xref: /linux/fs/xfs/xfs_log_recover.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
45 #include "xfs_dir2.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_refcount_item.h"
49 #include "xfs_bmap_item.h"
50 
51 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
52 
53 STATIC int
54 xlog_find_zeroed(
55 	struct xlog	*,
56 	xfs_daddr_t	*);
57 STATIC int
58 xlog_clear_stale_blocks(
59 	struct xlog	*,
60 	xfs_lsn_t);
61 #if defined(DEBUG)
62 STATIC void
63 xlog_recover_check_summary(
64 	struct xlog *);
65 #else
66 #define	xlog_recover_check_summary(log)
67 #endif
68 STATIC int
69 xlog_do_recovery_pass(
70         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
71 
72 /*
73  * This structure is used during recovery to record the buf log items which
74  * have been canceled and should not be replayed.
75  */
76 struct xfs_buf_cancel {
77 	xfs_daddr_t		bc_blkno;
78 	uint			bc_len;
79 	int			bc_refcount;
80 	struct list_head	bc_list;
81 };
82 
83 /*
84  * Sector aligned buffer routines for buffer create/read/write/access
85  */
86 
87 /*
88  * Verify the given count of basic blocks is valid number of blocks
89  * to specify for an operation involving the given XFS log buffer.
90  * Returns nonzero if the count is valid, 0 otherwise.
91  */
92 
93 static inline int
94 xlog_buf_bbcount_valid(
95 	struct xlog	*log,
96 	int		bbcount)
97 {
98 	return bbcount > 0 && bbcount <= log->l_logBBsize;
99 }
100 
101 /*
102  * Allocate a buffer to hold log data.  The buffer needs to be able
103  * to map to a range of nbblks basic blocks at any valid (basic
104  * block) offset within the log.
105  */
106 STATIC xfs_buf_t *
107 xlog_get_bp(
108 	struct xlog	*log,
109 	int		nbblks)
110 {
111 	struct xfs_buf	*bp;
112 
113 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
114 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
115 			nbblks);
116 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
117 		return NULL;
118 	}
119 
120 	/*
121 	 * We do log I/O in units of log sectors (a power-of-2
122 	 * multiple of the basic block size), so we round up the
123 	 * requested size to accommodate the basic blocks required
124 	 * for complete log sectors.
125 	 *
126 	 * In addition, the buffer may be used for a non-sector-
127 	 * aligned block offset, in which case an I/O of the
128 	 * requested size could extend beyond the end of the
129 	 * buffer.  If the requested size is only 1 basic block it
130 	 * will never straddle a sector boundary, so this won't be
131 	 * an issue.  Nor will this be a problem if the log I/O is
132 	 * done in basic blocks (sector size 1).  But otherwise we
133 	 * extend the buffer by one extra log sector to ensure
134 	 * there's space to accommodate this possibility.
135 	 */
136 	if (nbblks > 1 && log->l_sectBBsize > 1)
137 		nbblks += log->l_sectBBsize;
138 	nbblks = round_up(nbblks, log->l_sectBBsize);
139 
140 	bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
141 	if (bp)
142 		xfs_buf_unlock(bp);
143 	return bp;
144 }
145 
146 STATIC void
147 xlog_put_bp(
148 	xfs_buf_t	*bp)
149 {
150 	xfs_buf_free(bp);
151 }
152 
153 /*
154  * Return the address of the start of the given block number's data
155  * in a log buffer.  The buffer covers a log sector-aligned region.
156  */
157 STATIC char *
158 xlog_align(
159 	struct xlog	*log,
160 	xfs_daddr_t	blk_no,
161 	int		nbblks,
162 	struct xfs_buf	*bp)
163 {
164 	xfs_daddr_t	offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
165 
166 	ASSERT(offset + nbblks <= bp->b_length);
167 	return bp->b_addr + BBTOB(offset);
168 }
169 
170 
171 /*
172  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
173  */
174 STATIC int
175 xlog_bread_noalign(
176 	struct xlog	*log,
177 	xfs_daddr_t	blk_no,
178 	int		nbblks,
179 	struct xfs_buf	*bp)
180 {
181 	int		error;
182 
183 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
184 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
185 			nbblks);
186 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
187 		return -EFSCORRUPTED;
188 	}
189 
190 	blk_no = round_down(blk_no, log->l_sectBBsize);
191 	nbblks = round_up(nbblks, log->l_sectBBsize);
192 
193 	ASSERT(nbblks > 0);
194 	ASSERT(nbblks <= bp->b_length);
195 
196 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
197 	bp->b_flags |= XBF_READ;
198 	bp->b_io_length = nbblks;
199 	bp->b_error = 0;
200 
201 	error = xfs_buf_submit_wait(bp);
202 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
203 		xfs_buf_ioerror_alert(bp, __func__);
204 	return error;
205 }
206 
207 STATIC int
208 xlog_bread(
209 	struct xlog	*log,
210 	xfs_daddr_t	blk_no,
211 	int		nbblks,
212 	struct xfs_buf	*bp,
213 	char		**offset)
214 {
215 	int		error;
216 
217 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
218 	if (error)
219 		return error;
220 
221 	*offset = xlog_align(log, blk_no, nbblks, bp);
222 	return 0;
223 }
224 
225 /*
226  * Read at an offset into the buffer. Returns with the buffer in it's original
227  * state regardless of the result of the read.
228  */
229 STATIC int
230 xlog_bread_offset(
231 	struct xlog	*log,
232 	xfs_daddr_t	blk_no,		/* block to read from */
233 	int		nbblks,		/* blocks to read */
234 	struct xfs_buf	*bp,
235 	char		*offset)
236 {
237 	char		*orig_offset = bp->b_addr;
238 	int		orig_len = BBTOB(bp->b_length);
239 	int		error, error2;
240 
241 	error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
242 	if (error)
243 		return error;
244 
245 	error = xlog_bread_noalign(log, blk_no, nbblks, bp);
246 
247 	/* must reset buffer pointer even on error */
248 	error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
249 	if (error)
250 		return error;
251 	return error2;
252 }
253 
254 /*
255  * Write out the buffer at the given block for the given number of blocks.
256  * The buffer is kept locked across the write and is returned locked.
257  * This can only be used for synchronous log writes.
258  */
259 STATIC int
260 xlog_bwrite(
261 	struct xlog	*log,
262 	xfs_daddr_t	blk_no,
263 	int		nbblks,
264 	struct xfs_buf	*bp)
265 {
266 	int		error;
267 
268 	if (!xlog_buf_bbcount_valid(log, nbblks)) {
269 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
270 			nbblks);
271 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
272 		return -EFSCORRUPTED;
273 	}
274 
275 	blk_no = round_down(blk_no, log->l_sectBBsize);
276 	nbblks = round_up(nbblks, log->l_sectBBsize);
277 
278 	ASSERT(nbblks > 0);
279 	ASSERT(nbblks <= bp->b_length);
280 
281 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
282 	xfs_buf_hold(bp);
283 	xfs_buf_lock(bp);
284 	bp->b_io_length = nbblks;
285 	bp->b_error = 0;
286 
287 	error = xfs_bwrite(bp);
288 	if (error)
289 		xfs_buf_ioerror_alert(bp, __func__);
290 	xfs_buf_relse(bp);
291 	return error;
292 }
293 
294 #ifdef DEBUG
295 /*
296  * dump debug superblock and log record information
297  */
298 STATIC void
299 xlog_header_check_dump(
300 	xfs_mount_t		*mp,
301 	xlog_rec_header_t	*head)
302 {
303 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
304 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
306 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307 }
308 #else
309 #define xlog_header_check_dump(mp, head)
310 #endif
311 
312 /*
313  * check log record header for recovery
314  */
315 STATIC int
316 xlog_header_check_recover(
317 	xfs_mount_t		*mp,
318 	xlog_rec_header_t	*head)
319 {
320 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321 
322 	/*
323 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 	 * a dirty log created in IRIX.
326 	 */
327 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 		xfs_warn(mp,
329 	"dirty log written in incompatible format - can't recover");
330 		xlog_header_check_dump(mp, head);
331 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 				 XFS_ERRLEVEL_HIGH, mp);
333 		return -EFSCORRUPTED;
334 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 		xfs_warn(mp,
336 	"dirty log entry has mismatched uuid - can't recover");
337 		xlog_header_check_dump(mp, head);
338 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 				 XFS_ERRLEVEL_HIGH, mp);
340 		return -EFSCORRUPTED;
341 	}
342 	return 0;
343 }
344 
345 /*
346  * read the head block of the log and check the header
347  */
348 STATIC int
349 xlog_header_check_mount(
350 	xfs_mount_t		*mp,
351 	xlog_rec_header_t	*head)
352 {
353 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354 
355 	if (uuid_is_nil(&head->h_fs_uuid)) {
356 		/*
357 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 		 * h_fs_uuid is nil, we assume this log was last mounted
359 		 * by IRIX and continue.
360 		 */
361 		xfs_warn(mp, "nil uuid in log - IRIX style log");
362 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 		xfs_warn(mp, "log has mismatched uuid - can't recover");
364 		xlog_header_check_dump(mp, head);
365 		XFS_ERROR_REPORT("xlog_header_check_mount",
366 				 XFS_ERRLEVEL_HIGH, mp);
367 		return -EFSCORRUPTED;
368 	}
369 	return 0;
370 }
371 
372 STATIC void
373 xlog_recover_iodone(
374 	struct xfs_buf	*bp)
375 {
376 	if (bp->b_error) {
377 		/*
378 		 * We're not going to bother about retrying
379 		 * this during recovery. One strike!
380 		 */
381 		if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
382 			xfs_buf_ioerror_alert(bp, __func__);
383 			xfs_force_shutdown(bp->b_target->bt_mount,
384 						SHUTDOWN_META_IO_ERROR);
385 		}
386 	}
387 
388 	/*
389 	 * On v5 supers, a bli could be attached to update the metadata LSN.
390 	 * Clean it up.
391 	 */
392 	if (bp->b_fspriv)
393 		xfs_buf_item_relse(bp);
394 	ASSERT(bp->b_fspriv == NULL);
395 
396 	bp->b_iodone = NULL;
397 	xfs_buf_ioend(bp);
398 }
399 
400 /*
401  * This routine finds (to an approximation) the first block in the physical
402  * log which contains the given cycle.  It uses a binary search algorithm.
403  * Note that the algorithm can not be perfect because the disk will not
404  * necessarily be perfect.
405  */
406 STATIC int
407 xlog_find_cycle_start(
408 	struct xlog	*log,
409 	struct xfs_buf	*bp,
410 	xfs_daddr_t	first_blk,
411 	xfs_daddr_t	*last_blk,
412 	uint		cycle)
413 {
414 	char		*offset;
415 	xfs_daddr_t	mid_blk;
416 	xfs_daddr_t	end_blk;
417 	uint		mid_cycle;
418 	int		error;
419 
420 	end_blk = *last_blk;
421 	mid_blk = BLK_AVG(first_blk, end_blk);
422 	while (mid_blk != first_blk && mid_blk != end_blk) {
423 		error = xlog_bread(log, mid_blk, 1, bp, &offset);
424 		if (error)
425 			return error;
426 		mid_cycle = xlog_get_cycle(offset);
427 		if (mid_cycle == cycle)
428 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
429 		else
430 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
431 		mid_blk = BLK_AVG(first_blk, end_blk);
432 	}
433 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
434 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
435 
436 	*last_blk = end_blk;
437 
438 	return 0;
439 }
440 
441 /*
442  * Check that a range of blocks does not contain stop_on_cycle_no.
443  * Fill in *new_blk with the block offset where such a block is
444  * found, or with -1 (an invalid block number) if there is no such
445  * block in the range.  The scan needs to occur from front to back
446  * and the pointer into the region must be updated since a later
447  * routine will need to perform another test.
448  */
449 STATIC int
450 xlog_find_verify_cycle(
451 	struct xlog	*log,
452 	xfs_daddr_t	start_blk,
453 	int		nbblks,
454 	uint		stop_on_cycle_no,
455 	xfs_daddr_t	*new_blk)
456 {
457 	xfs_daddr_t	i, j;
458 	uint		cycle;
459 	xfs_buf_t	*bp;
460 	xfs_daddr_t	bufblks;
461 	char		*buf = NULL;
462 	int		error = 0;
463 
464 	/*
465 	 * Greedily allocate a buffer big enough to handle the full
466 	 * range of basic blocks we'll be examining.  If that fails,
467 	 * try a smaller size.  We need to be able to read at least
468 	 * a log sector, or we're out of luck.
469 	 */
470 	bufblks = 1 << ffs(nbblks);
471 	while (bufblks > log->l_logBBsize)
472 		bufblks >>= 1;
473 	while (!(bp = xlog_get_bp(log, bufblks))) {
474 		bufblks >>= 1;
475 		if (bufblks < log->l_sectBBsize)
476 			return -ENOMEM;
477 	}
478 
479 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
480 		int	bcount;
481 
482 		bcount = min(bufblks, (start_blk + nbblks - i));
483 
484 		error = xlog_bread(log, i, bcount, bp, &buf);
485 		if (error)
486 			goto out;
487 
488 		for (j = 0; j < bcount; j++) {
489 			cycle = xlog_get_cycle(buf);
490 			if (cycle == stop_on_cycle_no) {
491 				*new_blk = i+j;
492 				goto out;
493 			}
494 
495 			buf += BBSIZE;
496 		}
497 	}
498 
499 	*new_blk = -1;
500 
501 out:
502 	xlog_put_bp(bp);
503 	return error;
504 }
505 
506 /*
507  * Potentially backup over partial log record write.
508  *
509  * In the typical case, last_blk is the number of the block directly after
510  * a good log record.  Therefore, we subtract one to get the block number
511  * of the last block in the given buffer.  extra_bblks contains the number
512  * of blocks we would have read on a previous read.  This happens when the
513  * last log record is split over the end of the physical log.
514  *
515  * extra_bblks is the number of blocks potentially verified on a previous
516  * call to this routine.
517  */
518 STATIC int
519 xlog_find_verify_log_record(
520 	struct xlog		*log,
521 	xfs_daddr_t		start_blk,
522 	xfs_daddr_t		*last_blk,
523 	int			extra_bblks)
524 {
525 	xfs_daddr_t		i;
526 	xfs_buf_t		*bp;
527 	char			*offset = NULL;
528 	xlog_rec_header_t	*head = NULL;
529 	int			error = 0;
530 	int			smallmem = 0;
531 	int			num_blks = *last_blk - start_blk;
532 	int			xhdrs;
533 
534 	ASSERT(start_blk != 0 || *last_blk != start_blk);
535 
536 	if (!(bp = xlog_get_bp(log, num_blks))) {
537 		if (!(bp = xlog_get_bp(log, 1)))
538 			return -ENOMEM;
539 		smallmem = 1;
540 	} else {
541 		error = xlog_bread(log, start_blk, num_blks, bp, &offset);
542 		if (error)
543 			goto out;
544 		offset += ((num_blks - 1) << BBSHIFT);
545 	}
546 
547 	for (i = (*last_blk) - 1; i >= 0; i--) {
548 		if (i < start_blk) {
549 			/* valid log record not found */
550 			xfs_warn(log->l_mp,
551 		"Log inconsistent (didn't find previous header)");
552 			ASSERT(0);
553 			error = -EIO;
554 			goto out;
555 		}
556 
557 		if (smallmem) {
558 			error = xlog_bread(log, i, 1, bp, &offset);
559 			if (error)
560 				goto out;
561 		}
562 
563 		head = (xlog_rec_header_t *)offset;
564 
565 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
566 			break;
567 
568 		if (!smallmem)
569 			offset -= BBSIZE;
570 	}
571 
572 	/*
573 	 * We hit the beginning of the physical log & still no header.  Return
574 	 * to caller.  If caller can handle a return of -1, then this routine
575 	 * will be called again for the end of the physical log.
576 	 */
577 	if (i == -1) {
578 		error = 1;
579 		goto out;
580 	}
581 
582 	/*
583 	 * We have the final block of the good log (the first block
584 	 * of the log record _before_ the head. So we check the uuid.
585 	 */
586 	if ((error = xlog_header_check_mount(log->l_mp, head)))
587 		goto out;
588 
589 	/*
590 	 * We may have found a log record header before we expected one.
591 	 * last_blk will be the 1st block # with a given cycle #.  We may end
592 	 * up reading an entire log record.  In this case, we don't want to
593 	 * reset last_blk.  Only when last_blk points in the middle of a log
594 	 * record do we update last_blk.
595 	 */
596 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
597 		uint	h_size = be32_to_cpu(head->h_size);
598 
599 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
600 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
601 			xhdrs++;
602 	} else {
603 		xhdrs = 1;
604 	}
605 
606 	if (*last_blk - i + extra_bblks !=
607 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
608 		*last_blk = i;
609 
610 out:
611 	xlog_put_bp(bp);
612 	return error;
613 }
614 
615 /*
616  * Head is defined to be the point of the log where the next log write
617  * could go.  This means that incomplete LR writes at the end are
618  * eliminated when calculating the head.  We aren't guaranteed that previous
619  * LR have complete transactions.  We only know that a cycle number of
620  * current cycle number -1 won't be present in the log if we start writing
621  * from our current block number.
622  *
623  * last_blk contains the block number of the first block with a given
624  * cycle number.
625  *
626  * Return: zero if normal, non-zero if error.
627  */
628 STATIC int
629 xlog_find_head(
630 	struct xlog	*log,
631 	xfs_daddr_t	*return_head_blk)
632 {
633 	xfs_buf_t	*bp;
634 	char		*offset;
635 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
636 	int		num_scan_bblks;
637 	uint		first_half_cycle, last_half_cycle;
638 	uint		stop_on_cycle;
639 	int		error, log_bbnum = log->l_logBBsize;
640 
641 	/* Is the end of the log device zeroed? */
642 	error = xlog_find_zeroed(log, &first_blk);
643 	if (error < 0) {
644 		xfs_warn(log->l_mp, "empty log check failed");
645 		return error;
646 	}
647 	if (error == 1) {
648 		*return_head_blk = first_blk;
649 
650 		/* Is the whole lot zeroed? */
651 		if (!first_blk) {
652 			/* Linux XFS shouldn't generate totally zeroed logs -
653 			 * mkfs etc write a dummy unmount record to a fresh
654 			 * log so we can store the uuid in there
655 			 */
656 			xfs_warn(log->l_mp, "totally zeroed log");
657 		}
658 
659 		return 0;
660 	}
661 
662 	first_blk = 0;			/* get cycle # of 1st block */
663 	bp = xlog_get_bp(log, 1);
664 	if (!bp)
665 		return -ENOMEM;
666 
667 	error = xlog_bread(log, 0, 1, bp, &offset);
668 	if (error)
669 		goto bp_err;
670 
671 	first_half_cycle = xlog_get_cycle(offset);
672 
673 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
674 	error = xlog_bread(log, last_blk, 1, bp, &offset);
675 	if (error)
676 		goto bp_err;
677 
678 	last_half_cycle = xlog_get_cycle(offset);
679 	ASSERT(last_half_cycle != 0);
680 
681 	/*
682 	 * If the 1st half cycle number is equal to the last half cycle number,
683 	 * then the entire log is stamped with the same cycle number.  In this
684 	 * case, head_blk can't be set to zero (which makes sense).  The below
685 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
686 	 * we set it to log_bbnum which is an invalid block number, but this
687 	 * value makes the math correct.  If head_blk doesn't changed through
688 	 * all the tests below, *head_blk is set to zero at the very end rather
689 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
690 	 * in a circular file.
691 	 */
692 	if (first_half_cycle == last_half_cycle) {
693 		/*
694 		 * In this case we believe that the entire log should have
695 		 * cycle number last_half_cycle.  We need to scan backwards
696 		 * from the end verifying that there are no holes still
697 		 * containing last_half_cycle - 1.  If we find such a hole,
698 		 * then the start of that hole will be the new head.  The
699 		 * simple case looks like
700 		 *        x | x ... | x - 1 | x
701 		 * Another case that fits this picture would be
702 		 *        x | x + 1 | x ... | x
703 		 * In this case the head really is somewhere at the end of the
704 		 * log, as one of the latest writes at the beginning was
705 		 * incomplete.
706 		 * One more case is
707 		 *        x | x + 1 | x ... | x - 1 | x
708 		 * This is really the combination of the above two cases, and
709 		 * the head has to end up at the start of the x-1 hole at the
710 		 * end of the log.
711 		 *
712 		 * In the 256k log case, we will read from the beginning to the
713 		 * end of the log and search for cycle numbers equal to x-1.
714 		 * We don't worry about the x+1 blocks that we encounter,
715 		 * because we know that they cannot be the head since the log
716 		 * started with x.
717 		 */
718 		head_blk = log_bbnum;
719 		stop_on_cycle = last_half_cycle - 1;
720 	} else {
721 		/*
722 		 * In this case we want to find the first block with cycle
723 		 * number matching last_half_cycle.  We expect the log to be
724 		 * some variation on
725 		 *        x + 1 ... | x ... | x
726 		 * The first block with cycle number x (last_half_cycle) will
727 		 * be where the new head belongs.  First we do a binary search
728 		 * for the first occurrence of last_half_cycle.  The binary
729 		 * search may not be totally accurate, so then we scan back
730 		 * from there looking for occurrences of last_half_cycle before
731 		 * us.  If that backwards scan wraps around the beginning of
732 		 * the log, then we look for occurrences of last_half_cycle - 1
733 		 * at the end of the log.  The cases we're looking for look
734 		 * like
735 		 *                               v binary search stopped here
736 		 *        x + 1 ... | x | x + 1 | x ... | x
737 		 *                   ^ but we want to locate this spot
738 		 * or
739 		 *        <---------> less than scan distance
740 		 *        x + 1 ... | x ... | x - 1 | x
741 		 *                           ^ we want to locate this spot
742 		 */
743 		stop_on_cycle = last_half_cycle;
744 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
745 						&head_blk, last_half_cycle)))
746 			goto bp_err;
747 	}
748 
749 	/*
750 	 * Now validate the answer.  Scan back some number of maximum possible
751 	 * blocks and make sure each one has the expected cycle number.  The
752 	 * maximum is determined by the total possible amount of buffering
753 	 * in the in-core log.  The following number can be made tighter if
754 	 * we actually look at the block size of the filesystem.
755 	 */
756 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
757 	if (head_blk >= num_scan_bblks) {
758 		/*
759 		 * We are guaranteed that the entire check can be performed
760 		 * in one buffer.
761 		 */
762 		start_blk = head_blk - num_scan_bblks;
763 		if ((error = xlog_find_verify_cycle(log,
764 						start_blk, num_scan_bblks,
765 						stop_on_cycle, &new_blk)))
766 			goto bp_err;
767 		if (new_blk != -1)
768 			head_blk = new_blk;
769 	} else {		/* need to read 2 parts of log */
770 		/*
771 		 * We are going to scan backwards in the log in two parts.
772 		 * First we scan the physical end of the log.  In this part
773 		 * of the log, we are looking for blocks with cycle number
774 		 * last_half_cycle - 1.
775 		 * If we find one, then we know that the log starts there, as
776 		 * we've found a hole that didn't get written in going around
777 		 * the end of the physical log.  The simple case for this is
778 		 *        x + 1 ... | x ... | x - 1 | x
779 		 *        <---------> less than scan distance
780 		 * If all of the blocks at the end of the log have cycle number
781 		 * last_half_cycle, then we check the blocks at the start of
782 		 * the log looking for occurrences of last_half_cycle.  If we
783 		 * find one, then our current estimate for the location of the
784 		 * first occurrence of last_half_cycle is wrong and we move
785 		 * back to the hole we've found.  This case looks like
786 		 *        x + 1 ... | x | x + 1 | x ...
787 		 *                               ^ binary search stopped here
788 		 * Another case we need to handle that only occurs in 256k
789 		 * logs is
790 		 *        x + 1 ... | x ... | x+1 | x ...
791 		 *                   ^ binary search stops here
792 		 * In a 256k log, the scan at the end of the log will see the
793 		 * x + 1 blocks.  We need to skip past those since that is
794 		 * certainly not the head of the log.  By searching for
795 		 * last_half_cycle-1 we accomplish that.
796 		 */
797 		ASSERT(head_blk <= INT_MAX &&
798 			(xfs_daddr_t) num_scan_bblks >= head_blk);
799 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
800 		if ((error = xlog_find_verify_cycle(log, start_blk,
801 					num_scan_bblks - (int)head_blk,
802 					(stop_on_cycle - 1), &new_blk)))
803 			goto bp_err;
804 		if (new_blk != -1) {
805 			head_blk = new_blk;
806 			goto validate_head;
807 		}
808 
809 		/*
810 		 * Scan beginning of log now.  The last part of the physical
811 		 * log is good.  This scan needs to verify that it doesn't find
812 		 * the last_half_cycle.
813 		 */
814 		start_blk = 0;
815 		ASSERT(head_blk <= INT_MAX);
816 		if ((error = xlog_find_verify_cycle(log,
817 					start_blk, (int)head_blk,
818 					stop_on_cycle, &new_blk)))
819 			goto bp_err;
820 		if (new_blk != -1)
821 			head_blk = new_blk;
822 	}
823 
824 validate_head:
825 	/*
826 	 * Now we need to make sure head_blk is not pointing to a block in
827 	 * the middle of a log record.
828 	 */
829 	num_scan_bblks = XLOG_REC_SHIFT(log);
830 	if (head_blk >= num_scan_bblks) {
831 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
832 
833 		/* start ptr at last block ptr before head_blk */
834 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
835 		if (error == 1)
836 			error = -EIO;
837 		if (error)
838 			goto bp_err;
839 	} else {
840 		start_blk = 0;
841 		ASSERT(head_blk <= INT_MAX);
842 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
843 		if (error < 0)
844 			goto bp_err;
845 		if (error == 1) {
846 			/* We hit the beginning of the log during our search */
847 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
848 			new_blk = log_bbnum;
849 			ASSERT(start_blk <= INT_MAX &&
850 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
851 			ASSERT(head_blk <= INT_MAX);
852 			error = xlog_find_verify_log_record(log, start_blk,
853 							&new_blk, (int)head_blk);
854 			if (error == 1)
855 				error = -EIO;
856 			if (error)
857 				goto bp_err;
858 			if (new_blk != log_bbnum)
859 				head_blk = new_blk;
860 		} else if (error)
861 			goto bp_err;
862 	}
863 
864 	xlog_put_bp(bp);
865 	if (head_blk == log_bbnum)
866 		*return_head_blk = 0;
867 	else
868 		*return_head_blk = head_blk;
869 	/*
870 	 * When returning here, we have a good block number.  Bad block
871 	 * means that during a previous crash, we didn't have a clean break
872 	 * from cycle number N to cycle number N-1.  In this case, we need
873 	 * to find the first block with cycle number N-1.
874 	 */
875 	return 0;
876 
877  bp_err:
878 	xlog_put_bp(bp);
879 
880 	if (error)
881 		xfs_warn(log->l_mp, "failed to find log head");
882 	return error;
883 }
884 
885 /*
886  * Seek backwards in the log for log record headers.
887  *
888  * Given a starting log block, walk backwards until we find the provided number
889  * of records or hit the provided tail block. The return value is the number of
890  * records encountered or a negative error code. The log block and buffer
891  * pointer of the last record seen are returned in rblk and rhead respectively.
892  */
893 STATIC int
894 xlog_rseek_logrec_hdr(
895 	struct xlog		*log,
896 	xfs_daddr_t		head_blk,
897 	xfs_daddr_t		tail_blk,
898 	int			count,
899 	struct xfs_buf		*bp,
900 	xfs_daddr_t		*rblk,
901 	struct xlog_rec_header	**rhead,
902 	bool			*wrapped)
903 {
904 	int			i;
905 	int			error;
906 	int			found = 0;
907 	char			*offset = NULL;
908 	xfs_daddr_t		end_blk;
909 
910 	*wrapped = false;
911 
912 	/*
913 	 * Walk backwards from the head block until we hit the tail or the first
914 	 * block in the log.
915 	 */
916 	end_blk = head_blk > tail_blk ? tail_blk : 0;
917 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
918 		error = xlog_bread(log, i, 1, bp, &offset);
919 		if (error)
920 			goto out_error;
921 
922 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
923 			*rblk = i;
924 			*rhead = (struct xlog_rec_header *) offset;
925 			if (++found == count)
926 				break;
927 		}
928 	}
929 
930 	/*
931 	 * If we haven't hit the tail block or the log record header count,
932 	 * start looking again from the end of the physical log. Note that
933 	 * callers can pass head == tail if the tail is not yet known.
934 	 */
935 	if (tail_blk >= head_blk && found != count) {
936 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
937 			error = xlog_bread(log, i, 1, bp, &offset);
938 			if (error)
939 				goto out_error;
940 
941 			if (*(__be32 *)offset ==
942 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
943 				*wrapped = true;
944 				*rblk = i;
945 				*rhead = (struct xlog_rec_header *) offset;
946 				if (++found == count)
947 					break;
948 			}
949 		}
950 	}
951 
952 	return found;
953 
954 out_error:
955 	return error;
956 }
957 
958 /*
959  * Seek forward in the log for log record headers.
960  *
961  * Given head and tail blocks, walk forward from the tail block until we find
962  * the provided number of records or hit the head block. The return value is the
963  * number of records encountered or a negative error code. The log block and
964  * buffer pointer of the last record seen are returned in rblk and rhead
965  * respectively.
966  */
967 STATIC int
968 xlog_seek_logrec_hdr(
969 	struct xlog		*log,
970 	xfs_daddr_t		head_blk,
971 	xfs_daddr_t		tail_blk,
972 	int			count,
973 	struct xfs_buf		*bp,
974 	xfs_daddr_t		*rblk,
975 	struct xlog_rec_header	**rhead,
976 	bool			*wrapped)
977 {
978 	int			i;
979 	int			error;
980 	int			found = 0;
981 	char			*offset = NULL;
982 	xfs_daddr_t		end_blk;
983 
984 	*wrapped = false;
985 
986 	/*
987 	 * Walk forward from the tail block until we hit the head or the last
988 	 * block in the log.
989 	 */
990 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
991 	for (i = (int) tail_blk; i <= end_blk; i++) {
992 		error = xlog_bread(log, i, 1, bp, &offset);
993 		if (error)
994 			goto out_error;
995 
996 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
997 			*rblk = i;
998 			*rhead = (struct xlog_rec_header *) offset;
999 			if (++found == count)
1000 				break;
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * If we haven't hit the head block or the log record header count,
1006 	 * start looking again from the start of the physical log.
1007 	 */
1008 	if (tail_blk > head_blk && found != count) {
1009 		for (i = 0; i < (int) head_blk; i++) {
1010 			error = xlog_bread(log, i, 1, bp, &offset);
1011 			if (error)
1012 				goto out_error;
1013 
1014 			if (*(__be32 *)offset ==
1015 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1016 				*wrapped = true;
1017 				*rblk = i;
1018 				*rhead = (struct xlog_rec_header *) offset;
1019 				if (++found == count)
1020 					break;
1021 			}
1022 		}
1023 	}
1024 
1025 	return found;
1026 
1027 out_error:
1028 	return error;
1029 }
1030 
1031 /*
1032  * Check the log tail for torn writes. This is required when torn writes are
1033  * detected at the head and the head had to be walked back to a previous record.
1034  * The tail of the previous record must now be verified to ensure the torn
1035  * writes didn't corrupt the previous tail.
1036  *
1037  * Return an error if CRC verification fails as recovery cannot proceed.
1038  */
1039 STATIC int
1040 xlog_verify_tail(
1041 	struct xlog		*log,
1042 	xfs_daddr_t		head_blk,
1043 	xfs_daddr_t		tail_blk)
1044 {
1045 	struct xlog_rec_header	*thead;
1046 	struct xfs_buf		*bp;
1047 	xfs_daddr_t		first_bad;
1048 	int			count;
1049 	int			error = 0;
1050 	bool			wrapped;
1051 	xfs_daddr_t		tmp_head;
1052 
1053 	bp = xlog_get_bp(log, 1);
1054 	if (!bp)
1055 		return -ENOMEM;
1056 
1057 	/*
1058 	 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1059 	 * a temporary head block that points after the last possible
1060 	 * concurrently written record of the tail.
1061 	 */
1062 	count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1063 				     XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1064 				     &wrapped);
1065 	if (count < 0) {
1066 		error = count;
1067 		goto out;
1068 	}
1069 
1070 	/*
1071 	 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1072 	 * into the actual log head. tmp_head points to the start of the record
1073 	 * so update it to the actual head block.
1074 	 */
1075 	if (count < XLOG_MAX_ICLOGS + 1)
1076 		tmp_head = head_blk;
1077 
1078 	/*
1079 	 * We now have a tail and temporary head block that covers at least
1080 	 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1081 	 * records were completely written. Run a CRC verification pass from
1082 	 * tail to head and return the result.
1083 	 */
1084 	error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1085 				      XLOG_RECOVER_CRCPASS, &first_bad);
1086 
1087 out:
1088 	xlog_put_bp(bp);
1089 	return error;
1090 }
1091 
1092 /*
1093  * Detect and trim torn writes from the head of the log.
1094  *
1095  * Storage without sector atomicity guarantees can result in torn writes in the
1096  * log in the event of a crash. Our only means to detect this scenario is via
1097  * CRC verification. While we can't always be certain that CRC verification
1098  * failure is due to a torn write vs. an unrelated corruption, we do know that
1099  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1100  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1101  * the log and treat failures in this range as torn writes as a matter of
1102  * policy. In the event of CRC failure, the head is walked back to the last good
1103  * record in the log and the tail is updated from that record and verified.
1104  */
1105 STATIC int
1106 xlog_verify_head(
1107 	struct xlog		*log,
1108 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1109 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1110 	struct xfs_buf		*bp,
1111 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1112 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1113 	bool			*wrapped)	/* last rec. wraps phys. log */
1114 {
1115 	struct xlog_rec_header	*tmp_rhead;
1116 	struct xfs_buf		*tmp_bp;
1117 	xfs_daddr_t		first_bad;
1118 	xfs_daddr_t		tmp_rhead_blk;
1119 	int			found;
1120 	int			error;
1121 	bool			tmp_wrapped;
1122 
1123 	/*
1124 	 * Check the head of the log for torn writes. Search backwards from the
1125 	 * head until we hit the tail or the maximum number of log record I/Os
1126 	 * that could have been in flight at one time. Use a temporary buffer so
1127 	 * we don't trash the rhead/bp pointers from the caller.
1128 	 */
1129 	tmp_bp = xlog_get_bp(log, 1);
1130 	if (!tmp_bp)
1131 		return -ENOMEM;
1132 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1133 				      XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1134 				      &tmp_rhead, &tmp_wrapped);
1135 	xlog_put_bp(tmp_bp);
1136 	if (error < 0)
1137 		return error;
1138 
1139 	/*
1140 	 * Now run a CRC verification pass over the records starting at the
1141 	 * block found above to the current head. If a CRC failure occurs, the
1142 	 * log block of the first bad record is saved in first_bad.
1143 	 */
1144 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1145 				      XLOG_RECOVER_CRCPASS, &first_bad);
1146 	if (error == -EFSBADCRC) {
1147 		/*
1148 		 * We've hit a potential torn write. Reset the error and warn
1149 		 * about it.
1150 		 */
1151 		error = 0;
1152 		xfs_warn(log->l_mp,
1153 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1154 			 first_bad, *head_blk);
1155 
1156 		/*
1157 		 * Get the header block and buffer pointer for the last good
1158 		 * record before the bad record.
1159 		 *
1160 		 * Note that xlog_find_tail() clears the blocks at the new head
1161 		 * (i.e., the records with invalid CRC) if the cycle number
1162 		 * matches the the current cycle.
1163 		 */
1164 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1165 					      rhead_blk, rhead, wrapped);
1166 		if (found < 0)
1167 			return found;
1168 		if (found == 0)		/* XXX: right thing to do here? */
1169 			return -EIO;
1170 
1171 		/*
1172 		 * Reset the head block to the starting block of the first bad
1173 		 * log record and set the tail block based on the last good
1174 		 * record.
1175 		 *
1176 		 * Bail out if the updated head/tail match as this indicates
1177 		 * possible corruption outside of the acceptable
1178 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1179 		 */
1180 		*head_blk = first_bad;
1181 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1182 		if (*head_blk == *tail_blk) {
1183 			ASSERT(0);
1184 			return 0;
1185 		}
1186 
1187 		/*
1188 		 * Now verify the tail based on the updated head. This is
1189 		 * required because the torn writes trimmed from the head could
1190 		 * have been written over the tail of a previous record. Return
1191 		 * any errors since recovery cannot proceed if the tail is
1192 		 * corrupt.
1193 		 *
1194 		 * XXX: This leaves a gap in truly robust protection from torn
1195 		 * writes in the log. If the head is behind the tail, the tail
1196 		 * pushes forward to create some space and then a crash occurs
1197 		 * causing the writes into the previous record's tail region to
1198 		 * tear, log recovery isn't able to recover.
1199 		 *
1200 		 * How likely is this to occur? If possible, can we do something
1201 		 * more intelligent here? Is it safe to push the tail forward if
1202 		 * we can determine that the tail is within the range of the
1203 		 * torn write (e.g., the kernel can only overwrite the tail if
1204 		 * it has actually been pushed forward)? Alternatively, could we
1205 		 * somehow prevent this condition at runtime?
1206 		 */
1207 		error = xlog_verify_tail(log, *head_blk, *tail_blk);
1208 	}
1209 
1210 	return error;
1211 }
1212 
1213 /*
1214  * Check whether the head of the log points to an unmount record. In other
1215  * words, determine whether the log is clean. If so, update the in-core state
1216  * appropriately.
1217  */
1218 static int
1219 xlog_check_unmount_rec(
1220 	struct xlog		*log,
1221 	xfs_daddr_t		*head_blk,
1222 	xfs_daddr_t		*tail_blk,
1223 	struct xlog_rec_header	*rhead,
1224 	xfs_daddr_t		rhead_blk,
1225 	struct xfs_buf		*bp,
1226 	bool			*clean)
1227 {
1228 	struct xlog_op_header	*op_head;
1229 	xfs_daddr_t		umount_data_blk;
1230 	xfs_daddr_t		after_umount_blk;
1231 	int			hblks;
1232 	int			error;
1233 	char			*offset;
1234 
1235 	*clean = false;
1236 
1237 	/*
1238 	 * Look for unmount record. If we find it, then we know there was a
1239 	 * clean unmount. Since 'i' could be the last block in the physical
1240 	 * log, we convert to a log block before comparing to the head_blk.
1241 	 *
1242 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1243 	 * below. We won't want to clear the unmount record if there is one, so
1244 	 * we pass the lsn of the unmount record rather than the block after it.
1245 	 */
1246 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1247 		int	h_size = be32_to_cpu(rhead->h_size);
1248 		int	h_version = be32_to_cpu(rhead->h_version);
1249 
1250 		if ((h_version & XLOG_VERSION_2) &&
1251 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1252 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1253 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1254 				hblks++;
1255 		} else {
1256 			hblks = 1;
1257 		}
1258 	} else {
1259 		hblks = 1;
1260 	}
1261 	after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1262 	after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1263 	if (*head_blk == after_umount_blk &&
1264 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1265 		umount_data_blk = rhead_blk + hblks;
1266 		umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1267 		error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1268 		if (error)
1269 			return error;
1270 
1271 		op_head = (struct xlog_op_header *)offset;
1272 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1273 			/*
1274 			 * Set tail and last sync so that newly written log
1275 			 * records will point recovery to after the current
1276 			 * unmount record.
1277 			 */
1278 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1279 					log->l_curr_cycle, after_umount_blk);
1280 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1281 					log->l_curr_cycle, after_umount_blk);
1282 			*tail_blk = after_umount_blk;
1283 
1284 			*clean = true;
1285 		}
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 static void
1292 xlog_set_state(
1293 	struct xlog		*log,
1294 	xfs_daddr_t		head_blk,
1295 	struct xlog_rec_header	*rhead,
1296 	xfs_daddr_t		rhead_blk,
1297 	bool			bump_cycle)
1298 {
1299 	/*
1300 	 * Reset log values according to the state of the log when we
1301 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1302 	 * one because the next write starts a new cycle rather than
1303 	 * continuing the cycle of the last good log record.  At this
1304 	 * point we have guaranteed that all partial log records have been
1305 	 * accounted for.  Therefore, we know that the last good log record
1306 	 * written was complete and ended exactly on the end boundary
1307 	 * of the physical log.
1308 	 */
1309 	log->l_prev_block = rhead_blk;
1310 	log->l_curr_block = (int)head_blk;
1311 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1312 	if (bump_cycle)
1313 		log->l_curr_cycle++;
1314 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1315 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1316 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1317 					BBTOB(log->l_curr_block));
1318 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1319 					BBTOB(log->l_curr_block));
1320 }
1321 
1322 /*
1323  * Find the sync block number or the tail of the log.
1324  *
1325  * This will be the block number of the last record to have its
1326  * associated buffers synced to disk.  Every log record header has
1327  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1328  * to get a sync block number.  The only concern is to figure out which
1329  * log record header to believe.
1330  *
1331  * The following algorithm uses the log record header with the largest
1332  * lsn.  The entire log record does not need to be valid.  We only care
1333  * that the header is valid.
1334  *
1335  * We could speed up search by using current head_blk buffer, but it is not
1336  * available.
1337  */
1338 STATIC int
1339 xlog_find_tail(
1340 	struct xlog		*log,
1341 	xfs_daddr_t		*head_blk,
1342 	xfs_daddr_t		*tail_blk)
1343 {
1344 	xlog_rec_header_t	*rhead;
1345 	char			*offset = NULL;
1346 	xfs_buf_t		*bp;
1347 	int			error;
1348 	xfs_daddr_t		rhead_blk;
1349 	xfs_lsn_t		tail_lsn;
1350 	bool			wrapped = false;
1351 	bool			clean = false;
1352 
1353 	/*
1354 	 * Find previous log record
1355 	 */
1356 	if ((error = xlog_find_head(log, head_blk)))
1357 		return error;
1358 	ASSERT(*head_blk < INT_MAX);
1359 
1360 	bp = xlog_get_bp(log, 1);
1361 	if (!bp)
1362 		return -ENOMEM;
1363 	if (*head_blk == 0) {				/* special case */
1364 		error = xlog_bread(log, 0, 1, bp, &offset);
1365 		if (error)
1366 			goto done;
1367 
1368 		if (xlog_get_cycle(offset) == 0) {
1369 			*tail_blk = 0;
1370 			/* leave all other log inited values alone */
1371 			goto done;
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * Search backwards through the log looking for the log record header
1377 	 * block. This wraps all the way back around to the head so something is
1378 	 * seriously wrong if we can't find it.
1379 	 */
1380 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1381 				      &rhead_blk, &rhead, &wrapped);
1382 	if (error < 0)
1383 		return error;
1384 	if (!error) {
1385 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1386 		return -EIO;
1387 	}
1388 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1389 
1390 	/*
1391 	 * Set the log state based on the current head record.
1392 	 */
1393 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1394 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1395 
1396 	/*
1397 	 * Look for an unmount record at the head of the log. This sets the log
1398 	 * state to determine whether recovery is necessary.
1399 	 */
1400 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1401 				       rhead_blk, bp, &clean);
1402 	if (error)
1403 		goto done;
1404 
1405 	/*
1406 	 * Verify the log head if the log is not clean (e.g., we have anything
1407 	 * but an unmount record at the head). This uses CRC verification to
1408 	 * detect and trim torn writes. If discovered, CRC failures are
1409 	 * considered torn writes and the log head is trimmed accordingly.
1410 	 *
1411 	 * Note that we can only run CRC verification when the log is dirty
1412 	 * because there's no guarantee that the log data behind an unmount
1413 	 * record is compatible with the current architecture.
1414 	 */
1415 	if (!clean) {
1416 		xfs_daddr_t	orig_head = *head_blk;
1417 
1418 		error = xlog_verify_head(log, head_blk, tail_blk, bp,
1419 					 &rhead_blk, &rhead, &wrapped);
1420 		if (error)
1421 			goto done;
1422 
1423 		/* update in-core state again if the head changed */
1424 		if (*head_blk != orig_head) {
1425 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1426 				       wrapped);
1427 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1428 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1429 						       rhead, rhead_blk, bp,
1430 						       &clean);
1431 			if (error)
1432 				goto done;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * Note that the unmount was clean. If the unmount was not clean, we
1438 	 * need to know this to rebuild the superblock counters from the perag
1439 	 * headers if we have a filesystem using non-persistent counters.
1440 	 */
1441 	if (clean)
1442 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1443 
1444 	/*
1445 	 * Make sure that there are no blocks in front of the head
1446 	 * with the same cycle number as the head.  This can happen
1447 	 * because we allow multiple outstanding log writes concurrently,
1448 	 * and the later writes might make it out before earlier ones.
1449 	 *
1450 	 * We use the lsn from before modifying it so that we'll never
1451 	 * overwrite the unmount record after a clean unmount.
1452 	 *
1453 	 * Do this only if we are going to recover the filesystem
1454 	 *
1455 	 * NOTE: This used to say "if (!readonly)"
1456 	 * However on Linux, we can & do recover a read-only filesystem.
1457 	 * We only skip recovery if NORECOVERY is specified on mount,
1458 	 * in which case we would not be here.
1459 	 *
1460 	 * But... if the -device- itself is readonly, just skip this.
1461 	 * We can't recover this device anyway, so it won't matter.
1462 	 */
1463 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1464 		error = xlog_clear_stale_blocks(log, tail_lsn);
1465 
1466 done:
1467 	xlog_put_bp(bp);
1468 
1469 	if (error)
1470 		xfs_warn(log->l_mp, "failed to locate log tail");
1471 	return error;
1472 }
1473 
1474 /*
1475  * Is the log zeroed at all?
1476  *
1477  * The last binary search should be changed to perform an X block read
1478  * once X becomes small enough.  You can then search linearly through
1479  * the X blocks.  This will cut down on the number of reads we need to do.
1480  *
1481  * If the log is partially zeroed, this routine will pass back the blkno
1482  * of the first block with cycle number 0.  It won't have a complete LR
1483  * preceding it.
1484  *
1485  * Return:
1486  *	0  => the log is completely written to
1487  *	1 => use *blk_no as the first block of the log
1488  *	<0 => error has occurred
1489  */
1490 STATIC int
1491 xlog_find_zeroed(
1492 	struct xlog	*log,
1493 	xfs_daddr_t	*blk_no)
1494 {
1495 	xfs_buf_t	*bp;
1496 	char		*offset;
1497 	uint	        first_cycle, last_cycle;
1498 	xfs_daddr_t	new_blk, last_blk, start_blk;
1499 	xfs_daddr_t     num_scan_bblks;
1500 	int	        error, log_bbnum = log->l_logBBsize;
1501 
1502 	*blk_no = 0;
1503 
1504 	/* check totally zeroed log */
1505 	bp = xlog_get_bp(log, 1);
1506 	if (!bp)
1507 		return -ENOMEM;
1508 	error = xlog_bread(log, 0, 1, bp, &offset);
1509 	if (error)
1510 		goto bp_err;
1511 
1512 	first_cycle = xlog_get_cycle(offset);
1513 	if (first_cycle == 0) {		/* completely zeroed log */
1514 		*blk_no = 0;
1515 		xlog_put_bp(bp);
1516 		return 1;
1517 	}
1518 
1519 	/* check partially zeroed log */
1520 	error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1521 	if (error)
1522 		goto bp_err;
1523 
1524 	last_cycle = xlog_get_cycle(offset);
1525 	if (last_cycle != 0) {		/* log completely written to */
1526 		xlog_put_bp(bp);
1527 		return 0;
1528 	} else if (first_cycle != 1) {
1529 		/*
1530 		 * If the cycle of the last block is zero, the cycle of
1531 		 * the first block must be 1. If it's not, maybe we're
1532 		 * not looking at a log... Bail out.
1533 		 */
1534 		xfs_warn(log->l_mp,
1535 			"Log inconsistent or not a log (last==0, first!=1)");
1536 		error = -EINVAL;
1537 		goto bp_err;
1538 	}
1539 
1540 	/* we have a partially zeroed log */
1541 	last_blk = log_bbnum-1;
1542 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1543 		goto bp_err;
1544 
1545 	/*
1546 	 * Validate the answer.  Because there is no way to guarantee that
1547 	 * the entire log is made up of log records which are the same size,
1548 	 * we scan over the defined maximum blocks.  At this point, the maximum
1549 	 * is not chosen to mean anything special.   XXXmiken
1550 	 */
1551 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1552 	ASSERT(num_scan_bblks <= INT_MAX);
1553 
1554 	if (last_blk < num_scan_bblks)
1555 		num_scan_bblks = last_blk;
1556 	start_blk = last_blk - num_scan_bblks;
1557 
1558 	/*
1559 	 * We search for any instances of cycle number 0 that occur before
1560 	 * our current estimate of the head.  What we're trying to detect is
1561 	 *        1 ... | 0 | 1 | 0...
1562 	 *                       ^ binary search ends here
1563 	 */
1564 	if ((error = xlog_find_verify_cycle(log, start_blk,
1565 					 (int)num_scan_bblks, 0, &new_blk)))
1566 		goto bp_err;
1567 	if (new_blk != -1)
1568 		last_blk = new_blk;
1569 
1570 	/*
1571 	 * Potentially backup over partial log record write.  We don't need
1572 	 * to search the end of the log because we know it is zero.
1573 	 */
1574 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1575 	if (error == 1)
1576 		error = -EIO;
1577 	if (error)
1578 		goto bp_err;
1579 
1580 	*blk_no = last_blk;
1581 bp_err:
1582 	xlog_put_bp(bp);
1583 	if (error)
1584 		return error;
1585 	return 1;
1586 }
1587 
1588 /*
1589  * These are simple subroutines used by xlog_clear_stale_blocks() below
1590  * to initialize a buffer full of empty log record headers and write
1591  * them into the log.
1592  */
1593 STATIC void
1594 xlog_add_record(
1595 	struct xlog		*log,
1596 	char			*buf,
1597 	int			cycle,
1598 	int			block,
1599 	int			tail_cycle,
1600 	int			tail_block)
1601 {
1602 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1603 
1604 	memset(buf, 0, BBSIZE);
1605 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1606 	recp->h_cycle = cpu_to_be32(cycle);
1607 	recp->h_version = cpu_to_be32(
1608 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1609 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1610 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1611 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1612 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1613 }
1614 
1615 STATIC int
1616 xlog_write_log_records(
1617 	struct xlog	*log,
1618 	int		cycle,
1619 	int		start_block,
1620 	int		blocks,
1621 	int		tail_cycle,
1622 	int		tail_block)
1623 {
1624 	char		*offset;
1625 	xfs_buf_t	*bp;
1626 	int		balign, ealign;
1627 	int		sectbb = log->l_sectBBsize;
1628 	int		end_block = start_block + blocks;
1629 	int		bufblks;
1630 	int		error = 0;
1631 	int		i, j = 0;
1632 
1633 	/*
1634 	 * Greedily allocate a buffer big enough to handle the full
1635 	 * range of basic blocks to be written.  If that fails, try
1636 	 * a smaller size.  We need to be able to write at least a
1637 	 * log sector, or we're out of luck.
1638 	 */
1639 	bufblks = 1 << ffs(blocks);
1640 	while (bufblks > log->l_logBBsize)
1641 		bufblks >>= 1;
1642 	while (!(bp = xlog_get_bp(log, bufblks))) {
1643 		bufblks >>= 1;
1644 		if (bufblks < sectbb)
1645 			return -ENOMEM;
1646 	}
1647 
1648 	/* We may need to do a read at the start to fill in part of
1649 	 * the buffer in the starting sector not covered by the first
1650 	 * write below.
1651 	 */
1652 	balign = round_down(start_block, sectbb);
1653 	if (balign != start_block) {
1654 		error = xlog_bread_noalign(log, start_block, 1, bp);
1655 		if (error)
1656 			goto out_put_bp;
1657 
1658 		j = start_block - balign;
1659 	}
1660 
1661 	for (i = start_block; i < end_block; i += bufblks) {
1662 		int		bcount, endcount;
1663 
1664 		bcount = min(bufblks, end_block - start_block);
1665 		endcount = bcount - j;
1666 
1667 		/* We may need to do a read at the end to fill in part of
1668 		 * the buffer in the final sector not covered by the write.
1669 		 * If this is the same sector as the above read, skip it.
1670 		 */
1671 		ealign = round_down(end_block, sectbb);
1672 		if (j == 0 && (start_block + endcount > ealign)) {
1673 			offset = bp->b_addr + BBTOB(ealign - start_block);
1674 			error = xlog_bread_offset(log, ealign, sectbb,
1675 							bp, offset);
1676 			if (error)
1677 				break;
1678 
1679 		}
1680 
1681 		offset = xlog_align(log, start_block, endcount, bp);
1682 		for (; j < endcount; j++) {
1683 			xlog_add_record(log, offset, cycle, i+j,
1684 					tail_cycle, tail_block);
1685 			offset += BBSIZE;
1686 		}
1687 		error = xlog_bwrite(log, start_block, endcount, bp);
1688 		if (error)
1689 			break;
1690 		start_block += endcount;
1691 		j = 0;
1692 	}
1693 
1694  out_put_bp:
1695 	xlog_put_bp(bp);
1696 	return error;
1697 }
1698 
1699 /*
1700  * This routine is called to blow away any incomplete log writes out
1701  * in front of the log head.  We do this so that we won't become confused
1702  * if we come up, write only a little bit more, and then crash again.
1703  * If we leave the partial log records out there, this situation could
1704  * cause us to think those partial writes are valid blocks since they
1705  * have the current cycle number.  We get rid of them by overwriting them
1706  * with empty log records with the old cycle number rather than the
1707  * current one.
1708  *
1709  * The tail lsn is passed in rather than taken from
1710  * the log so that we will not write over the unmount record after a
1711  * clean unmount in a 512 block log.  Doing so would leave the log without
1712  * any valid log records in it until a new one was written.  If we crashed
1713  * during that time we would not be able to recover.
1714  */
1715 STATIC int
1716 xlog_clear_stale_blocks(
1717 	struct xlog	*log,
1718 	xfs_lsn_t	tail_lsn)
1719 {
1720 	int		tail_cycle, head_cycle;
1721 	int		tail_block, head_block;
1722 	int		tail_distance, max_distance;
1723 	int		distance;
1724 	int		error;
1725 
1726 	tail_cycle = CYCLE_LSN(tail_lsn);
1727 	tail_block = BLOCK_LSN(tail_lsn);
1728 	head_cycle = log->l_curr_cycle;
1729 	head_block = log->l_curr_block;
1730 
1731 	/*
1732 	 * Figure out the distance between the new head of the log
1733 	 * and the tail.  We want to write over any blocks beyond the
1734 	 * head that we may have written just before the crash, but
1735 	 * we don't want to overwrite the tail of the log.
1736 	 */
1737 	if (head_cycle == tail_cycle) {
1738 		/*
1739 		 * The tail is behind the head in the physical log,
1740 		 * so the distance from the head to the tail is the
1741 		 * distance from the head to the end of the log plus
1742 		 * the distance from the beginning of the log to the
1743 		 * tail.
1744 		 */
1745 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1746 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1747 					 XFS_ERRLEVEL_LOW, log->l_mp);
1748 			return -EFSCORRUPTED;
1749 		}
1750 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1751 	} else {
1752 		/*
1753 		 * The head is behind the tail in the physical log,
1754 		 * so the distance from the head to the tail is just
1755 		 * the tail block minus the head block.
1756 		 */
1757 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1758 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1759 					 XFS_ERRLEVEL_LOW, log->l_mp);
1760 			return -EFSCORRUPTED;
1761 		}
1762 		tail_distance = tail_block - head_block;
1763 	}
1764 
1765 	/*
1766 	 * If the head is right up against the tail, we can't clear
1767 	 * anything.
1768 	 */
1769 	if (tail_distance <= 0) {
1770 		ASSERT(tail_distance == 0);
1771 		return 0;
1772 	}
1773 
1774 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1775 	/*
1776 	 * Take the smaller of the maximum amount of outstanding I/O
1777 	 * we could have and the distance to the tail to clear out.
1778 	 * We take the smaller so that we don't overwrite the tail and
1779 	 * we don't waste all day writing from the head to the tail
1780 	 * for no reason.
1781 	 */
1782 	max_distance = MIN(max_distance, tail_distance);
1783 
1784 	if ((head_block + max_distance) <= log->l_logBBsize) {
1785 		/*
1786 		 * We can stomp all the blocks we need to without
1787 		 * wrapping around the end of the log.  Just do it
1788 		 * in a single write.  Use the cycle number of the
1789 		 * current cycle minus one so that the log will look like:
1790 		 *     n ... | n - 1 ...
1791 		 */
1792 		error = xlog_write_log_records(log, (head_cycle - 1),
1793 				head_block, max_distance, tail_cycle,
1794 				tail_block);
1795 		if (error)
1796 			return error;
1797 	} else {
1798 		/*
1799 		 * We need to wrap around the end of the physical log in
1800 		 * order to clear all the blocks.  Do it in two separate
1801 		 * I/Os.  The first write should be from the head to the
1802 		 * end of the physical log, and it should use the current
1803 		 * cycle number minus one just like above.
1804 		 */
1805 		distance = log->l_logBBsize - head_block;
1806 		error = xlog_write_log_records(log, (head_cycle - 1),
1807 				head_block, distance, tail_cycle,
1808 				tail_block);
1809 
1810 		if (error)
1811 			return error;
1812 
1813 		/*
1814 		 * Now write the blocks at the start of the physical log.
1815 		 * This writes the remainder of the blocks we want to clear.
1816 		 * It uses the current cycle number since we're now on the
1817 		 * same cycle as the head so that we get:
1818 		 *    n ... n ... | n - 1 ...
1819 		 *    ^^^^^ blocks we're writing
1820 		 */
1821 		distance = max_distance - (log->l_logBBsize - head_block);
1822 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1823 				tail_cycle, tail_block);
1824 		if (error)
1825 			return error;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 /******************************************************************************
1832  *
1833  *		Log recover routines
1834  *
1835  ******************************************************************************
1836  */
1837 
1838 /*
1839  * Sort the log items in the transaction.
1840  *
1841  * The ordering constraints are defined by the inode allocation and unlink
1842  * behaviour. The rules are:
1843  *
1844  *	1. Every item is only logged once in a given transaction. Hence it
1845  *	   represents the last logged state of the item. Hence ordering is
1846  *	   dependent on the order in which operations need to be performed so
1847  *	   required initial conditions are always met.
1848  *
1849  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1850  *	   there's nothing to replay from them so we can simply cull them
1851  *	   from the transaction. However, we can't do that until after we've
1852  *	   replayed all the other items because they may be dependent on the
1853  *	   cancelled buffer and replaying the cancelled buffer can remove it
1854  *	   form the cancelled buffer table. Hence they have tobe done last.
1855  *
1856  *	3. Inode allocation buffers must be replayed before inode items that
1857  *	   read the buffer and replay changes into it. For filesystems using the
1858  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1859  *	   treated the same as inode allocation buffers as they create and
1860  *	   initialise the buffers directly.
1861  *
1862  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1863  *	   This ensures that inodes are completely flushed to the inode buffer
1864  *	   in a "free" state before we remove the unlinked inode list pointer.
1865  *
1866  * Hence the ordering needs to be inode allocation buffers first, inode items
1867  * second, inode unlink buffers third and cancelled buffers last.
1868  *
1869  * But there's a problem with that - we can't tell an inode allocation buffer
1870  * apart from a regular buffer, so we can't separate them. We can, however,
1871  * tell an inode unlink buffer from the others, and so we can separate them out
1872  * from all the other buffers and move them to last.
1873  *
1874  * Hence, 4 lists, in order from head to tail:
1875  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1876  *	- item_list for all non-buffer items
1877  *	- inode_buffer_list for inode unlink buffers
1878  *	- cancel_list for the cancelled buffers
1879  *
1880  * Note that we add objects to the tail of the lists so that first-to-last
1881  * ordering is preserved within the lists. Adding objects to the head of the
1882  * list means when we traverse from the head we walk them in last-to-first
1883  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1884  * but for all other items there may be specific ordering that we need to
1885  * preserve.
1886  */
1887 STATIC int
1888 xlog_recover_reorder_trans(
1889 	struct xlog		*log,
1890 	struct xlog_recover	*trans,
1891 	int			pass)
1892 {
1893 	xlog_recover_item_t	*item, *n;
1894 	int			error = 0;
1895 	LIST_HEAD(sort_list);
1896 	LIST_HEAD(cancel_list);
1897 	LIST_HEAD(buffer_list);
1898 	LIST_HEAD(inode_buffer_list);
1899 	LIST_HEAD(inode_list);
1900 
1901 	list_splice_init(&trans->r_itemq, &sort_list);
1902 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1903 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1904 
1905 		switch (ITEM_TYPE(item)) {
1906 		case XFS_LI_ICREATE:
1907 			list_move_tail(&item->ri_list, &buffer_list);
1908 			break;
1909 		case XFS_LI_BUF:
1910 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1911 				trace_xfs_log_recover_item_reorder_head(log,
1912 							trans, item, pass);
1913 				list_move(&item->ri_list, &cancel_list);
1914 				break;
1915 			}
1916 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1917 				list_move(&item->ri_list, &inode_buffer_list);
1918 				break;
1919 			}
1920 			list_move_tail(&item->ri_list, &buffer_list);
1921 			break;
1922 		case XFS_LI_INODE:
1923 		case XFS_LI_DQUOT:
1924 		case XFS_LI_QUOTAOFF:
1925 		case XFS_LI_EFD:
1926 		case XFS_LI_EFI:
1927 		case XFS_LI_RUI:
1928 		case XFS_LI_RUD:
1929 		case XFS_LI_CUI:
1930 		case XFS_LI_CUD:
1931 		case XFS_LI_BUI:
1932 		case XFS_LI_BUD:
1933 			trace_xfs_log_recover_item_reorder_tail(log,
1934 							trans, item, pass);
1935 			list_move_tail(&item->ri_list, &inode_list);
1936 			break;
1937 		default:
1938 			xfs_warn(log->l_mp,
1939 				"%s: unrecognized type of log operation",
1940 				__func__);
1941 			ASSERT(0);
1942 			/*
1943 			 * return the remaining items back to the transaction
1944 			 * item list so they can be freed in caller.
1945 			 */
1946 			if (!list_empty(&sort_list))
1947 				list_splice_init(&sort_list, &trans->r_itemq);
1948 			error = -EIO;
1949 			goto out;
1950 		}
1951 	}
1952 out:
1953 	ASSERT(list_empty(&sort_list));
1954 	if (!list_empty(&buffer_list))
1955 		list_splice(&buffer_list, &trans->r_itemq);
1956 	if (!list_empty(&inode_list))
1957 		list_splice_tail(&inode_list, &trans->r_itemq);
1958 	if (!list_empty(&inode_buffer_list))
1959 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1960 	if (!list_empty(&cancel_list))
1961 		list_splice_tail(&cancel_list, &trans->r_itemq);
1962 	return error;
1963 }
1964 
1965 /*
1966  * Build up the table of buf cancel records so that we don't replay
1967  * cancelled data in the second pass.  For buffer records that are
1968  * not cancel records, there is nothing to do here so we just return.
1969  *
1970  * If we get a cancel record which is already in the table, this indicates
1971  * that the buffer was cancelled multiple times.  In order to ensure
1972  * that during pass 2 we keep the record in the table until we reach its
1973  * last occurrence in the log, we keep a reference count in the cancel
1974  * record in the table to tell us how many times we expect to see this
1975  * record during the second pass.
1976  */
1977 STATIC int
1978 xlog_recover_buffer_pass1(
1979 	struct xlog			*log,
1980 	struct xlog_recover_item	*item)
1981 {
1982 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1983 	struct list_head	*bucket;
1984 	struct xfs_buf_cancel	*bcp;
1985 
1986 	/*
1987 	 * If this isn't a cancel buffer item, then just return.
1988 	 */
1989 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1990 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1991 		return 0;
1992 	}
1993 
1994 	/*
1995 	 * Insert an xfs_buf_cancel record into the hash table of them.
1996 	 * If there is already an identical record, bump its reference count.
1997 	 */
1998 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1999 	list_for_each_entry(bcp, bucket, bc_list) {
2000 		if (bcp->bc_blkno == buf_f->blf_blkno &&
2001 		    bcp->bc_len == buf_f->blf_len) {
2002 			bcp->bc_refcount++;
2003 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2004 			return 0;
2005 		}
2006 	}
2007 
2008 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2009 	bcp->bc_blkno = buf_f->blf_blkno;
2010 	bcp->bc_len = buf_f->blf_len;
2011 	bcp->bc_refcount = 1;
2012 	list_add_tail(&bcp->bc_list, bucket);
2013 
2014 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2015 	return 0;
2016 }
2017 
2018 /*
2019  * Check to see whether the buffer being recovered has a corresponding
2020  * entry in the buffer cancel record table. If it is, return the cancel
2021  * buffer structure to the caller.
2022  */
2023 STATIC struct xfs_buf_cancel *
2024 xlog_peek_buffer_cancelled(
2025 	struct xlog		*log,
2026 	xfs_daddr_t		blkno,
2027 	uint			len,
2028 	ushort			flags)
2029 {
2030 	struct list_head	*bucket;
2031 	struct xfs_buf_cancel	*bcp;
2032 
2033 	if (!log->l_buf_cancel_table) {
2034 		/* empty table means no cancelled buffers in the log */
2035 		ASSERT(!(flags & XFS_BLF_CANCEL));
2036 		return NULL;
2037 	}
2038 
2039 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2040 	list_for_each_entry(bcp, bucket, bc_list) {
2041 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2042 			return bcp;
2043 	}
2044 
2045 	/*
2046 	 * We didn't find a corresponding entry in the table, so return 0 so
2047 	 * that the buffer is NOT cancelled.
2048 	 */
2049 	ASSERT(!(flags & XFS_BLF_CANCEL));
2050 	return NULL;
2051 }
2052 
2053 /*
2054  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2055  * otherwise return 0.  If the buffer is actually a buffer cancel item
2056  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2057  * table and remove it from the table if this is the last reference.
2058  *
2059  * We remove the cancel record from the table when we encounter its last
2060  * occurrence in the log so that if the same buffer is re-used again after its
2061  * last cancellation we actually replay the changes made at that point.
2062  */
2063 STATIC int
2064 xlog_check_buffer_cancelled(
2065 	struct xlog		*log,
2066 	xfs_daddr_t		blkno,
2067 	uint			len,
2068 	ushort			flags)
2069 {
2070 	struct xfs_buf_cancel	*bcp;
2071 
2072 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2073 	if (!bcp)
2074 		return 0;
2075 
2076 	/*
2077 	 * We've go a match, so return 1 so that the recovery of this buffer
2078 	 * is cancelled.  If this buffer is actually a buffer cancel log
2079 	 * item, then decrement the refcount on the one in the table and
2080 	 * remove it if this is the last reference.
2081 	 */
2082 	if (flags & XFS_BLF_CANCEL) {
2083 		if (--bcp->bc_refcount == 0) {
2084 			list_del(&bcp->bc_list);
2085 			kmem_free(bcp);
2086 		}
2087 	}
2088 	return 1;
2089 }
2090 
2091 /*
2092  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2093  * data which should be recovered is that which corresponds to the
2094  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2095  * data for the inodes is always logged through the inodes themselves rather
2096  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2097  *
2098  * The only time when buffers full of inodes are fully recovered is when the
2099  * buffer is full of newly allocated inodes.  In this case the buffer will
2100  * not be marked as an inode buffer and so will be sent to
2101  * xlog_recover_do_reg_buffer() below during recovery.
2102  */
2103 STATIC int
2104 xlog_recover_do_inode_buffer(
2105 	struct xfs_mount	*mp,
2106 	xlog_recover_item_t	*item,
2107 	struct xfs_buf		*bp,
2108 	xfs_buf_log_format_t	*buf_f)
2109 {
2110 	int			i;
2111 	int			item_index = 0;
2112 	int			bit = 0;
2113 	int			nbits = 0;
2114 	int			reg_buf_offset = 0;
2115 	int			reg_buf_bytes = 0;
2116 	int			next_unlinked_offset;
2117 	int			inodes_per_buf;
2118 	xfs_agino_t		*logged_nextp;
2119 	xfs_agino_t		*buffer_nextp;
2120 
2121 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2122 
2123 	/*
2124 	 * Post recovery validation only works properly on CRC enabled
2125 	 * filesystems.
2126 	 */
2127 	if (xfs_sb_version_hascrc(&mp->m_sb))
2128 		bp->b_ops = &xfs_inode_buf_ops;
2129 
2130 	inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2131 	for (i = 0; i < inodes_per_buf; i++) {
2132 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2133 			offsetof(xfs_dinode_t, di_next_unlinked);
2134 
2135 		while (next_unlinked_offset >=
2136 		       (reg_buf_offset + reg_buf_bytes)) {
2137 			/*
2138 			 * The next di_next_unlinked field is beyond
2139 			 * the current logged region.  Find the next
2140 			 * logged region that contains or is beyond
2141 			 * the current di_next_unlinked field.
2142 			 */
2143 			bit += nbits;
2144 			bit = xfs_next_bit(buf_f->blf_data_map,
2145 					   buf_f->blf_map_size, bit);
2146 
2147 			/*
2148 			 * If there are no more logged regions in the
2149 			 * buffer, then we're done.
2150 			 */
2151 			if (bit == -1)
2152 				return 0;
2153 
2154 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2155 						buf_f->blf_map_size, bit);
2156 			ASSERT(nbits > 0);
2157 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2158 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2159 			item_index++;
2160 		}
2161 
2162 		/*
2163 		 * If the current logged region starts after the current
2164 		 * di_next_unlinked field, then move on to the next
2165 		 * di_next_unlinked field.
2166 		 */
2167 		if (next_unlinked_offset < reg_buf_offset)
2168 			continue;
2169 
2170 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2171 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2172 		ASSERT((reg_buf_offset + reg_buf_bytes) <=
2173 							BBTOB(bp->b_io_length));
2174 
2175 		/*
2176 		 * The current logged region contains a copy of the
2177 		 * current di_next_unlinked field.  Extract its value
2178 		 * and copy it to the buffer copy.
2179 		 */
2180 		logged_nextp = item->ri_buf[item_index].i_addr +
2181 				next_unlinked_offset - reg_buf_offset;
2182 		if (unlikely(*logged_nextp == 0)) {
2183 			xfs_alert(mp,
2184 		"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2185 		"Trying to replay bad (0) inode di_next_unlinked field.",
2186 				item, bp);
2187 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2188 					 XFS_ERRLEVEL_LOW, mp);
2189 			return -EFSCORRUPTED;
2190 		}
2191 
2192 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2193 		*buffer_nextp = *logged_nextp;
2194 
2195 		/*
2196 		 * If necessary, recalculate the CRC in the on-disk inode. We
2197 		 * have to leave the inode in a consistent state for whoever
2198 		 * reads it next....
2199 		 */
2200 		xfs_dinode_calc_crc(mp,
2201 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2202 
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 /*
2209  * V5 filesystems know the age of the buffer on disk being recovered. We can
2210  * have newer objects on disk than we are replaying, and so for these cases we
2211  * don't want to replay the current change as that will make the buffer contents
2212  * temporarily invalid on disk.
2213  *
2214  * The magic number might not match the buffer type we are going to recover
2215  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2216  * extract the LSN of the existing object in the buffer based on it's current
2217  * magic number.  If we don't recognise the magic number in the buffer, then
2218  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2219  * so can recover the buffer.
2220  *
2221  * Note: we cannot rely solely on magic number matches to determine that the
2222  * buffer has a valid LSN - we also need to verify that it belongs to this
2223  * filesystem, so we need to extract the object's LSN and compare it to that
2224  * which we read from the superblock. If the UUIDs don't match, then we've got a
2225  * stale metadata block from an old filesystem instance that we need to recover
2226  * over the top of.
2227  */
2228 static xfs_lsn_t
2229 xlog_recover_get_buf_lsn(
2230 	struct xfs_mount	*mp,
2231 	struct xfs_buf		*bp)
2232 {
2233 	__uint32_t		magic32;
2234 	__uint16_t		magic16;
2235 	__uint16_t		magicda;
2236 	void			*blk = bp->b_addr;
2237 	uuid_t			*uuid;
2238 	xfs_lsn_t		lsn = -1;
2239 
2240 	/* v4 filesystems always recover immediately */
2241 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2242 		goto recover_immediately;
2243 
2244 	magic32 = be32_to_cpu(*(__be32 *)blk);
2245 	switch (magic32) {
2246 	case XFS_ABTB_CRC_MAGIC:
2247 	case XFS_ABTC_CRC_MAGIC:
2248 	case XFS_ABTB_MAGIC:
2249 	case XFS_ABTC_MAGIC:
2250 	case XFS_RMAP_CRC_MAGIC:
2251 	case XFS_REFC_CRC_MAGIC:
2252 	case XFS_IBT_CRC_MAGIC:
2253 	case XFS_IBT_MAGIC: {
2254 		struct xfs_btree_block *btb = blk;
2255 
2256 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2257 		uuid = &btb->bb_u.s.bb_uuid;
2258 		break;
2259 	}
2260 	case XFS_BMAP_CRC_MAGIC:
2261 	case XFS_BMAP_MAGIC: {
2262 		struct xfs_btree_block *btb = blk;
2263 
2264 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2265 		uuid = &btb->bb_u.l.bb_uuid;
2266 		break;
2267 	}
2268 	case XFS_AGF_MAGIC:
2269 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2270 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2271 		break;
2272 	case XFS_AGFL_MAGIC:
2273 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2274 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2275 		break;
2276 	case XFS_AGI_MAGIC:
2277 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2278 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2279 		break;
2280 	case XFS_SYMLINK_MAGIC:
2281 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2282 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2283 		break;
2284 	case XFS_DIR3_BLOCK_MAGIC:
2285 	case XFS_DIR3_DATA_MAGIC:
2286 	case XFS_DIR3_FREE_MAGIC:
2287 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2288 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2289 		break;
2290 	case XFS_ATTR3_RMT_MAGIC:
2291 		/*
2292 		 * Remote attr blocks are written synchronously, rather than
2293 		 * being logged. That means they do not contain a valid LSN
2294 		 * (i.e. transactionally ordered) in them, and hence any time we
2295 		 * see a buffer to replay over the top of a remote attribute
2296 		 * block we should simply do so.
2297 		 */
2298 		goto recover_immediately;
2299 	case XFS_SB_MAGIC:
2300 		/*
2301 		 * superblock uuids are magic. We may or may not have a
2302 		 * sb_meta_uuid on disk, but it will be set in the in-core
2303 		 * superblock. We set the uuid pointer for verification
2304 		 * according to the superblock feature mask to ensure we check
2305 		 * the relevant UUID in the superblock.
2306 		 */
2307 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2308 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2309 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2310 		else
2311 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2312 		break;
2313 	default:
2314 		break;
2315 	}
2316 
2317 	if (lsn != (xfs_lsn_t)-1) {
2318 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2319 			goto recover_immediately;
2320 		return lsn;
2321 	}
2322 
2323 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2324 	switch (magicda) {
2325 	case XFS_DIR3_LEAF1_MAGIC:
2326 	case XFS_DIR3_LEAFN_MAGIC:
2327 	case XFS_DA3_NODE_MAGIC:
2328 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2329 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2330 		break;
2331 	default:
2332 		break;
2333 	}
2334 
2335 	if (lsn != (xfs_lsn_t)-1) {
2336 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2337 			goto recover_immediately;
2338 		return lsn;
2339 	}
2340 
2341 	/*
2342 	 * We do individual object checks on dquot and inode buffers as they
2343 	 * have their own individual LSN records. Also, we could have a stale
2344 	 * buffer here, so we have to at least recognise these buffer types.
2345 	 *
2346 	 * A notd complexity here is inode unlinked list processing - it logs
2347 	 * the inode directly in the buffer, but we don't know which inodes have
2348 	 * been modified, and there is no global buffer LSN. Hence we need to
2349 	 * recover all inode buffer types immediately. This problem will be
2350 	 * fixed by logical logging of the unlinked list modifications.
2351 	 */
2352 	magic16 = be16_to_cpu(*(__be16 *)blk);
2353 	switch (magic16) {
2354 	case XFS_DQUOT_MAGIC:
2355 	case XFS_DINODE_MAGIC:
2356 		goto recover_immediately;
2357 	default:
2358 		break;
2359 	}
2360 
2361 	/* unknown buffer contents, recover immediately */
2362 
2363 recover_immediately:
2364 	return (xfs_lsn_t)-1;
2365 
2366 }
2367 
2368 /*
2369  * Validate the recovered buffer is of the correct type and attach the
2370  * appropriate buffer operations to them for writeback. Magic numbers are in a
2371  * few places:
2372  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2373  *	the first 32 bits of the buffer (most blocks),
2374  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2375  */
2376 static void
2377 xlog_recover_validate_buf_type(
2378 	struct xfs_mount	*mp,
2379 	struct xfs_buf		*bp,
2380 	xfs_buf_log_format_t	*buf_f,
2381 	xfs_lsn_t		current_lsn)
2382 {
2383 	struct xfs_da_blkinfo	*info = bp->b_addr;
2384 	__uint32_t		magic32;
2385 	__uint16_t		magic16;
2386 	__uint16_t		magicda;
2387 	char			*warnmsg = NULL;
2388 
2389 	/*
2390 	 * We can only do post recovery validation on items on CRC enabled
2391 	 * fielsystems as we need to know when the buffer was written to be able
2392 	 * to determine if we should have replayed the item. If we replay old
2393 	 * metadata over a newer buffer, then it will enter a temporarily
2394 	 * inconsistent state resulting in verification failures. Hence for now
2395 	 * just avoid the verification stage for non-crc filesystems
2396 	 */
2397 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2398 		return;
2399 
2400 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2401 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2402 	magicda = be16_to_cpu(info->magic);
2403 	switch (xfs_blft_from_flags(buf_f)) {
2404 	case XFS_BLFT_BTREE_BUF:
2405 		switch (magic32) {
2406 		case XFS_ABTB_CRC_MAGIC:
2407 		case XFS_ABTC_CRC_MAGIC:
2408 		case XFS_ABTB_MAGIC:
2409 		case XFS_ABTC_MAGIC:
2410 			bp->b_ops = &xfs_allocbt_buf_ops;
2411 			break;
2412 		case XFS_IBT_CRC_MAGIC:
2413 		case XFS_FIBT_CRC_MAGIC:
2414 		case XFS_IBT_MAGIC:
2415 		case XFS_FIBT_MAGIC:
2416 			bp->b_ops = &xfs_inobt_buf_ops;
2417 			break;
2418 		case XFS_BMAP_CRC_MAGIC:
2419 		case XFS_BMAP_MAGIC:
2420 			bp->b_ops = &xfs_bmbt_buf_ops;
2421 			break;
2422 		case XFS_RMAP_CRC_MAGIC:
2423 			bp->b_ops = &xfs_rmapbt_buf_ops;
2424 			break;
2425 		case XFS_REFC_CRC_MAGIC:
2426 			bp->b_ops = &xfs_refcountbt_buf_ops;
2427 			break;
2428 		default:
2429 			warnmsg = "Bad btree block magic!";
2430 			break;
2431 		}
2432 		break;
2433 	case XFS_BLFT_AGF_BUF:
2434 		if (magic32 != XFS_AGF_MAGIC) {
2435 			warnmsg = "Bad AGF block magic!";
2436 			break;
2437 		}
2438 		bp->b_ops = &xfs_agf_buf_ops;
2439 		break;
2440 	case XFS_BLFT_AGFL_BUF:
2441 		if (magic32 != XFS_AGFL_MAGIC) {
2442 			warnmsg = "Bad AGFL block magic!";
2443 			break;
2444 		}
2445 		bp->b_ops = &xfs_agfl_buf_ops;
2446 		break;
2447 	case XFS_BLFT_AGI_BUF:
2448 		if (magic32 != XFS_AGI_MAGIC) {
2449 			warnmsg = "Bad AGI block magic!";
2450 			break;
2451 		}
2452 		bp->b_ops = &xfs_agi_buf_ops;
2453 		break;
2454 	case XFS_BLFT_UDQUOT_BUF:
2455 	case XFS_BLFT_PDQUOT_BUF:
2456 	case XFS_BLFT_GDQUOT_BUF:
2457 #ifdef CONFIG_XFS_QUOTA
2458 		if (magic16 != XFS_DQUOT_MAGIC) {
2459 			warnmsg = "Bad DQUOT block magic!";
2460 			break;
2461 		}
2462 		bp->b_ops = &xfs_dquot_buf_ops;
2463 #else
2464 		xfs_alert(mp,
2465 	"Trying to recover dquots without QUOTA support built in!");
2466 		ASSERT(0);
2467 #endif
2468 		break;
2469 	case XFS_BLFT_DINO_BUF:
2470 		if (magic16 != XFS_DINODE_MAGIC) {
2471 			warnmsg = "Bad INODE block magic!";
2472 			break;
2473 		}
2474 		bp->b_ops = &xfs_inode_buf_ops;
2475 		break;
2476 	case XFS_BLFT_SYMLINK_BUF:
2477 		if (magic32 != XFS_SYMLINK_MAGIC) {
2478 			warnmsg = "Bad symlink block magic!";
2479 			break;
2480 		}
2481 		bp->b_ops = &xfs_symlink_buf_ops;
2482 		break;
2483 	case XFS_BLFT_DIR_BLOCK_BUF:
2484 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2485 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2486 			warnmsg = "Bad dir block magic!";
2487 			break;
2488 		}
2489 		bp->b_ops = &xfs_dir3_block_buf_ops;
2490 		break;
2491 	case XFS_BLFT_DIR_DATA_BUF:
2492 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2493 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2494 			warnmsg = "Bad dir data magic!";
2495 			break;
2496 		}
2497 		bp->b_ops = &xfs_dir3_data_buf_ops;
2498 		break;
2499 	case XFS_BLFT_DIR_FREE_BUF:
2500 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2501 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2502 			warnmsg = "Bad dir3 free magic!";
2503 			break;
2504 		}
2505 		bp->b_ops = &xfs_dir3_free_buf_ops;
2506 		break;
2507 	case XFS_BLFT_DIR_LEAF1_BUF:
2508 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2509 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2510 			warnmsg = "Bad dir leaf1 magic!";
2511 			break;
2512 		}
2513 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2514 		break;
2515 	case XFS_BLFT_DIR_LEAFN_BUF:
2516 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2517 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2518 			warnmsg = "Bad dir leafn magic!";
2519 			break;
2520 		}
2521 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2522 		break;
2523 	case XFS_BLFT_DA_NODE_BUF:
2524 		if (magicda != XFS_DA_NODE_MAGIC &&
2525 		    magicda != XFS_DA3_NODE_MAGIC) {
2526 			warnmsg = "Bad da node magic!";
2527 			break;
2528 		}
2529 		bp->b_ops = &xfs_da3_node_buf_ops;
2530 		break;
2531 	case XFS_BLFT_ATTR_LEAF_BUF:
2532 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2533 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2534 			warnmsg = "Bad attr leaf magic!";
2535 			break;
2536 		}
2537 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2538 		break;
2539 	case XFS_BLFT_ATTR_RMT_BUF:
2540 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2541 			warnmsg = "Bad attr remote magic!";
2542 			break;
2543 		}
2544 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2545 		break;
2546 	case XFS_BLFT_SB_BUF:
2547 		if (magic32 != XFS_SB_MAGIC) {
2548 			warnmsg = "Bad SB block magic!";
2549 			break;
2550 		}
2551 		bp->b_ops = &xfs_sb_buf_ops;
2552 		break;
2553 #ifdef CONFIG_XFS_RT
2554 	case XFS_BLFT_RTBITMAP_BUF:
2555 	case XFS_BLFT_RTSUMMARY_BUF:
2556 		/* no magic numbers for verification of RT buffers */
2557 		bp->b_ops = &xfs_rtbuf_ops;
2558 		break;
2559 #endif /* CONFIG_XFS_RT */
2560 	default:
2561 		xfs_warn(mp, "Unknown buffer type %d!",
2562 			 xfs_blft_from_flags(buf_f));
2563 		break;
2564 	}
2565 
2566 	/*
2567 	 * Nothing else to do in the case of a NULL current LSN as this means
2568 	 * the buffer is more recent than the change in the log and will be
2569 	 * skipped.
2570 	 */
2571 	if (current_lsn == NULLCOMMITLSN)
2572 		return;
2573 
2574 	if (warnmsg) {
2575 		xfs_warn(mp, warnmsg);
2576 		ASSERT(0);
2577 	}
2578 
2579 	/*
2580 	 * We must update the metadata LSN of the buffer as it is written out to
2581 	 * ensure that older transactions never replay over this one and corrupt
2582 	 * the buffer. This can occur if log recovery is interrupted at some
2583 	 * point after the current transaction completes, at which point a
2584 	 * subsequent mount starts recovery from the beginning.
2585 	 *
2586 	 * Write verifiers update the metadata LSN from log items attached to
2587 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2588 	 * the verifier. We'll clean it up in our ->iodone() callback.
2589 	 */
2590 	if (bp->b_ops) {
2591 		struct xfs_buf_log_item	*bip;
2592 
2593 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2594 		bp->b_iodone = xlog_recover_iodone;
2595 		xfs_buf_item_init(bp, mp);
2596 		bip = bp->b_fspriv;
2597 		bip->bli_item.li_lsn = current_lsn;
2598 	}
2599 }
2600 
2601 /*
2602  * Perform a 'normal' buffer recovery.  Each logged region of the
2603  * buffer should be copied over the corresponding region in the
2604  * given buffer.  The bitmap in the buf log format structure indicates
2605  * where to place the logged data.
2606  */
2607 STATIC void
2608 xlog_recover_do_reg_buffer(
2609 	struct xfs_mount	*mp,
2610 	xlog_recover_item_t	*item,
2611 	struct xfs_buf		*bp,
2612 	xfs_buf_log_format_t	*buf_f,
2613 	xfs_lsn_t		current_lsn)
2614 {
2615 	int			i;
2616 	int			bit;
2617 	int			nbits;
2618 	int                     error;
2619 
2620 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2621 
2622 	bit = 0;
2623 	i = 1;  /* 0 is the buf format structure */
2624 	while (1) {
2625 		bit = xfs_next_bit(buf_f->blf_data_map,
2626 				   buf_f->blf_map_size, bit);
2627 		if (bit == -1)
2628 			break;
2629 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2630 					buf_f->blf_map_size, bit);
2631 		ASSERT(nbits > 0);
2632 		ASSERT(item->ri_buf[i].i_addr != NULL);
2633 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2634 		ASSERT(BBTOB(bp->b_io_length) >=
2635 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2636 
2637 		/*
2638 		 * The dirty regions logged in the buffer, even though
2639 		 * contiguous, may span multiple chunks. This is because the
2640 		 * dirty region may span a physical page boundary in a buffer
2641 		 * and hence be split into two separate vectors for writing into
2642 		 * the log. Hence we need to trim nbits back to the length of
2643 		 * the current region being copied out of the log.
2644 		 */
2645 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2646 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2647 
2648 		/*
2649 		 * Do a sanity check if this is a dquot buffer. Just checking
2650 		 * the first dquot in the buffer should do. XXXThis is
2651 		 * probably a good thing to do for other buf types also.
2652 		 */
2653 		error = 0;
2654 		if (buf_f->blf_flags &
2655 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2656 			if (item->ri_buf[i].i_addr == NULL) {
2657 				xfs_alert(mp,
2658 					"XFS: NULL dquot in %s.", __func__);
2659 				goto next;
2660 			}
2661 			if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2662 				xfs_alert(mp,
2663 					"XFS: dquot too small (%d) in %s.",
2664 					item->ri_buf[i].i_len, __func__);
2665 				goto next;
2666 			}
2667 			error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2668 					       -1, 0, XFS_QMOPT_DOWARN,
2669 					       "dquot_buf_recover");
2670 			if (error)
2671 				goto next;
2672 		}
2673 
2674 		memcpy(xfs_buf_offset(bp,
2675 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2676 			item->ri_buf[i].i_addr,		/* source */
2677 			nbits<<XFS_BLF_SHIFT);		/* length */
2678  next:
2679 		i++;
2680 		bit += nbits;
2681 	}
2682 
2683 	/* Shouldn't be any more regions */
2684 	ASSERT(i == item->ri_total);
2685 
2686 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2687 }
2688 
2689 /*
2690  * Perform a dquot buffer recovery.
2691  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2692  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2693  * Else, treat it as a regular buffer and do recovery.
2694  *
2695  * Return false if the buffer was tossed and true if we recovered the buffer to
2696  * indicate to the caller if the buffer needs writing.
2697  */
2698 STATIC bool
2699 xlog_recover_do_dquot_buffer(
2700 	struct xfs_mount		*mp,
2701 	struct xlog			*log,
2702 	struct xlog_recover_item	*item,
2703 	struct xfs_buf			*bp,
2704 	struct xfs_buf_log_format	*buf_f)
2705 {
2706 	uint			type;
2707 
2708 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2709 
2710 	/*
2711 	 * Filesystems are required to send in quota flags at mount time.
2712 	 */
2713 	if (!mp->m_qflags)
2714 		return false;
2715 
2716 	type = 0;
2717 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2718 		type |= XFS_DQ_USER;
2719 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2720 		type |= XFS_DQ_PROJ;
2721 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2722 		type |= XFS_DQ_GROUP;
2723 	/*
2724 	 * This type of quotas was turned off, so ignore this buffer
2725 	 */
2726 	if (log->l_quotaoffs_flag & type)
2727 		return false;
2728 
2729 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2730 	return true;
2731 }
2732 
2733 /*
2734  * This routine replays a modification made to a buffer at runtime.
2735  * There are actually two types of buffer, regular and inode, which
2736  * are handled differently.  Inode buffers are handled differently
2737  * in that we only recover a specific set of data from them, namely
2738  * the inode di_next_unlinked fields.  This is because all other inode
2739  * data is actually logged via inode records and any data we replay
2740  * here which overlaps that may be stale.
2741  *
2742  * When meta-data buffers are freed at run time we log a buffer item
2743  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2744  * of the buffer in the log should not be replayed at recovery time.
2745  * This is so that if the blocks covered by the buffer are reused for
2746  * file data before we crash we don't end up replaying old, freed
2747  * meta-data into a user's file.
2748  *
2749  * To handle the cancellation of buffer log items, we make two passes
2750  * over the log during recovery.  During the first we build a table of
2751  * those buffers which have been cancelled, and during the second we
2752  * only replay those buffers which do not have corresponding cancel
2753  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2754  * for more details on the implementation of the table of cancel records.
2755  */
2756 STATIC int
2757 xlog_recover_buffer_pass2(
2758 	struct xlog			*log,
2759 	struct list_head		*buffer_list,
2760 	struct xlog_recover_item	*item,
2761 	xfs_lsn_t			current_lsn)
2762 {
2763 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2764 	xfs_mount_t		*mp = log->l_mp;
2765 	xfs_buf_t		*bp;
2766 	int			error;
2767 	uint			buf_flags;
2768 	xfs_lsn_t		lsn;
2769 
2770 	/*
2771 	 * In this pass we only want to recover all the buffers which have
2772 	 * not been cancelled and are not cancellation buffers themselves.
2773 	 */
2774 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2775 			buf_f->blf_len, buf_f->blf_flags)) {
2776 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2777 		return 0;
2778 	}
2779 
2780 	trace_xfs_log_recover_buf_recover(log, buf_f);
2781 
2782 	buf_flags = 0;
2783 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2784 		buf_flags |= XBF_UNMAPPED;
2785 
2786 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2787 			  buf_flags, NULL);
2788 	if (!bp)
2789 		return -ENOMEM;
2790 	error = bp->b_error;
2791 	if (error) {
2792 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2793 		goto out_release;
2794 	}
2795 
2796 	/*
2797 	 * Recover the buffer only if we get an LSN from it and it's less than
2798 	 * the lsn of the transaction we are replaying.
2799 	 *
2800 	 * Note that we have to be extremely careful of readahead here.
2801 	 * Readahead does not attach verfiers to the buffers so if we don't
2802 	 * actually do any replay after readahead because of the LSN we found
2803 	 * in the buffer if more recent than that current transaction then we
2804 	 * need to attach the verifier directly. Failure to do so can lead to
2805 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2806 	 * operate on the buffers and they won't get the verifier attached. This
2807 	 * can lead to blocks on disk having the correct content but a stale
2808 	 * CRC.
2809 	 *
2810 	 * It is safe to assume these clean buffers are currently up to date.
2811 	 * If the buffer is dirtied by a later transaction being replayed, then
2812 	 * the verifier will be reset to match whatever recover turns that
2813 	 * buffer into.
2814 	 */
2815 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2816 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2817 		trace_xfs_log_recover_buf_skip(log, buf_f);
2818 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2819 		goto out_release;
2820 	}
2821 
2822 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2823 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2824 		if (error)
2825 			goto out_release;
2826 	} else if (buf_f->blf_flags &
2827 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2828 		bool	dirty;
2829 
2830 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2831 		if (!dirty)
2832 			goto out_release;
2833 	} else {
2834 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2835 	}
2836 
2837 	/*
2838 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2839 	 * slower when taking into account all the buffers to be flushed.
2840 	 *
2841 	 * Also make sure that only inode buffers with good sizes stay in
2842 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2843 	 * or mp->m_inode_cluster_size bytes, whichever is bigger.  The inode
2844 	 * buffers in the log can be a different size if the log was generated
2845 	 * by an older kernel using unclustered inode buffers or a newer kernel
2846 	 * running with a different inode cluster size.  Regardless, if the
2847 	 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2848 	 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2849 	 * the buffer out of the buffer cache so that the buffer won't
2850 	 * overlap with future reads of those inodes.
2851 	 */
2852 	if (XFS_DINODE_MAGIC ==
2853 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2854 	    (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2855 			(__uint32_t)log->l_mp->m_inode_cluster_size))) {
2856 		xfs_buf_stale(bp);
2857 		error = xfs_bwrite(bp);
2858 	} else {
2859 		ASSERT(bp->b_target->bt_mount == mp);
2860 		bp->b_iodone = xlog_recover_iodone;
2861 		xfs_buf_delwri_queue(bp, buffer_list);
2862 	}
2863 
2864 out_release:
2865 	xfs_buf_relse(bp);
2866 	return error;
2867 }
2868 
2869 /*
2870  * Inode fork owner changes
2871  *
2872  * If we have been told that we have to reparent the inode fork, it's because an
2873  * extent swap operation on a CRC enabled filesystem has been done and we are
2874  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2875  * owners of it.
2876  *
2877  * The complexity here is that we don't have an inode context to work with, so
2878  * after we've replayed the inode we need to instantiate one.  This is where the
2879  * fun begins.
2880  *
2881  * We are in the middle of log recovery, so we can't run transactions. That
2882  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2883  * that will result in the corresponding iput() running the inode through
2884  * xfs_inactive(). If we've just replayed an inode core that changes the link
2885  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2886  * transactions (bad!).
2887  *
2888  * So, to avoid this, we instantiate an inode directly from the inode core we've
2889  * just recovered. We have the buffer still locked, and all we really need to
2890  * instantiate is the inode core and the forks being modified. We can do this
2891  * manually, then run the inode btree owner change, and then tear down the
2892  * xfs_inode without having to run any transactions at all.
2893  *
2894  * Also, because we don't have a transaction context available here but need to
2895  * gather all the buffers we modify for writeback so we pass the buffer_list
2896  * instead for the operation to use.
2897  */
2898 
2899 STATIC int
2900 xfs_recover_inode_owner_change(
2901 	struct xfs_mount	*mp,
2902 	struct xfs_dinode	*dip,
2903 	struct xfs_inode_log_format *in_f,
2904 	struct list_head	*buffer_list)
2905 {
2906 	struct xfs_inode	*ip;
2907 	int			error;
2908 
2909 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2910 
2911 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2912 	if (!ip)
2913 		return -ENOMEM;
2914 
2915 	/* instantiate the inode */
2916 	xfs_inode_from_disk(ip, dip);
2917 	ASSERT(ip->i_d.di_version >= 3);
2918 
2919 	error = xfs_iformat_fork(ip, dip);
2920 	if (error)
2921 		goto out_free_ip;
2922 
2923 
2924 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2925 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2926 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2927 					      ip->i_ino, buffer_list);
2928 		if (error)
2929 			goto out_free_ip;
2930 	}
2931 
2932 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2933 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2934 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2935 					      ip->i_ino, buffer_list);
2936 		if (error)
2937 			goto out_free_ip;
2938 	}
2939 
2940 out_free_ip:
2941 	xfs_inode_free(ip);
2942 	return error;
2943 }
2944 
2945 STATIC int
2946 xlog_recover_inode_pass2(
2947 	struct xlog			*log,
2948 	struct list_head		*buffer_list,
2949 	struct xlog_recover_item	*item,
2950 	xfs_lsn_t			current_lsn)
2951 {
2952 	xfs_inode_log_format_t	*in_f;
2953 	xfs_mount_t		*mp = log->l_mp;
2954 	xfs_buf_t		*bp;
2955 	xfs_dinode_t		*dip;
2956 	int			len;
2957 	char			*src;
2958 	char			*dest;
2959 	int			error;
2960 	int			attr_index;
2961 	uint			fields;
2962 	struct xfs_log_dinode	*ldip;
2963 	uint			isize;
2964 	int			need_free = 0;
2965 
2966 	if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2967 		in_f = item->ri_buf[0].i_addr;
2968 	} else {
2969 		in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2970 		need_free = 1;
2971 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2972 		if (error)
2973 			goto error;
2974 	}
2975 
2976 	/*
2977 	 * Inode buffers can be freed, look out for it,
2978 	 * and do not replay the inode.
2979 	 */
2980 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2981 					in_f->ilf_len, 0)) {
2982 		error = 0;
2983 		trace_xfs_log_recover_inode_cancel(log, in_f);
2984 		goto error;
2985 	}
2986 	trace_xfs_log_recover_inode_recover(log, in_f);
2987 
2988 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2989 			  &xfs_inode_buf_ops);
2990 	if (!bp) {
2991 		error = -ENOMEM;
2992 		goto error;
2993 	}
2994 	error = bp->b_error;
2995 	if (error) {
2996 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2997 		goto out_release;
2998 	}
2999 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3000 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3001 
3002 	/*
3003 	 * Make sure the place we're flushing out to really looks
3004 	 * like an inode!
3005 	 */
3006 	if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3007 		xfs_alert(mp,
3008 	"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3009 			__func__, dip, bp, in_f->ilf_ino);
3010 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3011 				 XFS_ERRLEVEL_LOW, mp);
3012 		error = -EFSCORRUPTED;
3013 		goto out_release;
3014 	}
3015 	ldip = item->ri_buf[1].i_addr;
3016 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3017 		xfs_alert(mp,
3018 			"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3019 			__func__, item, in_f->ilf_ino);
3020 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3021 				 XFS_ERRLEVEL_LOW, mp);
3022 		error = -EFSCORRUPTED;
3023 		goto out_release;
3024 	}
3025 
3026 	/*
3027 	 * If the inode has an LSN in it, recover the inode only if it's less
3028 	 * than the lsn of the transaction we are replaying. Note: we still
3029 	 * need to replay an owner change even though the inode is more recent
3030 	 * than the transaction as there is no guarantee that all the btree
3031 	 * blocks are more recent than this transaction, too.
3032 	 */
3033 	if (dip->di_version >= 3) {
3034 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3035 
3036 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3037 			trace_xfs_log_recover_inode_skip(log, in_f);
3038 			error = 0;
3039 			goto out_owner_change;
3040 		}
3041 	}
3042 
3043 	/*
3044 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3045 	 * are transactional and if ordering is necessary we can determine that
3046 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3047 	 * the inode versions we might be changing them here - use the
3048 	 * superblock flag to determine whether we need to look at di_flushiter
3049 	 * to skip replay when the on disk inode is newer than the log one
3050 	 */
3051 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3052 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3053 		/*
3054 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3055 		 * than smaller numbers
3056 		 */
3057 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3058 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3059 			/* do nothing */
3060 		} else {
3061 			trace_xfs_log_recover_inode_skip(log, in_f);
3062 			error = 0;
3063 			goto out_release;
3064 		}
3065 	}
3066 
3067 	/* Take the opportunity to reset the flush iteration count */
3068 	ldip->di_flushiter = 0;
3069 
3070 	if (unlikely(S_ISREG(ldip->di_mode))) {
3071 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3072 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3073 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3074 					 XFS_ERRLEVEL_LOW, mp, ldip);
3075 			xfs_alert(mp,
3076 		"%s: Bad regular inode log record, rec ptr 0x%p, "
3077 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3078 				__func__, item, dip, bp, in_f->ilf_ino);
3079 			error = -EFSCORRUPTED;
3080 			goto out_release;
3081 		}
3082 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3083 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3084 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3085 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3086 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3087 					     XFS_ERRLEVEL_LOW, mp, ldip);
3088 			xfs_alert(mp,
3089 		"%s: Bad dir inode log record, rec ptr 0x%p, "
3090 		"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3091 				__func__, item, dip, bp, in_f->ilf_ino);
3092 			error = -EFSCORRUPTED;
3093 			goto out_release;
3094 		}
3095 	}
3096 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3097 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3098 				     XFS_ERRLEVEL_LOW, mp, ldip);
3099 		xfs_alert(mp,
3100 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3101 	"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3102 			__func__, item, dip, bp, in_f->ilf_ino,
3103 			ldip->di_nextents + ldip->di_anextents,
3104 			ldip->di_nblocks);
3105 		error = -EFSCORRUPTED;
3106 		goto out_release;
3107 	}
3108 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3109 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3110 				     XFS_ERRLEVEL_LOW, mp, ldip);
3111 		xfs_alert(mp,
3112 	"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3113 	"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3114 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3115 		error = -EFSCORRUPTED;
3116 		goto out_release;
3117 	}
3118 	isize = xfs_log_dinode_size(ldip->di_version);
3119 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3120 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3121 				     XFS_ERRLEVEL_LOW, mp, ldip);
3122 		xfs_alert(mp,
3123 			"%s: Bad inode log record length %d, rec ptr 0x%p",
3124 			__func__, item->ri_buf[1].i_len, item);
3125 		error = -EFSCORRUPTED;
3126 		goto out_release;
3127 	}
3128 
3129 	/* recover the log dinode inode into the on disk inode */
3130 	xfs_log_dinode_to_disk(ldip, dip);
3131 
3132 	/* the rest is in on-disk format */
3133 	if (item->ri_buf[1].i_len > isize) {
3134 		memcpy((char *)dip + isize,
3135 			item->ri_buf[1].i_addr + isize,
3136 			item->ri_buf[1].i_len - isize);
3137 	}
3138 
3139 	fields = in_f->ilf_fields;
3140 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3141 	case XFS_ILOG_DEV:
3142 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3143 		break;
3144 	case XFS_ILOG_UUID:
3145 		memcpy(XFS_DFORK_DPTR(dip),
3146 		       &in_f->ilf_u.ilfu_uuid,
3147 		       sizeof(uuid_t));
3148 		break;
3149 	}
3150 
3151 	if (in_f->ilf_size == 2)
3152 		goto out_owner_change;
3153 	len = item->ri_buf[2].i_len;
3154 	src = item->ri_buf[2].i_addr;
3155 	ASSERT(in_f->ilf_size <= 4);
3156 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3157 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3158 	       (len == in_f->ilf_dsize));
3159 
3160 	switch (fields & XFS_ILOG_DFORK) {
3161 	case XFS_ILOG_DDATA:
3162 	case XFS_ILOG_DEXT:
3163 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3164 		break;
3165 
3166 	case XFS_ILOG_DBROOT:
3167 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3168 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3169 				 XFS_DFORK_DSIZE(dip, mp));
3170 		break;
3171 
3172 	default:
3173 		/*
3174 		 * There are no data fork flags set.
3175 		 */
3176 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3177 		break;
3178 	}
3179 
3180 	/*
3181 	 * If we logged any attribute data, recover it.  There may or
3182 	 * may not have been any other non-core data logged in this
3183 	 * transaction.
3184 	 */
3185 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3186 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3187 			attr_index = 3;
3188 		} else {
3189 			attr_index = 2;
3190 		}
3191 		len = item->ri_buf[attr_index].i_len;
3192 		src = item->ri_buf[attr_index].i_addr;
3193 		ASSERT(len == in_f->ilf_asize);
3194 
3195 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3196 		case XFS_ILOG_ADATA:
3197 		case XFS_ILOG_AEXT:
3198 			dest = XFS_DFORK_APTR(dip);
3199 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3200 			memcpy(dest, src, len);
3201 			break;
3202 
3203 		case XFS_ILOG_ABROOT:
3204 			dest = XFS_DFORK_APTR(dip);
3205 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3206 					 len, (xfs_bmdr_block_t*)dest,
3207 					 XFS_DFORK_ASIZE(dip, mp));
3208 			break;
3209 
3210 		default:
3211 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3212 			ASSERT(0);
3213 			error = -EIO;
3214 			goto out_release;
3215 		}
3216 	}
3217 
3218 out_owner_change:
3219 	if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3220 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3221 						       buffer_list);
3222 	/* re-generate the checksum. */
3223 	xfs_dinode_calc_crc(log->l_mp, dip);
3224 
3225 	ASSERT(bp->b_target->bt_mount == mp);
3226 	bp->b_iodone = xlog_recover_iodone;
3227 	xfs_buf_delwri_queue(bp, buffer_list);
3228 
3229 out_release:
3230 	xfs_buf_relse(bp);
3231 error:
3232 	if (need_free)
3233 		kmem_free(in_f);
3234 	return error;
3235 }
3236 
3237 /*
3238  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3239  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3240  * of that type.
3241  */
3242 STATIC int
3243 xlog_recover_quotaoff_pass1(
3244 	struct xlog			*log,
3245 	struct xlog_recover_item	*item)
3246 {
3247 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3248 	ASSERT(qoff_f);
3249 
3250 	/*
3251 	 * The logitem format's flag tells us if this was user quotaoff,
3252 	 * group/project quotaoff or both.
3253 	 */
3254 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3255 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3256 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3257 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3258 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3259 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3260 
3261 	return 0;
3262 }
3263 
3264 /*
3265  * Recover a dquot record
3266  */
3267 STATIC int
3268 xlog_recover_dquot_pass2(
3269 	struct xlog			*log,
3270 	struct list_head		*buffer_list,
3271 	struct xlog_recover_item	*item,
3272 	xfs_lsn_t			current_lsn)
3273 {
3274 	xfs_mount_t		*mp = log->l_mp;
3275 	xfs_buf_t		*bp;
3276 	struct xfs_disk_dquot	*ddq, *recddq;
3277 	int			error;
3278 	xfs_dq_logformat_t	*dq_f;
3279 	uint			type;
3280 
3281 
3282 	/*
3283 	 * Filesystems are required to send in quota flags at mount time.
3284 	 */
3285 	if (mp->m_qflags == 0)
3286 		return 0;
3287 
3288 	recddq = item->ri_buf[1].i_addr;
3289 	if (recddq == NULL) {
3290 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3291 		return -EIO;
3292 	}
3293 	if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3294 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3295 			item->ri_buf[1].i_len, __func__);
3296 		return -EIO;
3297 	}
3298 
3299 	/*
3300 	 * This type of quotas was turned off, so ignore this record.
3301 	 */
3302 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3303 	ASSERT(type);
3304 	if (log->l_quotaoffs_flag & type)
3305 		return 0;
3306 
3307 	/*
3308 	 * At this point we know that quota was _not_ turned off.
3309 	 * Since the mount flags are not indicating to us otherwise, this
3310 	 * must mean that quota is on, and the dquot needs to be replayed.
3311 	 * Remember that we may not have fully recovered the superblock yet,
3312 	 * so we can't do the usual trick of looking at the SB quota bits.
3313 	 *
3314 	 * The other possibility, of course, is that the quota subsystem was
3315 	 * removed since the last mount - ENOSYS.
3316 	 */
3317 	dq_f = item->ri_buf[0].i_addr;
3318 	ASSERT(dq_f);
3319 	error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3320 			   "xlog_recover_dquot_pass2 (log copy)");
3321 	if (error)
3322 		return -EIO;
3323 	ASSERT(dq_f->qlf_len == 1);
3324 
3325 	/*
3326 	 * At this point we are assuming that the dquots have been allocated
3327 	 * and hence the buffer has valid dquots stamped in it. It should,
3328 	 * therefore, pass verifier validation. If the dquot is bad, then the
3329 	 * we'll return an error here, so we don't need to specifically check
3330 	 * the dquot in the buffer after the verifier has run.
3331 	 */
3332 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3333 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3334 				   &xfs_dquot_buf_ops);
3335 	if (error)
3336 		return error;
3337 
3338 	ASSERT(bp);
3339 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3340 
3341 	/*
3342 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3343 	 * than the lsn of the transaction we are replaying.
3344 	 */
3345 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3346 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3347 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3348 
3349 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3350 			goto out_release;
3351 		}
3352 	}
3353 
3354 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3355 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3356 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3357 				 XFS_DQUOT_CRC_OFF);
3358 	}
3359 
3360 	ASSERT(dq_f->qlf_size == 2);
3361 	ASSERT(bp->b_target->bt_mount == mp);
3362 	bp->b_iodone = xlog_recover_iodone;
3363 	xfs_buf_delwri_queue(bp, buffer_list);
3364 
3365 out_release:
3366 	xfs_buf_relse(bp);
3367 	return 0;
3368 }
3369 
3370 /*
3371  * This routine is called to create an in-core extent free intent
3372  * item from the efi format structure which was logged on disk.
3373  * It allocates an in-core efi, copies the extents from the format
3374  * structure into it, and adds the efi to the AIL with the given
3375  * LSN.
3376  */
3377 STATIC int
3378 xlog_recover_efi_pass2(
3379 	struct xlog			*log,
3380 	struct xlog_recover_item	*item,
3381 	xfs_lsn_t			lsn)
3382 {
3383 	int				error;
3384 	struct xfs_mount		*mp = log->l_mp;
3385 	struct xfs_efi_log_item		*efip;
3386 	struct xfs_efi_log_format	*efi_formatp;
3387 
3388 	efi_formatp = item->ri_buf[0].i_addr;
3389 
3390 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3391 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3392 	if (error) {
3393 		xfs_efi_item_free(efip);
3394 		return error;
3395 	}
3396 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3397 
3398 	spin_lock(&log->l_ailp->xa_lock);
3399 	/*
3400 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3401 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3402 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3403 	 * AIL lock.
3404 	 */
3405 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3406 	xfs_efi_release(efip);
3407 	return 0;
3408 }
3409 
3410 
3411 /*
3412  * This routine is called when an EFD format structure is found in a committed
3413  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3414  * was still in the log. To do this it searches the AIL for the EFI with an id
3415  * equal to that in the EFD format structure. If we find it we drop the EFD
3416  * reference, which removes the EFI from the AIL and frees it.
3417  */
3418 STATIC int
3419 xlog_recover_efd_pass2(
3420 	struct xlog			*log,
3421 	struct xlog_recover_item	*item)
3422 {
3423 	xfs_efd_log_format_t	*efd_formatp;
3424 	xfs_efi_log_item_t	*efip = NULL;
3425 	xfs_log_item_t		*lip;
3426 	__uint64_t		efi_id;
3427 	struct xfs_ail_cursor	cur;
3428 	struct xfs_ail		*ailp = log->l_ailp;
3429 
3430 	efd_formatp = item->ri_buf[0].i_addr;
3431 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3432 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3433 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3434 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3435 	efi_id = efd_formatp->efd_efi_id;
3436 
3437 	/*
3438 	 * Search for the EFI with the id in the EFD format structure in the
3439 	 * AIL.
3440 	 */
3441 	spin_lock(&ailp->xa_lock);
3442 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3443 	while (lip != NULL) {
3444 		if (lip->li_type == XFS_LI_EFI) {
3445 			efip = (xfs_efi_log_item_t *)lip;
3446 			if (efip->efi_format.efi_id == efi_id) {
3447 				/*
3448 				 * Drop the EFD reference to the EFI. This
3449 				 * removes the EFI from the AIL and frees it.
3450 				 */
3451 				spin_unlock(&ailp->xa_lock);
3452 				xfs_efi_release(efip);
3453 				spin_lock(&ailp->xa_lock);
3454 				break;
3455 			}
3456 		}
3457 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3458 	}
3459 
3460 	xfs_trans_ail_cursor_done(&cur);
3461 	spin_unlock(&ailp->xa_lock);
3462 
3463 	return 0;
3464 }
3465 
3466 /*
3467  * This routine is called to create an in-core extent rmap update
3468  * item from the rui format structure which was logged on disk.
3469  * It allocates an in-core rui, copies the extents from the format
3470  * structure into it, and adds the rui to the AIL with the given
3471  * LSN.
3472  */
3473 STATIC int
3474 xlog_recover_rui_pass2(
3475 	struct xlog			*log,
3476 	struct xlog_recover_item	*item,
3477 	xfs_lsn_t			lsn)
3478 {
3479 	int				error;
3480 	struct xfs_mount		*mp = log->l_mp;
3481 	struct xfs_rui_log_item		*ruip;
3482 	struct xfs_rui_log_format	*rui_formatp;
3483 
3484 	rui_formatp = item->ri_buf[0].i_addr;
3485 
3486 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3487 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3488 	if (error) {
3489 		xfs_rui_item_free(ruip);
3490 		return error;
3491 	}
3492 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3493 
3494 	spin_lock(&log->l_ailp->xa_lock);
3495 	/*
3496 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3497 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3498 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3499 	 * AIL lock.
3500 	 */
3501 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3502 	xfs_rui_release(ruip);
3503 	return 0;
3504 }
3505 
3506 
3507 /*
3508  * This routine is called when an RUD format structure is found in a committed
3509  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3510  * was still in the log. To do this it searches the AIL for the RUI with an id
3511  * equal to that in the RUD format structure. If we find it we drop the RUD
3512  * reference, which removes the RUI from the AIL and frees it.
3513  */
3514 STATIC int
3515 xlog_recover_rud_pass2(
3516 	struct xlog			*log,
3517 	struct xlog_recover_item	*item)
3518 {
3519 	struct xfs_rud_log_format	*rud_formatp;
3520 	struct xfs_rui_log_item		*ruip = NULL;
3521 	struct xfs_log_item		*lip;
3522 	__uint64_t			rui_id;
3523 	struct xfs_ail_cursor		cur;
3524 	struct xfs_ail			*ailp = log->l_ailp;
3525 
3526 	rud_formatp = item->ri_buf[0].i_addr;
3527 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3528 	rui_id = rud_formatp->rud_rui_id;
3529 
3530 	/*
3531 	 * Search for the RUI with the id in the RUD format structure in the
3532 	 * AIL.
3533 	 */
3534 	spin_lock(&ailp->xa_lock);
3535 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3536 	while (lip != NULL) {
3537 		if (lip->li_type == XFS_LI_RUI) {
3538 			ruip = (struct xfs_rui_log_item *)lip;
3539 			if (ruip->rui_format.rui_id == rui_id) {
3540 				/*
3541 				 * Drop the RUD reference to the RUI. This
3542 				 * removes the RUI from the AIL and frees it.
3543 				 */
3544 				spin_unlock(&ailp->xa_lock);
3545 				xfs_rui_release(ruip);
3546 				spin_lock(&ailp->xa_lock);
3547 				break;
3548 			}
3549 		}
3550 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3551 	}
3552 
3553 	xfs_trans_ail_cursor_done(&cur);
3554 	spin_unlock(&ailp->xa_lock);
3555 
3556 	return 0;
3557 }
3558 
3559 /*
3560  * Copy an CUI format buffer from the given buf, and into the destination
3561  * CUI format structure.  The CUI/CUD items were designed not to need any
3562  * special alignment handling.
3563  */
3564 static int
3565 xfs_cui_copy_format(
3566 	struct xfs_log_iovec		*buf,
3567 	struct xfs_cui_log_format	*dst_cui_fmt)
3568 {
3569 	struct xfs_cui_log_format	*src_cui_fmt;
3570 	uint				len;
3571 
3572 	src_cui_fmt = buf->i_addr;
3573 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3574 
3575 	if (buf->i_len == len) {
3576 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3577 		return 0;
3578 	}
3579 	return -EFSCORRUPTED;
3580 }
3581 
3582 /*
3583  * This routine is called to create an in-core extent refcount update
3584  * item from the cui format structure which was logged on disk.
3585  * It allocates an in-core cui, copies the extents from the format
3586  * structure into it, and adds the cui to the AIL with the given
3587  * LSN.
3588  */
3589 STATIC int
3590 xlog_recover_cui_pass2(
3591 	struct xlog			*log,
3592 	struct xlog_recover_item	*item,
3593 	xfs_lsn_t			lsn)
3594 {
3595 	int				error;
3596 	struct xfs_mount		*mp = log->l_mp;
3597 	struct xfs_cui_log_item		*cuip;
3598 	struct xfs_cui_log_format	*cui_formatp;
3599 
3600 	cui_formatp = item->ri_buf[0].i_addr;
3601 
3602 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3603 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3604 	if (error) {
3605 		xfs_cui_item_free(cuip);
3606 		return error;
3607 	}
3608 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3609 
3610 	spin_lock(&log->l_ailp->xa_lock);
3611 	/*
3612 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3613 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3614 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3615 	 * AIL lock.
3616 	 */
3617 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3618 	xfs_cui_release(cuip);
3619 	return 0;
3620 }
3621 
3622 
3623 /*
3624  * This routine is called when an CUD format structure is found in a committed
3625  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3626  * was still in the log. To do this it searches the AIL for the CUI with an id
3627  * equal to that in the CUD format structure. If we find it we drop the CUD
3628  * reference, which removes the CUI from the AIL and frees it.
3629  */
3630 STATIC int
3631 xlog_recover_cud_pass2(
3632 	struct xlog			*log,
3633 	struct xlog_recover_item	*item)
3634 {
3635 	struct xfs_cud_log_format	*cud_formatp;
3636 	struct xfs_cui_log_item		*cuip = NULL;
3637 	struct xfs_log_item		*lip;
3638 	__uint64_t			cui_id;
3639 	struct xfs_ail_cursor		cur;
3640 	struct xfs_ail			*ailp = log->l_ailp;
3641 
3642 	cud_formatp = item->ri_buf[0].i_addr;
3643 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3644 		return -EFSCORRUPTED;
3645 	cui_id = cud_formatp->cud_cui_id;
3646 
3647 	/*
3648 	 * Search for the CUI with the id in the CUD format structure in the
3649 	 * AIL.
3650 	 */
3651 	spin_lock(&ailp->xa_lock);
3652 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3653 	while (lip != NULL) {
3654 		if (lip->li_type == XFS_LI_CUI) {
3655 			cuip = (struct xfs_cui_log_item *)lip;
3656 			if (cuip->cui_format.cui_id == cui_id) {
3657 				/*
3658 				 * Drop the CUD reference to the CUI. This
3659 				 * removes the CUI from the AIL and frees it.
3660 				 */
3661 				spin_unlock(&ailp->xa_lock);
3662 				xfs_cui_release(cuip);
3663 				spin_lock(&ailp->xa_lock);
3664 				break;
3665 			}
3666 		}
3667 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3668 	}
3669 
3670 	xfs_trans_ail_cursor_done(&cur);
3671 	spin_unlock(&ailp->xa_lock);
3672 
3673 	return 0;
3674 }
3675 
3676 /*
3677  * Copy an BUI format buffer from the given buf, and into the destination
3678  * BUI format structure.  The BUI/BUD items were designed not to need any
3679  * special alignment handling.
3680  */
3681 static int
3682 xfs_bui_copy_format(
3683 	struct xfs_log_iovec		*buf,
3684 	struct xfs_bui_log_format	*dst_bui_fmt)
3685 {
3686 	struct xfs_bui_log_format	*src_bui_fmt;
3687 	uint				len;
3688 
3689 	src_bui_fmt = buf->i_addr;
3690 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3691 
3692 	if (buf->i_len == len) {
3693 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3694 		return 0;
3695 	}
3696 	return -EFSCORRUPTED;
3697 }
3698 
3699 /*
3700  * This routine is called to create an in-core extent bmap update
3701  * item from the bui format structure which was logged on disk.
3702  * It allocates an in-core bui, copies the extents from the format
3703  * structure into it, and adds the bui to the AIL with the given
3704  * LSN.
3705  */
3706 STATIC int
3707 xlog_recover_bui_pass2(
3708 	struct xlog			*log,
3709 	struct xlog_recover_item	*item,
3710 	xfs_lsn_t			lsn)
3711 {
3712 	int				error;
3713 	struct xfs_mount		*mp = log->l_mp;
3714 	struct xfs_bui_log_item		*buip;
3715 	struct xfs_bui_log_format	*bui_formatp;
3716 
3717 	bui_formatp = item->ri_buf[0].i_addr;
3718 
3719 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3720 		return -EFSCORRUPTED;
3721 	buip = xfs_bui_init(mp);
3722 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3723 	if (error) {
3724 		xfs_bui_item_free(buip);
3725 		return error;
3726 	}
3727 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3728 
3729 	spin_lock(&log->l_ailp->xa_lock);
3730 	/*
3731 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3732 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3733 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3734 	 * AIL lock.
3735 	 */
3736 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3737 	xfs_bui_release(buip);
3738 	return 0;
3739 }
3740 
3741 
3742 /*
3743  * This routine is called when an BUD format structure is found in a committed
3744  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3745  * was still in the log. To do this it searches the AIL for the BUI with an id
3746  * equal to that in the BUD format structure. If we find it we drop the BUD
3747  * reference, which removes the BUI from the AIL and frees it.
3748  */
3749 STATIC int
3750 xlog_recover_bud_pass2(
3751 	struct xlog			*log,
3752 	struct xlog_recover_item	*item)
3753 {
3754 	struct xfs_bud_log_format	*bud_formatp;
3755 	struct xfs_bui_log_item		*buip = NULL;
3756 	struct xfs_log_item		*lip;
3757 	__uint64_t			bui_id;
3758 	struct xfs_ail_cursor		cur;
3759 	struct xfs_ail			*ailp = log->l_ailp;
3760 
3761 	bud_formatp = item->ri_buf[0].i_addr;
3762 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3763 		return -EFSCORRUPTED;
3764 	bui_id = bud_formatp->bud_bui_id;
3765 
3766 	/*
3767 	 * Search for the BUI with the id in the BUD format structure in the
3768 	 * AIL.
3769 	 */
3770 	spin_lock(&ailp->xa_lock);
3771 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3772 	while (lip != NULL) {
3773 		if (lip->li_type == XFS_LI_BUI) {
3774 			buip = (struct xfs_bui_log_item *)lip;
3775 			if (buip->bui_format.bui_id == bui_id) {
3776 				/*
3777 				 * Drop the BUD reference to the BUI. This
3778 				 * removes the BUI from the AIL and frees it.
3779 				 */
3780 				spin_unlock(&ailp->xa_lock);
3781 				xfs_bui_release(buip);
3782 				spin_lock(&ailp->xa_lock);
3783 				break;
3784 			}
3785 		}
3786 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3787 	}
3788 
3789 	xfs_trans_ail_cursor_done(&cur);
3790 	spin_unlock(&ailp->xa_lock);
3791 
3792 	return 0;
3793 }
3794 
3795 /*
3796  * This routine is called when an inode create format structure is found in a
3797  * committed transaction in the log.  It's purpose is to initialise the inodes
3798  * being allocated on disk. This requires us to get inode cluster buffers that
3799  * match the range to be intialised, stamped with inode templates and written
3800  * by delayed write so that subsequent modifications will hit the cached buffer
3801  * and only need writing out at the end of recovery.
3802  */
3803 STATIC int
3804 xlog_recover_do_icreate_pass2(
3805 	struct xlog		*log,
3806 	struct list_head	*buffer_list,
3807 	xlog_recover_item_t	*item)
3808 {
3809 	struct xfs_mount	*mp = log->l_mp;
3810 	struct xfs_icreate_log	*icl;
3811 	xfs_agnumber_t		agno;
3812 	xfs_agblock_t		agbno;
3813 	unsigned int		count;
3814 	unsigned int		isize;
3815 	xfs_agblock_t		length;
3816 	int			blks_per_cluster;
3817 	int			bb_per_cluster;
3818 	int			cancel_count;
3819 	int			nbufs;
3820 	int			i;
3821 
3822 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3823 	if (icl->icl_type != XFS_LI_ICREATE) {
3824 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3825 		return -EINVAL;
3826 	}
3827 
3828 	if (icl->icl_size != 1) {
3829 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3830 		return -EINVAL;
3831 	}
3832 
3833 	agno = be32_to_cpu(icl->icl_ag);
3834 	if (agno >= mp->m_sb.sb_agcount) {
3835 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3836 		return -EINVAL;
3837 	}
3838 	agbno = be32_to_cpu(icl->icl_agbno);
3839 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3840 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3841 		return -EINVAL;
3842 	}
3843 	isize = be32_to_cpu(icl->icl_isize);
3844 	if (isize != mp->m_sb.sb_inodesize) {
3845 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3846 		return -EINVAL;
3847 	}
3848 	count = be32_to_cpu(icl->icl_count);
3849 	if (!count) {
3850 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3851 		return -EINVAL;
3852 	}
3853 	length = be32_to_cpu(icl->icl_length);
3854 	if (!length || length >= mp->m_sb.sb_agblocks) {
3855 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3856 		return -EINVAL;
3857 	}
3858 
3859 	/*
3860 	 * The inode chunk is either full or sparse and we only support
3861 	 * m_ialloc_min_blks sized sparse allocations at this time.
3862 	 */
3863 	if (length != mp->m_ialloc_blks &&
3864 	    length != mp->m_ialloc_min_blks) {
3865 		xfs_warn(log->l_mp,
3866 			 "%s: unsupported chunk length", __FUNCTION__);
3867 		return -EINVAL;
3868 	}
3869 
3870 	/* verify inode count is consistent with extent length */
3871 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3872 		xfs_warn(log->l_mp,
3873 			 "%s: inconsistent inode count and chunk length",
3874 			 __FUNCTION__);
3875 		return -EINVAL;
3876 	}
3877 
3878 	/*
3879 	 * The icreate transaction can cover multiple cluster buffers and these
3880 	 * buffers could have been freed and reused. Check the individual
3881 	 * buffers for cancellation so we don't overwrite anything written after
3882 	 * a cancellation.
3883 	 */
3884 	blks_per_cluster = xfs_icluster_size_fsb(mp);
3885 	bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3886 	nbufs = length / blks_per_cluster;
3887 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3888 		xfs_daddr_t	daddr;
3889 
3890 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3891 					 agbno + i * blks_per_cluster);
3892 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3893 			cancel_count++;
3894 	}
3895 
3896 	/*
3897 	 * We currently only use icreate for a single allocation at a time. This
3898 	 * means we should expect either all or none of the buffers to be
3899 	 * cancelled. Be conservative and skip replay if at least one buffer is
3900 	 * cancelled, but warn the user that something is awry if the buffers
3901 	 * are not consistent.
3902 	 *
3903 	 * XXX: This must be refined to only skip cancelled clusters once we use
3904 	 * icreate for multiple chunk allocations.
3905 	 */
3906 	ASSERT(!cancel_count || cancel_count == nbufs);
3907 	if (cancel_count) {
3908 		if (cancel_count != nbufs)
3909 			xfs_warn(mp,
3910 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3911 		trace_xfs_log_recover_icreate_cancel(log, icl);
3912 		return 0;
3913 	}
3914 
3915 	trace_xfs_log_recover_icreate_recover(log, icl);
3916 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3917 				     length, be32_to_cpu(icl->icl_gen));
3918 }
3919 
3920 STATIC void
3921 xlog_recover_buffer_ra_pass2(
3922 	struct xlog                     *log,
3923 	struct xlog_recover_item        *item)
3924 {
3925 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3926 	struct xfs_mount		*mp = log->l_mp;
3927 
3928 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3929 			buf_f->blf_len, buf_f->blf_flags)) {
3930 		return;
3931 	}
3932 
3933 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3934 				buf_f->blf_len, NULL);
3935 }
3936 
3937 STATIC void
3938 xlog_recover_inode_ra_pass2(
3939 	struct xlog                     *log,
3940 	struct xlog_recover_item        *item)
3941 {
3942 	struct xfs_inode_log_format	ilf_buf;
3943 	struct xfs_inode_log_format	*ilfp;
3944 	struct xfs_mount		*mp = log->l_mp;
3945 	int			error;
3946 
3947 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3948 		ilfp = item->ri_buf[0].i_addr;
3949 	} else {
3950 		ilfp = &ilf_buf;
3951 		memset(ilfp, 0, sizeof(*ilfp));
3952 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3953 		if (error)
3954 			return;
3955 	}
3956 
3957 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3958 		return;
3959 
3960 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3961 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3962 }
3963 
3964 STATIC void
3965 xlog_recover_dquot_ra_pass2(
3966 	struct xlog			*log,
3967 	struct xlog_recover_item	*item)
3968 {
3969 	struct xfs_mount	*mp = log->l_mp;
3970 	struct xfs_disk_dquot	*recddq;
3971 	struct xfs_dq_logformat	*dq_f;
3972 	uint			type;
3973 	int			len;
3974 
3975 
3976 	if (mp->m_qflags == 0)
3977 		return;
3978 
3979 	recddq = item->ri_buf[1].i_addr;
3980 	if (recddq == NULL)
3981 		return;
3982 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3983 		return;
3984 
3985 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3986 	ASSERT(type);
3987 	if (log->l_quotaoffs_flag & type)
3988 		return;
3989 
3990 	dq_f = item->ri_buf[0].i_addr;
3991 	ASSERT(dq_f);
3992 	ASSERT(dq_f->qlf_len == 1);
3993 
3994 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3995 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3996 		return;
3997 
3998 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3999 			  &xfs_dquot_buf_ra_ops);
4000 }
4001 
4002 STATIC void
4003 xlog_recover_ra_pass2(
4004 	struct xlog			*log,
4005 	struct xlog_recover_item	*item)
4006 {
4007 	switch (ITEM_TYPE(item)) {
4008 	case XFS_LI_BUF:
4009 		xlog_recover_buffer_ra_pass2(log, item);
4010 		break;
4011 	case XFS_LI_INODE:
4012 		xlog_recover_inode_ra_pass2(log, item);
4013 		break;
4014 	case XFS_LI_DQUOT:
4015 		xlog_recover_dquot_ra_pass2(log, item);
4016 		break;
4017 	case XFS_LI_EFI:
4018 	case XFS_LI_EFD:
4019 	case XFS_LI_QUOTAOFF:
4020 	case XFS_LI_RUI:
4021 	case XFS_LI_RUD:
4022 	case XFS_LI_CUI:
4023 	case XFS_LI_CUD:
4024 	case XFS_LI_BUI:
4025 	case XFS_LI_BUD:
4026 	default:
4027 		break;
4028 	}
4029 }
4030 
4031 STATIC int
4032 xlog_recover_commit_pass1(
4033 	struct xlog			*log,
4034 	struct xlog_recover		*trans,
4035 	struct xlog_recover_item	*item)
4036 {
4037 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4038 
4039 	switch (ITEM_TYPE(item)) {
4040 	case XFS_LI_BUF:
4041 		return xlog_recover_buffer_pass1(log, item);
4042 	case XFS_LI_QUOTAOFF:
4043 		return xlog_recover_quotaoff_pass1(log, item);
4044 	case XFS_LI_INODE:
4045 	case XFS_LI_EFI:
4046 	case XFS_LI_EFD:
4047 	case XFS_LI_DQUOT:
4048 	case XFS_LI_ICREATE:
4049 	case XFS_LI_RUI:
4050 	case XFS_LI_RUD:
4051 	case XFS_LI_CUI:
4052 	case XFS_LI_CUD:
4053 	case XFS_LI_BUI:
4054 	case XFS_LI_BUD:
4055 		/* nothing to do in pass 1 */
4056 		return 0;
4057 	default:
4058 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4059 			__func__, ITEM_TYPE(item));
4060 		ASSERT(0);
4061 		return -EIO;
4062 	}
4063 }
4064 
4065 STATIC int
4066 xlog_recover_commit_pass2(
4067 	struct xlog			*log,
4068 	struct xlog_recover		*trans,
4069 	struct list_head		*buffer_list,
4070 	struct xlog_recover_item	*item)
4071 {
4072 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4073 
4074 	switch (ITEM_TYPE(item)) {
4075 	case XFS_LI_BUF:
4076 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4077 						 trans->r_lsn);
4078 	case XFS_LI_INODE:
4079 		return xlog_recover_inode_pass2(log, buffer_list, item,
4080 						 trans->r_lsn);
4081 	case XFS_LI_EFI:
4082 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4083 	case XFS_LI_EFD:
4084 		return xlog_recover_efd_pass2(log, item);
4085 	case XFS_LI_RUI:
4086 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4087 	case XFS_LI_RUD:
4088 		return xlog_recover_rud_pass2(log, item);
4089 	case XFS_LI_CUI:
4090 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4091 	case XFS_LI_CUD:
4092 		return xlog_recover_cud_pass2(log, item);
4093 	case XFS_LI_BUI:
4094 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4095 	case XFS_LI_BUD:
4096 		return xlog_recover_bud_pass2(log, item);
4097 	case XFS_LI_DQUOT:
4098 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4099 						trans->r_lsn);
4100 	case XFS_LI_ICREATE:
4101 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4102 	case XFS_LI_QUOTAOFF:
4103 		/* nothing to do in pass2 */
4104 		return 0;
4105 	default:
4106 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4107 			__func__, ITEM_TYPE(item));
4108 		ASSERT(0);
4109 		return -EIO;
4110 	}
4111 }
4112 
4113 STATIC int
4114 xlog_recover_items_pass2(
4115 	struct xlog                     *log,
4116 	struct xlog_recover             *trans,
4117 	struct list_head                *buffer_list,
4118 	struct list_head                *item_list)
4119 {
4120 	struct xlog_recover_item	*item;
4121 	int				error = 0;
4122 
4123 	list_for_each_entry(item, item_list, ri_list) {
4124 		error = xlog_recover_commit_pass2(log, trans,
4125 					  buffer_list, item);
4126 		if (error)
4127 			return error;
4128 	}
4129 
4130 	return error;
4131 }
4132 
4133 /*
4134  * Perform the transaction.
4135  *
4136  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4137  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4138  */
4139 STATIC int
4140 xlog_recover_commit_trans(
4141 	struct xlog		*log,
4142 	struct xlog_recover	*trans,
4143 	int			pass,
4144 	struct list_head	*buffer_list)
4145 {
4146 	int				error = 0;
4147 	int				items_queued = 0;
4148 	struct xlog_recover_item	*item;
4149 	struct xlog_recover_item	*next;
4150 	LIST_HEAD			(ra_list);
4151 	LIST_HEAD			(done_list);
4152 
4153 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4154 
4155 	hlist_del(&trans->r_list);
4156 
4157 	error = xlog_recover_reorder_trans(log, trans, pass);
4158 	if (error)
4159 		return error;
4160 
4161 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4162 		switch (pass) {
4163 		case XLOG_RECOVER_PASS1:
4164 			error = xlog_recover_commit_pass1(log, trans, item);
4165 			break;
4166 		case XLOG_RECOVER_PASS2:
4167 			xlog_recover_ra_pass2(log, item);
4168 			list_move_tail(&item->ri_list, &ra_list);
4169 			items_queued++;
4170 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4171 				error = xlog_recover_items_pass2(log, trans,
4172 						buffer_list, &ra_list);
4173 				list_splice_tail_init(&ra_list, &done_list);
4174 				items_queued = 0;
4175 			}
4176 
4177 			break;
4178 		default:
4179 			ASSERT(0);
4180 		}
4181 
4182 		if (error)
4183 			goto out;
4184 	}
4185 
4186 out:
4187 	if (!list_empty(&ra_list)) {
4188 		if (!error)
4189 			error = xlog_recover_items_pass2(log, trans,
4190 					buffer_list, &ra_list);
4191 		list_splice_tail_init(&ra_list, &done_list);
4192 	}
4193 
4194 	if (!list_empty(&done_list))
4195 		list_splice_init(&done_list, &trans->r_itemq);
4196 
4197 	return error;
4198 }
4199 
4200 STATIC void
4201 xlog_recover_add_item(
4202 	struct list_head	*head)
4203 {
4204 	xlog_recover_item_t	*item;
4205 
4206 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4207 	INIT_LIST_HEAD(&item->ri_list);
4208 	list_add_tail(&item->ri_list, head);
4209 }
4210 
4211 STATIC int
4212 xlog_recover_add_to_cont_trans(
4213 	struct xlog		*log,
4214 	struct xlog_recover	*trans,
4215 	char			*dp,
4216 	int			len)
4217 {
4218 	xlog_recover_item_t	*item;
4219 	char			*ptr, *old_ptr;
4220 	int			old_len;
4221 
4222 	/*
4223 	 * If the transaction is empty, the header was split across this and the
4224 	 * previous record. Copy the rest of the header.
4225 	 */
4226 	if (list_empty(&trans->r_itemq)) {
4227 		ASSERT(len <= sizeof(struct xfs_trans_header));
4228 		if (len > sizeof(struct xfs_trans_header)) {
4229 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4230 			return -EIO;
4231 		}
4232 
4233 		xlog_recover_add_item(&trans->r_itemq);
4234 		ptr = (char *)&trans->r_theader +
4235 				sizeof(struct xfs_trans_header) - len;
4236 		memcpy(ptr, dp, len);
4237 		return 0;
4238 	}
4239 
4240 	/* take the tail entry */
4241 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4242 
4243 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4244 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4245 
4246 	ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4247 	memcpy(&ptr[old_len], dp, len);
4248 	item->ri_buf[item->ri_cnt-1].i_len += len;
4249 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4250 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4251 	return 0;
4252 }
4253 
4254 /*
4255  * The next region to add is the start of a new region.  It could be
4256  * a whole region or it could be the first part of a new region.  Because
4257  * of this, the assumption here is that the type and size fields of all
4258  * format structures fit into the first 32 bits of the structure.
4259  *
4260  * This works because all regions must be 32 bit aligned.  Therefore, we
4261  * either have both fields or we have neither field.  In the case we have
4262  * neither field, the data part of the region is zero length.  We only have
4263  * a log_op_header and can throw away the header since a new one will appear
4264  * later.  If we have at least 4 bytes, then we can determine how many regions
4265  * will appear in the current log item.
4266  */
4267 STATIC int
4268 xlog_recover_add_to_trans(
4269 	struct xlog		*log,
4270 	struct xlog_recover	*trans,
4271 	char			*dp,
4272 	int			len)
4273 {
4274 	xfs_inode_log_format_t	*in_f;			/* any will do */
4275 	xlog_recover_item_t	*item;
4276 	char			*ptr;
4277 
4278 	if (!len)
4279 		return 0;
4280 	if (list_empty(&trans->r_itemq)) {
4281 		/* we need to catch log corruptions here */
4282 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4283 			xfs_warn(log->l_mp, "%s: bad header magic number",
4284 				__func__);
4285 			ASSERT(0);
4286 			return -EIO;
4287 		}
4288 
4289 		if (len > sizeof(struct xfs_trans_header)) {
4290 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4291 			ASSERT(0);
4292 			return -EIO;
4293 		}
4294 
4295 		/*
4296 		 * The transaction header can be arbitrarily split across op
4297 		 * records. If we don't have the whole thing here, copy what we
4298 		 * do have and handle the rest in the next record.
4299 		 */
4300 		if (len == sizeof(struct xfs_trans_header))
4301 			xlog_recover_add_item(&trans->r_itemq);
4302 		memcpy(&trans->r_theader, dp, len);
4303 		return 0;
4304 	}
4305 
4306 	ptr = kmem_alloc(len, KM_SLEEP);
4307 	memcpy(ptr, dp, len);
4308 	in_f = (xfs_inode_log_format_t *)ptr;
4309 
4310 	/* take the tail entry */
4311 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4312 	if (item->ri_total != 0 &&
4313 	     item->ri_total == item->ri_cnt) {
4314 		/* tail item is in use, get a new one */
4315 		xlog_recover_add_item(&trans->r_itemq);
4316 		item = list_entry(trans->r_itemq.prev,
4317 					xlog_recover_item_t, ri_list);
4318 	}
4319 
4320 	if (item->ri_total == 0) {		/* first region to be added */
4321 		if (in_f->ilf_size == 0 ||
4322 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4323 			xfs_warn(log->l_mp,
4324 		"bad number of regions (%d) in inode log format",
4325 				  in_f->ilf_size);
4326 			ASSERT(0);
4327 			kmem_free(ptr);
4328 			return -EIO;
4329 		}
4330 
4331 		item->ri_total = in_f->ilf_size;
4332 		item->ri_buf =
4333 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4334 				    KM_SLEEP);
4335 	}
4336 	ASSERT(item->ri_total > item->ri_cnt);
4337 	/* Description region is ri_buf[0] */
4338 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4339 	item->ri_buf[item->ri_cnt].i_len  = len;
4340 	item->ri_cnt++;
4341 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4342 	return 0;
4343 }
4344 
4345 /*
4346  * Free up any resources allocated by the transaction
4347  *
4348  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4349  */
4350 STATIC void
4351 xlog_recover_free_trans(
4352 	struct xlog_recover	*trans)
4353 {
4354 	xlog_recover_item_t	*item, *n;
4355 	int			i;
4356 
4357 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4358 		/* Free the regions in the item. */
4359 		list_del(&item->ri_list);
4360 		for (i = 0; i < item->ri_cnt; i++)
4361 			kmem_free(item->ri_buf[i].i_addr);
4362 		/* Free the item itself */
4363 		kmem_free(item->ri_buf);
4364 		kmem_free(item);
4365 	}
4366 	/* Free the transaction recover structure */
4367 	kmem_free(trans);
4368 }
4369 
4370 /*
4371  * On error or completion, trans is freed.
4372  */
4373 STATIC int
4374 xlog_recovery_process_trans(
4375 	struct xlog		*log,
4376 	struct xlog_recover	*trans,
4377 	char			*dp,
4378 	unsigned int		len,
4379 	unsigned int		flags,
4380 	int			pass,
4381 	struct list_head	*buffer_list)
4382 {
4383 	int			error = 0;
4384 	bool			freeit = false;
4385 
4386 	/* mask off ophdr transaction container flags */
4387 	flags &= ~XLOG_END_TRANS;
4388 	if (flags & XLOG_WAS_CONT_TRANS)
4389 		flags &= ~XLOG_CONTINUE_TRANS;
4390 
4391 	/*
4392 	 * Callees must not free the trans structure. We'll decide if we need to
4393 	 * free it or not based on the operation being done and it's result.
4394 	 */
4395 	switch (flags) {
4396 	/* expected flag values */
4397 	case 0:
4398 	case XLOG_CONTINUE_TRANS:
4399 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4400 		break;
4401 	case XLOG_WAS_CONT_TRANS:
4402 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4403 		break;
4404 	case XLOG_COMMIT_TRANS:
4405 		error = xlog_recover_commit_trans(log, trans, pass,
4406 						  buffer_list);
4407 		/* success or fail, we are now done with this transaction. */
4408 		freeit = true;
4409 		break;
4410 
4411 	/* unexpected flag values */
4412 	case XLOG_UNMOUNT_TRANS:
4413 		/* just skip trans */
4414 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4415 		freeit = true;
4416 		break;
4417 	case XLOG_START_TRANS:
4418 	default:
4419 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4420 		ASSERT(0);
4421 		error = -EIO;
4422 		break;
4423 	}
4424 	if (error || freeit)
4425 		xlog_recover_free_trans(trans);
4426 	return error;
4427 }
4428 
4429 /*
4430  * Lookup the transaction recovery structure associated with the ID in the
4431  * current ophdr. If the transaction doesn't exist and the start flag is set in
4432  * the ophdr, then allocate a new transaction for future ID matches to find.
4433  * Either way, return what we found during the lookup - an existing transaction
4434  * or nothing.
4435  */
4436 STATIC struct xlog_recover *
4437 xlog_recover_ophdr_to_trans(
4438 	struct hlist_head	rhash[],
4439 	struct xlog_rec_header	*rhead,
4440 	struct xlog_op_header	*ohead)
4441 {
4442 	struct xlog_recover	*trans;
4443 	xlog_tid_t		tid;
4444 	struct hlist_head	*rhp;
4445 
4446 	tid = be32_to_cpu(ohead->oh_tid);
4447 	rhp = &rhash[XLOG_RHASH(tid)];
4448 	hlist_for_each_entry(trans, rhp, r_list) {
4449 		if (trans->r_log_tid == tid)
4450 			return trans;
4451 	}
4452 
4453 	/*
4454 	 * skip over non-start transaction headers - we could be
4455 	 * processing slack space before the next transaction starts
4456 	 */
4457 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4458 		return NULL;
4459 
4460 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4461 
4462 	/*
4463 	 * This is a new transaction so allocate a new recovery container to
4464 	 * hold the recovery ops that will follow.
4465 	 */
4466 	trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4467 	trans->r_log_tid = tid;
4468 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4469 	INIT_LIST_HEAD(&trans->r_itemq);
4470 	INIT_HLIST_NODE(&trans->r_list);
4471 	hlist_add_head(&trans->r_list, rhp);
4472 
4473 	/*
4474 	 * Nothing more to do for this ophdr. Items to be added to this new
4475 	 * transaction will be in subsequent ophdr containers.
4476 	 */
4477 	return NULL;
4478 }
4479 
4480 STATIC int
4481 xlog_recover_process_ophdr(
4482 	struct xlog		*log,
4483 	struct hlist_head	rhash[],
4484 	struct xlog_rec_header	*rhead,
4485 	struct xlog_op_header	*ohead,
4486 	char			*dp,
4487 	char			*end,
4488 	int			pass,
4489 	struct list_head	*buffer_list)
4490 {
4491 	struct xlog_recover	*trans;
4492 	unsigned int		len;
4493 	int			error;
4494 
4495 	/* Do we understand who wrote this op? */
4496 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4497 	    ohead->oh_clientid != XFS_LOG) {
4498 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4499 			__func__, ohead->oh_clientid);
4500 		ASSERT(0);
4501 		return -EIO;
4502 	}
4503 
4504 	/*
4505 	 * Check the ophdr contains all the data it is supposed to contain.
4506 	 */
4507 	len = be32_to_cpu(ohead->oh_len);
4508 	if (dp + len > end) {
4509 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4510 		WARN_ON(1);
4511 		return -EIO;
4512 	}
4513 
4514 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4515 	if (!trans) {
4516 		/* nothing to do, so skip over this ophdr */
4517 		return 0;
4518 	}
4519 
4520 	/*
4521 	 * The recovered buffer queue is drained only once we know that all
4522 	 * recovery items for the current LSN have been processed. This is
4523 	 * required because:
4524 	 *
4525 	 * - Buffer write submission updates the metadata LSN of the buffer.
4526 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4527 	 *   the recovery item.
4528 	 * - Separate recovery items against the same metadata buffer can share
4529 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4530 	 *   defined as the starting LSN of the first record in which its
4531 	 *   transaction appears, that a record can hold multiple transactions,
4532 	 *   and/or that a transaction can span multiple records.
4533 	 *
4534 	 * In other words, we are allowed to submit a buffer from log recovery
4535 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4536 	 * items and cause corruption.
4537 	 *
4538 	 * We don't know up front whether buffers are updated multiple times per
4539 	 * LSN. Therefore, track the current LSN of each commit log record as it
4540 	 * is processed and drain the queue when it changes. Use commit records
4541 	 * because they are ordered correctly by the logging code.
4542 	 */
4543 	if (log->l_recovery_lsn != trans->r_lsn &&
4544 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4545 		error = xfs_buf_delwri_submit(buffer_list);
4546 		if (error)
4547 			return error;
4548 		log->l_recovery_lsn = trans->r_lsn;
4549 	}
4550 
4551 	return xlog_recovery_process_trans(log, trans, dp, len,
4552 					   ohead->oh_flags, pass, buffer_list);
4553 }
4554 
4555 /*
4556  * There are two valid states of the r_state field.  0 indicates that the
4557  * transaction structure is in a normal state.  We have either seen the
4558  * start of the transaction or the last operation we added was not a partial
4559  * operation.  If the last operation we added to the transaction was a
4560  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4561  *
4562  * NOTE: skip LRs with 0 data length.
4563  */
4564 STATIC int
4565 xlog_recover_process_data(
4566 	struct xlog		*log,
4567 	struct hlist_head	rhash[],
4568 	struct xlog_rec_header	*rhead,
4569 	char			*dp,
4570 	int			pass,
4571 	struct list_head	*buffer_list)
4572 {
4573 	struct xlog_op_header	*ohead;
4574 	char			*end;
4575 	int			num_logops;
4576 	int			error;
4577 
4578 	end = dp + be32_to_cpu(rhead->h_len);
4579 	num_logops = be32_to_cpu(rhead->h_num_logops);
4580 
4581 	/* check the log format matches our own - else we can't recover */
4582 	if (xlog_header_check_recover(log->l_mp, rhead))
4583 		return -EIO;
4584 
4585 	trace_xfs_log_recover_record(log, rhead, pass);
4586 	while ((dp < end) && num_logops) {
4587 
4588 		ohead = (struct xlog_op_header *)dp;
4589 		dp += sizeof(*ohead);
4590 		ASSERT(dp <= end);
4591 
4592 		/* errors will abort recovery */
4593 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4594 						   dp, end, pass, buffer_list);
4595 		if (error)
4596 			return error;
4597 
4598 		dp += be32_to_cpu(ohead->oh_len);
4599 		num_logops--;
4600 	}
4601 	return 0;
4602 }
4603 
4604 /* Recover the EFI if necessary. */
4605 STATIC int
4606 xlog_recover_process_efi(
4607 	struct xfs_mount		*mp,
4608 	struct xfs_ail			*ailp,
4609 	struct xfs_log_item		*lip)
4610 {
4611 	struct xfs_efi_log_item		*efip;
4612 	int				error;
4613 
4614 	/*
4615 	 * Skip EFIs that we've already processed.
4616 	 */
4617 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4618 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4619 		return 0;
4620 
4621 	spin_unlock(&ailp->xa_lock);
4622 	error = xfs_efi_recover(mp, efip);
4623 	spin_lock(&ailp->xa_lock);
4624 
4625 	return error;
4626 }
4627 
4628 /* Release the EFI since we're cancelling everything. */
4629 STATIC void
4630 xlog_recover_cancel_efi(
4631 	struct xfs_mount		*mp,
4632 	struct xfs_ail			*ailp,
4633 	struct xfs_log_item		*lip)
4634 {
4635 	struct xfs_efi_log_item		*efip;
4636 
4637 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4638 
4639 	spin_unlock(&ailp->xa_lock);
4640 	xfs_efi_release(efip);
4641 	spin_lock(&ailp->xa_lock);
4642 }
4643 
4644 /* Recover the RUI if necessary. */
4645 STATIC int
4646 xlog_recover_process_rui(
4647 	struct xfs_mount		*mp,
4648 	struct xfs_ail			*ailp,
4649 	struct xfs_log_item		*lip)
4650 {
4651 	struct xfs_rui_log_item		*ruip;
4652 	int				error;
4653 
4654 	/*
4655 	 * Skip RUIs that we've already processed.
4656 	 */
4657 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4658 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4659 		return 0;
4660 
4661 	spin_unlock(&ailp->xa_lock);
4662 	error = xfs_rui_recover(mp, ruip);
4663 	spin_lock(&ailp->xa_lock);
4664 
4665 	return error;
4666 }
4667 
4668 /* Release the RUI since we're cancelling everything. */
4669 STATIC void
4670 xlog_recover_cancel_rui(
4671 	struct xfs_mount		*mp,
4672 	struct xfs_ail			*ailp,
4673 	struct xfs_log_item		*lip)
4674 {
4675 	struct xfs_rui_log_item		*ruip;
4676 
4677 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4678 
4679 	spin_unlock(&ailp->xa_lock);
4680 	xfs_rui_release(ruip);
4681 	spin_lock(&ailp->xa_lock);
4682 }
4683 
4684 /* Recover the CUI if necessary. */
4685 STATIC int
4686 xlog_recover_process_cui(
4687 	struct xfs_mount		*mp,
4688 	struct xfs_ail			*ailp,
4689 	struct xfs_log_item		*lip)
4690 {
4691 	struct xfs_cui_log_item		*cuip;
4692 	int				error;
4693 
4694 	/*
4695 	 * Skip CUIs that we've already processed.
4696 	 */
4697 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4698 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4699 		return 0;
4700 
4701 	spin_unlock(&ailp->xa_lock);
4702 	error = xfs_cui_recover(mp, cuip);
4703 	spin_lock(&ailp->xa_lock);
4704 
4705 	return error;
4706 }
4707 
4708 /* Release the CUI since we're cancelling everything. */
4709 STATIC void
4710 xlog_recover_cancel_cui(
4711 	struct xfs_mount		*mp,
4712 	struct xfs_ail			*ailp,
4713 	struct xfs_log_item		*lip)
4714 {
4715 	struct xfs_cui_log_item		*cuip;
4716 
4717 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4718 
4719 	spin_unlock(&ailp->xa_lock);
4720 	xfs_cui_release(cuip);
4721 	spin_lock(&ailp->xa_lock);
4722 }
4723 
4724 /* Recover the BUI if necessary. */
4725 STATIC int
4726 xlog_recover_process_bui(
4727 	struct xfs_mount		*mp,
4728 	struct xfs_ail			*ailp,
4729 	struct xfs_log_item		*lip)
4730 {
4731 	struct xfs_bui_log_item		*buip;
4732 	int				error;
4733 
4734 	/*
4735 	 * Skip BUIs that we've already processed.
4736 	 */
4737 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4738 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4739 		return 0;
4740 
4741 	spin_unlock(&ailp->xa_lock);
4742 	error = xfs_bui_recover(mp, buip);
4743 	spin_lock(&ailp->xa_lock);
4744 
4745 	return error;
4746 }
4747 
4748 /* Release the BUI since we're cancelling everything. */
4749 STATIC void
4750 xlog_recover_cancel_bui(
4751 	struct xfs_mount		*mp,
4752 	struct xfs_ail			*ailp,
4753 	struct xfs_log_item		*lip)
4754 {
4755 	struct xfs_bui_log_item		*buip;
4756 
4757 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4758 
4759 	spin_unlock(&ailp->xa_lock);
4760 	xfs_bui_release(buip);
4761 	spin_lock(&ailp->xa_lock);
4762 }
4763 
4764 /* Is this log item a deferred action intent? */
4765 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4766 {
4767 	switch (lip->li_type) {
4768 	case XFS_LI_EFI:
4769 	case XFS_LI_RUI:
4770 	case XFS_LI_CUI:
4771 	case XFS_LI_BUI:
4772 		return true;
4773 	default:
4774 		return false;
4775 	}
4776 }
4777 
4778 /*
4779  * When this is called, all of the log intent items which did not have
4780  * corresponding log done items should be in the AIL.  What we do now
4781  * is update the data structures associated with each one.
4782  *
4783  * Since we process the log intent items in normal transactions, they
4784  * will be removed at some point after the commit.  This prevents us
4785  * from just walking down the list processing each one.  We'll use a
4786  * flag in the intent item to skip those that we've already processed
4787  * and use the AIL iteration mechanism's generation count to try to
4788  * speed this up at least a bit.
4789  *
4790  * When we start, we know that the intents are the only things in the
4791  * AIL.  As we process them, however, other items are added to the
4792  * AIL.
4793  */
4794 STATIC int
4795 xlog_recover_process_intents(
4796 	struct xlog		*log)
4797 {
4798 	struct xfs_log_item	*lip;
4799 	int			error = 0;
4800 	struct xfs_ail_cursor	cur;
4801 	struct xfs_ail		*ailp;
4802 	xfs_lsn_t		last_lsn;
4803 
4804 	ailp = log->l_ailp;
4805 	spin_lock(&ailp->xa_lock);
4806 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4807 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4808 	while (lip != NULL) {
4809 		/*
4810 		 * We're done when we see something other than an intent.
4811 		 * There should be no intents left in the AIL now.
4812 		 */
4813 		if (!xlog_item_is_intent(lip)) {
4814 #ifdef DEBUG
4815 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4816 				ASSERT(!xlog_item_is_intent(lip));
4817 #endif
4818 			break;
4819 		}
4820 
4821 		/*
4822 		 * We should never see a redo item with a LSN higher than
4823 		 * the last transaction we found in the log at the start
4824 		 * of recovery.
4825 		 */
4826 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4827 
4828 		switch (lip->li_type) {
4829 		case XFS_LI_EFI:
4830 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4831 			break;
4832 		case XFS_LI_RUI:
4833 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4834 			break;
4835 		case XFS_LI_CUI:
4836 			error = xlog_recover_process_cui(log->l_mp, ailp, lip);
4837 			break;
4838 		case XFS_LI_BUI:
4839 			error = xlog_recover_process_bui(log->l_mp, ailp, lip);
4840 			break;
4841 		}
4842 		if (error)
4843 			goto out;
4844 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4845 	}
4846 out:
4847 	xfs_trans_ail_cursor_done(&cur);
4848 	spin_unlock(&ailp->xa_lock);
4849 	return error;
4850 }
4851 
4852 /*
4853  * A cancel occurs when the mount has failed and we're bailing out.
4854  * Release all pending log intent items so they don't pin the AIL.
4855  */
4856 STATIC int
4857 xlog_recover_cancel_intents(
4858 	struct xlog		*log)
4859 {
4860 	struct xfs_log_item	*lip;
4861 	int			error = 0;
4862 	struct xfs_ail_cursor	cur;
4863 	struct xfs_ail		*ailp;
4864 
4865 	ailp = log->l_ailp;
4866 	spin_lock(&ailp->xa_lock);
4867 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4868 	while (lip != NULL) {
4869 		/*
4870 		 * We're done when we see something other than an intent.
4871 		 * There should be no intents left in the AIL now.
4872 		 */
4873 		if (!xlog_item_is_intent(lip)) {
4874 #ifdef DEBUG
4875 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4876 				ASSERT(!xlog_item_is_intent(lip));
4877 #endif
4878 			break;
4879 		}
4880 
4881 		switch (lip->li_type) {
4882 		case XFS_LI_EFI:
4883 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4884 			break;
4885 		case XFS_LI_RUI:
4886 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4887 			break;
4888 		case XFS_LI_CUI:
4889 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4890 			break;
4891 		case XFS_LI_BUI:
4892 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4893 			break;
4894 		}
4895 
4896 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4897 	}
4898 
4899 	xfs_trans_ail_cursor_done(&cur);
4900 	spin_unlock(&ailp->xa_lock);
4901 	return error;
4902 }
4903 
4904 /*
4905  * This routine performs a transaction to null out a bad inode pointer
4906  * in an agi unlinked inode hash bucket.
4907  */
4908 STATIC void
4909 xlog_recover_clear_agi_bucket(
4910 	xfs_mount_t	*mp,
4911 	xfs_agnumber_t	agno,
4912 	int		bucket)
4913 {
4914 	xfs_trans_t	*tp;
4915 	xfs_agi_t	*agi;
4916 	xfs_buf_t	*agibp;
4917 	int		offset;
4918 	int		error;
4919 
4920 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4921 	if (error)
4922 		goto out_error;
4923 
4924 	error = xfs_read_agi(mp, tp, agno, &agibp);
4925 	if (error)
4926 		goto out_abort;
4927 
4928 	agi = XFS_BUF_TO_AGI(agibp);
4929 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4930 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4931 		 (sizeof(xfs_agino_t) * bucket);
4932 	xfs_trans_log_buf(tp, agibp, offset,
4933 			  (offset + sizeof(xfs_agino_t) - 1));
4934 
4935 	error = xfs_trans_commit(tp);
4936 	if (error)
4937 		goto out_error;
4938 	return;
4939 
4940 out_abort:
4941 	xfs_trans_cancel(tp);
4942 out_error:
4943 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4944 	return;
4945 }
4946 
4947 STATIC xfs_agino_t
4948 xlog_recover_process_one_iunlink(
4949 	struct xfs_mount		*mp,
4950 	xfs_agnumber_t			agno,
4951 	xfs_agino_t			agino,
4952 	int				bucket)
4953 {
4954 	struct xfs_buf			*ibp;
4955 	struct xfs_dinode		*dip;
4956 	struct xfs_inode		*ip;
4957 	xfs_ino_t			ino;
4958 	int				error;
4959 
4960 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4961 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4962 	if (error)
4963 		goto fail;
4964 
4965 	/*
4966 	 * Get the on disk inode to find the next inode in the bucket.
4967 	 */
4968 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4969 	if (error)
4970 		goto fail_iput;
4971 
4972 	xfs_iflags_clear(ip, XFS_IRECOVERY);
4973 	ASSERT(VFS_I(ip)->i_nlink == 0);
4974 	ASSERT(VFS_I(ip)->i_mode != 0);
4975 
4976 	/* setup for the next pass */
4977 	agino = be32_to_cpu(dip->di_next_unlinked);
4978 	xfs_buf_relse(ibp);
4979 
4980 	/*
4981 	 * Prevent any DMAPI event from being sent when the reference on
4982 	 * the inode is dropped.
4983 	 */
4984 	ip->i_d.di_dmevmask = 0;
4985 
4986 	IRELE(ip);
4987 	return agino;
4988 
4989  fail_iput:
4990 	IRELE(ip);
4991  fail:
4992 	/*
4993 	 * We can't read in the inode this bucket points to, or this inode
4994 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
4995 	 * some inodes and space, but at least we won't hang.
4996 	 *
4997 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4998 	 * clear the inode pointer in the bucket.
4999 	 */
5000 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5001 	return NULLAGINO;
5002 }
5003 
5004 /*
5005  * xlog_iunlink_recover
5006  *
5007  * This is called during recovery to process any inodes which
5008  * we unlinked but not freed when the system crashed.  These
5009  * inodes will be on the lists in the AGI blocks.  What we do
5010  * here is scan all the AGIs and fully truncate and free any
5011  * inodes found on the lists.  Each inode is removed from the
5012  * lists when it has been fully truncated and is freed.  The
5013  * freeing of the inode and its removal from the list must be
5014  * atomic.
5015  */
5016 STATIC void
5017 xlog_recover_process_iunlinks(
5018 	struct xlog	*log)
5019 {
5020 	xfs_mount_t	*mp;
5021 	xfs_agnumber_t	agno;
5022 	xfs_agi_t	*agi;
5023 	xfs_buf_t	*agibp;
5024 	xfs_agino_t	agino;
5025 	int		bucket;
5026 	int		error;
5027 	uint		mp_dmevmask;
5028 
5029 	mp = log->l_mp;
5030 
5031 	/*
5032 	 * Prevent any DMAPI event from being sent while in this function.
5033 	 */
5034 	mp_dmevmask = mp->m_dmevmask;
5035 	mp->m_dmevmask = 0;
5036 
5037 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5038 		/*
5039 		 * Find the agi for this ag.
5040 		 */
5041 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5042 		if (error) {
5043 			/*
5044 			 * AGI is b0rked. Don't process it.
5045 			 *
5046 			 * We should probably mark the filesystem as corrupt
5047 			 * after we've recovered all the ag's we can....
5048 			 */
5049 			continue;
5050 		}
5051 		/*
5052 		 * Unlock the buffer so that it can be acquired in the normal
5053 		 * course of the transaction to truncate and free each inode.
5054 		 * Because we are not racing with anyone else here for the AGI
5055 		 * buffer, we don't even need to hold it locked to read the
5056 		 * initial unlinked bucket entries out of the buffer. We keep
5057 		 * buffer reference though, so that it stays pinned in memory
5058 		 * while we need the buffer.
5059 		 */
5060 		agi = XFS_BUF_TO_AGI(agibp);
5061 		xfs_buf_unlock(agibp);
5062 
5063 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5064 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5065 			while (agino != NULLAGINO) {
5066 				agino = xlog_recover_process_one_iunlink(mp,
5067 							agno, agino, bucket);
5068 			}
5069 		}
5070 		xfs_buf_rele(agibp);
5071 	}
5072 
5073 	mp->m_dmevmask = mp_dmevmask;
5074 }
5075 
5076 STATIC int
5077 xlog_unpack_data(
5078 	struct xlog_rec_header	*rhead,
5079 	char			*dp,
5080 	struct xlog		*log)
5081 {
5082 	int			i, j, k;
5083 
5084 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5085 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5086 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5087 		dp += BBSIZE;
5088 	}
5089 
5090 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5091 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5092 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5093 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5094 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5095 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5096 			dp += BBSIZE;
5097 		}
5098 	}
5099 
5100 	return 0;
5101 }
5102 
5103 /*
5104  * CRC check, unpack and process a log record.
5105  */
5106 STATIC int
5107 xlog_recover_process(
5108 	struct xlog		*log,
5109 	struct hlist_head	rhash[],
5110 	struct xlog_rec_header	*rhead,
5111 	char			*dp,
5112 	int			pass,
5113 	struct list_head	*buffer_list)
5114 {
5115 	int			error;
5116 	__le32			crc;
5117 
5118 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5119 
5120 	/*
5121 	 * Nothing else to do if this is a CRC verification pass. Just return
5122 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5123 	 * sets h_crc to 0 so we must consider this valid even on v5 supers.
5124 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5125 	 * know precisely what failed.
5126 	 */
5127 	if (pass == XLOG_RECOVER_CRCPASS) {
5128 		if (rhead->h_crc && crc != rhead->h_crc)
5129 			return -EFSBADCRC;
5130 		return 0;
5131 	}
5132 
5133 	/*
5134 	 * We're in the normal recovery path. Issue a warning if and only if the
5135 	 * CRC in the header is non-zero. This is an advisory warning and the
5136 	 * zero CRC check prevents warnings from being emitted when upgrading
5137 	 * the kernel from one that does not add CRCs by default.
5138 	 */
5139 	if (crc != rhead->h_crc) {
5140 		if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5141 			xfs_alert(log->l_mp,
5142 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5143 					le32_to_cpu(rhead->h_crc),
5144 					le32_to_cpu(crc));
5145 			xfs_hex_dump(dp, 32);
5146 		}
5147 
5148 		/*
5149 		 * If the filesystem is CRC enabled, this mismatch becomes a
5150 		 * fatal log corruption failure.
5151 		 */
5152 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5153 			return -EFSCORRUPTED;
5154 	}
5155 
5156 	error = xlog_unpack_data(rhead, dp, log);
5157 	if (error)
5158 		return error;
5159 
5160 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5161 					 buffer_list);
5162 }
5163 
5164 STATIC int
5165 xlog_valid_rec_header(
5166 	struct xlog		*log,
5167 	struct xlog_rec_header	*rhead,
5168 	xfs_daddr_t		blkno)
5169 {
5170 	int			hlen;
5171 
5172 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5173 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5174 				XFS_ERRLEVEL_LOW, log->l_mp);
5175 		return -EFSCORRUPTED;
5176 	}
5177 	if (unlikely(
5178 	    (!rhead->h_version ||
5179 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5180 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5181 			__func__, be32_to_cpu(rhead->h_version));
5182 		return -EIO;
5183 	}
5184 
5185 	/* LR body must have data or it wouldn't have been written */
5186 	hlen = be32_to_cpu(rhead->h_len);
5187 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5188 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5189 				XFS_ERRLEVEL_LOW, log->l_mp);
5190 		return -EFSCORRUPTED;
5191 	}
5192 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5193 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5194 				XFS_ERRLEVEL_LOW, log->l_mp);
5195 		return -EFSCORRUPTED;
5196 	}
5197 	return 0;
5198 }
5199 
5200 /*
5201  * Read the log from tail to head and process the log records found.
5202  * Handle the two cases where the tail and head are in the same cycle
5203  * and where the active portion of the log wraps around the end of
5204  * the physical log separately.  The pass parameter is passed through
5205  * to the routines called to process the data and is not looked at
5206  * here.
5207  */
5208 STATIC int
5209 xlog_do_recovery_pass(
5210 	struct xlog		*log,
5211 	xfs_daddr_t		head_blk,
5212 	xfs_daddr_t		tail_blk,
5213 	int			pass,
5214 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5215 {
5216 	xlog_rec_header_t	*rhead;
5217 	xfs_daddr_t		blk_no;
5218 	xfs_daddr_t		rhead_blk;
5219 	char			*offset;
5220 	xfs_buf_t		*hbp, *dbp;
5221 	int			error = 0, h_size, h_len;
5222 	int			error2 = 0;
5223 	int			bblks, split_bblks;
5224 	int			hblks, split_hblks, wrapped_hblks;
5225 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5226 	LIST_HEAD		(buffer_list);
5227 
5228 	ASSERT(head_blk != tail_blk);
5229 	rhead_blk = 0;
5230 
5231 	/*
5232 	 * Read the header of the tail block and get the iclog buffer size from
5233 	 * h_size.  Use this to tell how many sectors make up the log header.
5234 	 */
5235 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5236 		/*
5237 		 * When using variable length iclogs, read first sector of
5238 		 * iclog header and extract the header size from it.  Get a
5239 		 * new hbp that is the correct size.
5240 		 */
5241 		hbp = xlog_get_bp(log, 1);
5242 		if (!hbp)
5243 			return -ENOMEM;
5244 
5245 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5246 		if (error)
5247 			goto bread_err1;
5248 
5249 		rhead = (xlog_rec_header_t *)offset;
5250 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5251 		if (error)
5252 			goto bread_err1;
5253 
5254 		/*
5255 		 * xfsprogs has a bug where record length is based on lsunit but
5256 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5257 		 * unconditionally CRC verify the unmount record, this means the
5258 		 * log buffer can be too small for the record and cause an
5259 		 * overrun.
5260 		 *
5261 		 * Detect this condition here. Use lsunit for the buffer size as
5262 		 * long as this looks like the mkfs case. Otherwise, return an
5263 		 * error to avoid a buffer overrun.
5264 		 */
5265 		h_size = be32_to_cpu(rhead->h_size);
5266 		h_len = be32_to_cpu(rhead->h_len);
5267 		if (h_len > h_size) {
5268 			if (h_len <= log->l_mp->m_logbsize &&
5269 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5270 				xfs_warn(log->l_mp,
5271 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5272 					 h_size, log->l_mp->m_logbsize);
5273 				h_size = log->l_mp->m_logbsize;
5274 			} else
5275 				return -EFSCORRUPTED;
5276 		}
5277 
5278 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5279 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5280 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5281 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5282 				hblks++;
5283 			xlog_put_bp(hbp);
5284 			hbp = xlog_get_bp(log, hblks);
5285 		} else {
5286 			hblks = 1;
5287 		}
5288 	} else {
5289 		ASSERT(log->l_sectBBsize == 1);
5290 		hblks = 1;
5291 		hbp = xlog_get_bp(log, 1);
5292 		h_size = XLOG_BIG_RECORD_BSIZE;
5293 	}
5294 
5295 	if (!hbp)
5296 		return -ENOMEM;
5297 	dbp = xlog_get_bp(log, BTOBB(h_size));
5298 	if (!dbp) {
5299 		xlog_put_bp(hbp);
5300 		return -ENOMEM;
5301 	}
5302 
5303 	memset(rhash, 0, sizeof(rhash));
5304 	blk_no = rhead_blk = tail_blk;
5305 	if (tail_blk > head_blk) {
5306 		/*
5307 		 * Perform recovery around the end of the physical log.
5308 		 * When the head is not on the same cycle number as the tail,
5309 		 * we can't do a sequential recovery.
5310 		 */
5311 		while (blk_no < log->l_logBBsize) {
5312 			/*
5313 			 * Check for header wrapping around physical end-of-log
5314 			 */
5315 			offset = hbp->b_addr;
5316 			split_hblks = 0;
5317 			wrapped_hblks = 0;
5318 			if (blk_no + hblks <= log->l_logBBsize) {
5319 				/* Read header in one read */
5320 				error = xlog_bread(log, blk_no, hblks, hbp,
5321 						   &offset);
5322 				if (error)
5323 					goto bread_err2;
5324 			} else {
5325 				/* This LR is split across physical log end */
5326 				if (blk_no != log->l_logBBsize) {
5327 					/* some data before physical log end */
5328 					ASSERT(blk_no <= INT_MAX);
5329 					split_hblks = log->l_logBBsize - (int)blk_no;
5330 					ASSERT(split_hblks > 0);
5331 					error = xlog_bread(log, blk_no,
5332 							   split_hblks, hbp,
5333 							   &offset);
5334 					if (error)
5335 						goto bread_err2;
5336 				}
5337 
5338 				/*
5339 				 * Note: this black magic still works with
5340 				 * large sector sizes (non-512) only because:
5341 				 * - we increased the buffer size originally
5342 				 *   by 1 sector giving us enough extra space
5343 				 *   for the second read;
5344 				 * - the log start is guaranteed to be sector
5345 				 *   aligned;
5346 				 * - we read the log end (LR header start)
5347 				 *   _first_, then the log start (LR header end)
5348 				 *   - order is important.
5349 				 */
5350 				wrapped_hblks = hblks - split_hblks;
5351 				error = xlog_bread_offset(log, 0,
5352 						wrapped_hblks, hbp,
5353 						offset + BBTOB(split_hblks));
5354 				if (error)
5355 					goto bread_err2;
5356 			}
5357 			rhead = (xlog_rec_header_t *)offset;
5358 			error = xlog_valid_rec_header(log, rhead,
5359 						split_hblks ? blk_no : 0);
5360 			if (error)
5361 				goto bread_err2;
5362 
5363 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5364 			blk_no += hblks;
5365 
5366 			/* Read in data for log record */
5367 			if (blk_no + bblks <= log->l_logBBsize) {
5368 				error = xlog_bread(log, blk_no, bblks, dbp,
5369 						   &offset);
5370 				if (error)
5371 					goto bread_err2;
5372 			} else {
5373 				/* This log record is split across the
5374 				 * physical end of log */
5375 				offset = dbp->b_addr;
5376 				split_bblks = 0;
5377 				if (blk_no != log->l_logBBsize) {
5378 					/* some data is before the physical
5379 					 * end of log */
5380 					ASSERT(!wrapped_hblks);
5381 					ASSERT(blk_no <= INT_MAX);
5382 					split_bblks =
5383 						log->l_logBBsize - (int)blk_no;
5384 					ASSERT(split_bblks > 0);
5385 					error = xlog_bread(log, blk_no,
5386 							split_bblks, dbp,
5387 							&offset);
5388 					if (error)
5389 						goto bread_err2;
5390 				}
5391 
5392 				/*
5393 				 * Note: this black magic still works with
5394 				 * large sector sizes (non-512) only because:
5395 				 * - we increased the buffer size originally
5396 				 *   by 1 sector giving us enough extra space
5397 				 *   for the second read;
5398 				 * - the log start is guaranteed to be sector
5399 				 *   aligned;
5400 				 * - we read the log end (LR header start)
5401 				 *   _first_, then the log start (LR header end)
5402 				 *   - order is important.
5403 				 */
5404 				error = xlog_bread_offset(log, 0,
5405 						bblks - split_bblks, dbp,
5406 						offset + BBTOB(split_bblks));
5407 				if (error)
5408 					goto bread_err2;
5409 			}
5410 
5411 			error = xlog_recover_process(log, rhash, rhead, offset,
5412 						     pass, &buffer_list);
5413 			if (error)
5414 				goto bread_err2;
5415 
5416 			blk_no += bblks;
5417 			rhead_blk = blk_no;
5418 		}
5419 
5420 		ASSERT(blk_no >= log->l_logBBsize);
5421 		blk_no -= log->l_logBBsize;
5422 		rhead_blk = blk_no;
5423 	}
5424 
5425 	/* read first part of physical log */
5426 	while (blk_no < head_blk) {
5427 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5428 		if (error)
5429 			goto bread_err2;
5430 
5431 		rhead = (xlog_rec_header_t *)offset;
5432 		error = xlog_valid_rec_header(log, rhead, blk_no);
5433 		if (error)
5434 			goto bread_err2;
5435 
5436 		/* blocks in data section */
5437 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5438 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5439 				   &offset);
5440 		if (error)
5441 			goto bread_err2;
5442 
5443 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5444 					     &buffer_list);
5445 		if (error)
5446 			goto bread_err2;
5447 
5448 		blk_no += bblks + hblks;
5449 		rhead_blk = blk_no;
5450 	}
5451 
5452  bread_err2:
5453 	xlog_put_bp(dbp);
5454  bread_err1:
5455 	xlog_put_bp(hbp);
5456 
5457 	/*
5458 	 * Submit buffers that have been added from the last record processed,
5459 	 * regardless of error status.
5460 	 */
5461 	if (!list_empty(&buffer_list))
5462 		error2 = xfs_buf_delwri_submit(&buffer_list);
5463 
5464 	if (error && first_bad)
5465 		*first_bad = rhead_blk;
5466 
5467 	return error ? error : error2;
5468 }
5469 
5470 /*
5471  * Do the recovery of the log.  We actually do this in two phases.
5472  * The two passes are necessary in order to implement the function
5473  * of cancelling a record written into the log.  The first pass
5474  * determines those things which have been cancelled, and the
5475  * second pass replays log items normally except for those which
5476  * have been cancelled.  The handling of the replay and cancellations
5477  * takes place in the log item type specific routines.
5478  *
5479  * The table of items which have cancel records in the log is allocated
5480  * and freed at this level, since only here do we know when all of
5481  * the log recovery has been completed.
5482  */
5483 STATIC int
5484 xlog_do_log_recovery(
5485 	struct xlog	*log,
5486 	xfs_daddr_t	head_blk,
5487 	xfs_daddr_t	tail_blk)
5488 {
5489 	int		error, i;
5490 
5491 	ASSERT(head_blk != tail_blk);
5492 
5493 	/*
5494 	 * First do a pass to find all of the cancelled buf log items.
5495 	 * Store them in the buf_cancel_table for use in the second pass.
5496 	 */
5497 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5498 						 sizeof(struct list_head),
5499 						 KM_SLEEP);
5500 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5501 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5502 
5503 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5504 				      XLOG_RECOVER_PASS1, NULL);
5505 	if (error != 0) {
5506 		kmem_free(log->l_buf_cancel_table);
5507 		log->l_buf_cancel_table = NULL;
5508 		return error;
5509 	}
5510 	/*
5511 	 * Then do a second pass to actually recover the items in the log.
5512 	 * When it is complete free the table of buf cancel items.
5513 	 */
5514 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5515 				      XLOG_RECOVER_PASS2, NULL);
5516 #ifdef DEBUG
5517 	if (!error) {
5518 		int	i;
5519 
5520 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5521 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5522 	}
5523 #endif	/* DEBUG */
5524 
5525 	kmem_free(log->l_buf_cancel_table);
5526 	log->l_buf_cancel_table = NULL;
5527 
5528 	return error;
5529 }
5530 
5531 /*
5532  * Do the actual recovery
5533  */
5534 STATIC int
5535 xlog_do_recover(
5536 	struct xlog	*log,
5537 	xfs_daddr_t	head_blk,
5538 	xfs_daddr_t	tail_blk)
5539 {
5540 	struct xfs_mount *mp = log->l_mp;
5541 	int		error;
5542 	xfs_buf_t	*bp;
5543 	xfs_sb_t	*sbp;
5544 
5545 	/*
5546 	 * First replay the images in the log.
5547 	 */
5548 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5549 	if (error)
5550 		return error;
5551 
5552 	/*
5553 	 * If IO errors happened during recovery, bail out.
5554 	 */
5555 	if (XFS_FORCED_SHUTDOWN(mp)) {
5556 		return -EIO;
5557 	}
5558 
5559 	/*
5560 	 * We now update the tail_lsn since much of the recovery has completed
5561 	 * and there may be space available to use.  If there were no extent
5562 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5563 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5564 	 * lsn of the last known good LR on disk.  If there are extent frees
5565 	 * or iunlinks they will have some entries in the AIL; so we look at
5566 	 * the AIL to determine how to set the tail_lsn.
5567 	 */
5568 	xlog_assign_tail_lsn(mp);
5569 
5570 	/*
5571 	 * Now that we've finished replaying all buffer and inode
5572 	 * updates, re-read in the superblock and reverify it.
5573 	 */
5574 	bp = xfs_getsb(mp, 0);
5575 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5576 	ASSERT(!(bp->b_flags & XBF_WRITE));
5577 	bp->b_flags |= XBF_READ;
5578 	bp->b_ops = &xfs_sb_buf_ops;
5579 
5580 	error = xfs_buf_submit_wait(bp);
5581 	if (error) {
5582 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5583 			xfs_buf_ioerror_alert(bp, __func__);
5584 			ASSERT(0);
5585 		}
5586 		xfs_buf_relse(bp);
5587 		return error;
5588 	}
5589 
5590 	/* Convert superblock from on-disk format */
5591 	sbp = &mp->m_sb;
5592 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5593 	xfs_buf_relse(bp);
5594 
5595 	/* re-initialise in-core superblock and geometry structures */
5596 	xfs_reinit_percpu_counters(mp);
5597 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5598 	if (error) {
5599 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5600 		return error;
5601 	}
5602 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5603 
5604 	xlog_recover_check_summary(log);
5605 
5606 	/* Normal transactions can now occur */
5607 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5608 	return 0;
5609 }
5610 
5611 /*
5612  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5613  *
5614  * Return error or zero.
5615  */
5616 int
5617 xlog_recover(
5618 	struct xlog	*log)
5619 {
5620 	xfs_daddr_t	head_blk, tail_blk;
5621 	int		error;
5622 
5623 	/* find the tail of the log */
5624 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5625 	if (error)
5626 		return error;
5627 
5628 	/*
5629 	 * The superblock was read before the log was available and thus the LSN
5630 	 * could not be verified. Check the superblock LSN against the current
5631 	 * LSN now that it's known.
5632 	 */
5633 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5634 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5635 		return -EINVAL;
5636 
5637 	if (tail_blk != head_blk) {
5638 		/* There used to be a comment here:
5639 		 *
5640 		 * disallow recovery on read-only mounts.  note -- mount
5641 		 * checks for ENOSPC and turns it into an intelligent
5642 		 * error message.
5643 		 * ...but this is no longer true.  Now, unless you specify
5644 		 * NORECOVERY (in which case this function would never be
5645 		 * called), we just go ahead and recover.  We do this all
5646 		 * under the vfs layer, so we can get away with it unless
5647 		 * the device itself is read-only, in which case we fail.
5648 		 */
5649 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5650 			return error;
5651 		}
5652 
5653 		/*
5654 		 * Version 5 superblock log feature mask validation. We know the
5655 		 * log is dirty so check if there are any unknown log features
5656 		 * in what we need to recover. If there are unknown features
5657 		 * (e.g. unsupported transactions, then simply reject the
5658 		 * attempt at recovery before touching anything.
5659 		 */
5660 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5661 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5662 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5663 			xfs_warn(log->l_mp,
5664 "Superblock has unknown incompatible log features (0x%x) enabled.",
5665 				(log->l_mp->m_sb.sb_features_log_incompat &
5666 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5667 			xfs_warn(log->l_mp,
5668 "The log can not be fully and/or safely recovered by this kernel.");
5669 			xfs_warn(log->l_mp,
5670 "Please recover the log on a kernel that supports the unknown features.");
5671 			return -EINVAL;
5672 		}
5673 
5674 		/*
5675 		 * Delay log recovery if the debug hook is set. This is debug
5676 		 * instrumention to coordinate simulation of I/O failures with
5677 		 * log recovery.
5678 		 */
5679 		if (xfs_globals.log_recovery_delay) {
5680 			xfs_notice(log->l_mp,
5681 				"Delaying log recovery for %d seconds.",
5682 				xfs_globals.log_recovery_delay);
5683 			msleep(xfs_globals.log_recovery_delay * 1000);
5684 		}
5685 
5686 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5687 				log->l_mp->m_logname ? log->l_mp->m_logname
5688 						     : "internal");
5689 
5690 		error = xlog_do_recover(log, head_blk, tail_blk);
5691 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5692 	}
5693 	return error;
5694 }
5695 
5696 /*
5697  * In the first part of recovery we replay inodes and buffers and build
5698  * up the list of extent free items which need to be processed.  Here
5699  * we process the extent free items and clean up the on disk unlinked
5700  * inode lists.  This is separated from the first part of recovery so
5701  * that the root and real-time bitmap inodes can be read in from disk in
5702  * between the two stages.  This is necessary so that we can free space
5703  * in the real-time portion of the file system.
5704  */
5705 int
5706 xlog_recover_finish(
5707 	struct xlog	*log)
5708 {
5709 	/*
5710 	 * Now we're ready to do the transactions needed for the
5711 	 * rest of recovery.  Start with completing all the extent
5712 	 * free intent records and then process the unlinked inode
5713 	 * lists.  At this point, we essentially run in normal mode
5714 	 * except that we're still performing recovery actions
5715 	 * rather than accepting new requests.
5716 	 */
5717 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5718 		int	error;
5719 		error = xlog_recover_process_intents(log);
5720 		if (error) {
5721 			xfs_alert(log->l_mp, "Failed to recover intents");
5722 			return error;
5723 		}
5724 
5725 		/*
5726 		 * Sync the log to get all the intents out of the AIL.
5727 		 * This isn't absolutely necessary, but it helps in
5728 		 * case the unlink transactions would have problems
5729 		 * pushing the intents out of the way.
5730 		 */
5731 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5732 
5733 		xlog_recover_process_iunlinks(log);
5734 
5735 		xlog_recover_check_summary(log);
5736 
5737 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5738 				log->l_mp->m_logname ? log->l_mp->m_logname
5739 						     : "internal");
5740 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5741 	} else {
5742 		xfs_info(log->l_mp, "Ending clean mount");
5743 	}
5744 	return 0;
5745 }
5746 
5747 int
5748 xlog_recover_cancel(
5749 	struct xlog	*log)
5750 {
5751 	int		error = 0;
5752 
5753 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5754 		error = xlog_recover_cancel_intents(log);
5755 
5756 	return error;
5757 }
5758 
5759 #if defined(DEBUG)
5760 /*
5761  * Read all of the agf and agi counters and check that they
5762  * are consistent with the superblock counters.
5763  */
5764 void
5765 xlog_recover_check_summary(
5766 	struct xlog	*log)
5767 {
5768 	xfs_mount_t	*mp;
5769 	xfs_agf_t	*agfp;
5770 	xfs_buf_t	*agfbp;
5771 	xfs_buf_t	*agibp;
5772 	xfs_agnumber_t	agno;
5773 	__uint64_t	freeblks;
5774 	__uint64_t	itotal;
5775 	__uint64_t	ifree;
5776 	int		error;
5777 
5778 	mp = log->l_mp;
5779 
5780 	freeblks = 0LL;
5781 	itotal = 0LL;
5782 	ifree = 0LL;
5783 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5784 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5785 		if (error) {
5786 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5787 						__func__, agno, error);
5788 		} else {
5789 			agfp = XFS_BUF_TO_AGF(agfbp);
5790 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5791 				    be32_to_cpu(agfp->agf_flcount);
5792 			xfs_buf_relse(agfbp);
5793 		}
5794 
5795 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5796 		if (error) {
5797 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5798 						__func__, agno, error);
5799 		} else {
5800 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5801 
5802 			itotal += be32_to_cpu(agi->agi_count);
5803 			ifree += be32_to_cpu(agi->agi_freecount);
5804 			xfs_buf_relse(agibp);
5805 		}
5806 	}
5807 }
5808 #endif /* DEBUG */
5809