_buf_relse(bp); 2542 error = EIO; 2543 goto error; 2544 } 2545 } 2546 2547 write_inode_buffer: 2548 if (ITEM_TYPE(item) == XFS_LI_INODE) { 2549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2550 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2551 XFS_BUF_SET_FSPRIVATE(bp, mp); 2552 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2553 xfs_bdwrite(mp, bp); 2554 } else { 2555 XFS_BUF_STALE(bp); 2556 error = xfs_bwrite(mp, bp); 2557 } 2558 2559 error: 2560 if (need_free) 2561 kmem_free(in_f, sizeof(*in_f)); 2562 return XFS_ERROR(error); 2563 } 2564 2565 /* 2566 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2567 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2568 * of that type. 2569 */ 2570 STATIC int 2571 xlog_recover_do_quotaoff_trans( 2572 xlog_t *log, 2573 xlog_recover_item_t *item, 2574 int pass) 2575 { 2576 xfs_qoff_logformat_t *qoff_f; 2577 2578 if (pass == XLOG_RECOVER_PASS2) { 2579 return (0); 2580 } 2581 2582 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; 2583 ASSERT(qoff_f); 2584 2585 /* 2586 * The logitem format's flag tells us if this was user quotaoff, 2587 * group/project quotaoff or both. 2588 */ 2589 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2590 log->l_quotaoffs_flag |= XFS_DQ_USER; 2591 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2592 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2593 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2594 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2595 2596 return (0); 2597 } 2598 2599 /* 2600 * Recover a dquot record 2601 */ 2602 STATIC int 2603 xlog_recover_do_dquot_trans( 2604 xlog_t *log, 2605 xlog_recover_item_t *item, 2606 int pass) 2607 { 2608 xfs_mount_t *mp; 2609 xfs_buf_t *bp; 2610 struct xfs_disk_dquot *ddq, *recddq; 2611 int error; 2612 xfs_dq_logformat_t *dq_f; 2613 uint type; 2614 2615 if (pass == XLOG_RECOVER_PASS1) { 2616 return 0; 2617 } 2618 mp = log->l_mp; 2619 2620 /* 2621 * Filesystems are required to send in quota flags at mount time. 2622 */ 2623 if (mp->m_qflags == 0) 2624 return (0); 2625 2626 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; 2627 ASSERT(recddq); 2628 /* 2629 * This type of quotas was turned off, so ignore this record. 2630 */ 2631 type = INT_GET(recddq->d_flags, ARCH_CONVERT) & 2632 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2633 ASSERT(type); 2634 if (log->l_quotaoffs_flag & type) 2635 return (0); 2636 2637 /* 2638 * At this point we know that quota was _not_ turned off. 2639 * Since the mount flags are not indicating to us otherwise, this 2640 * must mean that quota is on, and the dquot needs to be replayed. 2641 * Remember that we may not have fully recovered the superblock yet, 2642 * so we can't do the usual trick of looking at the SB quota bits. 2643 * 2644 * The other possibility, of course, is that the quota subsystem was 2645 * removed since the last mount - ENOSYS. 2646 */ 2647 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; 2648 ASSERT(dq_f); 2649 if ((error = xfs_qm_dqcheck(recddq, 2650 dq_f->qlf_id, 2651 0, XFS_QMOPT_DOWARN, 2652 "xlog_recover_do_dquot_trans (log copy)"))) { 2653 return XFS_ERROR(EIO); 2654 } 2655 ASSERT(dq_f->qlf_len == 1); 2656 2657 error = xfs_read_buf(mp, mp->m_ddev_targp, 2658 dq_f->qlf_blkno, 2659 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2660 0, &bp); 2661 if (error) { 2662 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, 2663 bp, dq_f->qlf_blkno); 2664 return error; 2665 } 2666 ASSERT(bp); 2667 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2668 2669 /* 2670 * At least the magic num portion should be on disk because this 2671 * was among a chunk of dquots created earlier, and we did some 2672 * minimal initialization then. 2673 */ 2674 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2675 "xlog_recover_do_dquot_trans")) { 2676 xfs_buf_relse(bp); 2677 return XFS_ERROR(EIO); 2678 } 2679 2680 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2681 2682 ASSERT(dq_f->qlf_size == 2); 2683 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || 2684 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); 2685 XFS_BUF_SET_FSPRIVATE(bp, mp); 2686 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); 2687 xfs_bdwrite(mp, bp); 2688 2689 return (0); 2690 } 2691 2692 /* 2693 * This routine is called to create an in-core extent free intent 2694 * item from the efi format structure which was logged on disk. 2695 * It allocates an in-core efi, copies the extents from the format 2696 * structure into it, and adds the efi to the AIL with the given 2697 * LSN. 2698 */ 2699 STATIC int 2700 xlog_recover_do_efi_trans( 2701 xlog_t *log, 2702 xlog_recover_item_t *item, 2703 xfs_lsn_t lsn, 2704 int pass) 2705 { 2706 int error; 2707 xfs_mount_t *mp; 2708 xfs_efi_log_item_t *efip; 2709 xfs_efi_log_format_t *efi_formatp; 2710 SPLDECL(s); 2711 2712 if (pass == XLOG_RECOVER_PASS1) { 2713 return 0; 2714 } 2715 2716 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; 2717 2718 mp = log->l_mp; 2719 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2720 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2721 &(efip->efi_format)))) { 2722 xfs_efi_item_free(efip); 2723 return error; 2724 } 2725 efip->efi_next_extent = efi_formatp->efi_nextents; 2726 efip->efi_flags |= XFS_EFI_COMMITTED; 2727 2728 AIL_LOCK(mp,s); 2729 /* 2730 * xfs_trans_update_ail() drops the AIL lock. 2731 */ 2732 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); 2733 return 0; 2734 } 2735 2736 2737 /* 2738 * This routine is called when an efd format structure is found in 2739 * a committed transaction in the log. It's purpose is to cancel 2740 * the corresponding efi if it was still in the log. To do this 2741 * it searches the AIL for the efi with an id equal to that in the 2742 * efd format structure. If we find it, we remove the efi from the 2743 * AIL and free it. 2744 */ 2745 STATIC void 2746 xlog_recover_do_efd_trans( 2747 xlog_t *log, 2748 xlog_recover_item_t *item, 2749 int pass) 2750 { 2751 xfs_mount_t *mp; 2752 xfs_efd_log_format_t *efd_formatp; 2753 xfs_efi_log_item_t *efip = NULL; 2754 xfs_log_item_t *lip; 2755 int gen; 2756 __uint64_t efi_id; 2757 SPLDECL(s); 2758 2759 if (pass == XLOG_RECOVER_PASS1) { 2760 return; 2761 } 2762 2763 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; 2764 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2765 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2766 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2767 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2768 efi_id = efd_formatp->efd_efi_id; 2769 2770 /* 2771 * Search for the efi with the id in the efd format structure 2772 * in the AIL. 2773 */ 2774 mp = log->l_mp; 2775 AIL_LOCK(mp,s); 2776 lip = xfs_trans_first_ail(mp, &gen); 2777 while (lip != NULL) { 2778 if (lip->li_type == XFS_LI_EFI) { 2779 efip = (xfs_efi_log_item_t *)lip; 2780 if (efip->efi_format.efi_id == efi_id) { 2781 /* 2782 * xfs_trans_delete_ail() drops the 2783 * AIL lock. 2784 */ 2785 xfs_trans_delete_ail(mp, lip, s); 2786 break; 2787 } 2788 } 2789 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 2790 } 2791 2792 /* 2793 * If we found it, then free it up. If it wasn't there, it 2794 * must have been overwritten in the log. Oh well. 2795 */ 2796 if (lip != NULL) { 2797 xfs_efi_item_free(efip); 2798 } else { 2799 AIL_UNLOCK(mp, s); 2800 } 2801 } 2802 2803 /* 2804 * Perform the transaction 2805 * 2806 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2807 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2808 */ 2809 STATIC int 2810 xlog_recover_do_trans( 2811 xlog_t *log, 2812 xlog_recover_t *trans, 2813 int pass) 2814 { 2815 int error = 0; 2816 xlog_recover_item_t *item, *first_item; 2817 2818 if ((error = xlog_recover_reorder_trans(log, trans))) 2819 return error; 2820 first_item = item = trans->r_itemq; 2821 do { 2822 /* 2823 * we don't need to worry about the block number being 2824 * truncated in > 1 TB buffers because in user-land, 2825 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so 2826 * the blknos will get through the user-mode buffer 2827 * cache properly. The only bad case is o32 kernels 2828 * where xfs_daddr_t is 32-bits but mount will warn us 2829 * off a > 1 TB filesystem before we get here. 2830 */ 2831 if ((ITEM_TYPE(item) == XFS_LI_BUF) || 2832 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || 2833 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { 2834 if ((error = xlog_recover_do_buffer_trans(log, item, 2835 pass))) 2836 break; 2837 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) { 2838 if ((error = xlog_recover_do_inode_trans(log, item, 2839 pass))) 2840 break; 2841 } else if (ITEM_TYPE(item) == XFS_LI_EFI) { 2842 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn, 2843 pass))) 2844 break; 2845 } else if (ITEM_TYPE(item) == XFS_LI_EFD) { 2846 xlog_recover_do_efd_trans(log, item, pass); 2847 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { 2848 if ((error = xlog_recover_do_dquot_trans(log, item, 2849 pass))) 2850 break; 2851 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { 2852 if ((error = xlog_recover_do_quotaoff_trans(log, item, 2853 pass))) 2854 break; 2855 } else { 2856 xlog_warn("XFS: xlog_recover_do_trans"); 2857 ASSERT(0); 2858 error = XFS_ERROR(EIO); 2859 break; 2860 } 2861 item = item->ri_next; 2862 } while (first_item != item); 2863 2864 return error; 2865 } 2866 2867 /* 2868 * Free up any resources allocated by the transaction 2869 * 2870 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2871 */ 2872 STATIC void 2873 xlog_recover_free_trans( 2874 xlog_recover_t *trans) 2875 { 2876 xlog_recover_item_t *first_item, *item, *free_item; 2877 int i; 2878 2879 item = first_item = trans->r_itemq; 2880 do { 2881 free_item = item; 2882 item = item->ri_next; 2883 /* Free the regions in the item. */ 2884 for (i = 0; i < free_item->ri_cnt; i++) { 2885 kmem_free(free_item->ri_buf[i].i_addr, 2886 free_item->ri_buf[i].i_len); 2887 } 2888 /* Free the item itself */ 2889 kmem_free(free_item->ri_buf, 2890 (free_item->ri_total * sizeof(xfs_log_iovec_t))); 2891 kmem_free(free_item, sizeof(xlog_recover_item_t)); 2892 } while (first_item != item); 2893 /* Free the transaction recover structure */ 2894 kmem_free(trans, sizeof(xlog_recover_t)); 2895 } 2896 2897 STATIC int 2898 xlog_recover_commit_trans( 2899 xlog_t *log, 2900 xlog_recover_t **q, 2901 xlog_recover_t *trans, 2902 int pass) 2903 { 2904 int error; 2905 2906 if ((error = xlog_recover_unlink_tid(q, trans))) 2907 return error; 2908 if ((error = xlog_recover_do_trans(log, trans, pass))) 2909 return error; 2910 xlog_recover_free_trans(trans); /* no error */ 2911 return 0; 2912 } 2913 2914 STATIC int 2915 xlog_recover_unmount_trans( 2916 xlog_recover_t *trans) 2917 { 2918 /* Do nothing now */ 2919 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); 2920 return 0; 2921 } 2922 2923 /* 2924 * There are two valid states of the r_state field. 0 indicates that the 2925 * transaction structure is in a normal state. We have either seen the 2926 * start of the transaction or the last operation we added was not a partial 2927 * operation. If the last operation we added to the transaction was a 2928 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2929 * 2930 * NOTE: skip LRs with 0 data length. 2931 */ 2932 STATIC int 2933 xlog_recover_process_data( 2934 xlog_t *log, 2935 xlog_recover_t *rhash[], 2936 xlog_rec_header_t *rhead, 2937 xfs_caddr_t dp, 2938 int pass) 2939 { 2940 xfs_caddr_t lp; 2941 int num_logops; 2942 xlog_op_header_t *ohead; 2943 xlog_recover_t *trans; 2944 xlog_tid_t tid; 2945 int error; 2946 unsigned long hash; 2947 uint flags; 2948 2949 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); 2950 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); 2951 2952 /* check the log format matches our own - else we can't recover */ 2953 if (xlog_header_check_recover(log->l_mp, rhead)) 2954 return (XFS_ERROR(EIO)); 2955 2956 while ((dp < lp) && num_logops) { 2957 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2958 ohead = (xlog_op_header_t *)dp; 2959 dp += sizeof(xlog_op_header_t); 2960 if (ohead->oh_clientid != XFS_TRANSACTION && 2961 ohead->oh_clientid != XFS_LOG) { 2962 xlog_warn( 2963 "XFS: xlog_recover_process_data: bad clientid"); 2964 ASSERT(0); 2965 return (XFS_ERROR(EIO)); 2966 } 2967 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); 2968 hash = XLOG_RHASH(tid); 2969 trans = xlog_recover_find_tid(rhash[hash], tid); 2970 if (trans == NULL) { /* not found; add new tid */ 2971 if (ohead->oh_flags & XLOG_START_TRANS) 2972 xlog_recover_new_tid(&rhash[hash], tid, 2973 INT_GET(rhead->h_lsn, ARCH_CONVERT)); 2974 } else { 2975 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); 2976 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2977 if (flags & XLOG_WAS_CONT_TRANS) 2978 flags &= ~XLOG_CONTINUE_TRANS; 2979 switch (flags) { 2980 case XLOG_COMMIT_TRANS: 2981 error = xlog_recover_commit_trans(log, 2982 &rhash[hash], trans, pass); 2983 break; 2984 case XLOG_UNMOUNT_TRANS: 2985 error = xlog_recover_unmount_trans(trans); 2986 break; 2987 case XLOG_WAS_CONT_TRANS: 2988 error = xlog_recover_add_to_cont_trans(trans, 2989 dp, INT_GET(ohead->oh_len, 2990 ARCH_CONVERT)); 2991 break; 2992 case XLOG_START_TRANS: 2993 xlog_warn( 2994 "XFS: xlog_recover_process_data: bad transaction"); 2995 ASSERT(0); 2996 error = XFS_ERROR(EIO); 2997 break; 2998 case 0: 2999 case XLOG_CONTINUE_TRANS: 3000 error = xlog_recover_add_to_trans(trans, 3001 dp, INT_GET(ohead->oh_len, 3002 ARCH_CONVERT)); 3003 break; 3004 default: 3005 xlog_warn( 3006 "XFS: xlog_recover_process_data: bad flag"); 3007 ASSERT(0); 3008 error = XFS_ERROR(EIO); 3009 break; 3010 } 3011 if (error) 3012 return error; 3013 } 3014 dp += INT_GET(ohead->oh_len, ARCH_CONVERT); 3015 num_logops--; 3016 } 3017 return 0; 3018 } 3019 3020 /* 3021 * Process an extent free intent item that was recovered from 3022 * the log. We need to free the extents that it describes. 3023 */ 3024 STATIC void 3025 xlog_recover_process_efi( 3026 xfs_mount_t *mp, 3027 xfs_efi_log_item_t *efip) 3028 { 3029 xfs_efd_log_item_t *efdp; 3030 xfs_trans_t *tp; 3031 int i; 3032 xfs_extent_t *extp; 3033 xfs_fsblock_t startblock_fsb; 3034 3035 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); 3036 3037 /* 3038 * First check the validity of the extents described by the 3039 * EFI. If any are bad, then assume that all are bad and 3040 * just toss the EFI. 3041 */ 3042 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3043 extp = &(efip->efi_format.efi_extents[i]); 3044 startblock_fsb = XFS_BB_TO_FSB(mp, 3045 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 3046 if ((startblock_fsb == 0) || 3047 (extp->ext_len == 0) || 3048 (startblock_fsb >= mp->m_sb.sb_dblocks) || 3049 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 3050 /* 3051 * This will pull the EFI from the AIL and 3052 * free the memory associated with it. 3053 */ 3054 xfs_efi_release(efip, efip->efi_format.efi_nextents); 3055 return; 3056 } 3057 } 3058 3059 tp = xfs_trans_alloc(mp, 0); 3060 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 3061 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 3062 3063 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 3064 extp = &(efip->efi_format.efi_extents[i]); 3065 xfs_free_extent(tp, extp->ext_start, extp->ext_len); 3066 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 3067 extp->ext_len); 3068 } 3069 3070 efip->efi_flags |= XFS_EFI_RECOVERED; 3071 xfs_trans_commit(tp, 0, NULL); 3072 } 3073 3074 /* 3075 * Verify that once we've encountered something other than an EFI 3076 * in the AIL that there are no more EFIs in the AIL. 3077 */ 3078 #if defined(DEBUG) 3079 STATIC void 3080 xlog_recover_check_ail( 3081 xfs_mount_t *mp, 3082 xfs_log_item_t *lip, 3083 int gen) 3084 { 3085 int orig_gen = gen; 3086 3087 do { 3088 ASSERT(lip->li_type != XFS_LI_EFI); 3089 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3090 /* 3091 * The check will be bogus if we restart from the 3092 * beginning of the AIL, so ASSERT that we don't. 3093 * We never should since we're holding the AIL lock 3094 * the entire time. 3095 */ 3096 ASSERT(gen == orig_gen); 3097 } while (lip != NULL); 3098 } 3099 #endif /* DEBUG */ 3100 3101 /* 3102 * When this is called, all of the EFIs which did not have 3103 * corresponding EFDs should be in the AIL. What we do now 3104 * is free the extents associated with each one. 3105 * 3106 * Since we process the EFIs in normal transactions, they 3107 * will be removed at some point after the commit. This prevents 3108 * us from just walking down the list processing each one. 3109 * We'll use a flag in the EFI to skip those that we've already 3110 * processed and use the AIL iteration mechanism's generation 3111 * count to try to speed this up at least a bit. 3112 * 3113 * When we start, we know that the EFIs are the only things in 3114 * the AIL. As we process them, however, other items are added 3115 * to the AIL. Since everything added to the AIL must come after 3116 * everything already in the AIL, we stop processing as soon as 3117 * we see something other than an EFI in the AIL. 3118 */ 3119 STATIC void 3120 xlog_recover_process_efis( 3121 xlog_t *log) 3122 { 3123 xfs_log_item_t *lip; 3124 xfs_efi_log_item_t *efip; 3125 int gen; 3126 xfs_mount_t *mp; 3127 SPLDECL(s); 3128 3129 mp = log->l_mp; 3130 AIL_LOCK(mp,s); 3131 3132 lip = xfs_trans_first_ail(mp, &gen); 3133 while (lip != NULL) { 3134 /* 3135 * We're done when we see something other than an EFI. 3136 */ 3137 if (lip->li_type != XFS_LI_EFI) { 3138 xlog_recover_check_ail(mp, lip, gen); 3139 break; 3140 } 3141 3142 /* 3143 * Skip EFIs that we've already processed. 3144 */ 3145 efip = (xfs_efi_log_item_t *)lip; 3146 if (efip->efi_flags & XFS_EFI_RECOVERED) { 3147 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3148 continue; 3149 } 3150 3151 AIL_UNLOCK(mp, s); 3152 xlog_recover_process_efi(mp, efip); 3153 AIL_LOCK(mp,s); 3154 lip = xfs_trans_next_ail(mp, lip, &gen, NULL); 3155 } 3156 AIL_UNLOCK(mp, s); 3157 } 3158 3159 /* 3160 * This routine performs a transaction to null out a bad inode pointer 3161 * in an agi unlinked inode hash bucket. 3162 */ 3163 STATIC void 3164 xlog_recover_clear_agi_bucket( 3165 xfs_mount_t *mp, 3166 xfs_agnumber_t agno, 3167 int bucket) 3168 { 3169 xfs_trans_t *tp; 3170 xfs_agi_t *agi; 3171 xfs_buf_t *agibp; 3172 int offset; 3173 int error; 3174 3175 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3176 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); 3177 3178 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 3179 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3180 XFS_FSS_TO_BB(mp, 1), 0, &agibp); 3181 if (error) { 3182 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3183 return; 3184 } 3185 3186 agi = XFS_BUF_TO_AGI(agibp); 3187 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) { 3188 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3189 return; 3190 } 3191 3192 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3193 offset = offsetof(xfs_agi_t, agi_unlinked) + 3194 (sizeof(xfs_agino_t) * bucket); 3195 xfs_trans_log_buf(tp, agibp, offset, 3196 (offset + sizeof(xfs_agino_t) - 1)); 3197 3198 (void) xfs_trans_commit(tp, 0, NULL); 3199 } 3200 3201 /* 3202 * xlog_iunlink_recover 3203 * 3204 * This is called during recovery to process any inodes which 3205 * we unlinked but not freed when the system crashed. These 3206 * inodes will be on the lists in the AGI blocks. What we do 3207 * here is scan all the AGIs and fully truncate and free any 3208 * inodes found on the lists. Each inode is removed from the 3209 * lists when it has been fully truncated and is freed. The 3210 * freeing of the inode and its removal from the list must be 3211 * atomic. 3212 */ 3213 void 3214 xlog_recover_process_iunlinks( 3215 xlog_t *log) 3216 { 3217 xfs_mount_t *mp; 3218 xfs_agnumber_t agno; 3219 xfs_agi_t *agi; 3220 xfs_buf_t *agibp; 3221 xfs_buf_t *ibp; 3222 xfs_dinode_t *dip; 3223 xfs_inode_t *ip; 3224 xfs_agino_t agino; 3225 xfs_ino_t ino; 3226 int bucket; 3227 int error; 3228 uint mp_dmevmask; 3229 3230 mp = log->l_mp; 3231 3232 /* 3233 * Prevent any DMAPI event from being sent while in this function. 3234 */ 3235 mp_dmevmask = mp->m_dmevmask; 3236 mp->m_dmevmask = 0; 3237 3238 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3239 /* 3240 * Find the agi for this ag. 3241 */ 3242 agibp = xfs_buf_read(mp->m_ddev_targp, 3243 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), 3244 XFS_FSS_TO_BB(mp, 1), 0); 3245 if (XFS_BUF_ISERROR(agibp)) { 3246 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", 3247 log->l_mp, agibp, 3248 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); 3249 } 3250 agi = XFS_BUF_TO_AGI(agibp); 3251 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum)); 3252 3253 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3254 3255 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3256 while (agino != NULLAGINO) { 3257 3258 /* 3259 * Release the agi buffer so that it can 3260 * be acquired in the normal course of the 3261 * transaction to truncate and free the inode. 3262 */ 3263 xfs_buf_relse(agibp); 3264 3265 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3266 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); 3267 ASSERT(error || (ip != NULL)); 3268 3269 if (!error) { 3270 /* 3271 * Get the on disk inode to find the 3272 * next inode in the bucket. 3273 */ 3274 error = xfs_itobp(mp, NULL, ip, &dip, 3275 &ibp, 0, 0); 3276 ASSERT(error || (dip != NULL)); 3277 } 3278 3279 if (!error) { 3280 ASSERT(ip->i_d.di_nlink == 0); 3281 3282 /* setup for the next pass */ 3283 agino = INT_GET(dip->di_next_unlinked, 3284 ARCH_CONVERT); 3285 xfs_buf_relse(ibp); 3286 /* 3287 * Prevent any DMAPI event from 3288 * being sent when the 3289 * reference on the inode is 3290 * dropped. 3291 */ 3292 ip->i_d.di_dmevmask = 0; 3293 3294 /* 3295 * If this is a new inode, handle 3296 * it specially. Otherwise, 3297 * just drop our reference to the 3298 * inode. If there are no 3299 * other references, this will 3300 * send the inode to 3301 * xfs_inactive() which will 3302 * truncate the file and free 3303 * the inode. 3304 */ 3305 if (ip->i_d.di_mode == 0) 3306 xfs_iput_new(ip, 0); 3307 else 3308 VN_RELE(XFS_ITOV(ip)); 3309 } else { 3310 /* 3311 * We can't read in the inode 3312 * this bucket points to, or 3313 * this inode is messed up. Just 3314 * ditch this bucket of inodes. We 3315 * will lose some inodes and space, 3316 * but at least we won't hang. Call 3317 * xlog_recover_clear_agi_bucket() 3318 * to perform a transaction to clear 3319 * the inode pointer in the bucket. 3320 */ 3321 xlog_recover_clear_agi_bucket(mp, agno, 3322 bucket); 3323 3324 agino = NULLAGINO; 3325 } 3326 3327 /* 3328 * Reacquire the agibuffer and continue around 3329 * the loop. 3330 */ 3331 agibp = xfs_buf_read(mp->m_ddev_targp, 3332 XFS_AG_DADDR(mp, agno, 3333 XFS_AGI_DADDR(mp)), 3334 XFS_FSS_TO_BB(mp, 1), 0); 3335 if (XFS_BUF_ISERROR(agibp)) { 3336 xfs_ioerror_alert( 3337 "xlog_recover_process_iunlinks(#2)", 3338 log->l_mp, agibp, 3339 XFS_AG_DADDR(mp, agno, 3340 XFS_AGI_DADDR(mp))); 3341 } 3342 agi = XFS_BUF_TO_AGI(agibp); 3343 ASSERT(XFS_AGI_MAGIC == be32_to_cpu( 3344 agi->agi_magicnum)); 3345 } 3346 } 3347 3348 /* 3349 * Release the buffer for the current agi so we can 3350 * go on to the next one. 3351 */ 3352 xfs_buf_relse(agibp); 3353 } 3354 3355 mp->m_dmevmask = mp_dmevmask; 3356 } 3357 3358 3359 #ifdef DEBUG 3360 STATIC void 3361 xlog_pack_data_checksum( 3362 xlog_t *log, 3363 xlog_in_core_t *iclog, 3364 int size) 3365 { 3366 int i; 3367 uint *up; 3368 uint chksum = 0; 3369 3370 up = (uint *)iclog->ic_datap; 3371 /* divide length by 4 to get # words */ 3372 for (i = 0; i < (size >> 2); i++) { 3373 chksum ^= INT_GET(*up, ARCH_CONVERT); 3374 up++; 3375 } 3376 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); 3377 } 3378 #else 3379 #define xlog_pack_data_checksum(log, iclog, size) 3380 #endif 3381 3382 /* 3383 * Stamp cycle number in every block 3384 */ 3385 void 3386 xlog_pack_data( 3387 xlog_t *log, 3388 xlog_in_core_t *iclog, 3389 int roundoff) 3390 { 3391 int i, j, k; 3392 int size = iclog->ic_offset + roundoff; 3393 uint cycle_lsn; 3394 xfs_caddr_t dp; 3395 xlog_in_core_2_t *xhdr; 3396 3397 xlog_pack_data_checksum(log, iclog, size); 3398 3399 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3400 3401 dp = iclog->ic_datap; 3402 for (i = 0; i < BTOBB(size) && 3403 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3404 iclog->ic_header.h_cycle_data[i] = *(uint *)dp; 3405 *(uint *)dp = cycle_lsn; 3406 dp += BBSIZE; 3407 } 3408 3409 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3410 xhdr = (xlog_in_core_2_t *)&iclog->ic_header; 3411 for ( ; i < BTOBB(size); i++) { 3412 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3413 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3414 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; 3415 *(uint *)dp = cycle_lsn; 3416 dp += BBSIZE; 3417 } 3418 3419 for (i = 1; i < log->l_iclog_heads; i++) { 3420 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3421 } 3422 } 3423 } 3424 3425 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 3426 STATIC void 3427 xlog_unpack_data_checksum( 3428 xlog_rec_header_t *rhead, 3429 xfs_caddr_t dp, 3430 xlog_t *log) 3431 { 3432 uint *up = (uint *)dp; 3433 uint chksum = 0; 3434 int i; 3435 3436 /* divide length by 4 to get # words */ 3437 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { 3438 chksum ^= INT_GET(*up, ARCH_CONVERT); 3439 up++; 3440 } 3441 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { 3442 if (rhead->h_chksum || 3443 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { 3444 cmn_err(CE_DEBUG, 3445 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n", 3446 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); 3447 cmn_err(CE_DEBUG, 3448 "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); 3449 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3450 cmn_err(CE_DEBUG, 3451 "XFS: LogR this is a LogV2 filesystem\n"); 3452 } 3453 log->l_flags |= XLOG_CHKSUM_MISMATCH; 3454 } 3455 } 3456 } 3457 #else 3458 #define xlog_unpack_data_checksum(rhead, dp, log) 3459 #endif 3460 3461 STATIC void 3462 xlog_unpack_data( 3463 xlog_rec_header_t *rhead, 3464 xfs_caddr_t dp, 3465 xlog_t *log) 3466 { 3467 int i, j, k; 3468 xlog_in_core_2_t *xhdr; 3469 3470 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && 3471 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3472 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; 3473 dp += BBSIZE; 3474 } 3475 3476 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3477 xhdr = (xlog_in_core_2_t *)rhead; 3478 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { 3479 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3480 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3481 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3482 dp += BBSIZE; 3483 } 3484 } 3485 3486 xlog_unpack_data_checksum(rhead, dp, log); 3487 } 3488 3489 STATIC int 3490 xlog_valid_rec_header( 3491 xlog_t *log, 3492 xlog_rec_header_t *rhead, 3493 xfs_daddr_t blkno) 3494 { 3495 int hlen; 3496 3497 if (unlikely( 3498 (INT_GET(rhead->h_magicno, ARCH_CONVERT) != 3499 XLOG_HEADER_MAGIC_NUM))) { 3500 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3501 XFS_ERRLEVEL_LOW, log->l_mp); 3502 return XFS_ERROR(EFSCORRUPTED); 3503 } 3504 if (unlikely( 3505 (!rhead->h_version || 3506 (INT_GET(rhead->h_version, ARCH_CONVERT) & 3507 (~XLOG_VERSION_OKBITS)) != 0))) { 3508 xlog_warn("XFS: %s: unrecognised log version (%d).", 3509 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); 3510 return XFS_ERROR(EIO); 3511 } 3512 3513 /* LR body must have data or it wouldn't have been written */ 3514 hlen = INT_GET(rhead->h_len, ARCH_CONVERT); 3515 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3516 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3517 XFS_ERRLEVEL_LOW, log->l_mp); 3518 return XFS_ERROR(EFSCORRUPTED); 3519 } 3520 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3521 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3522 XFS_ERRLEVEL_LOW, log->l_mp); 3523 return XFS_ERROR(EFSCORRUPTED); 3524 } 3525 return 0; 3526 } 3527 3528 /* 3529 * Read the log from tail to head and process the log records found. 3530 * Handle the two cases where the tail and head are in the same cycle 3531 * and where the active portion of the log wraps around the end of 3532 * the physical log separately. The pass parameter is passed through 3533 * to the routines called to process the data and is not looked at 3534 * here. 3535 */ 3536 STATIC int 3537 xlog_do_recovery_pass( 3538 xlog_t *log, 3539 xfs_daddr_t head_blk, 3540 xfs_daddr_t tail_blk, 3541 int pass) 3542 { 3543 xlog_rec_header_t *rhead; 3544 xfs_daddr_t blk_no; 3545 xfs_caddr_t bufaddr, offset; 3546 xfs_buf_t *hbp, *dbp; 3547 int error = 0, h_size; 3548 int bblks, split_bblks; 3549 int hblks, split_hblks, wrapped_hblks; 3550 xlog_recover_t *rhash[XLOG_RHASH_SIZE]; 3551 3552 ASSERT(head_blk != tail_blk); 3553 3554 /* 3555 * Read the header of the tail block and get the iclog buffer size from 3556 * h_size. Use this to tell how many sectors make up the log header. 3557 */ 3558 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { 3559 /* 3560 * When using variable length iclogs, read first sector of 3561 * iclog header and extract the header size from it. Get a 3562 * new hbp that is the correct size. 3563 */ 3564 hbp = xlog_get_bp(log, 1); 3565 if (!hbp) 3566 return ENOMEM; 3567 if ((error = xlog_bread(log, tail_blk, 1, hbp))) 3568 goto bread_err1; 3569 offset = xlog_align(log, tail_blk, 1, hbp); 3570 rhead = (xlog_rec_header_t *)offset; 3571 error = xlog_valid_rec_header(log, rhead, tail_blk); 3572 if (error) 3573 goto bread_err1; 3574 h_size = INT_GET(rhead->h_size, ARCH_CONVERT); 3575 if ((INT_GET(rhead->h_version, ARCH_CONVERT) 3576 & XLOG_VERSION_2) && 3577 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3578 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3579 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3580 hblks++; 3581 xlog_put_bp(hbp); 3582 hbp = xlog_get_bp(log, hblks); 3583 } else { 3584 hblks = 1; 3585 } 3586 } else { 3587 ASSERT(log->l_sectbb_log == 0); 3588 hblks = 1; 3589 hbp = xlog_get_bp(log, 1); 3590 h_size = XLOG_BIG_RECORD_BSIZE; 3591 } 3592 3593 if (!hbp) 3594 return ENOMEM; 3595 dbp = xlog_get_bp(log, BTOBB(h_size)); 3596 if (!dbp) { 3597 xlog_put_bp(hbp); 3598 return ENOMEM; 3599 } 3600 3601 memset(rhash, 0, sizeof(rhash)); 3602 if (tail_blk <= head_blk) { 3603 for (blk_no = tail_blk; blk_no < head_blk; ) { 3604 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3605 goto bread_err2; 3606 offset = xlog_align(log, blk_no, hblks, hbp); 3607 rhead = (xlog_rec_header_t *)offset; 3608 error = xlog_valid_rec_header(log, rhead, blk_no); 3609 if (error) 3610 goto bread_err2; 3611 3612 /* blocks in data section */ 3613 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3614 error = xlog_bread(log, blk_no + hblks, bblks, dbp); 3615 if (error) 3616 goto bread_err2; 3617 offset = xlog_align(log, blk_no + hblks, bblks, dbp); 3618 xlog_unpack_data(rhead, offset, log); 3619 if ((error = xlog_recover_process_data(log, 3620 rhash, rhead, offset, pass))) 3621 goto bread_err2; 3622 blk_no += bblks + hblks; 3623 } 3624 } else { 3625 /* 3626 * Perform recovery around the end of the physical log. 3627 * When the head is not on the same cycle number as the tail, 3628 * we can't do a sequential recovery as above. 3629 */ 3630 blk_no = tail_blk; 3631 while (blk_no < log->l_logBBsize) { 3632 /* 3633 * Check for header wrapping around physical end-of-log 3634 */ 3635 offset = NULL; 3636 split_hblks = 0; 3637 wrapped_hblks = 0; 3638 if (blk_no + hblks <= log->l_logBBsize) { 3639 /* Read header in one read */ 3640 error = xlog_bread(log, blk_no, hblks, hbp); 3641 if (error) 3642 goto bread_err2; 3643 offset = xlog_align(log, blk_no, hblks, hbp); 3644 } else { 3645 /* This LR is split across physical log end */ 3646 if (blk_no != log->l_logBBsize) { 3647 /* some data before physical log end */ 3648 ASSERT(blk_no <= INT_MAX); 3649 split_hblks = log->l_logBBsize - (int)blk_no; 3650 ASSERT(split_hblks > 0); 3651 if ((error = xlog_bread(log, blk_no, 3652 split_hblks, hbp))) 3653 goto bread_err2; 3654 offset = xlog_align(log, blk_no, 3655 split_hblks, hbp); 3656 } 3657 /* 3658 * Note: this black magic still works with 3659 * large sector sizes (non-512) only because: 3660 * - we increased the buffer size originally 3661 * by 1 sector giving us enough extra space 3662 * for the second read; 3663 * - the log start is guaranteed to be sector 3664 * aligned; 3665 * - we read the log end (LR header start) 3666 * _first_, then the log start (LR header end) 3667 * - order is important. 3668 */ 3669 bufaddr = XFS_BUF_PTR(hbp); 3670 XFS_BUF_SET_PTR(hbp, 3671 bufaddr + BBTOB(split_hblks), 3672 BBTOB(hblks - split_hblks)); 3673 wrapped_hblks = hblks - split_hblks; 3674 error = xlog_bread(log, 0, wrapped_hblks, hbp); 3675 if (error) 3676 goto bread_err2; 3677 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); 3678 if (!offset) 3679 offset = xlog_align(log, 0, 3680 wrapped_hblks, hbp); 3681 } 3682 rhead = (xlog_rec_header_t *)offset; 3683 error = xlog_valid_rec_header(log, rhead, 3684 split_hblks ? blk_no : 0); 3685 if (error) 3686 goto bread_err2; 3687 3688 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3689 blk_no += hblks; 3690 3691 /* Read in data for log record */ 3692 if (blk_no + bblks <= log->l_logBBsize) { 3693 error = xlog_bread(log, blk_no, bblks, dbp); 3694 if (error) 3695 goto bread_err2; 3696 offset = xlog_align(log, blk_no, bblks, dbp); 3697 } else { 3698 /* This log record is split across the 3699 * physical end of log */ 3700 offset = NULL; 3701 split_bblks = 0; 3702 if (blk_no != log->l_logBBsize) { 3703 /* some data is before the physical 3704 * end of log */ 3705 ASSERT(!wrapped_hblks); 3706 ASSERT(blk_no <= INT_MAX); 3707 split_bblks = 3708 log->l_logBBsize - (int)blk_no; 3709 ASSERT(split_bblks > 0); 3710 if ((error = xlog_bread(log, blk_no, 3711 split_bblks, dbp))) 3712 goto bread_err2; 3713 offset = xlog_align(log, blk_no, 3714 split_bblks, dbp); 3715 } 3716 /* 3717 * Note: this black magic still works with 3718 * large sector sizes (non-512) only because: 3719 * - we increased the buffer size originally 3720 * by 1 sector giving us enough extra space 3721 * for the second read; 3722 * - the log start is guaranteed to be sector 3723 * aligned; 3724 * - we read the log end (LR header start) 3725 * _first_, then the log start (LR header end) 3726 * - order is important. 3727 */ 3728 bufaddr = XFS_BUF_PTR(dbp); 3729 XFS_BUF_SET_PTR(dbp, 3730 bufaddr + BBTOB(split_bblks), 3731 BBTOB(bblks - split_bblks)); 3732 if ((error = xlog_bread(log, wrapped_hblks, 3733 bblks - split_bblks, dbp))) 3734 goto bread_err2; 3735 XFS_BUF_SET_PTR(dbp, bufaddr, h_size); 3736 if (!offset) 3737 offset = xlog_align(log, wrapped_hblks, 3738 bblks - split_bblks, dbp); 3739 } 3740 xlog_unpack_data(rhead, offset, log); 3741 if ((error = xlog_recover_process_data(log, rhash, 3742 rhead, offset, pass))) 3743 goto bread_err2; 3744 blk_no += bblks; 3745 } 3746 3747 ASSERT(blk_no >= log->l_logBBsize); 3748 blk_no -= log->l_logBBsize; 3749 3750 /* read first part of physical log */ 3751 while (blk_no < head_blk) { 3752 if ((error = xlog_bread(log, blk_no, hblks, hbp))) 3753 goto bread_err2; 3754 offset = xlog_align(log, blk_no, hblks, hbp); 3755 rhead = (xlog_rec_header_t *)offset; 3756 error = xlog_valid_rec_header(log, rhead, blk_no); 3757 if (error) 3758 goto bread_err2; 3759 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); 3760 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) 3761 goto bread_err2; 3762 offset = xlog_align(log, blk_no+hblks, bblks, dbp); 3763 xlog_unpack_data(rhead, offset, log); 3764 if ((error = xlog_recover_process_data(log, rhash, 3765 rhead, offset, pass))) 3766 goto bread_err2; 3767 blk_no += bblks + hblks; 3768 } 3769 } 3770 3771 bread_err2: 3772 xlog_put_bp(dbp); 3773 bread_err1: 3774 xlog_put_bp(hbp); 3775 return error; 3776 } 3777 3778 /* 3779 * Do the recovery of the log. We actually do this in two phases. 3780 * The two passes are necessary in order to implement the function 3781 * of cancelling a record written into the log. The first pass 3782 * determines those things which have been cancelled, and the 3783 * second pass replays log items normally except for those which 3784 * have been cancelled. The handling of the replay and cancellations 3785 * takes place in the log item type specific routines. 3786 * 3787 * The table of items which have cancel records in the log is allocated 3788 * and freed at this level, since only here do we know when all of 3789 * the log recovery has been completed. 3790 */ 3791 STATIC int 3792 xlog_do_log_recovery( 3793 xlog_t *log, 3794 xfs_daddr_t head_blk, 3795 xfs_daddr_t tail_blk) 3796 { 3797 int error; 3798 3799 ASSERT(head_blk != tail_blk); 3800 3801 /* 3802 * First do a pass to find all of the cancelled buf log items. 3803 * Store them in the buf_cancel_table for use in the second pass. 3804 */ 3805 log->l_buf_cancel_table = 3806 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * 3807 sizeof(xfs_buf_cancel_t*), 3808 KM_SLEEP); 3809 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3810 XLOG_RECOVER_PASS1); 3811 if (error != 0) { 3812 kmem_free(log->l_buf_cancel_table, 3813 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3814 log->l_buf_cancel_table = NULL; 3815 return error; 3816 } 3817 /* 3818 * Then do a second pass to actually recover the items in the log. 3819 * When it is complete free the table of buf cancel items. 3820 */ 3821 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3822 XLOG_RECOVER_PASS2); 3823 #ifdef DEBUG 3824 if (!error) { 3825 int i; 3826 3827 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3828 ASSERT(log->l_buf_cancel_table[i] == NULL); 3829 } 3830 #endif /* DEBUG */ 3831 3832 kmem_free(log->l_buf_cancel_table, 3833 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); 3834 log->l_buf_cancel_table = NULL; 3835 3836 return error; 3837 } 3838 3839 /* 3840 * Do the actual recovery 3841 */ 3842 STATIC int 3843 xlog_do_recover( 3844 xlog_t *log, 3845 xfs_daddr_t head_blk, 3846 xfs_daddr_t tail_blk) 3847 { 3848 int error; 3849 xfs_buf_t *bp; 3850 xfs_sb_t *sbp; 3851 3852 /* 3853 * First replay the images in the log. 3854 */ 3855 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3856 if (error) { 3857 return error; 3858 } 3859 3860 XFS_bflush(log->l_mp->m_ddev_targp); 3861 3862 /* 3863 * If IO errors happened during recovery, bail out. 3864 */ 3865 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3866 return (EIO); 3867 } 3868 3869 /* 3870 * We now update the tail_lsn since much of the recovery has completed 3871 * and there may be space available to use. If there were no extent 3872 * or iunlinks, we can free up the entire log and set the tail_lsn to 3873 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3874 * lsn of the last known good LR on disk. If there are extent frees 3875 * or iunlinks they will have some entries in the AIL; so we look at 3876 * the AIL to determine how to set the tail_lsn. 3877 */ 3878 xlog_assign_tail_lsn(log->l_mp); 3879 3880 /* 3881 * Now that we've finished replaying all buffer and inode 3882 * updates, re-read in the superblock. 3883 */ 3884 bp = xfs_getsb(log->l_mp, 0); 3885 XFS_BUF_UNDONE(bp); 3886 XFS_BUF_READ(bp); 3887 xfsbdstrat(log->l_mp, bp); 3888 if ((error = xfs_iowait(bp))) { 3889 xfs_ioerror_alert("xlog_do_recover", 3890 log->l_mp, bp, XFS_BUF_ADDR(bp)); 3891 ASSERT(0); 3892 xfs_buf_relse(bp); 3893 return error; 3894 } 3895 3896 /* Convert superblock from on-disk format */ 3897 sbp = &log->l_mp->m_sb; 3898 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); 3899 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3900 ASSERT(XFS_SB_GOOD_VERSION(sbp)); 3901 xfs_buf_relse(bp); 3902 3903 xlog_recover_check_summary(log); 3904 3905 /* Normal transactions can now occur */ 3906 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3907 return 0; 3908 } 3909 3910 /* 3911 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3912 * 3913 * Return error or zero. 3914 */ 3915 int 3916 xlog_recover( 3917 xlog_t *log) 3918 { 3919 xfs_daddr_t head_blk, tail_blk; 3920 int error; 3921 3922 /* find the tail of the log */ 3923 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3924 return error; 3925 3926 if (tail_blk != head_blk) { 3927 /* There used to be a comment here: 3928 * 3929 * disallow recovery on read-only mounts. note -- mount 3930 * checks for ENOSPC and turns it into an intelligent 3931 * error message. 3932 * ...but this is no longer true. Now, unless you specify 3933 * NORECOVERY (in which case this function would never be 3934 * called), we just go ahead and recover. We do this all 3935 * under the vfs layer, so we can get away with it unless 3936 * the device itself is read-only, in which case we fail. 3937 */ 3938 if ((error = xfs_dev_is_read_only(log->l_mp, 3939 "recovery required"))) { 3940 return error; 3941 } 3942 3943 cmn_err(CE_NOTE, 3944 "Starting XFS recovery on filesystem: %s (logdev: %s)", 3945 log->l_mp->m_fsname, log->l_mp->m_logname ? 3946 log->l_mp->m_logname : "internal"); 3947 3948 error = xlog_do_recover(log, head_blk, tail_blk); 3949 log->l_flags |= XLOG_RECOVERY_NEEDED; 3950 } 3951 return error; 3952 } 3953 3954 /* 3955 * In the first part of recovery we replay inodes and buffers and build 3956 * up the list of extent free items which need to be processed. Here 3957 * we process the extent free items and clean up the on disk unlinked 3958 * inode lists. This is separated from the first part of recovery so 3959 * that the root and real-time bitmap inodes can be read in from disk in 3960 * between the two stages. This is necessary so that we can free space 3961 * in the real-time portion of the file system. 3962 */ 3963 int 3964 xlog_recover_finish( 3965 xlog_t *log, 3966 int mfsi_flags) 3967 { 3968 /* 3969 * Now we're ready to do the transactions needed for the 3970 * rest of recovery. Start with completing all the extent 3971 * free intent records and then process the unlinked inode 3972 * lists. At this point, we essentially run in normal mode 3973 * except that we're still performing recovery actions 3974 * rather than accepting new requests. 3975 */ 3976 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3977 xlog_recover_process_efis(log); 3978 /* 3979 * Sync the log to get all the EFIs out of the AIL. 3980 * This isn't absolutely necessary, but it helps in 3981 * case the unlink transactions would have problems 3982 * pushing the EFIs out of the way. 3983 */ 3984 xfs_log_force(log->l_mp, (xfs_lsn_t)0, 3985 (XFS_LOG_FORCE | XFS_LOG_SYNC)); 3986 3987 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { 3988 xlog_recover_process_iunlinks(log); 3989 } 3990 3991 xlog_recover_check_summary(log); 3992 3993 cmn_err(CE_NOTE, 3994 "Ending XFS recovery on filesystem: %s (logdev: %s)", 3995 log->l_mp->m_fsname, log->l_mp->m_logname ? 3996 log->l_mp->m_logname : "internal"); 3997 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3998 } else { 3999 cmn_err(CE_DEBUG, 4000 "!Ending clean XFS mount for filesystem: %s\n", 4001 log->l_mp->m_fsname); 4002 } 4003 return 0; 4004 } 4005 4006 4007 #if defined(DEBUG) 4008 /* 4009 * Read all of the agf and agi counters and check that they 4010 * are consistent with the superblock counters. 4011 */ 4012 void 4013 xlog_recover_check_summary( 4014 xlog_t *log) 4015 { 4016 xfs_mount_t *mp; 4017 xfs_agf_t *agfp; 4018 xfs_agi_t *agip; 4019 xfs_buf_t *agfbp; 4020 xfs_buf_t *agibp; 4021 xfs_daddr_t agfdaddr; 4022 xfs_daddr_t agidaddr; 4023 xfs_buf_t *sbbp; 4024 #ifdef XFS_LOUD_RECOVERY 4025 xfs_sb_t *sbp; 4026 #endif 4027 xfs_agnumber_t agno; 4028 __uint64_t freeblks; 4029 __uint64_t itotal; 4030 __uint64_t ifree; 4031 4032 mp = log->l_mp; 4033 4034 freeblks = 0LL; 4035 itotal = 0LL; 4036 ifree = 0LL; 4037 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 4038 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); 4039 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, 4040 XFS_FSS_TO_BB(mp, 1), 0); 4041 if (XFS_BUF_ISERROR(agfbp)) { 4042 xfs_ioerror_alert("xlog_recover_check_summary(agf)", 4043 mp, agfbp, agfdaddr); 4044 } 4045 agfp = XFS_BUF_TO_AGF(agfbp); 4046 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum)); 4047 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum))); 4048 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno); 4049 4050 freeblks += be32_to_cpu(agfp->agf_freeblks) + 4051 be32_to_cpu(agfp->agf_flcount); 4052 xfs_buf_relse(agfbp); 4053 4054 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); 4055 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, 4056 XFS_FSS_TO_BB(mp, 1), 0); 4057 if (XFS_BUF_ISERROR(agibp)) { 4058 xfs_ioerror_alert("xlog_recover_check_summary(agi)", 4059 mp, agibp, agidaddr); 4060 } 4061 agip = XFS_BUF_TO_AGI(agibp); 4062 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum)); 4063 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum))); 4064 ASSERT(be32_to_cpu(agip->agi_seqno) == agno); 4065 4066 itotal += be32_to_cpu(agip->agi_count); 4067 ifree += be32_to_cpu(agip->agi_freecount); 4068 xfs_buf_relse(agibp); 4069 } 4070 4071 sbbp = xfs_getsb(mp, 0); 4072 #ifdef XFS_LOUD_RECOVERY 4073 sbp = &mp->m_sb; 4074 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); 4075 cmn_err(CE_NOTE, 4076 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", 4077 sbp->sb_icount, itotal); 4078 cmn_err(CE_NOTE, 4079 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", 4080 sbp->sb_ifree, ifree); 4081 cmn_err(CE_NOTE, 4082 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", 4083 sbp->sb_fdblocks, freeblks); 4084 #if 0 4085 /* 4086 * This is turned off until I account for the allocation 4087 * btree blocks which live in free space. 4088 */ 4089 ASSERT(sbp->sb_icount == itotal); 4090 ASSERT(sbp->sb_ifree == ifree); 4091 ASSERT(sbp->sb_fdblocks == freeblks); 4092 #endif 4093 #endif 4094 xfs_buf_relse(sbbp); 4095 } 4096 #endif /* DEBUG */ 4097