xref: /linux/fs/xfs/xfs_log_recover.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_error.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_imap.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_log_priv.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_log_recover.h"
45 #include "xfs_extfree_item.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_quota.h"
48 #include "xfs_rw.h"
49 
50 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 					       xlog_recover_item_t *item);
54 #if defined(DEBUG)
55 STATIC void	xlog_recover_check_summary(xlog_t *);
56 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57 #else
58 #define	xlog_recover_check_summary(log)
59 #define	xlog_recover_check_ail(mp, lip, gen)
60 #endif
61 
62 
63 /*
64  * Sector aligned buffer routines for buffer create/read/write/access
65  */
66 
67 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
68 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
71 
72 xfs_buf_t *
73 xlog_get_bp(
74 	xlog_t		*log,
75 	int		num_bblks)
76 {
77 	ASSERT(num_bblks > 0);
78 
79 	if (log->l_sectbb_log) {
80 		if (num_bblks > 1)
81 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 	}
84 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85 }
86 
87 void
88 xlog_put_bp(
89 	xfs_buf_t	*bp)
90 {
91 	xfs_buf_free(bp);
92 }
93 
94 
95 /*
96  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
97  */
98 int
99 xlog_bread(
100 	xlog_t		*log,
101 	xfs_daddr_t	blk_no,
102 	int		nbblks,
103 	xfs_buf_t	*bp)
104 {
105 	int		error;
106 
107 	if (log->l_sectbb_log) {
108 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 	}
111 
112 	ASSERT(nbblks > 0);
113 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 	ASSERT(bp);
115 
116 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 	XFS_BUF_READ(bp);
118 	XFS_BUF_BUSY(bp);
119 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121 
122 	xfsbdstrat(log->l_mp, bp);
123 	if ((error = xfs_iowait(bp)))
124 		xfs_ioerror_alert("xlog_bread", log->l_mp,
125 				  bp, XFS_BUF_ADDR(bp));
126 	return error;
127 }
128 
129 /*
130  * Write out the buffer at the given block for the given number of blocks.
131  * The buffer is kept locked across the write and is returned locked.
132  * This can only be used for synchronous log writes.
133  */
134 STATIC int
135 xlog_bwrite(
136 	xlog_t		*log,
137 	xfs_daddr_t	blk_no,
138 	int		nbblks,
139 	xfs_buf_t	*bp)
140 {
141 	int		error;
142 
143 	if (log->l_sectbb_log) {
144 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 	}
147 
148 	ASSERT(nbblks > 0);
149 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150 
151 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 	XFS_BUF_ZEROFLAGS(bp);
153 	XFS_BUF_BUSY(bp);
154 	XFS_BUF_HOLD(bp);
155 	XFS_BUF_PSEMA(bp, PRIBIO);
156 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158 
159 	if ((error = xfs_bwrite(log->l_mp, bp)))
160 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 				  bp, XFS_BUF_ADDR(bp));
162 	return error;
163 }
164 
165 STATIC xfs_caddr_t
166 xlog_align(
167 	xlog_t		*log,
168 	xfs_daddr_t	blk_no,
169 	int		nbblks,
170 	xfs_buf_t	*bp)
171 {
172 	xfs_caddr_t	ptr;
173 
174 	if (!log->l_sectbb_log)
175 		return XFS_BUF_PTR(bp);
176 
177 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 	ASSERT(XFS_BUF_SIZE(bp) >=
179 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 	return ptr;
181 }
182 
183 #ifdef DEBUG
184 /*
185  * dump debug superblock and log record information
186  */
187 STATIC void
188 xlog_header_check_dump(
189 	xfs_mount_t		*mp,
190 	xlog_rec_header_t	*head)
191 {
192 	int			b;
193 
194 	cmn_err(CE_DEBUG, "%s:  SB : uuid = ", __FUNCTION__);
195 	for (b = 0; b < 16; b++)
196 		cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 	cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 	cmn_err(CE_DEBUG, "    log : uuid = ");
199 	for (b = 0; b < 16; b++)
200 		cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201 	cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
202 }
203 #else
204 #define xlog_header_check_dump(mp, head)
205 #endif
206 
207 /*
208  * check log record header for recovery
209  */
210 STATIC int
211 xlog_header_check_recover(
212 	xfs_mount_t		*mp,
213 	xlog_rec_header_t	*head)
214 {
215 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216 
217 	/*
218 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 	 * a dirty log created in IRIX.
221 	 */
222 	if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223 		xlog_warn(
224 	"XFS: dirty log written in incompatible format - can't recover");
225 		xlog_header_check_dump(mp, head);
226 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 				 XFS_ERRLEVEL_HIGH, mp);
228 		return XFS_ERROR(EFSCORRUPTED);
229 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 		xlog_warn(
231 	"XFS: dirty log entry has mismatched uuid - can't recover");
232 		xlog_header_check_dump(mp, head);
233 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 				 XFS_ERRLEVEL_HIGH, mp);
235 		return XFS_ERROR(EFSCORRUPTED);
236 	}
237 	return 0;
238 }
239 
240 /*
241  * read the head block of the log and check the header
242  */
243 STATIC int
244 xlog_header_check_mount(
245 	xfs_mount_t		*mp,
246 	xlog_rec_header_t	*head)
247 {
248 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249 
250 	if (uuid_is_nil(&head->h_fs_uuid)) {
251 		/*
252 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 		 * h_fs_uuid is nil, we assume this log was last mounted
254 		 * by IRIX and continue.
255 		 */
256 		xlog_warn("XFS: nil uuid in log - IRIX style log");
257 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 		xlog_warn("XFS: log has mismatched uuid - can't recover");
259 		xlog_header_check_dump(mp, head);
260 		XFS_ERROR_REPORT("xlog_header_check_mount",
261 				 XFS_ERRLEVEL_HIGH, mp);
262 		return XFS_ERROR(EFSCORRUPTED);
263 	}
264 	return 0;
265 }
266 
267 STATIC void
268 xlog_recover_iodone(
269 	struct xfs_buf	*bp)
270 {
271 	xfs_mount_t	*mp;
272 
273 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274 
275 	if (XFS_BUF_GETERROR(bp)) {
276 		/*
277 		 * We're not going to bother about retrying
278 		 * this during recovery. One strike!
279 		 */
280 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 		xfs_ioerror_alert("xlog_recover_iodone",
282 				  mp, bp, XFS_BUF_ADDR(bp));
283 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
284 	}
285 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 	XFS_BUF_CLR_IODONE_FUNC(bp);
287 	xfs_biodone(bp);
288 }
289 
290 /*
291  * This routine finds (to an approximation) the first block in the physical
292  * log which contains the given cycle.  It uses a binary search algorithm.
293  * Note that the algorithm can not be perfect because the disk will not
294  * necessarily be perfect.
295  */
296 int
297 xlog_find_cycle_start(
298 	xlog_t		*log,
299 	xfs_buf_t	*bp,
300 	xfs_daddr_t	first_blk,
301 	xfs_daddr_t	*last_blk,
302 	uint		cycle)
303 {
304 	xfs_caddr_t	offset;
305 	xfs_daddr_t	mid_blk;
306 	uint		mid_cycle;
307 	int		error;
308 
309 	mid_blk = BLK_AVG(first_blk, *last_blk);
310 	while (mid_blk != first_blk && mid_blk != *last_blk) {
311 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 			return error;
313 		offset = xlog_align(log, mid_blk, 1, bp);
314 		mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315 		if (mid_cycle == cycle) {
316 			*last_blk = mid_blk;
317 			/* last_half_cycle == mid_cycle */
318 		} else {
319 			first_blk = mid_blk;
320 			/* first_half_cycle == mid_cycle */
321 		}
322 		mid_blk = BLK_AVG(first_blk, *last_blk);
323 	}
324 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
326 
327 	return 0;
328 }
329 
330 /*
331  * Check that the range of blocks does not contain the cycle number
332  * given.  The scan needs to occur from front to back and the ptr into the
333  * region must be updated since a later routine will need to perform another
334  * test.  If the region is completely good, we end up returning the same
335  * last block number.
336  *
337  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
338  * since we don't ever expect logs to get this large.
339  */
340 STATIC int
341 xlog_find_verify_cycle(
342 	xlog_t		*log,
343 	xfs_daddr_t	start_blk,
344 	int		nbblks,
345 	uint		stop_on_cycle_no,
346 	xfs_daddr_t	*new_blk)
347 {
348 	xfs_daddr_t	i, j;
349 	uint		cycle;
350 	xfs_buf_t	*bp;
351 	xfs_daddr_t	bufblks;
352 	xfs_caddr_t	buf = NULL;
353 	int		error = 0;
354 
355 	bufblks = 1 << ffs(nbblks);
356 
357 	while (!(bp = xlog_get_bp(log, bufblks))) {
358 		/* can't get enough memory to do everything in one big buffer */
359 		bufblks >>= 1;
360 		if (bufblks <= log->l_sectbb_log)
361 			return ENOMEM;
362 	}
363 
364 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 		int	bcount;
366 
367 		bcount = min(bufblks, (start_blk + nbblks - i));
368 
369 		if ((error = xlog_bread(log, i, bcount, bp)))
370 			goto out;
371 
372 		buf = xlog_align(log, i, bcount, bp);
373 		for (j = 0; j < bcount; j++) {
374 			cycle = GET_CYCLE(buf, ARCH_CONVERT);
375 			if (cycle == stop_on_cycle_no) {
376 				*new_blk = i+j;
377 				goto out;
378 			}
379 
380 			buf += BBSIZE;
381 		}
382 	}
383 
384 	*new_blk = -1;
385 
386 out:
387 	xlog_put_bp(bp);
388 	return error;
389 }
390 
391 /*
392  * Potentially backup over partial log record write.
393  *
394  * In the typical case, last_blk is the number of the block directly after
395  * a good log record.  Therefore, we subtract one to get the block number
396  * of the last block in the given buffer.  extra_bblks contains the number
397  * of blocks we would have read on a previous read.  This happens when the
398  * last log record is split over the end of the physical log.
399  *
400  * extra_bblks is the number of blocks potentially verified on a previous
401  * call to this routine.
402  */
403 STATIC int
404 xlog_find_verify_log_record(
405 	xlog_t			*log,
406 	xfs_daddr_t		start_blk,
407 	xfs_daddr_t		*last_blk,
408 	int			extra_bblks)
409 {
410 	xfs_daddr_t		i;
411 	xfs_buf_t		*bp;
412 	xfs_caddr_t		offset = NULL;
413 	xlog_rec_header_t	*head = NULL;
414 	int			error = 0;
415 	int			smallmem = 0;
416 	int			num_blks = *last_blk - start_blk;
417 	int			xhdrs;
418 
419 	ASSERT(start_blk != 0 || *last_blk != start_blk);
420 
421 	if (!(bp = xlog_get_bp(log, num_blks))) {
422 		if (!(bp = xlog_get_bp(log, 1)))
423 			return ENOMEM;
424 		smallmem = 1;
425 	} else {
426 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 			goto out;
428 		offset = xlog_align(log, start_blk, num_blks, bp);
429 		offset += ((num_blks - 1) << BBSHIFT);
430 	}
431 
432 	for (i = (*last_blk) - 1; i >= 0; i--) {
433 		if (i < start_blk) {
434 			/* valid log record not found */
435 			xlog_warn(
436 		"XFS: Log inconsistent (didn't find previous header)");
437 			ASSERT(0);
438 			error = XFS_ERROR(EIO);
439 			goto out;
440 		}
441 
442 		if (smallmem) {
443 			if ((error = xlog_bread(log, i, 1, bp)))
444 				goto out;
445 			offset = xlog_align(log, i, 1, bp);
446 		}
447 
448 		head = (xlog_rec_header_t *)offset;
449 
450 		if (XLOG_HEADER_MAGIC_NUM ==
451 		    INT_GET(head->h_magicno, ARCH_CONVERT))
452 			break;
453 
454 		if (!smallmem)
455 			offset -= BBSIZE;
456 	}
457 
458 	/*
459 	 * We hit the beginning of the physical log & still no header.  Return
460 	 * to caller.  If caller can handle a return of -1, then this routine
461 	 * will be called again for the end of the physical log.
462 	 */
463 	if (i == -1) {
464 		error = -1;
465 		goto out;
466 	}
467 
468 	/*
469 	 * We have the final block of the good log (the first block
470 	 * of the log record _before_ the head. So we check the uuid.
471 	 */
472 	if ((error = xlog_header_check_mount(log->l_mp, head)))
473 		goto out;
474 
475 	/*
476 	 * We may have found a log record header before we expected one.
477 	 * last_blk will be the 1st block # with a given cycle #.  We may end
478 	 * up reading an entire log record.  In this case, we don't want to
479 	 * reset last_blk.  Only when last_blk points in the middle of a log
480 	 * record do we update last_blk.
481 	 */
482 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483 		uint	h_size = INT_GET(head->h_size, ARCH_CONVERT);
484 
485 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
487 			xhdrs++;
488 	} else {
489 		xhdrs = 1;
490 	}
491 
492 	if (*last_blk - i + extra_bblks
493 			!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494 		*last_blk = i;
495 
496 out:
497 	xlog_put_bp(bp);
498 	return error;
499 }
500 
501 /*
502  * Head is defined to be the point of the log where the next log write
503  * write could go.  This means that incomplete LR writes at the end are
504  * eliminated when calculating the head.  We aren't guaranteed that previous
505  * LR have complete transactions.  We only know that a cycle number of
506  * current cycle number -1 won't be present in the log if we start writing
507  * from our current block number.
508  *
509  * last_blk contains the block number of the first block with a given
510  * cycle number.
511  *
512  * Return: zero if normal, non-zero if error.
513  */
514 STATIC int
515 xlog_find_head(
516 	xlog_t 		*log,
517 	xfs_daddr_t	*return_head_blk)
518 {
519 	xfs_buf_t	*bp;
520 	xfs_caddr_t	offset;
521 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
522 	int		num_scan_bblks;
523 	uint		first_half_cycle, last_half_cycle;
524 	uint		stop_on_cycle;
525 	int		error, log_bbnum = log->l_logBBsize;
526 
527 	/* Is the end of the log device zeroed? */
528 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529 		*return_head_blk = first_blk;
530 
531 		/* Is the whole lot zeroed? */
532 		if (!first_blk) {
533 			/* Linux XFS shouldn't generate totally zeroed logs -
534 			 * mkfs etc write a dummy unmount record to a fresh
535 			 * log so we can store the uuid in there
536 			 */
537 			xlog_warn("XFS: totally zeroed log");
538 		}
539 
540 		return 0;
541 	} else if (error) {
542 		xlog_warn("XFS: empty log check failed");
543 		return error;
544 	}
545 
546 	first_blk = 0;			/* get cycle # of 1st block */
547 	bp = xlog_get_bp(log, 1);
548 	if (!bp)
549 		return ENOMEM;
550 	if ((error = xlog_bread(log, 0, 1, bp)))
551 		goto bp_err;
552 	offset = xlog_align(log, 0, 1, bp);
553 	first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554 
555 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
556 	if ((error = xlog_bread(log, last_blk, 1, bp)))
557 		goto bp_err;
558 	offset = xlog_align(log, last_blk, 1, bp);
559 	last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560 	ASSERT(last_half_cycle != 0);
561 
562 	/*
563 	 * If the 1st half cycle number is equal to the last half cycle number,
564 	 * then the entire log is stamped with the same cycle number.  In this
565 	 * case, head_blk can't be set to zero (which makes sense).  The below
566 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
567 	 * we set it to log_bbnum which is an invalid block number, but this
568 	 * value makes the math correct.  If head_blk doesn't changed through
569 	 * all the tests below, *head_blk is set to zero at the very end rather
570 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
571 	 * in a circular file.
572 	 */
573 	if (first_half_cycle == last_half_cycle) {
574 		/*
575 		 * In this case we believe that the entire log should have
576 		 * cycle number last_half_cycle.  We need to scan backwards
577 		 * from the end verifying that there are no holes still
578 		 * containing last_half_cycle - 1.  If we find such a hole,
579 		 * then the start of that hole will be the new head.  The
580 		 * simple case looks like
581 		 *        x | x ... | x - 1 | x
582 		 * Another case that fits this picture would be
583 		 *        x | x + 1 | x ... | x
584 		 * In this case the head really is somewhere at the end of the
585 		 * log, as one of the latest writes at the beginning was
586 		 * incomplete.
587 		 * One more case is
588 		 *        x | x + 1 | x ... | x - 1 | x
589 		 * This is really the combination of the above two cases, and
590 		 * the head has to end up at the start of the x-1 hole at the
591 		 * end of the log.
592 		 *
593 		 * In the 256k log case, we will read from the beginning to the
594 		 * end of the log and search for cycle numbers equal to x-1.
595 		 * We don't worry about the x+1 blocks that we encounter,
596 		 * because we know that they cannot be the head since the log
597 		 * started with x.
598 		 */
599 		head_blk = log_bbnum;
600 		stop_on_cycle = last_half_cycle - 1;
601 	} else {
602 		/*
603 		 * In this case we want to find the first block with cycle
604 		 * number matching last_half_cycle.  We expect the log to be
605 		 * some variation on
606 		 *        x + 1 ... | x ...
607 		 * The first block with cycle number x (last_half_cycle) will
608 		 * be where the new head belongs.  First we do a binary search
609 		 * for the first occurrence of last_half_cycle.  The binary
610 		 * search may not be totally accurate, so then we scan back
611 		 * from there looking for occurrences of last_half_cycle before
612 		 * us.  If that backwards scan wraps around the beginning of
613 		 * the log, then we look for occurrences of last_half_cycle - 1
614 		 * at the end of the log.  The cases we're looking for look
615 		 * like
616 		 *        x + 1 ... | x | x + 1 | x ...
617 		 *                               ^ binary search stopped here
618 		 * or
619 		 *        x + 1 ... | x ... | x - 1 | x
620 		 *        <---------> less than scan distance
621 		 */
622 		stop_on_cycle = last_half_cycle;
623 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
624 						&head_blk, last_half_cycle)))
625 			goto bp_err;
626 	}
627 
628 	/*
629 	 * Now validate the answer.  Scan back some number of maximum possible
630 	 * blocks and make sure each one has the expected cycle number.  The
631 	 * maximum is determined by the total possible amount of buffering
632 	 * in the in-core log.  The following number can be made tighter if
633 	 * we actually look at the block size of the filesystem.
634 	 */
635 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636 	if (head_blk >= num_scan_bblks) {
637 		/*
638 		 * We are guaranteed that the entire check can be performed
639 		 * in one buffer.
640 		 */
641 		start_blk = head_blk - num_scan_bblks;
642 		if ((error = xlog_find_verify_cycle(log,
643 						start_blk, num_scan_bblks,
644 						stop_on_cycle, &new_blk)))
645 			goto bp_err;
646 		if (new_blk != -1)
647 			head_blk = new_blk;
648 	} else {		/* need to read 2 parts of log */
649 		/*
650 		 * We are going to scan backwards in the log in two parts.
651 		 * First we scan the physical end of the log.  In this part
652 		 * of the log, we are looking for blocks with cycle number
653 		 * last_half_cycle - 1.
654 		 * If we find one, then we know that the log starts there, as
655 		 * we've found a hole that didn't get written in going around
656 		 * the end of the physical log.  The simple case for this is
657 		 *        x + 1 ... | x ... | x - 1 | x
658 		 *        <---------> less than scan distance
659 		 * If all of the blocks at the end of the log have cycle number
660 		 * last_half_cycle, then we check the blocks at the start of
661 		 * the log looking for occurrences of last_half_cycle.  If we
662 		 * find one, then our current estimate for the location of the
663 		 * first occurrence of last_half_cycle is wrong and we move
664 		 * back to the hole we've found.  This case looks like
665 		 *        x + 1 ... | x | x + 1 | x ...
666 		 *                               ^ binary search stopped here
667 		 * Another case we need to handle that only occurs in 256k
668 		 * logs is
669 		 *        x + 1 ... | x ... | x+1 | x ...
670 		 *                   ^ binary search stops here
671 		 * In a 256k log, the scan at the end of the log will see the
672 		 * x + 1 blocks.  We need to skip past those since that is
673 		 * certainly not the head of the log.  By searching for
674 		 * last_half_cycle-1 we accomplish that.
675 		 */
676 		start_blk = log_bbnum - num_scan_bblks + head_blk;
677 		ASSERT(head_blk <= INT_MAX &&
678 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679 		if ((error = xlog_find_verify_cycle(log, start_blk,
680 					num_scan_bblks - (int)head_blk,
681 					(stop_on_cycle - 1), &new_blk)))
682 			goto bp_err;
683 		if (new_blk != -1) {
684 			head_blk = new_blk;
685 			goto bad_blk;
686 		}
687 
688 		/*
689 		 * Scan beginning of log now.  The last part of the physical
690 		 * log is good.  This scan needs to verify that it doesn't find
691 		 * the last_half_cycle.
692 		 */
693 		start_blk = 0;
694 		ASSERT(head_blk <= INT_MAX);
695 		if ((error = xlog_find_verify_cycle(log,
696 					start_blk, (int)head_blk,
697 					stop_on_cycle, &new_blk)))
698 			goto bp_err;
699 		if (new_blk != -1)
700 			head_blk = new_blk;
701 	}
702 
703  bad_blk:
704 	/*
705 	 * Now we need to make sure head_blk is not pointing to a block in
706 	 * the middle of a log record.
707 	 */
708 	num_scan_bblks = XLOG_REC_SHIFT(log);
709 	if (head_blk >= num_scan_bblks) {
710 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711 
712 		/* start ptr at last block ptr before head_blk */
713 		if ((error = xlog_find_verify_log_record(log, start_blk,
714 							&head_blk, 0)) == -1) {
715 			error = XFS_ERROR(EIO);
716 			goto bp_err;
717 		} else if (error)
718 			goto bp_err;
719 	} else {
720 		start_blk = 0;
721 		ASSERT(head_blk <= INT_MAX);
722 		if ((error = xlog_find_verify_log_record(log, start_blk,
723 							&head_blk, 0)) == -1) {
724 			/* We hit the beginning of the log during our search */
725 			start_blk = log_bbnum - num_scan_bblks + head_blk;
726 			new_blk = log_bbnum;
727 			ASSERT(start_blk <= INT_MAX &&
728 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
729 			ASSERT(head_blk <= INT_MAX);
730 			if ((error = xlog_find_verify_log_record(log,
731 							start_blk, &new_blk,
732 							(int)head_blk)) == -1) {
733 				error = XFS_ERROR(EIO);
734 				goto bp_err;
735 			} else if (error)
736 				goto bp_err;
737 			if (new_blk != log_bbnum)
738 				head_blk = new_blk;
739 		} else if (error)
740 			goto bp_err;
741 	}
742 
743 	xlog_put_bp(bp);
744 	if (head_blk == log_bbnum)
745 		*return_head_blk = 0;
746 	else
747 		*return_head_blk = head_blk;
748 	/*
749 	 * When returning here, we have a good block number.  Bad block
750 	 * means that during a previous crash, we didn't have a clean break
751 	 * from cycle number N to cycle number N-1.  In this case, we need
752 	 * to find the first block with cycle number N-1.
753 	 */
754 	return 0;
755 
756  bp_err:
757 	xlog_put_bp(bp);
758 
759 	if (error)
760 	    xlog_warn("XFS: failed to find log head");
761 	return error;
762 }
763 
764 /*
765  * Find the sync block number or the tail of the log.
766  *
767  * This will be the block number of the last record to have its
768  * associated buffers synced to disk.  Every log record header has
769  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
770  * to get a sync block number.  The only concern is to figure out which
771  * log record header to believe.
772  *
773  * The following algorithm uses the log record header with the largest
774  * lsn.  The entire log record does not need to be valid.  We only care
775  * that the header is valid.
776  *
777  * We could speed up search by using current head_blk buffer, but it is not
778  * available.
779  */
780 int
781 xlog_find_tail(
782 	xlog_t			*log,
783 	xfs_daddr_t		*head_blk,
784 	xfs_daddr_t		*tail_blk)
785 {
786 	xlog_rec_header_t	*rhead;
787 	xlog_op_header_t	*op_head;
788 	xfs_caddr_t		offset = NULL;
789 	xfs_buf_t		*bp;
790 	int			error, i, found;
791 	xfs_daddr_t		umount_data_blk;
792 	xfs_daddr_t		after_umount_blk;
793 	xfs_lsn_t		tail_lsn;
794 	int			hblks;
795 
796 	found = 0;
797 
798 	/*
799 	 * Find previous log record
800 	 */
801 	if ((error = xlog_find_head(log, head_blk)))
802 		return error;
803 
804 	bp = xlog_get_bp(log, 1);
805 	if (!bp)
806 		return ENOMEM;
807 	if (*head_blk == 0) {				/* special case */
808 		if ((error = xlog_bread(log, 0, 1, bp)))
809 			goto bread_err;
810 		offset = xlog_align(log, 0, 1, bp);
811 		if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812 			*tail_blk = 0;
813 			/* leave all other log inited values alone */
814 			goto exit;
815 		}
816 	}
817 
818 	/*
819 	 * Search backwards looking for log record header block
820 	 */
821 	ASSERT(*head_blk < INT_MAX);
822 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823 		if ((error = xlog_bread(log, i, 1, bp)))
824 			goto bread_err;
825 		offset = xlog_align(log, i, 1, bp);
826 		if (XLOG_HEADER_MAGIC_NUM ==
827 		    INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828 			found = 1;
829 			break;
830 		}
831 	}
832 	/*
833 	 * If we haven't found the log record header block, start looking
834 	 * again from the end of the physical log.  XXXmiken: There should be
835 	 * a check here to make sure we didn't search more than N blocks in
836 	 * the previous code.
837 	 */
838 	if (!found) {
839 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 			if ((error = xlog_bread(log, i, 1, bp)))
841 				goto bread_err;
842 			offset = xlog_align(log, i, 1, bp);
843 			if (XLOG_HEADER_MAGIC_NUM ==
844 			    INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845 				found = 2;
846 				break;
847 			}
848 		}
849 	}
850 	if (!found) {
851 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 		ASSERT(0);
853 		return XFS_ERROR(EIO);
854 	}
855 
856 	/* find blk_no of tail of log */
857 	rhead = (xlog_rec_header_t *)offset;
858 	*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859 
860 	/*
861 	 * Reset log values according to the state of the log when we
862 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
863 	 * one because the next write starts a new cycle rather than
864 	 * continuing the cycle of the last good log record.  At this
865 	 * point we have guaranteed that all partial log records have been
866 	 * accounted for.  Therefore, we know that the last good log record
867 	 * written was complete and ended exactly on the end boundary
868 	 * of the physical log.
869 	 */
870 	log->l_prev_block = i;
871 	log->l_curr_block = (int)*head_blk;
872 	log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873 	if (found == 2)
874 		log->l_curr_cycle++;
875 	log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876 	log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877 	log->l_grant_reserve_cycle = log->l_curr_cycle;
878 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 	log->l_grant_write_cycle = log->l_curr_cycle;
880 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881 
882 	/*
883 	 * Look for unmount record.  If we find it, then we know there
884 	 * was a clean unmount.  Since 'i' could be the last block in
885 	 * the physical log, we convert to a log block before comparing
886 	 * to the head_blk.
887 	 *
888 	 * Save the current tail lsn to use to pass to
889 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
890 	 * unmount record if there is one, so we pass the lsn of the
891 	 * unmount record rather than the block after it.
892 	 */
893 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894 		int	h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895 		int	h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896 
897 		if ((h_version & XLOG_VERSION_2) &&
898 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 				hblks++;
902 		} else {
903 			hblks = 1;
904 		}
905 	} else {
906 		hblks = 1;
907 	}
908 	after_umount_blk = (i + hblks + (int)
909 		BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910 	tail_lsn = log->l_tail_lsn;
911 	if (*head_blk == after_umount_blk &&
912 	    INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913 		umount_data_blk = (i + hblks) % log->l_logBBsize;
914 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 			goto bread_err;
916 		}
917 		offset = xlog_align(log, umount_data_blk, 1, bp);
918 		op_head = (xlog_op_header_t *)offset;
919 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 			/*
921 			 * Set tail and last sync so that newly written
922 			 * log records will point recovery to after the
923 			 * current unmount record.
924 			 */
925 			ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926 					after_umount_blk);
927 			ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928 					after_umount_blk);
929 			*tail_blk = after_umount_blk;
930 		}
931 	}
932 
933 	/*
934 	 * Make sure that there are no blocks in front of the head
935 	 * with the same cycle number as the head.  This can happen
936 	 * because we allow multiple outstanding log writes concurrently,
937 	 * and the later writes might make it out before earlier ones.
938 	 *
939 	 * We use the lsn from before modifying it so that we'll never
940 	 * overwrite the unmount record after a clean unmount.
941 	 *
942 	 * Do this only if we are going to recover the filesystem
943 	 *
944 	 * NOTE: This used to say "if (!readonly)"
945 	 * However on Linux, we can & do recover a read-only filesystem.
946 	 * We only skip recovery if NORECOVERY is specified on mount,
947 	 * in which case we would not be here.
948 	 *
949 	 * But... if the -device- itself is readonly, just skip this.
950 	 * We can't recover this device anyway, so it won't matter.
951 	 */
952 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
953 		error = xlog_clear_stale_blocks(log, tail_lsn);
954 	}
955 
956 bread_err:
957 exit:
958 	xlog_put_bp(bp);
959 
960 	if (error)
961 		xlog_warn("XFS: failed to locate log tail");
962 	return error;
963 }
964 
965 /*
966  * Is the log zeroed at all?
967  *
968  * The last binary search should be changed to perform an X block read
969  * once X becomes small enough.  You can then search linearly through
970  * the X blocks.  This will cut down on the number of reads we need to do.
971  *
972  * If the log is partially zeroed, this routine will pass back the blkno
973  * of the first block with cycle number 0.  It won't have a complete LR
974  * preceding it.
975  *
976  * Return:
977  *	0  => the log is completely written to
978  *	-1 => use *blk_no as the first block of the log
979  *	>0 => error has occurred
980  */
981 int
982 xlog_find_zeroed(
983 	xlog_t		*log,
984 	xfs_daddr_t	*blk_no)
985 {
986 	xfs_buf_t	*bp;
987 	xfs_caddr_t	offset;
988 	uint	        first_cycle, last_cycle;
989 	xfs_daddr_t	new_blk, last_blk, start_blk;
990 	xfs_daddr_t     num_scan_bblks;
991 	int	        error, log_bbnum = log->l_logBBsize;
992 
993 	/* check totally zeroed log */
994 	bp = xlog_get_bp(log, 1);
995 	if (!bp)
996 		return ENOMEM;
997 	if ((error = xlog_bread(log, 0, 1, bp)))
998 		goto bp_err;
999 	offset = xlog_align(log, 0, 1, bp);
1000 	first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1001 	if (first_cycle == 0) {		/* completely zeroed log */
1002 		*blk_no = 0;
1003 		xlog_put_bp(bp);
1004 		return -1;
1005 	}
1006 
1007 	/* check partially zeroed log */
1008 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1009 		goto bp_err;
1010 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1011 	last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1012 	if (last_cycle != 0) {		/* log completely written to */
1013 		xlog_put_bp(bp);
1014 		return 0;
1015 	} else if (first_cycle != 1) {
1016 		/*
1017 		 * If the cycle of the last block is zero, the cycle of
1018 		 * the first block must be 1. If it's not, maybe we're
1019 		 * not looking at a log... Bail out.
1020 		 */
1021 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1022 		return XFS_ERROR(EINVAL);
1023 	}
1024 
1025 	/* we have a partially zeroed log */
1026 	last_blk = log_bbnum-1;
1027 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1028 		goto bp_err;
1029 
1030 	/*
1031 	 * Validate the answer.  Because there is no way to guarantee that
1032 	 * the entire log is made up of log records which are the same size,
1033 	 * we scan over the defined maximum blocks.  At this point, the maximum
1034 	 * is not chosen to mean anything special.   XXXmiken
1035 	 */
1036 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1037 	ASSERT(num_scan_bblks <= INT_MAX);
1038 
1039 	if (last_blk < num_scan_bblks)
1040 		num_scan_bblks = last_blk;
1041 	start_blk = last_blk - num_scan_bblks;
1042 
1043 	/*
1044 	 * We search for any instances of cycle number 0 that occur before
1045 	 * our current estimate of the head.  What we're trying to detect is
1046 	 *        1 ... | 0 | 1 | 0...
1047 	 *                       ^ binary search ends here
1048 	 */
1049 	if ((error = xlog_find_verify_cycle(log, start_blk,
1050 					 (int)num_scan_bblks, 0, &new_blk)))
1051 		goto bp_err;
1052 	if (new_blk != -1)
1053 		last_blk = new_blk;
1054 
1055 	/*
1056 	 * Potentially backup over partial log record write.  We don't need
1057 	 * to search the end of the log because we know it is zero.
1058 	 */
1059 	if ((error = xlog_find_verify_log_record(log, start_blk,
1060 				&last_blk, 0)) == -1) {
1061 	    error = XFS_ERROR(EIO);
1062 	    goto bp_err;
1063 	} else if (error)
1064 	    goto bp_err;
1065 
1066 	*blk_no = last_blk;
1067 bp_err:
1068 	xlog_put_bp(bp);
1069 	if (error)
1070 		return error;
1071 	return -1;
1072 }
1073 
1074 /*
1075  * These are simple subroutines used by xlog_clear_stale_blocks() below
1076  * to initialize a buffer full of empty log record headers and write
1077  * them into the log.
1078  */
1079 STATIC void
1080 xlog_add_record(
1081 	xlog_t			*log,
1082 	xfs_caddr_t		buf,
1083 	int			cycle,
1084 	int			block,
1085 	int			tail_cycle,
1086 	int			tail_block)
1087 {
1088 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1089 
1090 	memset(buf, 0, BBSIZE);
1091 	INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1092 	INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1093 	INT_SET(recp->h_version, ARCH_CONVERT,
1094 			XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1095 	ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1096 	ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1097 	INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1098 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1099 }
1100 
1101 STATIC int
1102 xlog_write_log_records(
1103 	xlog_t		*log,
1104 	int		cycle,
1105 	int		start_block,
1106 	int		blocks,
1107 	int		tail_cycle,
1108 	int		tail_block)
1109 {
1110 	xfs_caddr_t	offset;
1111 	xfs_buf_t	*bp;
1112 	int		balign, ealign;
1113 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1114 	int		end_block = start_block + blocks;
1115 	int		bufblks;
1116 	int		error = 0;
1117 	int		i, j = 0;
1118 
1119 	bufblks = 1 << ffs(blocks);
1120 	while (!(bp = xlog_get_bp(log, bufblks))) {
1121 		bufblks >>= 1;
1122 		if (bufblks <= log->l_sectbb_log)
1123 			return ENOMEM;
1124 	}
1125 
1126 	/* We may need to do a read at the start to fill in part of
1127 	 * the buffer in the starting sector not covered by the first
1128 	 * write below.
1129 	 */
1130 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1131 	if (balign != start_block) {
1132 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1133 			xlog_put_bp(bp);
1134 			return error;
1135 		}
1136 		j = start_block - balign;
1137 	}
1138 
1139 	for (i = start_block; i < end_block; i += bufblks) {
1140 		int		bcount, endcount;
1141 
1142 		bcount = min(bufblks, end_block - start_block);
1143 		endcount = bcount - j;
1144 
1145 		/* We may need to do a read at the end to fill in part of
1146 		 * the buffer in the final sector not covered by the write.
1147 		 * If this is the same sector as the above read, skip it.
1148 		 */
1149 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1150 		if (j == 0 && (start_block + endcount > ealign)) {
1151 			offset = XFS_BUF_PTR(bp);
1152 			balign = BBTOB(ealign - start_block);
1153 			XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1154 			if ((error = xlog_bread(log, ealign, sectbb, bp)))
1155 				break;
1156 			XFS_BUF_SET_PTR(bp, offset, bufblks);
1157 		}
1158 
1159 		offset = xlog_align(log, start_block, endcount, bp);
1160 		for (; j < endcount; j++) {
1161 			xlog_add_record(log, offset, cycle, i+j,
1162 					tail_cycle, tail_block);
1163 			offset += BBSIZE;
1164 		}
1165 		error = xlog_bwrite(log, start_block, endcount, bp);
1166 		if (error)
1167 			break;
1168 		start_block += endcount;
1169 		j = 0;
1170 	}
1171 	xlog_put_bp(bp);
1172 	return error;
1173 }
1174 
1175 /*
1176  * This routine is called to blow away any incomplete log writes out
1177  * in front of the log head.  We do this so that we won't become confused
1178  * if we come up, write only a little bit more, and then crash again.
1179  * If we leave the partial log records out there, this situation could
1180  * cause us to think those partial writes are valid blocks since they
1181  * have the current cycle number.  We get rid of them by overwriting them
1182  * with empty log records with the old cycle number rather than the
1183  * current one.
1184  *
1185  * The tail lsn is passed in rather than taken from
1186  * the log so that we will not write over the unmount record after a
1187  * clean unmount in a 512 block log.  Doing so would leave the log without
1188  * any valid log records in it until a new one was written.  If we crashed
1189  * during that time we would not be able to recover.
1190  */
1191 STATIC int
1192 xlog_clear_stale_blocks(
1193 	xlog_t		*log,
1194 	xfs_lsn_t	tail_lsn)
1195 {
1196 	int		tail_cycle, head_cycle;
1197 	int		tail_block, head_block;
1198 	int		tail_distance, max_distance;
1199 	int		distance;
1200 	int		error;
1201 
1202 	tail_cycle = CYCLE_LSN(tail_lsn);
1203 	tail_block = BLOCK_LSN(tail_lsn);
1204 	head_cycle = log->l_curr_cycle;
1205 	head_block = log->l_curr_block;
1206 
1207 	/*
1208 	 * Figure out the distance between the new head of the log
1209 	 * and the tail.  We want to write over any blocks beyond the
1210 	 * head that we may have written just before the crash, but
1211 	 * we don't want to overwrite the tail of the log.
1212 	 */
1213 	if (head_cycle == tail_cycle) {
1214 		/*
1215 		 * The tail is behind the head in the physical log,
1216 		 * so the distance from the head to the tail is the
1217 		 * distance from the head to the end of the log plus
1218 		 * the distance from the beginning of the log to the
1219 		 * tail.
1220 		 */
1221 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1222 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1223 					 XFS_ERRLEVEL_LOW, log->l_mp);
1224 			return XFS_ERROR(EFSCORRUPTED);
1225 		}
1226 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1227 	} else {
1228 		/*
1229 		 * The head is behind the tail in the physical log,
1230 		 * so the distance from the head to the tail is just
1231 		 * the tail block minus the head block.
1232 		 */
1233 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1234 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1235 					 XFS_ERRLEVEL_LOW, log->l_mp);
1236 			return XFS_ERROR(EFSCORRUPTED);
1237 		}
1238 		tail_distance = tail_block - head_block;
1239 	}
1240 
1241 	/*
1242 	 * If the head is right up against the tail, we can't clear
1243 	 * anything.
1244 	 */
1245 	if (tail_distance <= 0) {
1246 		ASSERT(tail_distance == 0);
1247 		return 0;
1248 	}
1249 
1250 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1251 	/*
1252 	 * Take the smaller of the maximum amount of outstanding I/O
1253 	 * we could have and the distance to the tail to clear out.
1254 	 * We take the smaller so that we don't overwrite the tail and
1255 	 * we don't waste all day writing from the head to the tail
1256 	 * for no reason.
1257 	 */
1258 	max_distance = MIN(max_distance, tail_distance);
1259 
1260 	if ((head_block + max_distance) <= log->l_logBBsize) {
1261 		/*
1262 		 * We can stomp all the blocks we need to without
1263 		 * wrapping around the end of the log.  Just do it
1264 		 * in a single write.  Use the cycle number of the
1265 		 * current cycle minus one so that the log will look like:
1266 		 *     n ... | n - 1 ...
1267 		 */
1268 		error = xlog_write_log_records(log, (head_cycle - 1),
1269 				head_block, max_distance, tail_cycle,
1270 				tail_block);
1271 		if (error)
1272 			return error;
1273 	} else {
1274 		/*
1275 		 * We need to wrap around the end of the physical log in
1276 		 * order to clear all the blocks.  Do it in two separate
1277 		 * I/Os.  The first write should be from the head to the
1278 		 * end of the physical log, and it should use the current
1279 		 * cycle number minus one just like above.
1280 		 */
1281 		distance = log->l_logBBsize - head_block;
1282 		error = xlog_write_log_records(log, (head_cycle - 1),
1283 				head_block, distance, tail_cycle,
1284 				tail_block);
1285 
1286 		if (error)
1287 			return error;
1288 
1289 		/*
1290 		 * Now write the blocks at the start of the physical log.
1291 		 * This writes the remainder of the blocks we want to clear.
1292 		 * It uses the current cycle number since we're now on the
1293 		 * same cycle as the head so that we get:
1294 		 *    n ... n ... | n - 1 ...
1295 		 *    ^^^^^ blocks we're writing
1296 		 */
1297 		distance = max_distance - (log->l_logBBsize - head_block);
1298 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1299 				tail_cycle, tail_block);
1300 		if (error)
1301 			return error;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /******************************************************************************
1308  *
1309  *		Log recover routines
1310  *
1311  ******************************************************************************
1312  */
1313 
1314 STATIC xlog_recover_t *
1315 xlog_recover_find_tid(
1316 	xlog_recover_t		*q,
1317 	xlog_tid_t		tid)
1318 {
1319 	xlog_recover_t		*p = q;
1320 
1321 	while (p != NULL) {
1322 		if (p->r_log_tid == tid)
1323 		    break;
1324 		p = p->r_next;
1325 	}
1326 	return p;
1327 }
1328 
1329 STATIC void
1330 xlog_recover_put_hashq(
1331 	xlog_recover_t		**q,
1332 	xlog_recover_t		*trans)
1333 {
1334 	trans->r_next = *q;
1335 	*q = trans;
1336 }
1337 
1338 STATIC void
1339 xlog_recover_add_item(
1340 	xlog_recover_item_t	**itemq)
1341 {
1342 	xlog_recover_item_t	*item;
1343 
1344 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1345 	xlog_recover_insert_item_backq(itemq, item);
1346 }
1347 
1348 STATIC int
1349 xlog_recover_add_to_cont_trans(
1350 	xlog_recover_t		*trans,
1351 	xfs_caddr_t		dp,
1352 	int			len)
1353 {
1354 	xlog_recover_item_t	*item;
1355 	xfs_caddr_t		ptr, old_ptr;
1356 	int			old_len;
1357 
1358 	item = trans->r_itemq;
1359 	if (item == 0) {
1360 		/* finish copying rest of trans header */
1361 		xlog_recover_add_item(&trans->r_itemq);
1362 		ptr = (xfs_caddr_t) &trans->r_theader +
1363 				sizeof(xfs_trans_header_t) - len;
1364 		memcpy(ptr, dp, len); /* d, s, l */
1365 		return 0;
1366 	}
1367 	item = item->ri_prev;
1368 
1369 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1370 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1371 
1372 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1373 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1374 	item->ri_buf[item->ri_cnt-1].i_len += len;
1375 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1376 	return 0;
1377 }
1378 
1379 /*
1380  * The next region to add is the start of a new region.  It could be
1381  * a whole region or it could be the first part of a new region.  Because
1382  * of this, the assumption here is that the type and size fields of all
1383  * format structures fit into the first 32 bits of the structure.
1384  *
1385  * This works because all regions must be 32 bit aligned.  Therefore, we
1386  * either have both fields or we have neither field.  In the case we have
1387  * neither field, the data part of the region is zero length.  We only have
1388  * a log_op_header and can throw away the header since a new one will appear
1389  * later.  If we have at least 4 bytes, then we can determine how many regions
1390  * will appear in the current log item.
1391  */
1392 STATIC int
1393 xlog_recover_add_to_trans(
1394 	xlog_recover_t		*trans,
1395 	xfs_caddr_t		dp,
1396 	int			len)
1397 {
1398 	xfs_inode_log_format_t	*in_f;			/* any will do */
1399 	xlog_recover_item_t	*item;
1400 	xfs_caddr_t		ptr;
1401 
1402 	if (!len)
1403 		return 0;
1404 	item = trans->r_itemq;
1405 	if (item == 0) {
1406 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1407 		if (len == sizeof(xfs_trans_header_t))
1408 			xlog_recover_add_item(&trans->r_itemq);
1409 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1410 		return 0;
1411 	}
1412 
1413 	ptr = kmem_alloc(len, KM_SLEEP);
1414 	memcpy(ptr, dp, len);
1415 	in_f = (xfs_inode_log_format_t *)ptr;
1416 
1417 	if (item->ri_prev->ri_total != 0 &&
1418 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1419 		xlog_recover_add_item(&trans->r_itemq);
1420 	}
1421 	item = trans->r_itemq;
1422 	item = item->ri_prev;
1423 
1424 	if (item->ri_total == 0) {		/* first region to be added */
1425 		item->ri_total	= in_f->ilf_size;
1426 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1427 		item->ri_buf = kmem_zalloc((item->ri_total *
1428 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1429 	}
1430 	ASSERT(item->ri_total > item->ri_cnt);
1431 	/* Description region is ri_buf[0] */
1432 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1433 	item->ri_buf[item->ri_cnt].i_len  = len;
1434 	item->ri_cnt++;
1435 	return 0;
1436 }
1437 
1438 STATIC void
1439 xlog_recover_new_tid(
1440 	xlog_recover_t		**q,
1441 	xlog_tid_t		tid,
1442 	xfs_lsn_t		lsn)
1443 {
1444 	xlog_recover_t		*trans;
1445 
1446 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1447 	trans->r_log_tid   = tid;
1448 	trans->r_lsn	   = lsn;
1449 	xlog_recover_put_hashq(q, trans);
1450 }
1451 
1452 STATIC int
1453 xlog_recover_unlink_tid(
1454 	xlog_recover_t		**q,
1455 	xlog_recover_t		*trans)
1456 {
1457 	xlog_recover_t		*tp;
1458 	int			found = 0;
1459 
1460 	ASSERT(trans != 0);
1461 	if (trans == *q) {
1462 		*q = (*q)->r_next;
1463 	} else {
1464 		tp = *q;
1465 		while (tp != 0) {
1466 			if (tp->r_next == trans) {
1467 				found = 1;
1468 				break;
1469 			}
1470 			tp = tp->r_next;
1471 		}
1472 		if (!found) {
1473 			xlog_warn(
1474 			     "XFS: xlog_recover_unlink_tid: trans not found");
1475 			ASSERT(0);
1476 			return XFS_ERROR(EIO);
1477 		}
1478 		tp->r_next = tp->r_next->r_next;
1479 	}
1480 	return 0;
1481 }
1482 
1483 STATIC void
1484 xlog_recover_insert_item_backq(
1485 	xlog_recover_item_t	**q,
1486 	xlog_recover_item_t	*item)
1487 {
1488 	if (*q == 0) {
1489 		item->ri_prev = item->ri_next = item;
1490 		*q = item;
1491 	} else {
1492 		item->ri_next		= *q;
1493 		item->ri_prev		= (*q)->ri_prev;
1494 		(*q)->ri_prev		= item;
1495 		item->ri_prev->ri_next	= item;
1496 	}
1497 }
1498 
1499 STATIC void
1500 xlog_recover_insert_item_frontq(
1501 	xlog_recover_item_t	**q,
1502 	xlog_recover_item_t	*item)
1503 {
1504 	xlog_recover_insert_item_backq(q, item);
1505 	*q = item;
1506 }
1507 
1508 STATIC int
1509 xlog_recover_reorder_trans(
1510 	xlog_t			*log,
1511 	xlog_recover_t		*trans)
1512 {
1513 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1514 	xfs_buf_log_format_t	*buf_f;
1515 	xfs_buf_log_format_v1_t	*obuf_f;
1516 	ushort			flags = 0;
1517 
1518 	first_item = itemq = trans->r_itemq;
1519 	trans->r_itemq = NULL;
1520 	do {
1521 		itemq_next = itemq->ri_next;
1522 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1523 		switch (ITEM_TYPE(itemq)) {
1524 		case XFS_LI_BUF:
1525 			flags = buf_f->blf_flags;
1526 			break;
1527 		case XFS_LI_6_1_BUF:
1528 		case XFS_LI_5_3_BUF:
1529 			obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1530 			flags = obuf_f->blf_flags;
1531 			break;
1532 		}
1533 
1534 		switch (ITEM_TYPE(itemq)) {
1535 		case XFS_LI_BUF:
1536 		case XFS_LI_6_1_BUF:
1537 		case XFS_LI_5_3_BUF:
1538 			if (!(flags & XFS_BLI_CANCEL)) {
1539 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1540 								itemq);
1541 				break;
1542 			}
1543 		case XFS_LI_INODE:
1544 		case XFS_LI_6_1_INODE:
1545 		case XFS_LI_5_3_INODE:
1546 		case XFS_LI_DQUOT:
1547 		case XFS_LI_QUOTAOFF:
1548 		case XFS_LI_EFD:
1549 		case XFS_LI_EFI:
1550 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1551 			break;
1552 		default:
1553 			xlog_warn(
1554 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1555 			ASSERT(0);
1556 			return XFS_ERROR(EIO);
1557 		}
1558 		itemq = itemq_next;
1559 	} while (first_item != itemq);
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Build up the table of buf cancel records so that we don't replay
1565  * cancelled data in the second pass.  For buffer records that are
1566  * not cancel records, there is nothing to do here so we just return.
1567  *
1568  * If we get a cancel record which is already in the table, this indicates
1569  * that the buffer was cancelled multiple times.  In order to ensure
1570  * that during pass 2 we keep the record in the table until we reach its
1571  * last occurrence in the log, we keep a reference count in the cancel
1572  * record in the table to tell us how many times we expect to see this
1573  * record during the second pass.
1574  */
1575 STATIC void
1576 xlog_recover_do_buffer_pass1(
1577 	xlog_t			*log,
1578 	xfs_buf_log_format_t	*buf_f)
1579 {
1580 	xfs_buf_cancel_t	*bcp;
1581 	xfs_buf_cancel_t	*nextp;
1582 	xfs_buf_cancel_t	*prevp;
1583 	xfs_buf_cancel_t	**bucket;
1584 	xfs_buf_log_format_v1_t	*obuf_f;
1585 	xfs_daddr_t		blkno = 0;
1586 	uint			len = 0;
1587 	ushort			flags = 0;
1588 
1589 	switch (buf_f->blf_type) {
1590 	case XFS_LI_BUF:
1591 		blkno = buf_f->blf_blkno;
1592 		len = buf_f->blf_len;
1593 		flags = buf_f->blf_flags;
1594 		break;
1595 	case XFS_LI_6_1_BUF:
1596 	case XFS_LI_5_3_BUF:
1597 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1598 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1599 		len = obuf_f->blf_len;
1600 		flags = obuf_f->blf_flags;
1601 		break;
1602 	}
1603 
1604 	/*
1605 	 * If this isn't a cancel buffer item, then just return.
1606 	 */
1607 	if (!(flags & XFS_BLI_CANCEL))
1608 		return;
1609 
1610 	/*
1611 	 * Insert an xfs_buf_cancel record into the hash table of
1612 	 * them.  If there is already an identical record, bump
1613 	 * its reference count.
1614 	 */
1615 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1616 					  XLOG_BC_TABLE_SIZE];
1617 	/*
1618 	 * If the hash bucket is empty then just insert a new record into
1619 	 * the bucket.
1620 	 */
1621 	if (*bucket == NULL) {
1622 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1623 						     KM_SLEEP);
1624 		bcp->bc_blkno = blkno;
1625 		bcp->bc_len = len;
1626 		bcp->bc_refcount = 1;
1627 		bcp->bc_next = NULL;
1628 		*bucket = bcp;
1629 		return;
1630 	}
1631 
1632 	/*
1633 	 * The hash bucket is not empty, so search for duplicates of our
1634 	 * record.  If we find one them just bump its refcount.  If not
1635 	 * then add us at the end of the list.
1636 	 */
1637 	prevp = NULL;
1638 	nextp = *bucket;
1639 	while (nextp != NULL) {
1640 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1641 			nextp->bc_refcount++;
1642 			return;
1643 		}
1644 		prevp = nextp;
1645 		nextp = nextp->bc_next;
1646 	}
1647 	ASSERT(prevp != NULL);
1648 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1649 					     KM_SLEEP);
1650 	bcp->bc_blkno = blkno;
1651 	bcp->bc_len = len;
1652 	bcp->bc_refcount = 1;
1653 	bcp->bc_next = NULL;
1654 	prevp->bc_next = bcp;
1655 }
1656 
1657 /*
1658  * Check to see whether the buffer being recovered has a corresponding
1659  * entry in the buffer cancel record table.  If it does then return 1
1660  * so that it will be cancelled, otherwise return 0.  If the buffer is
1661  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1662  * the refcount on the entry in the table and remove it from the table
1663  * if this is the last reference.
1664  *
1665  * We remove the cancel record from the table when we encounter its
1666  * last occurrence in the log so that if the same buffer is re-used
1667  * again after its last cancellation we actually replay the changes
1668  * made at that point.
1669  */
1670 STATIC int
1671 xlog_check_buffer_cancelled(
1672 	xlog_t			*log,
1673 	xfs_daddr_t		blkno,
1674 	uint			len,
1675 	ushort			flags)
1676 {
1677 	xfs_buf_cancel_t	*bcp;
1678 	xfs_buf_cancel_t	*prevp;
1679 	xfs_buf_cancel_t	**bucket;
1680 
1681 	if (log->l_buf_cancel_table == NULL) {
1682 		/*
1683 		 * There is nothing in the table built in pass one,
1684 		 * so this buffer must not be cancelled.
1685 		 */
1686 		ASSERT(!(flags & XFS_BLI_CANCEL));
1687 		return 0;
1688 	}
1689 
1690 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1691 					  XLOG_BC_TABLE_SIZE];
1692 	bcp = *bucket;
1693 	if (bcp == NULL) {
1694 		/*
1695 		 * There is no corresponding entry in the table built
1696 		 * in pass one, so this buffer has not been cancelled.
1697 		 */
1698 		ASSERT(!(flags & XFS_BLI_CANCEL));
1699 		return 0;
1700 	}
1701 
1702 	/*
1703 	 * Search for an entry in the buffer cancel table that
1704 	 * matches our buffer.
1705 	 */
1706 	prevp = NULL;
1707 	while (bcp != NULL) {
1708 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1709 			/*
1710 			 * We've go a match, so return 1 so that the
1711 			 * recovery of this buffer is cancelled.
1712 			 * If this buffer is actually a buffer cancel
1713 			 * log item, then decrement the refcount on the
1714 			 * one in the table and remove it if this is the
1715 			 * last reference.
1716 			 */
1717 			if (flags & XFS_BLI_CANCEL) {
1718 				bcp->bc_refcount--;
1719 				if (bcp->bc_refcount == 0) {
1720 					if (prevp == NULL) {
1721 						*bucket = bcp->bc_next;
1722 					} else {
1723 						prevp->bc_next = bcp->bc_next;
1724 					}
1725 					kmem_free(bcp,
1726 						  sizeof(xfs_buf_cancel_t));
1727 				}
1728 			}
1729 			return 1;
1730 		}
1731 		prevp = bcp;
1732 		bcp = bcp->bc_next;
1733 	}
1734 	/*
1735 	 * We didn't find a corresponding entry in the table, so
1736 	 * return 0 so that the buffer is NOT cancelled.
1737 	 */
1738 	ASSERT(!(flags & XFS_BLI_CANCEL));
1739 	return 0;
1740 }
1741 
1742 STATIC int
1743 xlog_recover_do_buffer_pass2(
1744 	xlog_t			*log,
1745 	xfs_buf_log_format_t	*buf_f)
1746 {
1747 	xfs_buf_log_format_v1_t	*obuf_f;
1748 	xfs_daddr_t		blkno = 0;
1749 	ushort			flags = 0;
1750 	uint			len = 0;
1751 
1752 	switch (buf_f->blf_type) {
1753 	case XFS_LI_BUF:
1754 		blkno = buf_f->blf_blkno;
1755 		flags = buf_f->blf_flags;
1756 		len = buf_f->blf_len;
1757 		break;
1758 	case XFS_LI_6_1_BUF:
1759 	case XFS_LI_5_3_BUF:
1760 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1761 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1762 		flags = obuf_f->blf_flags;
1763 		len = (xfs_daddr_t) obuf_f->blf_len;
1764 		break;
1765 	}
1766 
1767 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1768 }
1769 
1770 /*
1771  * Perform recovery for a buffer full of inodes.  In these buffers,
1772  * the only data which should be recovered is that which corresponds
1773  * to the di_next_unlinked pointers in the on disk inode structures.
1774  * The rest of the data for the inodes is always logged through the
1775  * inodes themselves rather than the inode buffer and is recovered
1776  * in xlog_recover_do_inode_trans().
1777  *
1778  * The only time when buffers full of inodes are fully recovered is
1779  * when the buffer is full of newly allocated inodes.  In this case
1780  * the buffer will not be marked as an inode buffer and so will be
1781  * sent to xlog_recover_do_reg_buffer() below during recovery.
1782  */
1783 STATIC int
1784 xlog_recover_do_inode_buffer(
1785 	xfs_mount_t		*mp,
1786 	xlog_recover_item_t	*item,
1787 	xfs_buf_t		*bp,
1788 	xfs_buf_log_format_t	*buf_f)
1789 {
1790 	int			i;
1791 	int			item_index;
1792 	int			bit;
1793 	int			nbits;
1794 	int			reg_buf_offset;
1795 	int			reg_buf_bytes;
1796 	int			next_unlinked_offset;
1797 	int			inodes_per_buf;
1798 	xfs_agino_t		*logged_nextp;
1799 	xfs_agino_t		*buffer_nextp;
1800 	xfs_buf_log_format_v1_t	*obuf_f;
1801 	unsigned int		*data_map = NULL;
1802 	unsigned int		map_size = 0;
1803 
1804 	switch (buf_f->blf_type) {
1805 	case XFS_LI_BUF:
1806 		data_map = buf_f->blf_data_map;
1807 		map_size = buf_f->blf_map_size;
1808 		break;
1809 	case XFS_LI_6_1_BUF:
1810 	case XFS_LI_5_3_BUF:
1811 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1812 		data_map = obuf_f->blf_data_map;
1813 		map_size = obuf_f->blf_map_size;
1814 		break;
1815 	}
1816 	/*
1817 	 * Set the variables corresponding to the current region to
1818 	 * 0 so that we'll initialize them on the first pass through
1819 	 * the loop.
1820 	 */
1821 	reg_buf_offset = 0;
1822 	reg_buf_bytes = 0;
1823 	bit = 0;
1824 	nbits = 0;
1825 	item_index = 0;
1826 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1827 	for (i = 0; i < inodes_per_buf; i++) {
1828 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1829 			offsetof(xfs_dinode_t, di_next_unlinked);
1830 
1831 		while (next_unlinked_offset >=
1832 		       (reg_buf_offset + reg_buf_bytes)) {
1833 			/*
1834 			 * The next di_next_unlinked field is beyond
1835 			 * the current logged region.  Find the next
1836 			 * logged region that contains or is beyond
1837 			 * the current di_next_unlinked field.
1838 			 */
1839 			bit += nbits;
1840 			bit = xfs_next_bit(data_map, map_size, bit);
1841 
1842 			/*
1843 			 * If there are no more logged regions in the
1844 			 * buffer, then we're done.
1845 			 */
1846 			if (bit == -1) {
1847 				return 0;
1848 			}
1849 
1850 			nbits = xfs_contig_bits(data_map, map_size,
1851 							 bit);
1852 			ASSERT(nbits > 0);
1853 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1854 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1855 			item_index++;
1856 		}
1857 
1858 		/*
1859 		 * If the current logged region starts after the current
1860 		 * di_next_unlinked field, then move on to the next
1861 		 * di_next_unlinked field.
1862 		 */
1863 		if (next_unlinked_offset < reg_buf_offset) {
1864 			continue;
1865 		}
1866 
1867 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1868 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1869 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1870 
1871 		/*
1872 		 * The current logged region contains a copy of the
1873 		 * current di_next_unlinked field.  Extract its value
1874 		 * and copy it to the buffer copy.
1875 		 */
1876 		logged_nextp = (xfs_agino_t *)
1877 			       ((char *)(item->ri_buf[item_index].i_addr) +
1878 				(next_unlinked_offset - reg_buf_offset));
1879 		if (unlikely(*logged_nextp == 0)) {
1880 			xfs_fs_cmn_err(CE_ALERT, mp,
1881 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1882 				item, bp);
1883 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1884 					 XFS_ERRLEVEL_LOW, mp);
1885 			return XFS_ERROR(EFSCORRUPTED);
1886 		}
1887 
1888 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1889 					      next_unlinked_offset);
1890 		*buffer_nextp = *logged_nextp;
1891 	}
1892 
1893 	return 0;
1894 }
1895 
1896 /*
1897  * Perform a 'normal' buffer recovery.  Each logged region of the
1898  * buffer should be copied over the corresponding region in the
1899  * given buffer.  The bitmap in the buf log format structure indicates
1900  * where to place the logged data.
1901  */
1902 /*ARGSUSED*/
1903 STATIC void
1904 xlog_recover_do_reg_buffer(
1905 	xfs_mount_t		*mp,
1906 	xlog_recover_item_t	*item,
1907 	xfs_buf_t		*bp,
1908 	xfs_buf_log_format_t	*buf_f)
1909 {
1910 	int			i;
1911 	int			bit;
1912 	int			nbits;
1913 	xfs_buf_log_format_v1_t	*obuf_f;
1914 	unsigned int		*data_map = NULL;
1915 	unsigned int		map_size = 0;
1916 	int                     error;
1917 
1918 	switch (buf_f->blf_type) {
1919 	case XFS_LI_BUF:
1920 		data_map = buf_f->blf_data_map;
1921 		map_size = buf_f->blf_map_size;
1922 		break;
1923 	case XFS_LI_6_1_BUF:
1924 	case XFS_LI_5_3_BUF:
1925 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1926 		data_map = obuf_f->blf_data_map;
1927 		map_size = obuf_f->blf_map_size;
1928 		break;
1929 	}
1930 	bit = 0;
1931 	i = 1;  /* 0 is the buf format structure */
1932 	while (1) {
1933 		bit = xfs_next_bit(data_map, map_size, bit);
1934 		if (bit == -1)
1935 			break;
1936 		nbits = xfs_contig_bits(data_map, map_size, bit);
1937 		ASSERT(nbits > 0);
1938 		ASSERT(item->ri_buf[i].i_addr != 0);
1939 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1940 		ASSERT(XFS_BUF_COUNT(bp) >=
1941 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1942 
1943 		/*
1944 		 * Do a sanity check if this is a dquot buffer. Just checking
1945 		 * the first dquot in the buffer should do. XXXThis is
1946 		 * probably a good thing to do for other buf types also.
1947 		 */
1948 		error = 0;
1949 		if (buf_f->blf_flags &
1950 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1951 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1952 					       item->ri_buf[i].i_addr,
1953 					       -1, 0, XFS_QMOPT_DOWARN,
1954 					       "dquot_buf_recover");
1955 		}
1956 		if (!error)
1957 			memcpy(xfs_buf_offset(bp,
1958 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1959 				item->ri_buf[i].i_addr,		/* source */
1960 				nbits<<XFS_BLI_SHIFT);		/* length */
1961 		i++;
1962 		bit += nbits;
1963 	}
1964 
1965 	/* Shouldn't be any more regions */
1966 	ASSERT(i == item->ri_total);
1967 }
1968 
1969 /*
1970  * Do some primitive error checking on ondisk dquot data structures.
1971  */
1972 int
1973 xfs_qm_dqcheck(
1974 	xfs_disk_dquot_t *ddq,
1975 	xfs_dqid_t	 id,
1976 	uint		 type,	  /* used only when IO_dorepair is true */
1977 	uint		 flags,
1978 	char		 *str)
1979 {
1980 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1981 	int		errs = 0;
1982 
1983 	/*
1984 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1985 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1986 	 *    used for user data. This is because we take the path of regular
1987 	 *    file deletion; however, the size field of quotainodes is never
1988 	 *    updated, so all the tricks that we play in itruncate_finish
1989 	 *    don't quite matter.
1990 	 *
1991 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1992 	 *    But the allocation will be replayed so we'll end up with an
1993 	 *    uninitialized quota block.
1994 	 *
1995 	 * This is all fine; things are still consistent, and we haven't lost
1996 	 * any quota information. Just don't complain about bad dquot blks.
1997 	 */
1998 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1999 		if (flags & XFS_QMOPT_DOWARN)
2000 			cmn_err(CE_ALERT,
2001 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2002 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2003 		errs++;
2004 	}
2005 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2006 		if (flags & XFS_QMOPT_DOWARN)
2007 			cmn_err(CE_ALERT,
2008 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2009 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2010 		errs++;
2011 	}
2012 
2013 	if (ddq->d_flags != XFS_DQ_USER &&
2014 	    ddq->d_flags != XFS_DQ_PROJ &&
2015 	    ddq->d_flags != XFS_DQ_GROUP) {
2016 		if (flags & XFS_QMOPT_DOWARN)
2017 			cmn_err(CE_ALERT,
2018 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2019 			str, id, ddq->d_flags);
2020 		errs++;
2021 	}
2022 
2023 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2024 		if (flags & XFS_QMOPT_DOWARN)
2025 			cmn_err(CE_ALERT,
2026 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2027 			"0x%x expected, found id 0x%x",
2028 			str, ddq, id, be32_to_cpu(ddq->d_id));
2029 		errs++;
2030 	}
2031 
2032 	if (!errs && ddq->d_id) {
2033 		if (ddq->d_blk_softlimit &&
2034 		    be64_to_cpu(ddq->d_bcount) >=
2035 				be64_to_cpu(ddq->d_blk_softlimit)) {
2036 			if (!ddq->d_btimer) {
2037 				if (flags & XFS_QMOPT_DOWARN)
2038 					cmn_err(CE_ALERT,
2039 					"%s : Dquot ID 0x%x (0x%p) "
2040 					"BLK TIMER NOT STARTED",
2041 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2042 				errs++;
2043 			}
2044 		}
2045 		if (ddq->d_ino_softlimit &&
2046 		    be64_to_cpu(ddq->d_icount) >=
2047 				be64_to_cpu(ddq->d_ino_softlimit)) {
2048 			if (!ddq->d_itimer) {
2049 				if (flags & XFS_QMOPT_DOWARN)
2050 					cmn_err(CE_ALERT,
2051 					"%s : Dquot ID 0x%x (0x%p) "
2052 					"INODE TIMER NOT STARTED",
2053 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2054 				errs++;
2055 			}
2056 		}
2057 		if (ddq->d_rtb_softlimit &&
2058 		    be64_to_cpu(ddq->d_rtbcount) >=
2059 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2060 			if (!ddq->d_rtbtimer) {
2061 				if (flags & XFS_QMOPT_DOWARN)
2062 					cmn_err(CE_ALERT,
2063 					"%s : Dquot ID 0x%x (0x%p) "
2064 					"RTBLK TIMER NOT STARTED",
2065 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2066 				errs++;
2067 			}
2068 		}
2069 	}
2070 
2071 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2072 		return errs;
2073 
2074 	if (flags & XFS_QMOPT_DOWARN)
2075 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2076 
2077 	/*
2078 	 * Typically, a repair is only requested by quotacheck.
2079 	 */
2080 	ASSERT(id != -1);
2081 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2082 	memset(d, 0, sizeof(xfs_dqblk_t));
2083 
2084 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2085 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2086 	d->dd_diskdq.d_flags = type;
2087 	d->dd_diskdq.d_id = cpu_to_be32(id);
2088 
2089 	return errs;
2090 }
2091 
2092 /*
2093  * Perform a dquot buffer recovery.
2094  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2095  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2096  * Else, treat it as a regular buffer and do recovery.
2097  */
2098 STATIC void
2099 xlog_recover_do_dquot_buffer(
2100 	xfs_mount_t		*mp,
2101 	xlog_t			*log,
2102 	xlog_recover_item_t	*item,
2103 	xfs_buf_t		*bp,
2104 	xfs_buf_log_format_t	*buf_f)
2105 {
2106 	uint			type;
2107 
2108 	/*
2109 	 * Filesystems are required to send in quota flags at mount time.
2110 	 */
2111 	if (mp->m_qflags == 0) {
2112 		return;
2113 	}
2114 
2115 	type = 0;
2116 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2117 		type |= XFS_DQ_USER;
2118 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2119 		type |= XFS_DQ_PROJ;
2120 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2121 		type |= XFS_DQ_GROUP;
2122 	/*
2123 	 * This type of quotas was turned off, so ignore this buffer
2124 	 */
2125 	if (log->l_quotaoffs_flag & type)
2126 		return;
2127 
2128 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2129 }
2130 
2131 /*
2132  * This routine replays a modification made to a buffer at runtime.
2133  * There are actually two types of buffer, regular and inode, which
2134  * are handled differently.  Inode buffers are handled differently
2135  * in that we only recover a specific set of data from them, namely
2136  * the inode di_next_unlinked fields.  This is because all other inode
2137  * data is actually logged via inode records and any data we replay
2138  * here which overlaps that may be stale.
2139  *
2140  * When meta-data buffers are freed at run time we log a buffer item
2141  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2142  * of the buffer in the log should not be replayed at recovery time.
2143  * This is so that if the blocks covered by the buffer are reused for
2144  * file data before we crash we don't end up replaying old, freed
2145  * meta-data into a user's file.
2146  *
2147  * To handle the cancellation of buffer log items, we make two passes
2148  * over the log during recovery.  During the first we build a table of
2149  * those buffers which have been cancelled, and during the second we
2150  * only replay those buffers which do not have corresponding cancel
2151  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2152  * for more details on the implementation of the table of cancel records.
2153  */
2154 STATIC int
2155 xlog_recover_do_buffer_trans(
2156 	xlog_t			*log,
2157 	xlog_recover_item_t	*item,
2158 	int			pass)
2159 {
2160 	xfs_buf_log_format_t	*buf_f;
2161 	xfs_buf_log_format_v1_t	*obuf_f;
2162 	xfs_mount_t		*mp;
2163 	xfs_buf_t		*bp;
2164 	int			error;
2165 	int			cancel;
2166 	xfs_daddr_t		blkno;
2167 	int			len;
2168 	ushort			flags;
2169 
2170 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2171 
2172 	if (pass == XLOG_RECOVER_PASS1) {
2173 		/*
2174 		 * In this pass we're only looking for buf items
2175 		 * with the XFS_BLI_CANCEL bit set.
2176 		 */
2177 		xlog_recover_do_buffer_pass1(log, buf_f);
2178 		return 0;
2179 	} else {
2180 		/*
2181 		 * In this pass we want to recover all the buffers
2182 		 * which have not been cancelled and are not
2183 		 * cancellation buffers themselves.  The routine
2184 		 * we call here will tell us whether or not to
2185 		 * continue with the replay of this buffer.
2186 		 */
2187 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2188 		if (cancel) {
2189 			return 0;
2190 		}
2191 	}
2192 	switch (buf_f->blf_type) {
2193 	case XFS_LI_BUF:
2194 		blkno = buf_f->blf_blkno;
2195 		len = buf_f->blf_len;
2196 		flags = buf_f->blf_flags;
2197 		break;
2198 	case XFS_LI_6_1_BUF:
2199 	case XFS_LI_5_3_BUF:
2200 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2201 		blkno = obuf_f->blf_blkno;
2202 		len = obuf_f->blf_len;
2203 		flags = obuf_f->blf_flags;
2204 		break;
2205 	default:
2206 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2207 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2208 			buf_f->blf_type, log->l_mp->m_logname ?
2209 			log->l_mp->m_logname : "internal");
2210 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2211 				 XFS_ERRLEVEL_LOW, log->l_mp);
2212 		return XFS_ERROR(EFSCORRUPTED);
2213 	}
2214 
2215 	mp = log->l_mp;
2216 	if (flags & XFS_BLI_INODE_BUF) {
2217 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2218 								XFS_BUF_LOCK);
2219 	} else {
2220 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2221 	}
2222 	if (XFS_BUF_ISERROR(bp)) {
2223 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2224 				  bp, blkno);
2225 		error = XFS_BUF_GETERROR(bp);
2226 		xfs_buf_relse(bp);
2227 		return error;
2228 	}
2229 
2230 	error = 0;
2231 	if (flags & XFS_BLI_INODE_BUF) {
2232 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2233 	} else if (flags &
2234 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2235 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2236 	} else {
2237 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2238 	}
2239 	if (error)
2240 		return XFS_ERROR(error);
2241 
2242 	/*
2243 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2244 	 * slower when taking into account all the buffers to be flushed.
2245 	 *
2246 	 * Also make sure that only inode buffers with good sizes stay in
2247 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2248 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2249 	 * buffers in the log can be a different size if the log was generated
2250 	 * by an older kernel using unclustered inode buffers or a newer kernel
2251 	 * running with a different inode cluster size.  Regardless, if the
2252 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2253 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2254 	 * the buffer out of the buffer cache so that the buffer won't
2255 	 * overlap with future reads of those inodes.
2256 	 */
2257 	if (XFS_DINODE_MAGIC ==
2258 	    INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2259 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2260 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2261 		XFS_BUF_STALE(bp);
2262 		error = xfs_bwrite(mp, bp);
2263 	} else {
2264 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2265 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2266 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2267 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2268 		xfs_bdwrite(mp, bp);
2269 	}
2270 
2271 	return (error);
2272 }
2273 
2274 STATIC int
2275 xlog_recover_do_inode_trans(
2276 	xlog_t			*log,
2277 	xlog_recover_item_t	*item,
2278 	int			pass)
2279 {
2280 	xfs_inode_log_format_t	*in_f;
2281 	xfs_mount_t		*mp;
2282 	xfs_buf_t		*bp;
2283 	xfs_imap_t		imap;
2284 	xfs_dinode_t		*dip;
2285 	xfs_ino_t		ino;
2286 	int			len;
2287 	xfs_caddr_t		src;
2288 	xfs_caddr_t		dest;
2289 	int			error;
2290 	int			attr_index;
2291 	uint			fields;
2292 	xfs_dinode_core_t	*dicp;
2293 	int			need_free = 0;
2294 
2295 	if (pass == XLOG_RECOVER_PASS1) {
2296 		return 0;
2297 	}
2298 
2299 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2300 		in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2301 	} else {
2302 		in_f = (xfs_inode_log_format_t *)kmem_alloc(
2303 			sizeof(xfs_inode_log_format_t), KM_SLEEP);
2304 		need_free = 1;
2305 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2306 		if (error)
2307 			goto error;
2308 	}
2309 	ino = in_f->ilf_ino;
2310 	mp = log->l_mp;
2311 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2312 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2313 		imap.im_len = in_f->ilf_len;
2314 		imap.im_boffset = in_f->ilf_boffset;
2315 	} else {
2316 		/*
2317 		 * It's an old inode format record.  We don't know where
2318 		 * its cluster is located on disk, and we can't allow
2319 		 * xfs_imap() to figure it out because the inode btrees
2320 		 * are not ready to be used.  Therefore do not pass the
2321 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2322 		 * us only the single block in which the inode lives
2323 		 * rather than its cluster, so we must make sure to
2324 		 * invalidate the buffer when we write it out below.
2325 		 */
2326 		imap.im_blkno = 0;
2327 		xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2328 	}
2329 
2330 	/*
2331 	 * Inode buffers can be freed, look out for it,
2332 	 * and do not replay the inode.
2333 	 */
2334 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2335 		error = 0;
2336 		goto error;
2337 	}
2338 
2339 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2340 								XFS_BUF_LOCK);
2341 	if (XFS_BUF_ISERROR(bp)) {
2342 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2343 				  bp, imap.im_blkno);
2344 		error = XFS_BUF_GETERROR(bp);
2345 		xfs_buf_relse(bp);
2346 		goto error;
2347 	}
2348 	error = 0;
2349 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2350 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2351 
2352 	/*
2353 	 * Make sure the place we're flushing out to really looks
2354 	 * like an inode!
2355 	 */
2356 	if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2357 		xfs_buf_relse(bp);
2358 		xfs_fs_cmn_err(CE_ALERT, mp,
2359 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2360 			dip, bp, ino);
2361 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2362 				 XFS_ERRLEVEL_LOW, mp);
2363 		error = EFSCORRUPTED;
2364 		goto error;
2365 	}
2366 	dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2367 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2368 		xfs_buf_relse(bp);
2369 		xfs_fs_cmn_err(CE_ALERT, mp,
2370 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2371 			item, ino);
2372 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2373 				 XFS_ERRLEVEL_LOW, mp);
2374 		error = EFSCORRUPTED;
2375 		goto error;
2376 	}
2377 
2378 	/* Skip replay when the on disk inode is newer than the log one */
2379 	if (dicp->di_flushiter <
2380 	    INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2381 		/*
2382 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2383 		 * than smaller numbers
2384 		 */
2385 		if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2386 							== DI_MAX_FLUSH) &&
2387 		    (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2388 			/* do nothing */
2389 		} else {
2390 			xfs_buf_relse(bp);
2391 			error = 0;
2392 			goto error;
2393 		}
2394 	}
2395 	/* Take the opportunity to reset the flush iteration count */
2396 	dicp->di_flushiter = 0;
2397 
2398 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2399 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2400 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2401 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2402 					 XFS_ERRLEVEL_LOW, mp, dicp);
2403 			xfs_buf_relse(bp);
2404 			xfs_fs_cmn_err(CE_ALERT, mp,
2405 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2406 				item, dip, bp, ino);
2407 			error = EFSCORRUPTED;
2408 			goto error;
2409 		}
2410 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2411 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2412 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2413 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2414 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2415 					     XFS_ERRLEVEL_LOW, mp, dicp);
2416 			xfs_buf_relse(bp);
2417 			xfs_fs_cmn_err(CE_ALERT, mp,
2418 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2419 				item, dip, bp, ino);
2420 			error = EFSCORRUPTED;
2421 			goto error;
2422 		}
2423 	}
2424 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2425 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2426 				     XFS_ERRLEVEL_LOW, mp, dicp);
2427 		xfs_buf_relse(bp);
2428 		xfs_fs_cmn_err(CE_ALERT, mp,
2429 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2430 			item, dip, bp, ino,
2431 			dicp->di_nextents + dicp->di_anextents,
2432 			dicp->di_nblocks);
2433 		error = EFSCORRUPTED;
2434 		goto error;
2435 	}
2436 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2437 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2438 				     XFS_ERRLEVEL_LOW, mp, dicp);
2439 		xfs_buf_relse(bp);
2440 		xfs_fs_cmn_err(CE_ALERT, mp,
2441 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2442 			item, dip, bp, ino, dicp->di_forkoff);
2443 		error = EFSCORRUPTED;
2444 		goto error;
2445 	}
2446 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2447 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2448 				     XFS_ERRLEVEL_LOW, mp, dicp);
2449 		xfs_buf_relse(bp);
2450 		xfs_fs_cmn_err(CE_ALERT, mp,
2451 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2452 			item->ri_buf[1].i_len, item);
2453 		error = EFSCORRUPTED;
2454 		goto error;
2455 	}
2456 
2457 	/* The core is in in-core format */
2458 	xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2459 			      (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2460 
2461 	/* the rest is in on-disk format */
2462 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2463 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2464 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2465 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2466 	}
2467 
2468 	fields = in_f->ilf_fields;
2469 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2470 	case XFS_ILOG_DEV:
2471 		INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2472 
2473 		break;
2474 	case XFS_ILOG_UUID:
2475 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2476 		break;
2477 	}
2478 
2479 	if (in_f->ilf_size == 2)
2480 		goto write_inode_buffer;
2481 	len = item->ri_buf[2].i_len;
2482 	src = item->ri_buf[2].i_addr;
2483 	ASSERT(in_f->ilf_size <= 4);
2484 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2485 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2486 	       (len == in_f->ilf_dsize));
2487 
2488 	switch (fields & XFS_ILOG_DFORK) {
2489 	case XFS_ILOG_DDATA:
2490 	case XFS_ILOG_DEXT:
2491 		memcpy(&dip->di_u, src, len);
2492 		break;
2493 
2494 	case XFS_ILOG_DBROOT:
2495 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2496 				 &(dip->di_u.di_bmbt),
2497 				 XFS_DFORK_DSIZE(dip, mp));
2498 		break;
2499 
2500 	default:
2501 		/*
2502 		 * There are no data fork flags set.
2503 		 */
2504 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2505 		break;
2506 	}
2507 
2508 	/*
2509 	 * If we logged any attribute data, recover it.  There may or
2510 	 * may not have been any other non-core data logged in this
2511 	 * transaction.
2512 	 */
2513 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2514 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2515 			attr_index = 3;
2516 		} else {
2517 			attr_index = 2;
2518 		}
2519 		len = item->ri_buf[attr_index].i_len;
2520 		src = item->ri_buf[attr_index].i_addr;
2521 		ASSERT(len == in_f->ilf_asize);
2522 
2523 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2524 		case XFS_ILOG_ADATA:
2525 		case XFS_ILOG_AEXT:
2526 			dest = XFS_DFORK_APTR(dip);
2527 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2528 			memcpy(dest, src, len);
2529 			break;
2530 
2531 		case XFS_ILOG_ABROOT:
2532 			dest = XFS_DFORK_APTR(dip);
2533 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2534 					 (xfs_bmdr_block_t*)dest,
2535 					 XFS_DFORK_ASIZE(dip, mp));
2536 			break;
2537 
2538 		default:
2539 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2540 			ASSERT(0);
2541 			xfs_buf_relse(bp);
2542 			error = EIO;
2543 			goto error;
2544 		}
2545 	}
2546 
2547 write_inode_buffer:
2548 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2549 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2550 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2551 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2552 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2553 		xfs_bdwrite(mp, bp);
2554 	} else {
2555 		XFS_BUF_STALE(bp);
2556 		error = xfs_bwrite(mp, bp);
2557 	}
2558 
2559 error:
2560 	if (need_free)
2561 		kmem_free(in_f, sizeof(*in_f));
2562 	return XFS_ERROR(error);
2563 }
2564 
2565 /*
2566  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2567  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2568  * of that type.
2569  */
2570 STATIC int
2571 xlog_recover_do_quotaoff_trans(
2572 	xlog_t			*log,
2573 	xlog_recover_item_t	*item,
2574 	int			pass)
2575 {
2576 	xfs_qoff_logformat_t	*qoff_f;
2577 
2578 	if (pass == XLOG_RECOVER_PASS2) {
2579 		return (0);
2580 	}
2581 
2582 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2583 	ASSERT(qoff_f);
2584 
2585 	/*
2586 	 * The logitem format's flag tells us if this was user quotaoff,
2587 	 * group/project quotaoff or both.
2588 	 */
2589 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2590 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2591 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2592 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2593 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2594 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2595 
2596 	return (0);
2597 }
2598 
2599 /*
2600  * Recover a dquot record
2601  */
2602 STATIC int
2603 xlog_recover_do_dquot_trans(
2604 	xlog_t			*log,
2605 	xlog_recover_item_t	*item,
2606 	int			pass)
2607 {
2608 	xfs_mount_t		*mp;
2609 	xfs_buf_t		*bp;
2610 	struct xfs_disk_dquot	*ddq, *recddq;
2611 	int			error;
2612 	xfs_dq_logformat_t	*dq_f;
2613 	uint			type;
2614 
2615 	if (pass == XLOG_RECOVER_PASS1) {
2616 		return 0;
2617 	}
2618 	mp = log->l_mp;
2619 
2620 	/*
2621 	 * Filesystems are required to send in quota flags at mount time.
2622 	 */
2623 	if (mp->m_qflags == 0)
2624 		return (0);
2625 
2626 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2627 	ASSERT(recddq);
2628 	/*
2629 	 * This type of quotas was turned off, so ignore this record.
2630 	 */
2631 	type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2632 			(XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2633 	ASSERT(type);
2634 	if (log->l_quotaoffs_flag & type)
2635 		return (0);
2636 
2637 	/*
2638 	 * At this point we know that quota was _not_ turned off.
2639 	 * Since the mount flags are not indicating to us otherwise, this
2640 	 * must mean that quota is on, and the dquot needs to be replayed.
2641 	 * Remember that we may not have fully recovered the superblock yet,
2642 	 * so we can't do the usual trick of looking at the SB quota bits.
2643 	 *
2644 	 * The other possibility, of course, is that the quota subsystem was
2645 	 * removed since the last mount - ENOSYS.
2646 	 */
2647 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2648 	ASSERT(dq_f);
2649 	if ((error = xfs_qm_dqcheck(recddq,
2650 			   dq_f->qlf_id,
2651 			   0, XFS_QMOPT_DOWARN,
2652 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2653 		return XFS_ERROR(EIO);
2654 	}
2655 	ASSERT(dq_f->qlf_len == 1);
2656 
2657 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2658 			     dq_f->qlf_blkno,
2659 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2660 			     0, &bp);
2661 	if (error) {
2662 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2663 				  bp, dq_f->qlf_blkno);
2664 		return error;
2665 	}
2666 	ASSERT(bp);
2667 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2668 
2669 	/*
2670 	 * At least the magic num portion should be on disk because this
2671 	 * was among a chunk of dquots created earlier, and we did some
2672 	 * minimal initialization then.
2673 	 */
2674 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2675 			   "xlog_recover_do_dquot_trans")) {
2676 		xfs_buf_relse(bp);
2677 		return XFS_ERROR(EIO);
2678 	}
2679 
2680 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2681 
2682 	ASSERT(dq_f->qlf_size == 2);
2683 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2684 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2685 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2686 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2687 	xfs_bdwrite(mp, bp);
2688 
2689 	return (0);
2690 }
2691 
2692 /*
2693  * This routine is called to create an in-core extent free intent
2694  * item from the efi format structure which was logged on disk.
2695  * It allocates an in-core efi, copies the extents from the format
2696  * structure into it, and adds the efi to the AIL with the given
2697  * LSN.
2698  */
2699 STATIC int
2700 xlog_recover_do_efi_trans(
2701 	xlog_t			*log,
2702 	xlog_recover_item_t	*item,
2703 	xfs_lsn_t		lsn,
2704 	int			pass)
2705 {
2706 	int			error;
2707 	xfs_mount_t		*mp;
2708 	xfs_efi_log_item_t	*efip;
2709 	xfs_efi_log_format_t	*efi_formatp;
2710 	SPLDECL(s);
2711 
2712 	if (pass == XLOG_RECOVER_PASS1) {
2713 		return 0;
2714 	}
2715 
2716 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2717 
2718 	mp = log->l_mp;
2719 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2720 	if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2721 					 &(efip->efi_format)))) {
2722 		xfs_efi_item_free(efip);
2723 		return error;
2724 	}
2725 	efip->efi_next_extent = efi_formatp->efi_nextents;
2726 	efip->efi_flags |= XFS_EFI_COMMITTED;
2727 
2728 	AIL_LOCK(mp,s);
2729 	/*
2730 	 * xfs_trans_update_ail() drops the AIL lock.
2731 	 */
2732 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2733 	return 0;
2734 }
2735 
2736 
2737 /*
2738  * This routine is called when an efd format structure is found in
2739  * a committed transaction in the log.  It's purpose is to cancel
2740  * the corresponding efi if it was still in the log.  To do this
2741  * it searches the AIL for the efi with an id equal to that in the
2742  * efd format structure.  If we find it, we remove the efi from the
2743  * AIL and free it.
2744  */
2745 STATIC void
2746 xlog_recover_do_efd_trans(
2747 	xlog_t			*log,
2748 	xlog_recover_item_t	*item,
2749 	int			pass)
2750 {
2751 	xfs_mount_t		*mp;
2752 	xfs_efd_log_format_t	*efd_formatp;
2753 	xfs_efi_log_item_t	*efip = NULL;
2754 	xfs_log_item_t		*lip;
2755 	int			gen;
2756 	__uint64_t		efi_id;
2757 	SPLDECL(s);
2758 
2759 	if (pass == XLOG_RECOVER_PASS1) {
2760 		return;
2761 	}
2762 
2763 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2764 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2765 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2766 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2767 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2768 	efi_id = efd_formatp->efd_efi_id;
2769 
2770 	/*
2771 	 * Search for the efi with the id in the efd format structure
2772 	 * in the AIL.
2773 	 */
2774 	mp = log->l_mp;
2775 	AIL_LOCK(mp,s);
2776 	lip = xfs_trans_first_ail(mp, &gen);
2777 	while (lip != NULL) {
2778 		if (lip->li_type == XFS_LI_EFI) {
2779 			efip = (xfs_efi_log_item_t *)lip;
2780 			if (efip->efi_format.efi_id == efi_id) {
2781 				/*
2782 				 * xfs_trans_delete_ail() drops the
2783 				 * AIL lock.
2784 				 */
2785 				xfs_trans_delete_ail(mp, lip, s);
2786 				break;
2787 			}
2788 		}
2789 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2790 	}
2791 
2792 	/*
2793 	 * If we found it, then free it up.  If it wasn't there, it
2794 	 * must have been overwritten in the log.  Oh well.
2795 	 */
2796 	if (lip != NULL) {
2797 		xfs_efi_item_free(efip);
2798 	} else {
2799 		AIL_UNLOCK(mp, s);
2800 	}
2801 }
2802 
2803 /*
2804  * Perform the transaction
2805  *
2806  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2807  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2808  */
2809 STATIC int
2810 xlog_recover_do_trans(
2811 	xlog_t			*log,
2812 	xlog_recover_t		*trans,
2813 	int			pass)
2814 {
2815 	int			error = 0;
2816 	xlog_recover_item_t	*item, *first_item;
2817 
2818 	if ((error = xlog_recover_reorder_trans(log, trans)))
2819 		return error;
2820 	first_item = item = trans->r_itemq;
2821 	do {
2822 		/*
2823 		 * we don't need to worry about the block number being
2824 		 * truncated in > 1 TB buffers because in user-land,
2825 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2826 		 * the blknos will get through the user-mode buffer
2827 		 * cache properly.  The only bad case is o32 kernels
2828 		 * where xfs_daddr_t is 32-bits but mount will warn us
2829 		 * off a > 1 TB filesystem before we get here.
2830 		 */
2831 		if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2832 		    (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2833 		    (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2834 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2835 								 pass)))
2836 				break;
2837 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
2838 			if ((error = xlog_recover_do_inode_trans(log, item,
2839 								pass)))
2840 				break;
2841 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2842 			if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2843 						  pass)))
2844 				break;
2845 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2846 			xlog_recover_do_efd_trans(log, item, pass);
2847 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2848 			if ((error = xlog_recover_do_dquot_trans(log, item,
2849 								   pass)))
2850 					break;
2851 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2852 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2853 								   pass)))
2854 					break;
2855 		} else {
2856 			xlog_warn("XFS: xlog_recover_do_trans");
2857 			ASSERT(0);
2858 			error = XFS_ERROR(EIO);
2859 			break;
2860 		}
2861 		item = item->ri_next;
2862 	} while (first_item != item);
2863 
2864 	return error;
2865 }
2866 
2867 /*
2868  * Free up any resources allocated by the transaction
2869  *
2870  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2871  */
2872 STATIC void
2873 xlog_recover_free_trans(
2874 	xlog_recover_t		*trans)
2875 {
2876 	xlog_recover_item_t	*first_item, *item, *free_item;
2877 	int			i;
2878 
2879 	item = first_item = trans->r_itemq;
2880 	do {
2881 		free_item = item;
2882 		item = item->ri_next;
2883 		 /* Free the regions in the item. */
2884 		for (i = 0; i < free_item->ri_cnt; i++) {
2885 			kmem_free(free_item->ri_buf[i].i_addr,
2886 				  free_item->ri_buf[i].i_len);
2887 		}
2888 		/* Free the item itself */
2889 		kmem_free(free_item->ri_buf,
2890 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2891 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2892 	} while (first_item != item);
2893 	/* Free the transaction recover structure */
2894 	kmem_free(trans, sizeof(xlog_recover_t));
2895 }
2896 
2897 STATIC int
2898 xlog_recover_commit_trans(
2899 	xlog_t			*log,
2900 	xlog_recover_t		**q,
2901 	xlog_recover_t		*trans,
2902 	int			pass)
2903 {
2904 	int			error;
2905 
2906 	if ((error = xlog_recover_unlink_tid(q, trans)))
2907 		return error;
2908 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2909 		return error;
2910 	xlog_recover_free_trans(trans);			/* no error */
2911 	return 0;
2912 }
2913 
2914 STATIC int
2915 xlog_recover_unmount_trans(
2916 	xlog_recover_t		*trans)
2917 {
2918 	/* Do nothing now */
2919 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2920 	return 0;
2921 }
2922 
2923 /*
2924  * There are two valid states of the r_state field.  0 indicates that the
2925  * transaction structure is in a normal state.  We have either seen the
2926  * start of the transaction or the last operation we added was not a partial
2927  * operation.  If the last operation we added to the transaction was a
2928  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2929  *
2930  * NOTE: skip LRs with 0 data length.
2931  */
2932 STATIC int
2933 xlog_recover_process_data(
2934 	xlog_t			*log,
2935 	xlog_recover_t		*rhash[],
2936 	xlog_rec_header_t	*rhead,
2937 	xfs_caddr_t		dp,
2938 	int			pass)
2939 {
2940 	xfs_caddr_t		lp;
2941 	int			num_logops;
2942 	xlog_op_header_t	*ohead;
2943 	xlog_recover_t		*trans;
2944 	xlog_tid_t		tid;
2945 	int			error;
2946 	unsigned long		hash;
2947 	uint			flags;
2948 
2949 	lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2950 	num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2951 
2952 	/* check the log format matches our own - else we can't recover */
2953 	if (xlog_header_check_recover(log->l_mp, rhead))
2954 		return (XFS_ERROR(EIO));
2955 
2956 	while ((dp < lp) && num_logops) {
2957 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2958 		ohead = (xlog_op_header_t *)dp;
2959 		dp += sizeof(xlog_op_header_t);
2960 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2961 		    ohead->oh_clientid != XFS_LOG) {
2962 			xlog_warn(
2963 		"XFS: xlog_recover_process_data: bad clientid");
2964 			ASSERT(0);
2965 			return (XFS_ERROR(EIO));
2966 		}
2967 		tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2968 		hash = XLOG_RHASH(tid);
2969 		trans = xlog_recover_find_tid(rhash[hash], tid);
2970 		if (trans == NULL) {		   /* not found; add new tid */
2971 			if (ohead->oh_flags & XLOG_START_TRANS)
2972 				xlog_recover_new_tid(&rhash[hash], tid,
2973 					INT_GET(rhead->h_lsn, ARCH_CONVERT));
2974 		} else {
2975 			ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2976 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2977 			if (flags & XLOG_WAS_CONT_TRANS)
2978 				flags &= ~XLOG_CONTINUE_TRANS;
2979 			switch (flags) {
2980 			case XLOG_COMMIT_TRANS:
2981 				error = xlog_recover_commit_trans(log,
2982 						&rhash[hash], trans, pass);
2983 				break;
2984 			case XLOG_UNMOUNT_TRANS:
2985 				error = xlog_recover_unmount_trans(trans);
2986 				break;
2987 			case XLOG_WAS_CONT_TRANS:
2988 				error = xlog_recover_add_to_cont_trans(trans,
2989 						dp, INT_GET(ohead->oh_len,
2990 							ARCH_CONVERT));
2991 				break;
2992 			case XLOG_START_TRANS:
2993 				xlog_warn(
2994 			"XFS: xlog_recover_process_data: bad transaction");
2995 				ASSERT(0);
2996 				error = XFS_ERROR(EIO);
2997 				break;
2998 			case 0:
2999 			case XLOG_CONTINUE_TRANS:
3000 				error = xlog_recover_add_to_trans(trans,
3001 						dp, INT_GET(ohead->oh_len,
3002 							ARCH_CONVERT));
3003 				break;
3004 			default:
3005 				xlog_warn(
3006 			"XFS: xlog_recover_process_data: bad flag");
3007 				ASSERT(0);
3008 				error = XFS_ERROR(EIO);
3009 				break;
3010 			}
3011 			if (error)
3012 				return error;
3013 		}
3014 		dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3015 		num_logops--;
3016 	}
3017 	return 0;
3018 }
3019 
3020 /*
3021  * Process an extent free intent item that was recovered from
3022  * the log.  We need to free the extents that it describes.
3023  */
3024 STATIC void
3025 xlog_recover_process_efi(
3026 	xfs_mount_t		*mp,
3027 	xfs_efi_log_item_t	*efip)
3028 {
3029 	xfs_efd_log_item_t	*efdp;
3030 	xfs_trans_t		*tp;
3031 	int			i;
3032 	xfs_extent_t		*extp;
3033 	xfs_fsblock_t		startblock_fsb;
3034 
3035 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3036 
3037 	/*
3038 	 * First check the validity of the extents described by the
3039 	 * EFI.  If any are bad, then assume that all are bad and
3040 	 * just toss the EFI.
3041 	 */
3042 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3043 		extp = &(efip->efi_format.efi_extents[i]);
3044 		startblock_fsb = XFS_BB_TO_FSB(mp,
3045 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3046 		if ((startblock_fsb == 0) ||
3047 		    (extp->ext_len == 0) ||
3048 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3049 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3050 			/*
3051 			 * This will pull the EFI from the AIL and
3052 			 * free the memory associated with it.
3053 			 */
3054 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3055 			return;
3056 		}
3057 	}
3058 
3059 	tp = xfs_trans_alloc(mp, 0);
3060 	xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3061 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3062 
3063 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3064 		extp = &(efip->efi_format.efi_extents[i]);
3065 		xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3066 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3067 					 extp->ext_len);
3068 	}
3069 
3070 	efip->efi_flags |= XFS_EFI_RECOVERED;
3071 	xfs_trans_commit(tp, 0, NULL);
3072 }
3073 
3074 /*
3075  * Verify that once we've encountered something other than an EFI
3076  * in the AIL that there are no more EFIs in the AIL.
3077  */
3078 #if defined(DEBUG)
3079 STATIC void
3080 xlog_recover_check_ail(
3081 	xfs_mount_t		*mp,
3082 	xfs_log_item_t		*lip,
3083 	int			gen)
3084 {
3085 	int			orig_gen = gen;
3086 
3087 	do {
3088 		ASSERT(lip->li_type != XFS_LI_EFI);
3089 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3090 		/*
3091 		 * The check will be bogus if we restart from the
3092 		 * beginning of the AIL, so ASSERT that we don't.
3093 		 * We never should since we're holding the AIL lock
3094 		 * the entire time.
3095 		 */
3096 		ASSERT(gen == orig_gen);
3097 	} while (lip != NULL);
3098 }
3099 #endif	/* DEBUG */
3100 
3101 /*
3102  * When this is called, all of the EFIs which did not have
3103  * corresponding EFDs should be in the AIL.  What we do now
3104  * is free the extents associated with each one.
3105  *
3106  * Since we process the EFIs in normal transactions, they
3107  * will be removed at some point after the commit.  This prevents
3108  * us from just walking down the list processing each one.
3109  * We'll use a flag in the EFI to skip those that we've already
3110  * processed and use the AIL iteration mechanism's generation
3111  * count to try to speed this up at least a bit.
3112  *
3113  * When we start, we know that the EFIs are the only things in
3114  * the AIL.  As we process them, however, other items are added
3115  * to the AIL.  Since everything added to the AIL must come after
3116  * everything already in the AIL, we stop processing as soon as
3117  * we see something other than an EFI in the AIL.
3118  */
3119 STATIC void
3120 xlog_recover_process_efis(
3121 	xlog_t			*log)
3122 {
3123 	xfs_log_item_t		*lip;
3124 	xfs_efi_log_item_t	*efip;
3125 	int			gen;
3126 	xfs_mount_t		*mp;
3127 	SPLDECL(s);
3128 
3129 	mp = log->l_mp;
3130 	AIL_LOCK(mp,s);
3131 
3132 	lip = xfs_trans_first_ail(mp, &gen);
3133 	while (lip != NULL) {
3134 		/*
3135 		 * We're done when we see something other than an EFI.
3136 		 */
3137 		if (lip->li_type != XFS_LI_EFI) {
3138 			xlog_recover_check_ail(mp, lip, gen);
3139 			break;
3140 		}
3141 
3142 		/*
3143 		 * Skip EFIs that we've already processed.
3144 		 */
3145 		efip = (xfs_efi_log_item_t *)lip;
3146 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3147 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3148 			continue;
3149 		}
3150 
3151 		AIL_UNLOCK(mp, s);
3152 		xlog_recover_process_efi(mp, efip);
3153 		AIL_LOCK(mp,s);
3154 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3155 	}
3156 	AIL_UNLOCK(mp, s);
3157 }
3158 
3159 /*
3160  * This routine performs a transaction to null out a bad inode pointer
3161  * in an agi unlinked inode hash bucket.
3162  */
3163 STATIC void
3164 xlog_recover_clear_agi_bucket(
3165 	xfs_mount_t	*mp,
3166 	xfs_agnumber_t	agno,
3167 	int		bucket)
3168 {
3169 	xfs_trans_t	*tp;
3170 	xfs_agi_t	*agi;
3171 	xfs_buf_t	*agibp;
3172 	int		offset;
3173 	int		error;
3174 
3175 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3176 	xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3177 
3178 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3179 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3180 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3181 	if (error) {
3182 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3183 		return;
3184 	}
3185 
3186 	agi = XFS_BUF_TO_AGI(agibp);
3187 	if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3188 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3189 		return;
3190 	}
3191 
3192 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3193 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3194 		 (sizeof(xfs_agino_t) * bucket);
3195 	xfs_trans_log_buf(tp, agibp, offset,
3196 			  (offset + sizeof(xfs_agino_t) - 1));
3197 
3198 	(void) xfs_trans_commit(tp, 0, NULL);
3199 }
3200 
3201 /*
3202  * xlog_iunlink_recover
3203  *
3204  * This is called during recovery to process any inodes which
3205  * we unlinked but not freed when the system crashed.  These
3206  * inodes will be on the lists in the AGI blocks.  What we do
3207  * here is scan all the AGIs and fully truncate and free any
3208  * inodes found on the lists.  Each inode is removed from the
3209  * lists when it has been fully truncated and is freed.  The
3210  * freeing of the inode and its removal from the list must be
3211  * atomic.
3212  */
3213 void
3214 xlog_recover_process_iunlinks(
3215 	xlog_t		*log)
3216 {
3217 	xfs_mount_t	*mp;
3218 	xfs_agnumber_t	agno;
3219 	xfs_agi_t	*agi;
3220 	xfs_buf_t	*agibp;
3221 	xfs_buf_t	*ibp;
3222 	xfs_dinode_t	*dip;
3223 	xfs_inode_t	*ip;
3224 	xfs_agino_t	agino;
3225 	xfs_ino_t	ino;
3226 	int		bucket;
3227 	int		error;
3228 	uint		mp_dmevmask;
3229 
3230 	mp = log->l_mp;
3231 
3232 	/*
3233 	 * Prevent any DMAPI event from being sent while in this function.
3234 	 */
3235 	mp_dmevmask = mp->m_dmevmask;
3236 	mp->m_dmevmask = 0;
3237 
3238 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3239 		/*
3240 		 * Find the agi for this ag.
3241 		 */
3242 		agibp = xfs_buf_read(mp->m_ddev_targp,
3243 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3244 				XFS_FSS_TO_BB(mp, 1), 0);
3245 		if (XFS_BUF_ISERROR(agibp)) {
3246 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3247 				log->l_mp, agibp,
3248 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3249 		}
3250 		agi = XFS_BUF_TO_AGI(agibp);
3251 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3252 
3253 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3254 
3255 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3256 			while (agino != NULLAGINO) {
3257 
3258 				/*
3259 				 * Release the agi buffer so that it can
3260 				 * be acquired in the normal course of the
3261 				 * transaction to truncate and free the inode.
3262 				 */
3263 				xfs_buf_relse(agibp);
3264 
3265 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3266 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3267 				ASSERT(error || (ip != NULL));
3268 
3269 				if (!error) {
3270 					/*
3271 					 * Get the on disk inode to find the
3272 					 * next inode in the bucket.
3273 					 */
3274 					error = xfs_itobp(mp, NULL, ip, &dip,
3275 							&ibp, 0, 0);
3276 					ASSERT(error || (dip != NULL));
3277 				}
3278 
3279 				if (!error) {
3280 					ASSERT(ip->i_d.di_nlink == 0);
3281 
3282 					/* setup for the next pass */
3283 					agino = INT_GET(dip->di_next_unlinked,
3284 							ARCH_CONVERT);
3285 					xfs_buf_relse(ibp);
3286 					/*
3287 					 * Prevent any DMAPI event from
3288 					 * being sent when the
3289 					 * reference on the inode is
3290 					 * dropped.
3291 					 */
3292 					ip->i_d.di_dmevmask = 0;
3293 
3294 					/*
3295 					 * If this is a new inode, handle
3296 					 * it specially.  Otherwise,
3297 					 * just drop our reference to the
3298 					 * inode.  If there are no
3299 					 * other references, this will
3300 					 * send the inode to
3301 					 * xfs_inactive() which will
3302 					 * truncate the file and free
3303 					 * the inode.
3304 					 */
3305 					if (ip->i_d.di_mode == 0)
3306 						xfs_iput_new(ip, 0);
3307 					else
3308 						VN_RELE(XFS_ITOV(ip));
3309 				} else {
3310 					/*
3311 					 * We can't read in the inode
3312 					 * this bucket points to, or
3313 					 * this inode is messed up.  Just
3314 					 * ditch this bucket of inodes.  We
3315 					 * will lose some inodes and space,
3316 					 * but at least we won't hang.  Call
3317 					 * xlog_recover_clear_agi_bucket()
3318 					 * to perform a transaction to clear
3319 					 * the inode pointer in the bucket.
3320 					 */
3321 					xlog_recover_clear_agi_bucket(mp, agno,
3322 							bucket);
3323 
3324 					agino = NULLAGINO;
3325 				}
3326 
3327 				/*
3328 				 * Reacquire the agibuffer and continue around
3329 				 * the loop.
3330 				 */
3331 				agibp = xfs_buf_read(mp->m_ddev_targp,
3332 						XFS_AG_DADDR(mp, agno,
3333 							XFS_AGI_DADDR(mp)),
3334 						XFS_FSS_TO_BB(mp, 1), 0);
3335 				if (XFS_BUF_ISERROR(agibp)) {
3336 					xfs_ioerror_alert(
3337 				"xlog_recover_process_iunlinks(#2)",
3338 						log->l_mp, agibp,
3339 						XFS_AG_DADDR(mp, agno,
3340 							XFS_AGI_DADDR(mp)));
3341 				}
3342 				agi = XFS_BUF_TO_AGI(agibp);
3343 				ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3344 					agi->agi_magicnum));
3345 			}
3346 		}
3347 
3348 		/*
3349 		 * Release the buffer for the current agi so we can
3350 		 * go on to the next one.
3351 		 */
3352 		xfs_buf_relse(agibp);
3353 	}
3354 
3355 	mp->m_dmevmask = mp_dmevmask;
3356 }
3357 
3358 
3359 #ifdef DEBUG
3360 STATIC void
3361 xlog_pack_data_checksum(
3362 	xlog_t		*log,
3363 	xlog_in_core_t	*iclog,
3364 	int		size)
3365 {
3366 	int		i;
3367 	uint		*up;
3368 	uint		chksum = 0;
3369 
3370 	up = (uint *)iclog->ic_datap;
3371 	/* divide length by 4 to get # words */
3372 	for (i = 0; i < (size >> 2); i++) {
3373 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3374 		up++;
3375 	}
3376 	INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3377 }
3378 #else
3379 #define xlog_pack_data_checksum(log, iclog, size)
3380 #endif
3381 
3382 /*
3383  * Stamp cycle number in every block
3384  */
3385 void
3386 xlog_pack_data(
3387 	xlog_t			*log,
3388 	xlog_in_core_t		*iclog,
3389 	int			roundoff)
3390 {
3391 	int			i, j, k;
3392 	int			size = iclog->ic_offset + roundoff;
3393 	uint			cycle_lsn;
3394 	xfs_caddr_t		dp;
3395 	xlog_in_core_2_t	*xhdr;
3396 
3397 	xlog_pack_data_checksum(log, iclog, size);
3398 
3399 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3400 
3401 	dp = iclog->ic_datap;
3402 	for (i = 0; i < BTOBB(size) &&
3403 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3404 		iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3405 		*(uint *)dp = cycle_lsn;
3406 		dp += BBSIZE;
3407 	}
3408 
3409 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3410 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3411 		for ( ; i < BTOBB(size); i++) {
3412 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3413 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3414 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3415 			*(uint *)dp = cycle_lsn;
3416 			dp += BBSIZE;
3417 		}
3418 
3419 		for (i = 1; i < log->l_iclog_heads; i++) {
3420 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3421 		}
3422 	}
3423 }
3424 
3425 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3426 STATIC void
3427 xlog_unpack_data_checksum(
3428 	xlog_rec_header_t	*rhead,
3429 	xfs_caddr_t		dp,
3430 	xlog_t			*log)
3431 {
3432 	uint			*up = (uint *)dp;
3433 	uint			chksum = 0;
3434 	int			i;
3435 
3436 	/* divide length by 4 to get # words */
3437 	for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3438 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3439 		up++;
3440 	}
3441 	if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3442 	    if (rhead->h_chksum ||
3443 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3444 		    cmn_err(CE_DEBUG,
3445 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
3446 			    INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3447 		    cmn_err(CE_DEBUG,
3448 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3449 		    if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3450 			    cmn_err(CE_DEBUG,
3451 				"XFS: LogR this is a LogV2 filesystem\n");
3452 		    }
3453 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3454 	    }
3455 	}
3456 }
3457 #else
3458 #define xlog_unpack_data_checksum(rhead, dp, log)
3459 #endif
3460 
3461 STATIC void
3462 xlog_unpack_data(
3463 	xlog_rec_header_t	*rhead,
3464 	xfs_caddr_t		dp,
3465 	xlog_t			*log)
3466 {
3467 	int			i, j, k;
3468 	xlog_in_core_2_t	*xhdr;
3469 
3470 	for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3471 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3472 		*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3473 		dp += BBSIZE;
3474 	}
3475 
3476 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3477 		xhdr = (xlog_in_core_2_t *)rhead;
3478 		for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3479 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3480 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3481 			*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3482 			dp += BBSIZE;
3483 		}
3484 	}
3485 
3486 	xlog_unpack_data_checksum(rhead, dp, log);
3487 }
3488 
3489 STATIC int
3490 xlog_valid_rec_header(
3491 	xlog_t			*log,
3492 	xlog_rec_header_t	*rhead,
3493 	xfs_daddr_t		blkno)
3494 {
3495 	int			hlen;
3496 
3497 	if (unlikely(
3498 	    (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3499 			XLOG_HEADER_MAGIC_NUM))) {
3500 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3501 				XFS_ERRLEVEL_LOW, log->l_mp);
3502 		return XFS_ERROR(EFSCORRUPTED);
3503 	}
3504 	if (unlikely(
3505 	    (!rhead->h_version ||
3506 	    (INT_GET(rhead->h_version, ARCH_CONVERT) &
3507 			(~XLOG_VERSION_OKBITS)) != 0))) {
3508 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3509 			__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3510 		return XFS_ERROR(EIO);
3511 	}
3512 
3513 	/* LR body must have data or it wouldn't have been written */
3514 	hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3515 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3516 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3517 				XFS_ERRLEVEL_LOW, log->l_mp);
3518 		return XFS_ERROR(EFSCORRUPTED);
3519 	}
3520 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3521 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3522 				XFS_ERRLEVEL_LOW, log->l_mp);
3523 		return XFS_ERROR(EFSCORRUPTED);
3524 	}
3525 	return 0;
3526 }
3527 
3528 /*
3529  * Read the log from tail to head and process the log records found.
3530  * Handle the two cases where the tail and head are in the same cycle
3531  * and where the active portion of the log wraps around the end of
3532  * the physical log separately.  The pass parameter is passed through
3533  * to the routines called to process the data and is not looked at
3534  * here.
3535  */
3536 STATIC int
3537 xlog_do_recovery_pass(
3538 	xlog_t			*log,
3539 	xfs_daddr_t		head_blk,
3540 	xfs_daddr_t		tail_blk,
3541 	int			pass)
3542 {
3543 	xlog_rec_header_t	*rhead;
3544 	xfs_daddr_t		blk_no;
3545 	xfs_caddr_t		bufaddr, offset;
3546 	xfs_buf_t		*hbp, *dbp;
3547 	int			error = 0, h_size;
3548 	int			bblks, split_bblks;
3549 	int			hblks, split_hblks, wrapped_hblks;
3550 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3551 
3552 	ASSERT(head_blk != tail_blk);
3553 
3554 	/*
3555 	 * Read the header of the tail block and get the iclog buffer size from
3556 	 * h_size.  Use this to tell how many sectors make up the log header.
3557 	 */
3558 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3559 		/*
3560 		 * When using variable length iclogs, read first sector of
3561 		 * iclog header and extract the header size from it.  Get a
3562 		 * new hbp that is the correct size.
3563 		 */
3564 		hbp = xlog_get_bp(log, 1);
3565 		if (!hbp)
3566 			return ENOMEM;
3567 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3568 			goto bread_err1;
3569 		offset = xlog_align(log, tail_blk, 1, hbp);
3570 		rhead = (xlog_rec_header_t *)offset;
3571 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3572 		if (error)
3573 			goto bread_err1;
3574 		h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3575 		if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3576 				& XLOG_VERSION_2) &&
3577 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3578 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3579 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3580 				hblks++;
3581 			xlog_put_bp(hbp);
3582 			hbp = xlog_get_bp(log, hblks);
3583 		} else {
3584 			hblks = 1;
3585 		}
3586 	} else {
3587 		ASSERT(log->l_sectbb_log == 0);
3588 		hblks = 1;
3589 		hbp = xlog_get_bp(log, 1);
3590 		h_size = XLOG_BIG_RECORD_BSIZE;
3591 	}
3592 
3593 	if (!hbp)
3594 		return ENOMEM;
3595 	dbp = xlog_get_bp(log, BTOBB(h_size));
3596 	if (!dbp) {
3597 		xlog_put_bp(hbp);
3598 		return ENOMEM;
3599 	}
3600 
3601 	memset(rhash, 0, sizeof(rhash));
3602 	if (tail_blk <= head_blk) {
3603 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3604 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3605 				goto bread_err2;
3606 			offset = xlog_align(log, blk_no, hblks, hbp);
3607 			rhead = (xlog_rec_header_t *)offset;
3608 			error = xlog_valid_rec_header(log, rhead, blk_no);
3609 			if (error)
3610 				goto bread_err2;
3611 
3612 			/* blocks in data section */
3613 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3614 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3615 			if (error)
3616 				goto bread_err2;
3617 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3618 			xlog_unpack_data(rhead, offset, log);
3619 			if ((error = xlog_recover_process_data(log,
3620 						rhash, rhead, offset, pass)))
3621 				goto bread_err2;
3622 			blk_no += bblks + hblks;
3623 		}
3624 	} else {
3625 		/*
3626 		 * Perform recovery around the end of the physical log.
3627 		 * When the head is not on the same cycle number as the tail,
3628 		 * we can't do a sequential recovery as above.
3629 		 */
3630 		blk_no = tail_blk;
3631 		while (blk_no < log->l_logBBsize) {
3632 			/*
3633 			 * Check for header wrapping around physical end-of-log
3634 			 */
3635 			offset = NULL;
3636 			split_hblks = 0;
3637 			wrapped_hblks = 0;
3638 			if (blk_no + hblks <= log->l_logBBsize) {
3639 				/* Read header in one read */
3640 				error = xlog_bread(log, blk_no, hblks, hbp);
3641 				if (error)
3642 					goto bread_err2;
3643 				offset = xlog_align(log, blk_no, hblks, hbp);
3644 			} else {
3645 				/* This LR is split across physical log end */
3646 				if (blk_no != log->l_logBBsize) {
3647 					/* some data before physical log end */
3648 					ASSERT(blk_no <= INT_MAX);
3649 					split_hblks = log->l_logBBsize - (int)blk_no;
3650 					ASSERT(split_hblks > 0);
3651 					if ((error = xlog_bread(log, blk_no,
3652 							split_hblks, hbp)))
3653 						goto bread_err2;
3654 					offset = xlog_align(log, blk_no,
3655 							split_hblks, hbp);
3656 				}
3657 				/*
3658 				 * Note: this black magic still works with
3659 				 * large sector sizes (non-512) only because:
3660 				 * - we increased the buffer size originally
3661 				 *   by 1 sector giving us enough extra space
3662 				 *   for the second read;
3663 				 * - the log start is guaranteed to be sector
3664 				 *   aligned;
3665 				 * - we read the log end (LR header start)
3666 				 *   _first_, then the log start (LR header end)
3667 				 *   - order is important.
3668 				 */
3669 				bufaddr = XFS_BUF_PTR(hbp);
3670 				XFS_BUF_SET_PTR(hbp,
3671 						bufaddr + BBTOB(split_hblks),
3672 						BBTOB(hblks - split_hblks));
3673 				wrapped_hblks = hblks - split_hblks;
3674 				error = xlog_bread(log, 0, wrapped_hblks, hbp);
3675 				if (error)
3676 					goto bread_err2;
3677 				XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3678 				if (!offset)
3679 					offset = xlog_align(log, 0,
3680 							wrapped_hblks, hbp);
3681 			}
3682 			rhead = (xlog_rec_header_t *)offset;
3683 			error = xlog_valid_rec_header(log, rhead,
3684 						split_hblks ? blk_no : 0);
3685 			if (error)
3686 				goto bread_err2;
3687 
3688 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3689 			blk_no += hblks;
3690 
3691 			/* Read in data for log record */
3692 			if (blk_no + bblks <= log->l_logBBsize) {
3693 				error = xlog_bread(log, blk_no, bblks, dbp);
3694 				if (error)
3695 					goto bread_err2;
3696 				offset = xlog_align(log, blk_no, bblks, dbp);
3697 			} else {
3698 				/* This log record is split across the
3699 				 * physical end of log */
3700 				offset = NULL;
3701 				split_bblks = 0;
3702 				if (blk_no != log->l_logBBsize) {
3703 					/* some data is before the physical
3704 					 * end of log */
3705 					ASSERT(!wrapped_hblks);
3706 					ASSERT(blk_no <= INT_MAX);
3707 					split_bblks =
3708 						log->l_logBBsize - (int)blk_no;
3709 					ASSERT(split_bblks > 0);
3710 					if ((error = xlog_bread(log, blk_no,
3711 							split_bblks, dbp)))
3712 						goto bread_err2;
3713 					offset = xlog_align(log, blk_no,
3714 							split_bblks, dbp);
3715 				}
3716 				/*
3717 				 * Note: this black magic still works with
3718 				 * large sector sizes (non-512) only because:
3719 				 * - we increased the buffer size originally
3720 				 *   by 1 sector giving us enough extra space
3721 				 *   for the second read;
3722 				 * - the log start is guaranteed to be sector
3723 				 *   aligned;
3724 				 * - we read the log end (LR header start)
3725 				 *   _first_, then the log start (LR header end)
3726 				 *   - order is important.
3727 				 */
3728 				bufaddr = XFS_BUF_PTR(dbp);
3729 				XFS_BUF_SET_PTR(dbp,
3730 						bufaddr + BBTOB(split_bblks),
3731 						BBTOB(bblks - split_bblks));
3732 				if ((error = xlog_bread(log, wrapped_hblks,
3733 						bblks - split_bblks, dbp)))
3734 					goto bread_err2;
3735 				XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3736 				if (!offset)
3737 					offset = xlog_align(log, wrapped_hblks,
3738 						bblks - split_bblks, dbp);
3739 			}
3740 			xlog_unpack_data(rhead, offset, log);
3741 			if ((error = xlog_recover_process_data(log, rhash,
3742 							rhead, offset, pass)))
3743 				goto bread_err2;
3744 			blk_no += bblks;
3745 		}
3746 
3747 		ASSERT(blk_no >= log->l_logBBsize);
3748 		blk_no -= log->l_logBBsize;
3749 
3750 		/* read first part of physical log */
3751 		while (blk_no < head_blk) {
3752 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3753 				goto bread_err2;
3754 			offset = xlog_align(log, blk_no, hblks, hbp);
3755 			rhead = (xlog_rec_header_t *)offset;
3756 			error = xlog_valid_rec_header(log, rhead, blk_no);
3757 			if (error)
3758 				goto bread_err2;
3759 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3760 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3761 				goto bread_err2;
3762 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3763 			xlog_unpack_data(rhead, offset, log);
3764 			if ((error = xlog_recover_process_data(log, rhash,
3765 							rhead, offset, pass)))
3766 				goto bread_err2;
3767 			blk_no += bblks + hblks;
3768 		}
3769 	}
3770 
3771  bread_err2:
3772 	xlog_put_bp(dbp);
3773  bread_err1:
3774 	xlog_put_bp(hbp);
3775 	return error;
3776 }
3777 
3778 /*
3779  * Do the recovery of the log.  We actually do this in two phases.
3780  * The two passes are necessary in order to implement the function
3781  * of cancelling a record written into the log.  The first pass
3782  * determines those things which have been cancelled, and the
3783  * second pass replays log items normally except for those which
3784  * have been cancelled.  The handling of the replay and cancellations
3785  * takes place in the log item type specific routines.
3786  *
3787  * The table of items which have cancel records in the log is allocated
3788  * and freed at this level, since only here do we know when all of
3789  * the log recovery has been completed.
3790  */
3791 STATIC int
3792 xlog_do_log_recovery(
3793 	xlog_t		*log,
3794 	xfs_daddr_t	head_blk,
3795 	xfs_daddr_t	tail_blk)
3796 {
3797 	int		error;
3798 
3799 	ASSERT(head_blk != tail_blk);
3800 
3801 	/*
3802 	 * First do a pass to find all of the cancelled buf log items.
3803 	 * Store them in the buf_cancel_table for use in the second pass.
3804 	 */
3805 	log->l_buf_cancel_table =
3806 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3807 						 sizeof(xfs_buf_cancel_t*),
3808 						 KM_SLEEP);
3809 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3810 				      XLOG_RECOVER_PASS1);
3811 	if (error != 0) {
3812 		kmem_free(log->l_buf_cancel_table,
3813 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3814 		log->l_buf_cancel_table = NULL;
3815 		return error;
3816 	}
3817 	/*
3818 	 * Then do a second pass to actually recover the items in the log.
3819 	 * When it is complete free the table of buf cancel items.
3820 	 */
3821 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3822 				      XLOG_RECOVER_PASS2);
3823 #ifdef DEBUG
3824 	if (!error) {
3825 		int	i;
3826 
3827 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3828 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3829 	}
3830 #endif	/* DEBUG */
3831 
3832 	kmem_free(log->l_buf_cancel_table,
3833 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3834 	log->l_buf_cancel_table = NULL;
3835 
3836 	return error;
3837 }
3838 
3839 /*
3840  * Do the actual recovery
3841  */
3842 STATIC int
3843 xlog_do_recover(
3844 	xlog_t		*log,
3845 	xfs_daddr_t	head_blk,
3846 	xfs_daddr_t	tail_blk)
3847 {
3848 	int		error;
3849 	xfs_buf_t	*bp;
3850 	xfs_sb_t	*sbp;
3851 
3852 	/*
3853 	 * First replay the images in the log.
3854 	 */
3855 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3856 	if (error) {
3857 		return error;
3858 	}
3859 
3860 	XFS_bflush(log->l_mp->m_ddev_targp);
3861 
3862 	/*
3863 	 * If IO errors happened during recovery, bail out.
3864 	 */
3865 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3866 		return (EIO);
3867 	}
3868 
3869 	/*
3870 	 * We now update the tail_lsn since much of the recovery has completed
3871 	 * and there may be space available to use.  If there were no extent
3872 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3873 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3874 	 * lsn of the last known good LR on disk.  If there are extent frees
3875 	 * or iunlinks they will have some entries in the AIL; so we look at
3876 	 * the AIL to determine how to set the tail_lsn.
3877 	 */
3878 	xlog_assign_tail_lsn(log->l_mp);
3879 
3880 	/*
3881 	 * Now that we've finished replaying all buffer and inode
3882 	 * updates, re-read in the superblock.
3883 	 */
3884 	bp = xfs_getsb(log->l_mp, 0);
3885 	XFS_BUF_UNDONE(bp);
3886 	XFS_BUF_READ(bp);
3887 	xfsbdstrat(log->l_mp, bp);
3888 	if ((error = xfs_iowait(bp))) {
3889 		xfs_ioerror_alert("xlog_do_recover",
3890 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3891 		ASSERT(0);
3892 		xfs_buf_relse(bp);
3893 		return error;
3894 	}
3895 
3896 	/* Convert superblock from on-disk format */
3897 	sbp = &log->l_mp->m_sb;
3898 	xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3899 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3900 	ASSERT(XFS_SB_GOOD_VERSION(sbp));
3901 	xfs_buf_relse(bp);
3902 
3903 	xlog_recover_check_summary(log);
3904 
3905 	/* Normal transactions can now occur */
3906 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3907 	return 0;
3908 }
3909 
3910 /*
3911  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3912  *
3913  * Return error or zero.
3914  */
3915 int
3916 xlog_recover(
3917 	xlog_t		*log)
3918 {
3919 	xfs_daddr_t	head_blk, tail_blk;
3920 	int		error;
3921 
3922 	/* find the tail of the log */
3923 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3924 		return error;
3925 
3926 	if (tail_blk != head_blk) {
3927 		/* There used to be a comment here:
3928 		 *
3929 		 * disallow recovery on read-only mounts.  note -- mount
3930 		 * checks for ENOSPC and turns it into an intelligent
3931 		 * error message.
3932 		 * ...but this is no longer true.  Now, unless you specify
3933 		 * NORECOVERY (in which case this function would never be
3934 		 * called), we just go ahead and recover.  We do this all
3935 		 * under the vfs layer, so we can get away with it unless
3936 		 * the device itself is read-only, in which case we fail.
3937 		 */
3938 		if ((error = xfs_dev_is_read_only(log->l_mp,
3939 						"recovery required"))) {
3940 			return error;
3941 		}
3942 
3943 		cmn_err(CE_NOTE,
3944 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3945 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3946 			log->l_mp->m_logname : "internal");
3947 
3948 		error = xlog_do_recover(log, head_blk, tail_blk);
3949 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3950 	}
3951 	return error;
3952 }
3953 
3954 /*
3955  * In the first part of recovery we replay inodes and buffers and build
3956  * up the list of extent free items which need to be processed.  Here
3957  * we process the extent free items and clean up the on disk unlinked
3958  * inode lists.  This is separated from the first part of recovery so
3959  * that the root and real-time bitmap inodes can be read in from disk in
3960  * between the two stages.  This is necessary so that we can free space
3961  * in the real-time portion of the file system.
3962  */
3963 int
3964 xlog_recover_finish(
3965 	xlog_t		*log,
3966 	int		mfsi_flags)
3967 {
3968 	/*
3969 	 * Now we're ready to do the transactions needed for the
3970 	 * rest of recovery.  Start with completing all the extent
3971 	 * free intent records and then process the unlinked inode
3972 	 * lists.  At this point, we essentially run in normal mode
3973 	 * except that we're still performing recovery actions
3974 	 * rather than accepting new requests.
3975 	 */
3976 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3977 		xlog_recover_process_efis(log);
3978 		/*
3979 		 * Sync the log to get all the EFIs out of the AIL.
3980 		 * This isn't absolutely necessary, but it helps in
3981 		 * case the unlink transactions would have problems
3982 		 * pushing the EFIs out of the way.
3983 		 */
3984 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3985 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3986 
3987 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3988 			xlog_recover_process_iunlinks(log);
3989 		}
3990 
3991 		xlog_recover_check_summary(log);
3992 
3993 		cmn_err(CE_NOTE,
3994 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3995 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3996 			log->l_mp->m_logname : "internal");
3997 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3998 	} else {
3999 		cmn_err(CE_DEBUG,
4000 			"!Ending clean XFS mount for filesystem: %s\n",
4001 			log->l_mp->m_fsname);
4002 	}
4003 	return 0;
4004 }
4005 
4006 
4007 #if defined(DEBUG)
4008 /*
4009  * Read all of the agf and agi counters and check that they
4010  * are consistent with the superblock counters.
4011  */
4012 void
4013 xlog_recover_check_summary(
4014 	xlog_t		*log)
4015 {
4016 	xfs_mount_t	*mp;
4017 	xfs_agf_t	*agfp;
4018 	xfs_agi_t	*agip;
4019 	xfs_buf_t	*agfbp;
4020 	xfs_buf_t	*agibp;
4021 	xfs_daddr_t	agfdaddr;
4022 	xfs_daddr_t	agidaddr;
4023 	xfs_buf_t	*sbbp;
4024 #ifdef XFS_LOUD_RECOVERY
4025 	xfs_sb_t	*sbp;
4026 #endif
4027 	xfs_agnumber_t	agno;
4028 	__uint64_t	freeblks;
4029 	__uint64_t	itotal;
4030 	__uint64_t	ifree;
4031 
4032 	mp = log->l_mp;
4033 
4034 	freeblks = 0LL;
4035 	itotal = 0LL;
4036 	ifree = 0LL;
4037 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4038 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4039 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4040 				XFS_FSS_TO_BB(mp, 1), 0);
4041 		if (XFS_BUF_ISERROR(agfbp)) {
4042 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4043 						mp, agfbp, agfdaddr);
4044 		}
4045 		agfp = XFS_BUF_TO_AGF(agfbp);
4046 		ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4047 		ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4048 		ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4049 
4050 		freeblks += be32_to_cpu(agfp->agf_freeblks) +
4051 			    be32_to_cpu(agfp->agf_flcount);
4052 		xfs_buf_relse(agfbp);
4053 
4054 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4055 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4056 				XFS_FSS_TO_BB(mp, 1), 0);
4057 		if (XFS_BUF_ISERROR(agibp)) {
4058 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4059 					  mp, agibp, agidaddr);
4060 		}
4061 		agip = XFS_BUF_TO_AGI(agibp);
4062 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4063 		ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4064 		ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4065 
4066 		itotal += be32_to_cpu(agip->agi_count);
4067 		ifree += be32_to_cpu(agip->agi_freecount);
4068 		xfs_buf_relse(agibp);
4069 	}
4070 
4071 	sbbp = xfs_getsb(mp, 0);
4072 #ifdef XFS_LOUD_RECOVERY
4073 	sbp = &mp->m_sb;
4074 	xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4075 	cmn_err(CE_NOTE,
4076 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4077 		sbp->sb_icount, itotal);
4078 	cmn_err(CE_NOTE,
4079 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4080 		sbp->sb_ifree, ifree);
4081 	cmn_err(CE_NOTE,
4082 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4083 		sbp->sb_fdblocks, freeblks);
4084 #if 0
4085 	/*
4086 	 * This is turned off until I account for the allocation
4087 	 * btree blocks which live in free space.
4088 	 */
4089 	ASSERT(sbp->sb_icount == itotal);
4090 	ASSERT(sbp->sb_ifree == ifree);
4091 	ASSERT(sbp->sb_fdblocks == freeblks);
4092 #endif
4093 #endif
4094 	xfs_buf_relse(sbbp);
4095 }
4096 #endif /* DEBUG */
4097