1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_trans.h" 31 #include "xfs_log.h" 32 #include "xfs_log_priv.h" 33 #include "xfs_log_recover.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_extfree_item.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_alloc.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_quota.h" 40 #include "xfs_cksum.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_bmap_btree.h" 44 #include "xfs_error.h" 45 #include "xfs_dir2.h" 46 #include "xfs_rmap_item.h" 47 #include "xfs_buf_item.h" 48 #include "xfs_refcount_item.h" 49 #include "xfs_bmap_item.h" 50 51 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 52 53 STATIC int 54 xlog_find_zeroed( 55 struct xlog *, 56 xfs_daddr_t *); 57 STATIC int 58 xlog_clear_stale_blocks( 59 struct xlog *, 60 xfs_lsn_t); 61 #if defined(DEBUG) 62 STATIC void 63 xlog_recover_check_summary( 64 struct xlog *); 65 #else 66 #define xlog_recover_check_summary(log) 67 #endif 68 STATIC int 69 xlog_do_recovery_pass( 70 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 71 72 /* 73 * This structure is used during recovery to record the buf log items which 74 * have been canceled and should not be replayed. 75 */ 76 struct xfs_buf_cancel { 77 xfs_daddr_t bc_blkno; 78 uint bc_len; 79 int bc_refcount; 80 struct list_head bc_list; 81 }; 82 83 /* 84 * Sector aligned buffer routines for buffer create/read/write/access 85 */ 86 87 /* 88 * Verify the given count of basic blocks is valid number of blocks 89 * to specify for an operation involving the given XFS log buffer. 90 * Returns nonzero if the count is valid, 0 otherwise. 91 */ 92 93 static inline int 94 xlog_buf_bbcount_valid( 95 struct xlog *log, 96 int bbcount) 97 { 98 return bbcount > 0 && bbcount <= log->l_logBBsize; 99 } 100 101 /* 102 * Allocate a buffer to hold log data. The buffer needs to be able 103 * to map to a range of nbblks basic blocks at any valid (basic 104 * block) offset within the log. 105 */ 106 STATIC xfs_buf_t * 107 xlog_get_bp( 108 struct xlog *log, 109 int nbblks) 110 { 111 struct xfs_buf *bp; 112 113 if (!xlog_buf_bbcount_valid(log, nbblks)) { 114 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 115 nbblks); 116 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 117 return NULL; 118 } 119 120 /* 121 * We do log I/O in units of log sectors (a power-of-2 122 * multiple of the basic block size), so we round up the 123 * requested size to accommodate the basic blocks required 124 * for complete log sectors. 125 * 126 * In addition, the buffer may be used for a non-sector- 127 * aligned block offset, in which case an I/O of the 128 * requested size could extend beyond the end of the 129 * buffer. If the requested size is only 1 basic block it 130 * will never straddle a sector boundary, so this won't be 131 * an issue. Nor will this be a problem if the log I/O is 132 * done in basic blocks (sector size 1). But otherwise we 133 * extend the buffer by one extra log sector to ensure 134 * there's space to accommodate this possibility. 135 */ 136 if (nbblks > 1 && log->l_sectBBsize > 1) 137 nbblks += log->l_sectBBsize; 138 nbblks = round_up(nbblks, log->l_sectBBsize); 139 140 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); 141 if (bp) 142 xfs_buf_unlock(bp); 143 return bp; 144 } 145 146 STATIC void 147 xlog_put_bp( 148 xfs_buf_t *bp) 149 { 150 xfs_buf_free(bp); 151 } 152 153 /* 154 * Return the address of the start of the given block number's data 155 * in a log buffer. The buffer covers a log sector-aligned region. 156 */ 157 STATIC char * 158 xlog_align( 159 struct xlog *log, 160 xfs_daddr_t blk_no, 161 int nbblks, 162 struct xfs_buf *bp) 163 { 164 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 165 166 ASSERT(offset + nbblks <= bp->b_length); 167 return bp->b_addr + BBTOB(offset); 168 } 169 170 171 /* 172 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 173 */ 174 STATIC int 175 xlog_bread_noalign( 176 struct xlog *log, 177 xfs_daddr_t blk_no, 178 int nbblks, 179 struct xfs_buf *bp) 180 { 181 int error; 182 183 if (!xlog_buf_bbcount_valid(log, nbblks)) { 184 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 185 nbblks); 186 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 187 return -EFSCORRUPTED; 188 } 189 190 blk_no = round_down(blk_no, log->l_sectBBsize); 191 nbblks = round_up(nbblks, log->l_sectBBsize); 192 193 ASSERT(nbblks > 0); 194 ASSERT(nbblks <= bp->b_length); 195 196 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 197 bp->b_flags |= XBF_READ; 198 bp->b_io_length = nbblks; 199 bp->b_error = 0; 200 201 error = xfs_buf_submit_wait(bp); 202 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) 203 xfs_buf_ioerror_alert(bp, __func__); 204 return error; 205 } 206 207 STATIC int 208 xlog_bread( 209 struct xlog *log, 210 xfs_daddr_t blk_no, 211 int nbblks, 212 struct xfs_buf *bp, 213 char **offset) 214 { 215 int error; 216 217 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 218 if (error) 219 return error; 220 221 *offset = xlog_align(log, blk_no, nbblks, bp); 222 return 0; 223 } 224 225 /* 226 * Read at an offset into the buffer. Returns with the buffer in it's original 227 * state regardless of the result of the read. 228 */ 229 STATIC int 230 xlog_bread_offset( 231 struct xlog *log, 232 xfs_daddr_t blk_no, /* block to read from */ 233 int nbblks, /* blocks to read */ 234 struct xfs_buf *bp, 235 char *offset) 236 { 237 char *orig_offset = bp->b_addr; 238 int orig_len = BBTOB(bp->b_length); 239 int error, error2; 240 241 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 242 if (error) 243 return error; 244 245 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 246 247 /* must reset buffer pointer even on error */ 248 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 249 if (error) 250 return error; 251 return error2; 252 } 253 254 /* 255 * Write out the buffer at the given block for the given number of blocks. 256 * The buffer is kept locked across the write and is returned locked. 257 * This can only be used for synchronous log writes. 258 */ 259 STATIC int 260 xlog_bwrite( 261 struct xlog *log, 262 xfs_daddr_t blk_no, 263 int nbblks, 264 struct xfs_buf *bp) 265 { 266 int error; 267 268 if (!xlog_buf_bbcount_valid(log, nbblks)) { 269 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 270 nbblks); 271 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 272 return -EFSCORRUPTED; 273 } 274 275 blk_no = round_down(blk_no, log->l_sectBBsize); 276 nbblks = round_up(nbblks, log->l_sectBBsize); 277 278 ASSERT(nbblks > 0); 279 ASSERT(nbblks <= bp->b_length); 280 281 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 282 xfs_buf_hold(bp); 283 xfs_buf_lock(bp); 284 bp->b_io_length = nbblks; 285 bp->b_error = 0; 286 287 error = xfs_bwrite(bp); 288 if (error) 289 xfs_buf_ioerror_alert(bp, __func__); 290 xfs_buf_relse(bp); 291 return error; 292 } 293 294 #ifdef DEBUG 295 /* 296 * dump debug superblock and log record information 297 */ 298 STATIC void 299 xlog_header_check_dump( 300 xfs_mount_t *mp, 301 xlog_rec_header_t *head) 302 { 303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 305 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 307 } 308 #else 309 #define xlog_header_check_dump(mp, head) 310 #endif 311 312 /* 313 * check log record header for recovery 314 */ 315 STATIC int 316 xlog_header_check_recover( 317 xfs_mount_t *mp, 318 xlog_rec_header_t *head) 319 { 320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 321 322 /* 323 * IRIX doesn't write the h_fmt field and leaves it zeroed 324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 325 * a dirty log created in IRIX. 326 */ 327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 328 xfs_warn(mp, 329 "dirty log written in incompatible format - can't recover"); 330 xlog_header_check_dump(mp, head); 331 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 332 XFS_ERRLEVEL_HIGH, mp); 333 return -EFSCORRUPTED; 334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 335 xfs_warn(mp, 336 "dirty log entry has mismatched uuid - can't recover"); 337 xlog_header_check_dump(mp, head); 338 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 339 XFS_ERRLEVEL_HIGH, mp); 340 return -EFSCORRUPTED; 341 } 342 return 0; 343 } 344 345 /* 346 * read the head block of the log and check the header 347 */ 348 STATIC int 349 xlog_header_check_mount( 350 xfs_mount_t *mp, 351 xlog_rec_header_t *head) 352 { 353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 354 355 if (uuid_is_nil(&head->h_fs_uuid)) { 356 /* 357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 358 * h_fs_uuid is nil, we assume this log was last mounted 359 * by IRIX and continue. 360 */ 361 xfs_warn(mp, "nil uuid in log - IRIX style log"); 362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 363 xfs_warn(mp, "log has mismatched uuid - can't recover"); 364 xlog_header_check_dump(mp, head); 365 XFS_ERROR_REPORT("xlog_header_check_mount", 366 XFS_ERRLEVEL_HIGH, mp); 367 return -EFSCORRUPTED; 368 } 369 return 0; 370 } 371 372 STATIC void 373 xlog_recover_iodone( 374 struct xfs_buf *bp) 375 { 376 if (bp->b_error) { 377 /* 378 * We're not going to bother about retrying 379 * this during recovery. One strike! 380 */ 381 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 382 xfs_buf_ioerror_alert(bp, __func__); 383 xfs_force_shutdown(bp->b_target->bt_mount, 384 SHUTDOWN_META_IO_ERROR); 385 } 386 } 387 388 /* 389 * On v5 supers, a bli could be attached to update the metadata LSN. 390 * Clean it up. 391 */ 392 if (bp->b_fspriv) 393 xfs_buf_item_relse(bp); 394 ASSERT(bp->b_fspriv == NULL); 395 396 bp->b_iodone = NULL; 397 xfs_buf_ioend(bp); 398 } 399 400 /* 401 * This routine finds (to an approximation) the first block in the physical 402 * log which contains the given cycle. It uses a binary search algorithm. 403 * Note that the algorithm can not be perfect because the disk will not 404 * necessarily be perfect. 405 */ 406 STATIC int 407 xlog_find_cycle_start( 408 struct xlog *log, 409 struct xfs_buf *bp, 410 xfs_daddr_t first_blk, 411 xfs_daddr_t *last_blk, 412 uint cycle) 413 { 414 char *offset; 415 xfs_daddr_t mid_blk; 416 xfs_daddr_t end_blk; 417 uint mid_cycle; 418 int error; 419 420 end_blk = *last_blk; 421 mid_blk = BLK_AVG(first_blk, end_blk); 422 while (mid_blk != first_blk && mid_blk != end_blk) { 423 error = xlog_bread(log, mid_blk, 1, bp, &offset); 424 if (error) 425 return error; 426 mid_cycle = xlog_get_cycle(offset); 427 if (mid_cycle == cycle) 428 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 429 else 430 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 431 mid_blk = BLK_AVG(first_blk, end_blk); 432 } 433 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 434 (mid_blk == end_blk && mid_blk-1 == first_blk)); 435 436 *last_blk = end_blk; 437 438 return 0; 439 } 440 441 /* 442 * Check that a range of blocks does not contain stop_on_cycle_no. 443 * Fill in *new_blk with the block offset where such a block is 444 * found, or with -1 (an invalid block number) if there is no such 445 * block in the range. The scan needs to occur from front to back 446 * and the pointer into the region must be updated since a later 447 * routine will need to perform another test. 448 */ 449 STATIC int 450 xlog_find_verify_cycle( 451 struct xlog *log, 452 xfs_daddr_t start_blk, 453 int nbblks, 454 uint stop_on_cycle_no, 455 xfs_daddr_t *new_blk) 456 { 457 xfs_daddr_t i, j; 458 uint cycle; 459 xfs_buf_t *bp; 460 xfs_daddr_t bufblks; 461 char *buf = NULL; 462 int error = 0; 463 464 /* 465 * Greedily allocate a buffer big enough to handle the full 466 * range of basic blocks we'll be examining. If that fails, 467 * try a smaller size. We need to be able to read at least 468 * a log sector, or we're out of luck. 469 */ 470 bufblks = 1 << ffs(nbblks); 471 while (bufblks > log->l_logBBsize) 472 bufblks >>= 1; 473 while (!(bp = xlog_get_bp(log, bufblks))) { 474 bufblks >>= 1; 475 if (bufblks < log->l_sectBBsize) 476 return -ENOMEM; 477 } 478 479 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 480 int bcount; 481 482 bcount = min(bufblks, (start_blk + nbblks - i)); 483 484 error = xlog_bread(log, i, bcount, bp, &buf); 485 if (error) 486 goto out; 487 488 for (j = 0; j < bcount; j++) { 489 cycle = xlog_get_cycle(buf); 490 if (cycle == stop_on_cycle_no) { 491 *new_blk = i+j; 492 goto out; 493 } 494 495 buf += BBSIZE; 496 } 497 } 498 499 *new_blk = -1; 500 501 out: 502 xlog_put_bp(bp); 503 return error; 504 } 505 506 /* 507 * Potentially backup over partial log record write. 508 * 509 * In the typical case, last_blk is the number of the block directly after 510 * a good log record. Therefore, we subtract one to get the block number 511 * of the last block in the given buffer. extra_bblks contains the number 512 * of blocks we would have read on a previous read. This happens when the 513 * last log record is split over the end of the physical log. 514 * 515 * extra_bblks is the number of blocks potentially verified on a previous 516 * call to this routine. 517 */ 518 STATIC int 519 xlog_find_verify_log_record( 520 struct xlog *log, 521 xfs_daddr_t start_blk, 522 xfs_daddr_t *last_blk, 523 int extra_bblks) 524 { 525 xfs_daddr_t i; 526 xfs_buf_t *bp; 527 char *offset = NULL; 528 xlog_rec_header_t *head = NULL; 529 int error = 0; 530 int smallmem = 0; 531 int num_blks = *last_blk - start_blk; 532 int xhdrs; 533 534 ASSERT(start_blk != 0 || *last_blk != start_blk); 535 536 if (!(bp = xlog_get_bp(log, num_blks))) { 537 if (!(bp = xlog_get_bp(log, 1))) 538 return -ENOMEM; 539 smallmem = 1; 540 } else { 541 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 542 if (error) 543 goto out; 544 offset += ((num_blks - 1) << BBSHIFT); 545 } 546 547 for (i = (*last_blk) - 1; i >= 0; i--) { 548 if (i < start_blk) { 549 /* valid log record not found */ 550 xfs_warn(log->l_mp, 551 "Log inconsistent (didn't find previous header)"); 552 ASSERT(0); 553 error = -EIO; 554 goto out; 555 } 556 557 if (smallmem) { 558 error = xlog_bread(log, i, 1, bp, &offset); 559 if (error) 560 goto out; 561 } 562 563 head = (xlog_rec_header_t *)offset; 564 565 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 566 break; 567 568 if (!smallmem) 569 offset -= BBSIZE; 570 } 571 572 /* 573 * We hit the beginning of the physical log & still no header. Return 574 * to caller. If caller can handle a return of -1, then this routine 575 * will be called again for the end of the physical log. 576 */ 577 if (i == -1) { 578 error = 1; 579 goto out; 580 } 581 582 /* 583 * We have the final block of the good log (the first block 584 * of the log record _before_ the head. So we check the uuid. 585 */ 586 if ((error = xlog_header_check_mount(log->l_mp, head))) 587 goto out; 588 589 /* 590 * We may have found a log record header before we expected one. 591 * last_blk will be the 1st block # with a given cycle #. We may end 592 * up reading an entire log record. In this case, we don't want to 593 * reset last_blk. Only when last_blk points in the middle of a log 594 * record do we update last_blk. 595 */ 596 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 597 uint h_size = be32_to_cpu(head->h_size); 598 599 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 600 if (h_size % XLOG_HEADER_CYCLE_SIZE) 601 xhdrs++; 602 } else { 603 xhdrs = 1; 604 } 605 606 if (*last_blk - i + extra_bblks != 607 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 608 *last_blk = i; 609 610 out: 611 xlog_put_bp(bp); 612 return error; 613 } 614 615 /* 616 * Head is defined to be the point of the log where the next log write 617 * could go. This means that incomplete LR writes at the end are 618 * eliminated when calculating the head. We aren't guaranteed that previous 619 * LR have complete transactions. We only know that a cycle number of 620 * current cycle number -1 won't be present in the log if we start writing 621 * from our current block number. 622 * 623 * last_blk contains the block number of the first block with a given 624 * cycle number. 625 * 626 * Return: zero if normal, non-zero if error. 627 */ 628 STATIC int 629 xlog_find_head( 630 struct xlog *log, 631 xfs_daddr_t *return_head_blk) 632 { 633 xfs_buf_t *bp; 634 char *offset; 635 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 636 int num_scan_bblks; 637 uint first_half_cycle, last_half_cycle; 638 uint stop_on_cycle; 639 int error, log_bbnum = log->l_logBBsize; 640 641 /* Is the end of the log device zeroed? */ 642 error = xlog_find_zeroed(log, &first_blk); 643 if (error < 0) { 644 xfs_warn(log->l_mp, "empty log check failed"); 645 return error; 646 } 647 if (error == 1) { 648 *return_head_blk = first_blk; 649 650 /* Is the whole lot zeroed? */ 651 if (!first_blk) { 652 /* Linux XFS shouldn't generate totally zeroed logs - 653 * mkfs etc write a dummy unmount record to a fresh 654 * log so we can store the uuid in there 655 */ 656 xfs_warn(log->l_mp, "totally zeroed log"); 657 } 658 659 return 0; 660 } 661 662 first_blk = 0; /* get cycle # of 1st block */ 663 bp = xlog_get_bp(log, 1); 664 if (!bp) 665 return -ENOMEM; 666 667 error = xlog_bread(log, 0, 1, bp, &offset); 668 if (error) 669 goto bp_err; 670 671 first_half_cycle = xlog_get_cycle(offset); 672 673 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 674 error = xlog_bread(log, last_blk, 1, bp, &offset); 675 if (error) 676 goto bp_err; 677 678 last_half_cycle = xlog_get_cycle(offset); 679 ASSERT(last_half_cycle != 0); 680 681 /* 682 * If the 1st half cycle number is equal to the last half cycle number, 683 * then the entire log is stamped with the same cycle number. In this 684 * case, head_blk can't be set to zero (which makes sense). The below 685 * math doesn't work out properly with head_blk equal to zero. Instead, 686 * we set it to log_bbnum which is an invalid block number, but this 687 * value makes the math correct. If head_blk doesn't changed through 688 * all the tests below, *head_blk is set to zero at the very end rather 689 * than log_bbnum. In a sense, log_bbnum and zero are the same block 690 * in a circular file. 691 */ 692 if (first_half_cycle == last_half_cycle) { 693 /* 694 * In this case we believe that the entire log should have 695 * cycle number last_half_cycle. We need to scan backwards 696 * from the end verifying that there are no holes still 697 * containing last_half_cycle - 1. If we find such a hole, 698 * then the start of that hole will be the new head. The 699 * simple case looks like 700 * x | x ... | x - 1 | x 701 * Another case that fits this picture would be 702 * x | x + 1 | x ... | x 703 * In this case the head really is somewhere at the end of the 704 * log, as one of the latest writes at the beginning was 705 * incomplete. 706 * One more case is 707 * x | x + 1 | x ... | x - 1 | x 708 * This is really the combination of the above two cases, and 709 * the head has to end up at the start of the x-1 hole at the 710 * end of the log. 711 * 712 * In the 256k log case, we will read from the beginning to the 713 * end of the log and search for cycle numbers equal to x-1. 714 * We don't worry about the x+1 blocks that we encounter, 715 * because we know that they cannot be the head since the log 716 * started with x. 717 */ 718 head_blk = log_bbnum; 719 stop_on_cycle = last_half_cycle - 1; 720 } else { 721 /* 722 * In this case we want to find the first block with cycle 723 * number matching last_half_cycle. We expect the log to be 724 * some variation on 725 * x + 1 ... | x ... | x 726 * The first block with cycle number x (last_half_cycle) will 727 * be where the new head belongs. First we do a binary search 728 * for the first occurrence of last_half_cycle. The binary 729 * search may not be totally accurate, so then we scan back 730 * from there looking for occurrences of last_half_cycle before 731 * us. If that backwards scan wraps around the beginning of 732 * the log, then we look for occurrences of last_half_cycle - 1 733 * at the end of the log. The cases we're looking for look 734 * like 735 * v binary search stopped here 736 * x + 1 ... | x | x + 1 | x ... | x 737 * ^ but we want to locate this spot 738 * or 739 * <---------> less than scan distance 740 * x + 1 ... | x ... | x - 1 | x 741 * ^ we want to locate this spot 742 */ 743 stop_on_cycle = last_half_cycle; 744 if ((error = xlog_find_cycle_start(log, bp, first_blk, 745 &head_blk, last_half_cycle))) 746 goto bp_err; 747 } 748 749 /* 750 * Now validate the answer. Scan back some number of maximum possible 751 * blocks and make sure each one has the expected cycle number. The 752 * maximum is determined by the total possible amount of buffering 753 * in the in-core log. The following number can be made tighter if 754 * we actually look at the block size of the filesystem. 755 */ 756 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 757 if (head_blk >= num_scan_bblks) { 758 /* 759 * We are guaranteed that the entire check can be performed 760 * in one buffer. 761 */ 762 start_blk = head_blk - num_scan_bblks; 763 if ((error = xlog_find_verify_cycle(log, 764 start_blk, num_scan_bblks, 765 stop_on_cycle, &new_blk))) 766 goto bp_err; 767 if (new_blk != -1) 768 head_blk = new_blk; 769 } else { /* need to read 2 parts of log */ 770 /* 771 * We are going to scan backwards in the log in two parts. 772 * First we scan the physical end of the log. In this part 773 * of the log, we are looking for blocks with cycle number 774 * last_half_cycle - 1. 775 * If we find one, then we know that the log starts there, as 776 * we've found a hole that didn't get written in going around 777 * the end of the physical log. The simple case for this is 778 * x + 1 ... | x ... | x - 1 | x 779 * <---------> less than scan distance 780 * If all of the blocks at the end of the log have cycle number 781 * last_half_cycle, then we check the blocks at the start of 782 * the log looking for occurrences of last_half_cycle. If we 783 * find one, then our current estimate for the location of the 784 * first occurrence of last_half_cycle is wrong and we move 785 * back to the hole we've found. This case looks like 786 * x + 1 ... | x | x + 1 | x ... 787 * ^ binary search stopped here 788 * Another case we need to handle that only occurs in 256k 789 * logs is 790 * x + 1 ... | x ... | x+1 | x ... 791 * ^ binary search stops here 792 * In a 256k log, the scan at the end of the log will see the 793 * x + 1 blocks. We need to skip past those since that is 794 * certainly not the head of the log. By searching for 795 * last_half_cycle-1 we accomplish that. 796 */ 797 ASSERT(head_blk <= INT_MAX && 798 (xfs_daddr_t) num_scan_bblks >= head_blk); 799 start_blk = log_bbnum - (num_scan_bblks - head_blk); 800 if ((error = xlog_find_verify_cycle(log, start_blk, 801 num_scan_bblks - (int)head_blk, 802 (stop_on_cycle - 1), &new_blk))) 803 goto bp_err; 804 if (new_blk != -1) { 805 head_blk = new_blk; 806 goto validate_head; 807 } 808 809 /* 810 * Scan beginning of log now. The last part of the physical 811 * log is good. This scan needs to verify that it doesn't find 812 * the last_half_cycle. 813 */ 814 start_blk = 0; 815 ASSERT(head_blk <= INT_MAX); 816 if ((error = xlog_find_verify_cycle(log, 817 start_blk, (int)head_blk, 818 stop_on_cycle, &new_blk))) 819 goto bp_err; 820 if (new_blk != -1) 821 head_blk = new_blk; 822 } 823 824 validate_head: 825 /* 826 * Now we need to make sure head_blk is not pointing to a block in 827 * the middle of a log record. 828 */ 829 num_scan_bblks = XLOG_REC_SHIFT(log); 830 if (head_blk >= num_scan_bblks) { 831 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 832 833 /* start ptr at last block ptr before head_blk */ 834 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 835 if (error == 1) 836 error = -EIO; 837 if (error) 838 goto bp_err; 839 } else { 840 start_blk = 0; 841 ASSERT(head_blk <= INT_MAX); 842 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 843 if (error < 0) 844 goto bp_err; 845 if (error == 1) { 846 /* We hit the beginning of the log during our search */ 847 start_blk = log_bbnum - (num_scan_bblks - head_blk); 848 new_blk = log_bbnum; 849 ASSERT(start_blk <= INT_MAX && 850 (xfs_daddr_t) log_bbnum-start_blk >= 0); 851 ASSERT(head_blk <= INT_MAX); 852 error = xlog_find_verify_log_record(log, start_blk, 853 &new_blk, (int)head_blk); 854 if (error == 1) 855 error = -EIO; 856 if (error) 857 goto bp_err; 858 if (new_blk != log_bbnum) 859 head_blk = new_blk; 860 } else if (error) 861 goto bp_err; 862 } 863 864 xlog_put_bp(bp); 865 if (head_blk == log_bbnum) 866 *return_head_blk = 0; 867 else 868 *return_head_blk = head_blk; 869 /* 870 * When returning here, we have a good block number. Bad block 871 * means that during a previous crash, we didn't have a clean break 872 * from cycle number N to cycle number N-1. In this case, we need 873 * to find the first block with cycle number N-1. 874 */ 875 return 0; 876 877 bp_err: 878 xlog_put_bp(bp); 879 880 if (error) 881 xfs_warn(log->l_mp, "failed to find log head"); 882 return error; 883 } 884 885 /* 886 * Seek backwards in the log for log record headers. 887 * 888 * Given a starting log block, walk backwards until we find the provided number 889 * of records or hit the provided tail block. The return value is the number of 890 * records encountered or a negative error code. The log block and buffer 891 * pointer of the last record seen are returned in rblk and rhead respectively. 892 */ 893 STATIC int 894 xlog_rseek_logrec_hdr( 895 struct xlog *log, 896 xfs_daddr_t head_blk, 897 xfs_daddr_t tail_blk, 898 int count, 899 struct xfs_buf *bp, 900 xfs_daddr_t *rblk, 901 struct xlog_rec_header **rhead, 902 bool *wrapped) 903 { 904 int i; 905 int error; 906 int found = 0; 907 char *offset = NULL; 908 xfs_daddr_t end_blk; 909 910 *wrapped = false; 911 912 /* 913 * Walk backwards from the head block until we hit the tail or the first 914 * block in the log. 915 */ 916 end_blk = head_blk > tail_blk ? tail_blk : 0; 917 for (i = (int) head_blk - 1; i >= end_blk; i--) { 918 error = xlog_bread(log, i, 1, bp, &offset); 919 if (error) 920 goto out_error; 921 922 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 923 *rblk = i; 924 *rhead = (struct xlog_rec_header *) offset; 925 if (++found == count) 926 break; 927 } 928 } 929 930 /* 931 * If we haven't hit the tail block or the log record header count, 932 * start looking again from the end of the physical log. Note that 933 * callers can pass head == tail if the tail is not yet known. 934 */ 935 if (tail_blk >= head_blk && found != count) { 936 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 937 error = xlog_bread(log, i, 1, bp, &offset); 938 if (error) 939 goto out_error; 940 941 if (*(__be32 *)offset == 942 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 943 *wrapped = true; 944 *rblk = i; 945 *rhead = (struct xlog_rec_header *) offset; 946 if (++found == count) 947 break; 948 } 949 } 950 } 951 952 return found; 953 954 out_error: 955 return error; 956 } 957 958 /* 959 * Seek forward in the log for log record headers. 960 * 961 * Given head and tail blocks, walk forward from the tail block until we find 962 * the provided number of records or hit the head block. The return value is the 963 * number of records encountered or a negative error code. The log block and 964 * buffer pointer of the last record seen are returned in rblk and rhead 965 * respectively. 966 */ 967 STATIC int 968 xlog_seek_logrec_hdr( 969 struct xlog *log, 970 xfs_daddr_t head_blk, 971 xfs_daddr_t tail_blk, 972 int count, 973 struct xfs_buf *bp, 974 xfs_daddr_t *rblk, 975 struct xlog_rec_header **rhead, 976 bool *wrapped) 977 { 978 int i; 979 int error; 980 int found = 0; 981 char *offset = NULL; 982 xfs_daddr_t end_blk; 983 984 *wrapped = false; 985 986 /* 987 * Walk forward from the tail block until we hit the head or the last 988 * block in the log. 989 */ 990 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 991 for (i = (int) tail_blk; i <= end_blk; i++) { 992 error = xlog_bread(log, i, 1, bp, &offset); 993 if (error) 994 goto out_error; 995 996 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 997 *rblk = i; 998 *rhead = (struct xlog_rec_header *) offset; 999 if (++found == count) 1000 break; 1001 } 1002 } 1003 1004 /* 1005 * If we haven't hit the head block or the log record header count, 1006 * start looking again from the start of the physical log. 1007 */ 1008 if (tail_blk > head_blk && found != count) { 1009 for (i = 0; i < (int) head_blk; i++) { 1010 error = xlog_bread(log, i, 1, bp, &offset); 1011 if (error) 1012 goto out_error; 1013 1014 if (*(__be32 *)offset == 1015 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 1016 *wrapped = true; 1017 *rblk = i; 1018 *rhead = (struct xlog_rec_header *) offset; 1019 if (++found == count) 1020 break; 1021 } 1022 } 1023 } 1024 1025 return found; 1026 1027 out_error: 1028 return error; 1029 } 1030 1031 /* 1032 * Check the log tail for torn writes. This is required when torn writes are 1033 * detected at the head and the head had to be walked back to a previous record. 1034 * The tail of the previous record must now be verified to ensure the torn 1035 * writes didn't corrupt the previous tail. 1036 * 1037 * Return an error if CRC verification fails as recovery cannot proceed. 1038 */ 1039 STATIC int 1040 xlog_verify_tail( 1041 struct xlog *log, 1042 xfs_daddr_t head_blk, 1043 xfs_daddr_t tail_blk) 1044 { 1045 struct xlog_rec_header *thead; 1046 struct xfs_buf *bp; 1047 xfs_daddr_t first_bad; 1048 int count; 1049 int error = 0; 1050 bool wrapped; 1051 xfs_daddr_t tmp_head; 1052 1053 bp = xlog_get_bp(log, 1); 1054 if (!bp) 1055 return -ENOMEM; 1056 1057 /* 1058 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get 1059 * a temporary head block that points after the last possible 1060 * concurrently written record of the tail. 1061 */ 1062 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk, 1063 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead, 1064 &wrapped); 1065 if (count < 0) { 1066 error = count; 1067 goto out; 1068 } 1069 1070 /* 1071 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran 1072 * into the actual log head. tmp_head points to the start of the record 1073 * so update it to the actual head block. 1074 */ 1075 if (count < XLOG_MAX_ICLOGS + 1) 1076 tmp_head = head_blk; 1077 1078 /* 1079 * We now have a tail and temporary head block that covers at least 1080 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these 1081 * records were completely written. Run a CRC verification pass from 1082 * tail to head and return the result. 1083 */ 1084 error = xlog_do_recovery_pass(log, tmp_head, tail_blk, 1085 XLOG_RECOVER_CRCPASS, &first_bad); 1086 1087 out: 1088 xlog_put_bp(bp); 1089 return error; 1090 } 1091 1092 /* 1093 * Detect and trim torn writes from the head of the log. 1094 * 1095 * Storage without sector atomicity guarantees can result in torn writes in the 1096 * log in the event of a crash. Our only means to detect this scenario is via 1097 * CRC verification. While we can't always be certain that CRC verification 1098 * failure is due to a torn write vs. an unrelated corruption, we do know that 1099 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1100 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1101 * the log and treat failures in this range as torn writes as a matter of 1102 * policy. In the event of CRC failure, the head is walked back to the last good 1103 * record in the log and the tail is updated from that record and verified. 1104 */ 1105 STATIC int 1106 xlog_verify_head( 1107 struct xlog *log, 1108 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1109 xfs_daddr_t *tail_blk, /* out: tail block */ 1110 struct xfs_buf *bp, 1111 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1112 struct xlog_rec_header **rhead, /* ptr to last record */ 1113 bool *wrapped) /* last rec. wraps phys. log */ 1114 { 1115 struct xlog_rec_header *tmp_rhead; 1116 struct xfs_buf *tmp_bp; 1117 xfs_daddr_t first_bad; 1118 xfs_daddr_t tmp_rhead_blk; 1119 int found; 1120 int error; 1121 bool tmp_wrapped; 1122 1123 /* 1124 * Check the head of the log for torn writes. Search backwards from the 1125 * head until we hit the tail or the maximum number of log record I/Os 1126 * that could have been in flight at one time. Use a temporary buffer so 1127 * we don't trash the rhead/bp pointers from the caller. 1128 */ 1129 tmp_bp = xlog_get_bp(log, 1); 1130 if (!tmp_bp) 1131 return -ENOMEM; 1132 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1133 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk, 1134 &tmp_rhead, &tmp_wrapped); 1135 xlog_put_bp(tmp_bp); 1136 if (error < 0) 1137 return error; 1138 1139 /* 1140 * Now run a CRC verification pass over the records starting at the 1141 * block found above to the current head. If a CRC failure occurs, the 1142 * log block of the first bad record is saved in first_bad. 1143 */ 1144 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1145 XLOG_RECOVER_CRCPASS, &first_bad); 1146 if (error == -EFSBADCRC) { 1147 /* 1148 * We've hit a potential torn write. Reset the error and warn 1149 * about it. 1150 */ 1151 error = 0; 1152 xfs_warn(log->l_mp, 1153 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1154 first_bad, *head_blk); 1155 1156 /* 1157 * Get the header block and buffer pointer for the last good 1158 * record before the bad record. 1159 * 1160 * Note that xlog_find_tail() clears the blocks at the new head 1161 * (i.e., the records with invalid CRC) if the cycle number 1162 * matches the the current cycle. 1163 */ 1164 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp, 1165 rhead_blk, rhead, wrapped); 1166 if (found < 0) 1167 return found; 1168 if (found == 0) /* XXX: right thing to do here? */ 1169 return -EIO; 1170 1171 /* 1172 * Reset the head block to the starting block of the first bad 1173 * log record and set the tail block based on the last good 1174 * record. 1175 * 1176 * Bail out if the updated head/tail match as this indicates 1177 * possible corruption outside of the acceptable 1178 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1179 */ 1180 *head_blk = first_bad; 1181 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1182 if (*head_blk == *tail_blk) { 1183 ASSERT(0); 1184 return 0; 1185 } 1186 1187 /* 1188 * Now verify the tail based on the updated head. This is 1189 * required because the torn writes trimmed from the head could 1190 * have been written over the tail of a previous record. Return 1191 * any errors since recovery cannot proceed if the tail is 1192 * corrupt. 1193 * 1194 * XXX: This leaves a gap in truly robust protection from torn 1195 * writes in the log. If the head is behind the tail, the tail 1196 * pushes forward to create some space and then a crash occurs 1197 * causing the writes into the previous record's tail region to 1198 * tear, log recovery isn't able to recover. 1199 * 1200 * How likely is this to occur? If possible, can we do something 1201 * more intelligent here? Is it safe to push the tail forward if 1202 * we can determine that the tail is within the range of the 1203 * torn write (e.g., the kernel can only overwrite the tail if 1204 * it has actually been pushed forward)? Alternatively, could we 1205 * somehow prevent this condition at runtime? 1206 */ 1207 error = xlog_verify_tail(log, *head_blk, *tail_blk); 1208 } 1209 1210 return error; 1211 } 1212 1213 /* 1214 * Check whether the head of the log points to an unmount record. In other 1215 * words, determine whether the log is clean. If so, update the in-core state 1216 * appropriately. 1217 */ 1218 static int 1219 xlog_check_unmount_rec( 1220 struct xlog *log, 1221 xfs_daddr_t *head_blk, 1222 xfs_daddr_t *tail_blk, 1223 struct xlog_rec_header *rhead, 1224 xfs_daddr_t rhead_blk, 1225 struct xfs_buf *bp, 1226 bool *clean) 1227 { 1228 struct xlog_op_header *op_head; 1229 xfs_daddr_t umount_data_blk; 1230 xfs_daddr_t after_umount_blk; 1231 int hblks; 1232 int error; 1233 char *offset; 1234 1235 *clean = false; 1236 1237 /* 1238 * Look for unmount record. If we find it, then we know there was a 1239 * clean unmount. Since 'i' could be the last block in the physical 1240 * log, we convert to a log block before comparing to the head_blk. 1241 * 1242 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1243 * below. We won't want to clear the unmount record if there is one, so 1244 * we pass the lsn of the unmount record rather than the block after it. 1245 */ 1246 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1247 int h_size = be32_to_cpu(rhead->h_size); 1248 int h_version = be32_to_cpu(rhead->h_version); 1249 1250 if ((h_version & XLOG_VERSION_2) && 1251 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 1252 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 1253 if (h_size % XLOG_HEADER_CYCLE_SIZE) 1254 hblks++; 1255 } else { 1256 hblks = 1; 1257 } 1258 } else { 1259 hblks = 1; 1260 } 1261 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)); 1262 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize); 1263 if (*head_blk == after_umount_blk && 1264 be32_to_cpu(rhead->h_num_logops) == 1) { 1265 umount_data_blk = rhead_blk + hblks; 1266 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize); 1267 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1268 if (error) 1269 return error; 1270 1271 op_head = (struct xlog_op_header *)offset; 1272 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1273 /* 1274 * Set tail and last sync so that newly written log 1275 * records will point recovery to after the current 1276 * unmount record. 1277 */ 1278 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1279 log->l_curr_cycle, after_umount_blk); 1280 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1281 log->l_curr_cycle, after_umount_blk); 1282 *tail_blk = after_umount_blk; 1283 1284 *clean = true; 1285 } 1286 } 1287 1288 return 0; 1289 } 1290 1291 static void 1292 xlog_set_state( 1293 struct xlog *log, 1294 xfs_daddr_t head_blk, 1295 struct xlog_rec_header *rhead, 1296 xfs_daddr_t rhead_blk, 1297 bool bump_cycle) 1298 { 1299 /* 1300 * Reset log values according to the state of the log when we 1301 * crashed. In the case where head_blk == 0, we bump curr_cycle 1302 * one because the next write starts a new cycle rather than 1303 * continuing the cycle of the last good log record. At this 1304 * point we have guaranteed that all partial log records have been 1305 * accounted for. Therefore, we know that the last good log record 1306 * written was complete and ended exactly on the end boundary 1307 * of the physical log. 1308 */ 1309 log->l_prev_block = rhead_blk; 1310 log->l_curr_block = (int)head_blk; 1311 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1312 if (bump_cycle) 1313 log->l_curr_cycle++; 1314 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1315 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 1316 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, 1317 BBTOB(log->l_curr_block)); 1318 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, 1319 BBTOB(log->l_curr_block)); 1320 } 1321 1322 /* 1323 * Find the sync block number or the tail of the log. 1324 * 1325 * This will be the block number of the last record to have its 1326 * associated buffers synced to disk. Every log record header has 1327 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1328 * to get a sync block number. The only concern is to figure out which 1329 * log record header to believe. 1330 * 1331 * The following algorithm uses the log record header with the largest 1332 * lsn. The entire log record does not need to be valid. We only care 1333 * that the header is valid. 1334 * 1335 * We could speed up search by using current head_blk buffer, but it is not 1336 * available. 1337 */ 1338 STATIC int 1339 xlog_find_tail( 1340 struct xlog *log, 1341 xfs_daddr_t *head_blk, 1342 xfs_daddr_t *tail_blk) 1343 { 1344 xlog_rec_header_t *rhead; 1345 char *offset = NULL; 1346 xfs_buf_t *bp; 1347 int error; 1348 xfs_daddr_t rhead_blk; 1349 xfs_lsn_t tail_lsn; 1350 bool wrapped = false; 1351 bool clean = false; 1352 1353 /* 1354 * Find previous log record 1355 */ 1356 if ((error = xlog_find_head(log, head_blk))) 1357 return error; 1358 ASSERT(*head_blk < INT_MAX); 1359 1360 bp = xlog_get_bp(log, 1); 1361 if (!bp) 1362 return -ENOMEM; 1363 if (*head_blk == 0) { /* special case */ 1364 error = xlog_bread(log, 0, 1, bp, &offset); 1365 if (error) 1366 goto done; 1367 1368 if (xlog_get_cycle(offset) == 0) { 1369 *tail_blk = 0; 1370 /* leave all other log inited values alone */ 1371 goto done; 1372 } 1373 } 1374 1375 /* 1376 * Search backwards through the log looking for the log record header 1377 * block. This wraps all the way back around to the head so something is 1378 * seriously wrong if we can't find it. 1379 */ 1380 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, 1381 &rhead_blk, &rhead, &wrapped); 1382 if (error < 0) 1383 return error; 1384 if (!error) { 1385 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1386 return -EIO; 1387 } 1388 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1389 1390 /* 1391 * Set the log state based on the current head record. 1392 */ 1393 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1394 tail_lsn = atomic64_read(&log->l_tail_lsn); 1395 1396 /* 1397 * Look for an unmount record at the head of the log. This sets the log 1398 * state to determine whether recovery is necessary. 1399 */ 1400 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1401 rhead_blk, bp, &clean); 1402 if (error) 1403 goto done; 1404 1405 /* 1406 * Verify the log head if the log is not clean (e.g., we have anything 1407 * but an unmount record at the head). This uses CRC verification to 1408 * detect and trim torn writes. If discovered, CRC failures are 1409 * considered torn writes and the log head is trimmed accordingly. 1410 * 1411 * Note that we can only run CRC verification when the log is dirty 1412 * because there's no guarantee that the log data behind an unmount 1413 * record is compatible with the current architecture. 1414 */ 1415 if (!clean) { 1416 xfs_daddr_t orig_head = *head_blk; 1417 1418 error = xlog_verify_head(log, head_blk, tail_blk, bp, 1419 &rhead_blk, &rhead, &wrapped); 1420 if (error) 1421 goto done; 1422 1423 /* update in-core state again if the head changed */ 1424 if (*head_blk != orig_head) { 1425 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1426 wrapped); 1427 tail_lsn = atomic64_read(&log->l_tail_lsn); 1428 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1429 rhead, rhead_blk, bp, 1430 &clean); 1431 if (error) 1432 goto done; 1433 } 1434 } 1435 1436 /* 1437 * Note that the unmount was clean. If the unmount was not clean, we 1438 * need to know this to rebuild the superblock counters from the perag 1439 * headers if we have a filesystem using non-persistent counters. 1440 */ 1441 if (clean) 1442 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1443 1444 /* 1445 * Make sure that there are no blocks in front of the head 1446 * with the same cycle number as the head. This can happen 1447 * because we allow multiple outstanding log writes concurrently, 1448 * and the later writes might make it out before earlier ones. 1449 * 1450 * We use the lsn from before modifying it so that we'll never 1451 * overwrite the unmount record after a clean unmount. 1452 * 1453 * Do this only if we are going to recover the filesystem 1454 * 1455 * NOTE: This used to say "if (!readonly)" 1456 * However on Linux, we can & do recover a read-only filesystem. 1457 * We only skip recovery if NORECOVERY is specified on mount, 1458 * in which case we would not be here. 1459 * 1460 * But... if the -device- itself is readonly, just skip this. 1461 * We can't recover this device anyway, so it won't matter. 1462 */ 1463 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1464 error = xlog_clear_stale_blocks(log, tail_lsn); 1465 1466 done: 1467 xlog_put_bp(bp); 1468 1469 if (error) 1470 xfs_warn(log->l_mp, "failed to locate log tail"); 1471 return error; 1472 } 1473 1474 /* 1475 * Is the log zeroed at all? 1476 * 1477 * The last binary search should be changed to perform an X block read 1478 * once X becomes small enough. You can then search linearly through 1479 * the X blocks. This will cut down on the number of reads we need to do. 1480 * 1481 * If the log is partially zeroed, this routine will pass back the blkno 1482 * of the first block with cycle number 0. It won't have a complete LR 1483 * preceding it. 1484 * 1485 * Return: 1486 * 0 => the log is completely written to 1487 * 1 => use *blk_no as the first block of the log 1488 * <0 => error has occurred 1489 */ 1490 STATIC int 1491 xlog_find_zeroed( 1492 struct xlog *log, 1493 xfs_daddr_t *blk_no) 1494 { 1495 xfs_buf_t *bp; 1496 char *offset; 1497 uint first_cycle, last_cycle; 1498 xfs_daddr_t new_blk, last_blk, start_blk; 1499 xfs_daddr_t num_scan_bblks; 1500 int error, log_bbnum = log->l_logBBsize; 1501 1502 *blk_no = 0; 1503 1504 /* check totally zeroed log */ 1505 bp = xlog_get_bp(log, 1); 1506 if (!bp) 1507 return -ENOMEM; 1508 error = xlog_bread(log, 0, 1, bp, &offset); 1509 if (error) 1510 goto bp_err; 1511 1512 first_cycle = xlog_get_cycle(offset); 1513 if (first_cycle == 0) { /* completely zeroed log */ 1514 *blk_no = 0; 1515 xlog_put_bp(bp); 1516 return 1; 1517 } 1518 1519 /* check partially zeroed log */ 1520 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1521 if (error) 1522 goto bp_err; 1523 1524 last_cycle = xlog_get_cycle(offset); 1525 if (last_cycle != 0) { /* log completely written to */ 1526 xlog_put_bp(bp); 1527 return 0; 1528 } else if (first_cycle != 1) { 1529 /* 1530 * If the cycle of the last block is zero, the cycle of 1531 * the first block must be 1. If it's not, maybe we're 1532 * not looking at a log... Bail out. 1533 */ 1534 xfs_warn(log->l_mp, 1535 "Log inconsistent or not a log (last==0, first!=1)"); 1536 error = -EINVAL; 1537 goto bp_err; 1538 } 1539 1540 /* we have a partially zeroed log */ 1541 last_blk = log_bbnum-1; 1542 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1543 goto bp_err; 1544 1545 /* 1546 * Validate the answer. Because there is no way to guarantee that 1547 * the entire log is made up of log records which are the same size, 1548 * we scan over the defined maximum blocks. At this point, the maximum 1549 * is not chosen to mean anything special. XXXmiken 1550 */ 1551 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1552 ASSERT(num_scan_bblks <= INT_MAX); 1553 1554 if (last_blk < num_scan_bblks) 1555 num_scan_bblks = last_blk; 1556 start_blk = last_blk - num_scan_bblks; 1557 1558 /* 1559 * We search for any instances of cycle number 0 that occur before 1560 * our current estimate of the head. What we're trying to detect is 1561 * 1 ... | 0 | 1 | 0... 1562 * ^ binary search ends here 1563 */ 1564 if ((error = xlog_find_verify_cycle(log, start_blk, 1565 (int)num_scan_bblks, 0, &new_blk))) 1566 goto bp_err; 1567 if (new_blk != -1) 1568 last_blk = new_blk; 1569 1570 /* 1571 * Potentially backup over partial log record write. We don't need 1572 * to search the end of the log because we know it is zero. 1573 */ 1574 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1575 if (error == 1) 1576 error = -EIO; 1577 if (error) 1578 goto bp_err; 1579 1580 *blk_no = last_blk; 1581 bp_err: 1582 xlog_put_bp(bp); 1583 if (error) 1584 return error; 1585 return 1; 1586 } 1587 1588 /* 1589 * These are simple subroutines used by xlog_clear_stale_blocks() below 1590 * to initialize a buffer full of empty log record headers and write 1591 * them into the log. 1592 */ 1593 STATIC void 1594 xlog_add_record( 1595 struct xlog *log, 1596 char *buf, 1597 int cycle, 1598 int block, 1599 int tail_cycle, 1600 int tail_block) 1601 { 1602 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1603 1604 memset(buf, 0, BBSIZE); 1605 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1606 recp->h_cycle = cpu_to_be32(cycle); 1607 recp->h_version = cpu_to_be32( 1608 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1609 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1610 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1611 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1612 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1613 } 1614 1615 STATIC int 1616 xlog_write_log_records( 1617 struct xlog *log, 1618 int cycle, 1619 int start_block, 1620 int blocks, 1621 int tail_cycle, 1622 int tail_block) 1623 { 1624 char *offset; 1625 xfs_buf_t *bp; 1626 int balign, ealign; 1627 int sectbb = log->l_sectBBsize; 1628 int end_block = start_block + blocks; 1629 int bufblks; 1630 int error = 0; 1631 int i, j = 0; 1632 1633 /* 1634 * Greedily allocate a buffer big enough to handle the full 1635 * range of basic blocks to be written. If that fails, try 1636 * a smaller size. We need to be able to write at least a 1637 * log sector, or we're out of luck. 1638 */ 1639 bufblks = 1 << ffs(blocks); 1640 while (bufblks > log->l_logBBsize) 1641 bufblks >>= 1; 1642 while (!(bp = xlog_get_bp(log, bufblks))) { 1643 bufblks >>= 1; 1644 if (bufblks < sectbb) 1645 return -ENOMEM; 1646 } 1647 1648 /* We may need to do a read at the start to fill in part of 1649 * the buffer in the starting sector not covered by the first 1650 * write below. 1651 */ 1652 balign = round_down(start_block, sectbb); 1653 if (balign != start_block) { 1654 error = xlog_bread_noalign(log, start_block, 1, bp); 1655 if (error) 1656 goto out_put_bp; 1657 1658 j = start_block - balign; 1659 } 1660 1661 for (i = start_block; i < end_block; i += bufblks) { 1662 int bcount, endcount; 1663 1664 bcount = min(bufblks, end_block - start_block); 1665 endcount = bcount - j; 1666 1667 /* We may need to do a read at the end to fill in part of 1668 * the buffer in the final sector not covered by the write. 1669 * If this is the same sector as the above read, skip it. 1670 */ 1671 ealign = round_down(end_block, sectbb); 1672 if (j == 0 && (start_block + endcount > ealign)) { 1673 offset = bp->b_addr + BBTOB(ealign - start_block); 1674 error = xlog_bread_offset(log, ealign, sectbb, 1675 bp, offset); 1676 if (error) 1677 break; 1678 1679 } 1680 1681 offset = xlog_align(log, start_block, endcount, bp); 1682 for (; j < endcount; j++) { 1683 xlog_add_record(log, offset, cycle, i+j, 1684 tail_cycle, tail_block); 1685 offset += BBSIZE; 1686 } 1687 error = xlog_bwrite(log, start_block, endcount, bp); 1688 if (error) 1689 break; 1690 start_block += endcount; 1691 j = 0; 1692 } 1693 1694 out_put_bp: 1695 xlog_put_bp(bp); 1696 return error; 1697 } 1698 1699 /* 1700 * This routine is called to blow away any incomplete log writes out 1701 * in front of the log head. We do this so that we won't become confused 1702 * if we come up, write only a little bit more, and then crash again. 1703 * If we leave the partial log records out there, this situation could 1704 * cause us to think those partial writes are valid blocks since they 1705 * have the current cycle number. We get rid of them by overwriting them 1706 * with empty log records with the old cycle number rather than the 1707 * current one. 1708 * 1709 * The tail lsn is passed in rather than taken from 1710 * the log so that we will not write over the unmount record after a 1711 * clean unmount in a 512 block log. Doing so would leave the log without 1712 * any valid log records in it until a new one was written. If we crashed 1713 * during that time we would not be able to recover. 1714 */ 1715 STATIC int 1716 xlog_clear_stale_blocks( 1717 struct xlog *log, 1718 xfs_lsn_t tail_lsn) 1719 { 1720 int tail_cycle, head_cycle; 1721 int tail_block, head_block; 1722 int tail_distance, max_distance; 1723 int distance; 1724 int error; 1725 1726 tail_cycle = CYCLE_LSN(tail_lsn); 1727 tail_block = BLOCK_LSN(tail_lsn); 1728 head_cycle = log->l_curr_cycle; 1729 head_block = log->l_curr_block; 1730 1731 /* 1732 * Figure out the distance between the new head of the log 1733 * and the tail. We want to write over any blocks beyond the 1734 * head that we may have written just before the crash, but 1735 * we don't want to overwrite the tail of the log. 1736 */ 1737 if (head_cycle == tail_cycle) { 1738 /* 1739 * The tail is behind the head in the physical log, 1740 * so the distance from the head to the tail is the 1741 * distance from the head to the end of the log plus 1742 * the distance from the beginning of the log to the 1743 * tail. 1744 */ 1745 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1747 XFS_ERRLEVEL_LOW, log->l_mp); 1748 return -EFSCORRUPTED; 1749 } 1750 tail_distance = tail_block + (log->l_logBBsize - head_block); 1751 } else { 1752 /* 1753 * The head is behind the tail in the physical log, 1754 * so the distance from the head to the tail is just 1755 * the tail block minus the head block. 1756 */ 1757 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1758 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1759 XFS_ERRLEVEL_LOW, log->l_mp); 1760 return -EFSCORRUPTED; 1761 } 1762 tail_distance = tail_block - head_block; 1763 } 1764 1765 /* 1766 * If the head is right up against the tail, we can't clear 1767 * anything. 1768 */ 1769 if (tail_distance <= 0) { 1770 ASSERT(tail_distance == 0); 1771 return 0; 1772 } 1773 1774 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1775 /* 1776 * Take the smaller of the maximum amount of outstanding I/O 1777 * we could have and the distance to the tail to clear out. 1778 * We take the smaller so that we don't overwrite the tail and 1779 * we don't waste all day writing from the head to the tail 1780 * for no reason. 1781 */ 1782 max_distance = MIN(max_distance, tail_distance); 1783 1784 if ((head_block + max_distance) <= log->l_logBBsize) { 1785 /* 1786 * We can stomp all the blocks we need to without 1787 * wrapping around the end of the log. Just do it 1788 * in a single write. Use the cycle number of the 1789 * current cycle minus one so that the log will look like: 1790 * n ... | n - 1 ... 1791 */ 1792 error = xlog_write_log_records(log, (head_cycle - 1), 1793 head_block, max_distance, tail_cycle, 1794 tail_block); 1795 if (error) 1796 return error; 1797 } else { 1798 /* 1799 * We need to wrap around the end of the physical log in 1800 * order to clear all the blocks. Do it in two separate 1801 * I/Os. The first write should be from the head to the 1802 * end of the physical log, and it should use the current 1803 * cycle number minus one just like above. 1804 */ 1805 distance = log->l_logBBsize - head_block; 1806 error = xlog_write_log_records(log, (head_cycle - 1), 1807 head_block, distance, tail_cycle, 1808 tail_block); 1809 1810 if (error) 1811 return error; 1812 1813 /* 1814 * Now write the blocks at the start of the physical log. 1815 * This writes the remainder of the blocks we want to clear. 1816 * It uses the current cycle number since we're now on the 1817 * same cycle as the head so that we get: 1818 * n ... n ... | n - 1 ... 1819 * ^^^^^ blocks we're writing 1820 */ 1821 distance = max_distance - (log->l_logBBsize - head_block); 1822 error = xlog_write_log_records(log, head_cycle, 0, distance, 1823 tail_cycle, tail_block); 1824 if (error) 1825 return error; 1826 } 1827 1828 return 0; 1829 } 1830 1831 /****************************************************************************** 1832 * 1833 * Log recover routines 1834 * 1835 ****************************************************************************** 1836 */ 1837 1838 /* 1839 * Sort the log items in the transaction. 1840 * 1841 * The ordering constraints are defined by the inode allocation and unlink 1842 * behaviour. The rules are: 1843 * 1844 * 1. Every item is only logged once in a given transaction. Hence it 1845 * represents the last logged state of the item. Hence ordering is 1846 * dependent on the order in which operations need to be performed so 1847 * required initial conditions are always met. 1848 * 1849 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1850 * there's nothing to replay from them so we can simply cull them 1851 * from the transaction. However, we can't do that until after we've 1852 * replayed all the other items because they may be dependent on the 1853 * cancelled buffer and replaying the cancelled buffer can remove it 1854 * form the cancelled buffer table. Hence they have tobe done last. 1855 * 1856 * 3. Inode allocation buffers must be replayed before inode items that 1857 * read the buffer and replay changes into it. For filesystems using the 1858 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1859 * treated the same as inode allocation buffers as they create and 1860 * initialise the buffers directly. 1861 * 1862 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1863 * This ensures that inodes are completely flushed to the inode buffer 1864 * in a "free" state before we remove the unlinked inode list pointer. 1865 * 1866 * Hence the ordering needs to be inode allocation buffers first, inode items 1867 * second, inode unlink buffers third and cancelled buffers last. 1868 * 1869 * But there's a problem with that - we can't tell an inode allocation buffer 1870 * apart from a regular buffer, so we can't separate them. We can, however, 1871 * tell an inode unlink buffer from the others, and so we can separate them out 1872 * from all the other buffers and move them to last. 1873 * 1874 * Hence, 4 lists, in order from head to tail: 1875 * - buffer_list for all buffers except cancelled/inode unlink buffers 1876 * - item_list for all non-buffer items 1877 * - inode_buffer_list for inode unlink buffers 1878 * - cancel_list for the cancelled buffers 1879 * 1880 * Note that we add objects to the tail of the lists so that first-to-last 1881 * ordering is preserved within the lists. Adding objects to the head of the 1882 * list means when we traverse from the head we walk them in last-to-first 1883 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1884 * but for all other items there may be specific ordering that we need to 1885 * preserve. 1886 */ 1887 STATIC int 1888 xlog_recover_reorder_trans( 1889 struct xlog *log, 1890 struct xlog_recover *trans, 1891 int pass) 1892 { 1893 xlog_recover_item_t *item, *n; 1894 int error = 0; 1895 LIST_HEAD(sort_list); 1896 LIST_HEAD(cancel_list); 1897 LIST_HEAD(buffer_list); 1898 LIST_HEAD(inode_buffer_list); 1899 LIST_HEAD(inode_list); 1900 1901 list_splice_init(&trans->r_itemq, &sort_list); 1902 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1903 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1904 1905 switch (ITEM_TYPE(item)) { 1906 case XFS_LI_ICREATE: 1907 list_move_tail(&item->ri_list, &buffer_list); 1908 break; 1909 case XFS_LI_BUF: 1910 if (buf_f->blf_flags & XFS_BLF_CANCEL) { 1911 trace_xfs_log_recover_item_reorder_head(log, 1912 trans, item, pass); 1913 list_move(&item->ri_list, &cancel_list); 1914 break; 1915 } 1916 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 1917 list_move(&item->ri_list, &inode_buffer_list); 1918 break; 1919 } 1920 list_move_tail(&item->ri_list, &buffer_list); 1921 break; 1922 case XFS_LI_INODE: 1923 case XFS_LI_DQUOT: 1924 case XFS_LI_QUOTAOFF: 1925 case XFS_LI_EFD: 1926 case XFS_LI_EFI: 1927 case XFS_LI_RUI: 1928 case XFS_LI_RUD: 1929 case XFS_LI_CUI: 1930 case XFS_LI_CUD: 1931 case XFS_LI_BUI: 1932 case XFS_LI_BUD: 1933 trace_xfs_log_recover_item_reorder_tail(log, 1934 trans, item, pass); 1935 list_move_tail(&item->ri_list, &inode_list); 1936 break; 1937 default: 1938 xfs_warn(log->l_mp, 1939 "%s: unrecognized type of log operation", 1940 __func__); 1941 ASSERT(0); 1942 /* 1943 * return the remaining items back to the transaction 1944 * item list so they can be freed in caller. 1945 */ 1946 if (!list_empty(&sort_list)) 1947 list_splice_init(&sort_list, &trans->r_itemq); 1948 error = -EIO; 1949 goto out; 1950 } 1951 } 1952 out: 1953 ASSERT(list_empty(&sort_list)); 1954 if (!list_empty(&buffer_list)) 1955 list_splice(&buffer_list, &trans->r_itemq); 1956 if (!list_empty(&inode_list)) 1957 list_splice_tail(&inode_list, &trans->r_itemq); 1958 if (!list_empty(&inode_buffer_list)) 1959 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1960 if (!list_empty(&cancel_list)) 1961 list_splice_tail(&cancel_list, &trans->r_itemq); 1962 return error; 1963 } 1964 1965 /* 1966 * Build up the table of buf cancel records so that we don't replay 1967 * cancelled data in the second pass. For buffer records that are 1968 * not cancel records, there is nothing to do here so we just return. 1969 * 1970 * If we get a cancel record which is already in the table, this indicates 1971 * that the buffer was cancelled multiple times. In order to ensure 1972 * that during pass 2 we keep the record in the table until we reach its 1973 * last occurrence in the log, we keep a reference count in the cancel 1974 * record in the table to tell us how many times we expect to see this 1975 * record during the second pass. 1976 */ 1977 STATIC int 1978 xlog_recover_buffer_pass1( 1979 struct xlog *log, 1980 struct xlog_recover_item *item) 1981 { 1982 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1983 struct list_head *bucket; 1984 struct xfs_buf_cancel *bcp; 1985 1986 /* 1987 * If this isn't a cancel buffer item, then just return. 1988 */ 1989 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1990 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1991 return 0; 1992 } 1993 1994 /* 1995 * Insert an xfs_buf_cancel record into the hash table of them. 1996 * If there is already an identical record, bump its reference count. 1997 */ 1998 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1999 list_for_each_entry(bcp, bucket, bc_list) { 2000 if (bcp->bc_blkno == buf_f->blf_blkno && 2001 bcp->bc_len == buf_f->blf_len) { 2002 bcp->bc_refcount++; 2003 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 2004 return 0; 2005 } 2006 } 2007 2008 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 2009 bcp->bc_blkno = buf_f->blf_blkno; 2010 bcp->bc_len = buf_f->blf_len; 2011 bcp->bc_refcount = 1; 2012 list_add_tail(&bcp->bc_list, bucket); 2013 2014 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 2015 return 0; 2016 } 2017 2018 /* 2019 * Check to see whether the buffer being recovered has a corresponding 2020 * entry in the buffer cancel record table. If it is, return the cancel 2021 * buffer structure to the caller. 2022 */ 2023 STATIC struct xfs_buf_cancel * 2024 xlog_peek_buffer_cancelled( 2025 struct xlog *log, 2026 xfs_daddr_t blkno, 2027 uint len, 2028 ushort flags) 2029 { 2030 struct list_head *bucket; 2031 struct xfs_buf_cancel *bcp; 2032 2033 if (!log->l_buf_cancel_table) { 2034 /* empty table means no cancelled buffers in the log */ 2035 ASSERT(!(flags & XFS_BLF_CANCEL)); 2036 return NULL; 2037 } 2038 2039 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 2040 list_for_each_entry(bcp, bucket, bc_list) { 2041 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 2042 return bcp; 2043 } 2044 2045 /* 2046 * We didn't find a corresponding entry in the table, so return 0 so 2047 * that the buffer is NOT cancelled. 2048 */ 2049 ASSERT(!(flags & XFS_BLF_CANCEL)); 2050 return NULL; 2051 } 2052 2053 /* 2054 * If the buffer is being cancelled then return 1 so that it will be cancelled, 2055 * otherwise return 0. If the buffer is actually a buffer cancel item 2056 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the 2057 * table and remove it from the table if this is the last reference. 2058 * 2059 * We remove the cancel record from the table when we encounter its last 2060 * occurrence in the log so that if the same buffer is re-used again after its 2061 * last cancellation we actually replay the changes made at that point. 2062 */ 2063 STATIC int 2064 xlog_check_buffer_cancelled( 2065 struct xlog *log, 2066 xfs_daddr_t blkno, 2067 uint len, 2068 ushort flags) 2069 { 2070 struct xfs_buf_cancel *bcp; 2071 2072 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); 2073 if (!bcp) 2074 return 0; 2075 2076 /* 2077 * We've go a match, so return 1 so that the recovery of this buffer 2078 * is cancelled. If this buffer is actually a buffer cancel log 2079 * item, then decrement the refcount on the one in the table and 2080 * remove it if this is the last reference. 2081 */ 2082 if (flags & XFS_BLF_CANCEL) { 2083 if (--bcp->bc_refcount == 0) { 2084 list_del(&bcp->bc_list); 2085 kmem_free(bcp); 2086 } 2087 } 2088 return 1; 2089 } 2090 2091 /* 2092 * Perform recovery for a buffer full of inodes. In these buffers, the only 2093 * data which should be recovered is that which corresponds to the 2094 * di_next_unlinked pointers in the on disk inode structures. The rest of the 2095 * data for the inodes is always logged through the inodes themselves rather 2096 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 2097 * 2098 * The only time when buffers full of inodes are fully recovered is when the 2099 * buffer is full of newly allocated inodes. In this case the buffer will 2100 * not be marked as an inode buffer and so will be sent to 2101 * xlog_recover_do_reg_buffer() below during recovery. 2102 */ 2103 STATIC int 2104 xlog_recover_do_inode_buffer( 2105 struct xfs_mount *mp, 2106 xlog_recover_item_t *item, 2107 struct xfs_buf *bp, 2108 xfs_buf_log_format_t *buf_f) 2109 { 2110 int i; 2111 int item_index = 0; 2112 int bit = 0; 2113 int nbits = 0; 2114 int reg_buf_offset = 0; 2115 int reg_buf_bytes = 0; 2116 int next_unlinked_offset; 2117 int inodes_per_buf; 2118 xfs_agino_t *logged_nextp; 2119 xfs_agino_t *buffer_nextp; 2120 2121 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 2122 2123 /* 2124 * Post recovery validation only works properly on CRC enabled 2125 * filesystems. 2126 */ 2127 if (xfs_sb_version_hascrc(&mp->m_sb)) 2128 bp->b_ops = &xfs_inode_buf_ops; 2129 2130 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; 2131 for (i = 0; i < inodes_per_buf; i++) { 2132 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 2133 offsetof(xfs_dinode_t, di_next_unlinked); 2134 2135 while (next_unlinked_offset >= 2136 (reg_buf_offset + reg_buf_bytes)) { 2137 /* 2138 * The next di_next_unlinked field is beyond 2139 * the current logged region. Find the next 2140 * logged region that contains or is beyond 2141 * the current di_next_unlinked field. 2142 */ 2143 bit += nbits; 2144 bit = xfs_next_bit(buf_f->blf_data_map, 2145 buf_f->blf_map_size, bit); 2146 2147 /* 2148 * If there are no more logged regions in the 2149 * buffer, then we're done. 2150 */ 2151 if (bit == -1) 2152 return 0; 2153 2154 nbits = xfs_contig_bits(buf_f->blf_data_map, 2155 buf_f->blf_map_size, bit); 2156 ASSERT(nbits > 0); 2157 reg_buf_offset = bit << XFS_BLF_SHIFT; 2158 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 2159 item_index++; 2160 } 2161 2162 /* 2163 * If the current logged region starts after the current 2164 * di_next_unlinked field, then move on to the next 2165 * di_next_unlinked field. 2166 */ 2167 if (next_unlinked_offset < reg_buf_offset) 2168 continue; 2169 2170 ASSERT(item->ri_buf[item_index].i_addr != NULL); 2171 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 2172 ASSERT((reg_buf_offset + reg_buf_bytes) <= 2173 BBTOB(bp->b_io_length)); 2174 2175 /* 2176 * The current logged region contains a copy of the 2177 * current di_next_unlinked field. Extract its value 2178 * and copy it to the buffer copy. 2179 */ 2180 logged_nextp = item->ri_buf[item_index].i_addr + 2181 next_unlinked_offset - reg_buf_offset; 2182 if (unlikely(*logged_nextp == 0)) { 2183 xfs_alert(mp, 2184 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 2185 "Trying to replay bad (0) inode di_next_unlinked field.", 2186 item, bp); 2187 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 2188 XFS_ERRLEVEL_LOW, mp); 2189 return -EFSCORRUPTED; 2190 } 2191 2192 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset); 2193 *buffer_nextp = *logged_nextp; 2194 2195 /* 2196 * If necessary, recalculate the CRC in the on-disk inode. We 2197 * have to leave the inode in a consistent state for whoever 2198 * reads it next.... 2199 */ 2200 xfs_dinode_calc_crc(mp, 2201 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); 2202 2203 } 2204 2205 return 0; 2206 } 2207 2208 /* 2209 * V5 filesystems know the age of the buffer on disk being recovered. We can 2210 * have newer objects on disk than we are replaying, and so for these cases we 2211 * don't want to replay the current change as that will make the buffer contents 2212 * temporarily invalid on disk. 2213 * 2214 * The magic number might not match the buffer type we are going to recover 2215 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence 2216 * extract the LSN of the existing object in the buffer based on it's current 2217 * magic number. If we don't recognise the magic number in the buffer, then 2218 * return a LSN of -1 so that the caller knows it was an unrecognised block and 2219 * so can recover the buffer. 2220 * 2221 * Note: we cannot rely solely on magic number matches to determine that the 2222 * buffer has a valid LSN - we also need to verify that it belongs to this 2223 * filesystem, so we need to extract the object's LSN and compare it to that 2224 * which we read from the superblock. If the UUIDs don't match, then we've got a 2225 * stale metadata block from an old filesystem instance that we need to recover 2226 * over the top of. 2227 */ 2228 static xfs_lsn_t 2229 xlog_recover_get_buf_lsn( 2230 struct xfs_mount *mp, 2231 struct xfs_buf *bp) 2232 { 2233 __uint32_t magic32; 2234 __uint16_t magic16; 2235 __uint16_t magicda; 2236 void *blk = bp->b_addr; 2237 uuid_t *uuid; 2238 xfs_lsn_t lsn = -1; 2239 2240 /* v4 filesystems always recover immediately */ 2241 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2242 goto recover_immediately; 2243 2244 magic32 = be32_to_cpu(*(__be32 *)blk); 2245 switch (magic32) { 2246 case XFS_ABTB_CRC_MAGIC: 2247 case XFS_ABTC_CRC_MAGIC: 2248 case XFS_ABTB_MAGIC: 2249 case XFS_ABTC_MAGIC: 2250 case XFS_RMAP_CRC_MAGIC: 2251 case XFS_REFC_CRC_MAGIC: 2252 case XFS_IBT_CRC_MAGIC: 2253 case XFS_IBT_MAGIC: { 2254 struct xfs_btree_block *btb = blk; 2255 2256 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); 2257 uuid = &btb->bb_u.s.bb_uuid; 2258 break; 2259 } 2260 case XFS_BMAP_CRC_MAGIC: 2261 case XFS_BMAP_MAGIC: { 2262 struct xfs_btree_block *btb = blk; 2263 2264 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); 2265 uuid = &btb->bb_u.l.bb_uuid; 2266 break; 2267 } 2268 case XFS_AGF_MAGIC: 2269 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); 2270 uuid = &((struct xfs_agf *)blk)->agf_uuid; 2271 break; 2272 case XFS_AGFL_MAGIC: 2273 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); 2274 uuid = &((struct xfs_agfl *)blk)->agfl_uuid; 2275 break; 2276 case XFS_AGI_MAGIC: 2277 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); 2278 uuid = &((struct xfs_agi *)blk)->agi_uuid; 2279 break; 2280 case XFS_SYMLINK_MAGIC: 2281 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); 2282 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; 2283 break; 2284 case XFS_DIR3_BLOCK_MAGIC: 2285 case XFS_DIR3_DATA_MAGIC: 2286 case XFS_DIR3_FREE_MAGIC: 2287 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); 2288 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; 2289 break; 2290 case XFS_ATTR3_RMT_MAGIC: 2291 /* 2292 * Remote attr blocks are written synchronously, rather than 2293 * being logged. That means they do not contain a valid LSN 2294 * (i.e. transactionally ordered) in them, and hence any time we 2295 * see a buffer to replay over the top of a remote attribute 2296 * block we should simply do so. 2297 */ 2298 goto recover_immediately; 2299 case XFS_SB_MAGIC: 2300 /* 2301 * superblock uuids are magic. We may or may not have a 2302 * sb_meta_uuid on disk, but it will be set in the in-core 2303 * superblock. We set the uuid pointer for verification 2304 * according to the superblock feature mask to ensure we check 2305 * the relevant UUID in the superblock. 2306 */ 2307 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); 2308 if (xfs_sb_version_hasmetauuid(&mp->m_sb)) 2309 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid; 2310 else 2311 uuid = &((struct xfs_dsb *)blk)->sb_uuid; 2312 break; 2313 default: 2314 break; 2315 } 2316 2317 if (lsn != (xfs_lsn_t)-1) { 2318 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid)) 2319 goto recover_immediately; 2320 return lsn; 2321 } 2322 2323 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); 2324 switch (magicda) { 2325 case XFS_DIR3_LEAF1_MAGIC: 2326 case XFS_DIR3_LEAFN_MAGIC: 2327 case XFS_DA3_NODE_MAGIC: 2328 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); 2329 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; 2330 break; 2331 default: 2332 break; 2333 } 2334 2335 if (lsn != (xfs_lsn_t)-1) { 2336 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) 2337 goto recover_immediately; 2338 return lsn; 2339 } 2340 2341 /* 2342 * We do individual object checks on dquot and inode buffers as they 2343 * have their own individual LSN records. Also, we could have a stale 2344 * buffer here, so we have to at least recognise these buffer types. 2345 * 2346 * A notd complexity here is inode unlinked list processing - it logs 2347 * the inode directly in the buffer, but we don't know which inodes have 2348 * been modified, and there is no global buffer LSN. Hence we need to 2349 * recover all inode buffer types immediately. This problem will be 2350 * fixed by logical logging of the unlinked list modifications. 2351 */ 2352 magic16 = be16_to_cpu(*(__be16 *)blk); 2353 switch (magic16) { 2354 case XFS_DQUOT_MAGIC: 2355 case XFS_DINODE_MAGIC: 2356 goto recover_immediately; 2357 default: 2358 break; 2359 } 2360 2361 /* unknown buffer contents, recover immediately */ 2362 2363 recover_immediately: 2364 return (xfs_lsn_t)-1; 2365 2366 } 2367 2368 /* 2369 * Validate the recovered buffer is of the correct type and attach the 2370 * appropriate buffer operations to them for writeback. Magic numbers are in a 2371 * few places: 2372 * the first 16 bits of the buffer (inode buffer, dquot buffer), 2373 * the first 32 bits of the buffer (most blocks), 2374 * inside a struct xfs_da_blkinfo at the start of the buffer. 2375 */ 2376 static void 2377 xlog_recover_validate_buf_type( 2378 struct xfs_mount *mp, 2379 struct xfs_buf *bp, 2380 xfs_buf_log_format_t *buf_f, 2381 xfs_lsn_t current_lsn) 2382 { 2383 struct xfs_da_blkinfo *info = bp->b_addr; 2384 __uint32_t magic32; 2385 __uint16_t magic16; 2386 __uint16_t magicda; 2387 char *warnmsg = NULL; 2388 2389 /* 2390 * We can only do post recovery validation on items on CRC enabled 2391 * fielsystems as we need to know when the buffer was written to be able 2392 * to determine if we should have replayed the item. If we replay old 2393 * metadata over a newer buffer, then it will enter a temporarily 2394 * inconsistent state resulting in verification failures. Hence for now 2395 * just avoid the verification stage for non-crc filesystems 2396 */ 2397 if (!xfs_sb_version_hascrc(&mp->m_sb)) 2398 return; 2399 2400 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); 2401 magic16 = be16_to_cpu(*(__be16*)bp->b_addr); 2402 magicda = be16_to_cpu(info->magic); 2403 switch (xfs_blft_from_flags(buf_f)) { 2404 case XFS_BLFT_BTREE_BUF: 2405 switch (magic32) { 2406 case XFS_ABTB_CRC_MAGIC: 2407 case XFS_ABTC_CRC_MAGIC: 2408 case XFS_ABTB_MAGIC: 2409 case XFS_ABTC_MAGIC: 2410 bp->b_ops = &xfs_allocbt_buf_ops; 2411 break; 2412 case XFS_IBT_CRC_MAGIC: 2413 case XFS_FIBT_CRC_MAGIC: 2414 case XFS_IBT_MAGIC: 2415 case XFS_FIBT_MAGIC: 2416 bp->b_ops = &xfs_inobt_buf_ops; 2417 break; 2418 case XFS_BMAP_CRC_MAGIC: 2419 case XFS_BMAP_MAGIC: 2420 bp->b_ops = &xfs_bmbt_buf_ops; 2421 break; 2422 case XFS_RMAP_CRC_MAGIC: 2423 bp->b_ops = &xfs_rmapbt_buf_ops; 2424 break; 2425 case XFS_REFC_CRC_MAGIC: 2426 bp->b_ops = &xfs_refcountbt_buf_ops; 2427 break; 2428 default: 2429 warnmsg = "Bad btree block magic!"; 2430 break; 2431 } 2432 break; 2433 case XFS_BLFT_AGF_BUF: 2434 if (magic32 != XFS_AGF_MAGIC) { 2435 warnmsg = "Bad AGF block magic!"; 2436 break; 2437 } 2438 bp->b_ops = &xfs_agf_buf_ops; 2439 break; 2440 case XFS_BLFT_AGFL_BUF: 2441 if (magic32 != XFS_AGFL_MAGIC) { 2442 warnmsg = "Bad AGFL block magic!"; 2443 break; 2444 } 2445 bp->b_ops = &xfs_agfl_buf_ops; 2446 break; 2447 case XFS_BLFT_AGI_BUF: 2448 if (magic32 != XFS_AGI_MAGIC) { 2449 warnmsg = "Bad AGI block magic!"; 2450 break; 2451 } 2452 bp->b_ops = &xfs_agi_buf_ops; 2453 break; 2454 case XFS_BLFT_UDQUOT_BUF: 2455 case XFS_BLFT_PDQUOT_BUF: 2456 case XFS_BLFT_GDQUOT_BUF: 2457 #ifdef CONFIG_XFS_QUOTA 2458 if (magic16 != XFS_DQUOT_MAGIC) { 2459 warnmsg = "Bad DQUOT block magic!"; 2460 break; 2461 } 2462 bp->b_ops = &xfs_dquot_buf_ops; 2463 #else 2464 xfs_alert(mp, 2465 "Trying to recover dquots without QUOTA support built in!"); 2466 ASSERT(0); 2467 #endif 2468 break; 2469 case XFS_BLFT_DINO_BUF: 2470 if (magic16 != XFS_DINODE_MAGIC) { 2471 warnmsg = "Bad INODE block magic!"; 2472 break; 2473 } 2474 bp->b_ops = &xfs_inode_buf_ops; 2475 break; 2476 case XFS_BLFT_SYMLINK_BUF: 2477 if (magic32 != XFS_SYMLINK_MAGIC) { 2478 warnmsg = "Bad symlink block magic!"; 2479 break; 2480 } 2481 bp->b_ops = &xfs_symlink_buf_ops; 2482 break; 2483 case XFS_BLFT_DIR_BLOCK_BUF: 2484 if (magic32 != XFS_DIR2_BLOCK_MAGIC && 2485 magic32 != XFS_DIR3_BLOCK_MAGIC) { 2486 warnmsg = "Bad dir block magic!"; 2487 break; 2488 } 2489 bp->b_ops = &xfs_dir3_block_buf_ops; 2490 break; 2491 case XFS_BLFT_DIR_DATA_BUF: 2492 if (magic32 != XFS_DIR2_DATA_MAGIC && 2493 magic32 != XFS_DIR3_DATA_MAGIC) { 2494 warnmsg = "Bad dir data magic!"; 2495 break; 2496 } 2497 bp->b_ops = &xfs_dir3_data_buf_ops; 2498 break; 2499 case XFS_BLFT_DIR_FREE_BUF: 2500 if (magic32 != XFS_DIR2_FREE_MAGIC && 2501 magic32 != XFS_DIR3_FREE_MAGIC) { 2502 warnmsg = "Bad dir3 free magic!"; 2503 break; 2504 } 2505 bp->b_ops = &xfs_dir3_free_buf_ops; 2506 break; 2507 case XFS_BLFT_DIR_LEAF1_BUF: 2508 if (magicda != XFS_DIR2_LEAF1_MAGIC && 2509 magicda != XFS_DIR3_LEAF1_MAGIC) { 2510 warnmsg = "Bad dir leaf1 magic!"; 2511 break; 2512 } 2513 bp->b_ops = &xfs_dir3_leaf1_buf_ops; 2514 break; 2515 case XFS_BLFT_DIR_LEAFN_BUF: 2516 if (magicda != XFS_DIR2_LEAFN_MAGIC && 2517 magicda != XFS_DIR3_LEAFN_MAGIC) { 2518 warnmsg = "Bad dir leafn magic!"; 2519 break; 2520 } 2521 bp->b_ops = &xfs_dir3_leafn_buf_ops; 2522 break; 2523 case XFS_BLFT_DA_NODE_BUF: 2524 if (magicda != XFS_DA_NODE_MAGIC && 2525 magicda != XFS_DA3_NODE_MAGIC) { 2526 warnmsg = "Bad da node magic!"; 2527 break; 2528 } 2529 bp->b_ops = &xfs_da3_node_buf_ops; 2530 break; 2531 case XFS_BLFT_ATTR_LEAF_BUF: 2532 if (magicda != XFS_ATTR_LEAF_MAGIC && 2533 magicda != XFS_ATTR3_LEAF_MAGIC) { 2534 warnmsg = "Bad attr leaf magic!"; 2535 break; 2536 } 2537 bp->b_ops = &xfs_attr3_leaf_buf_ops; 2538 break; 2539 case XFS_BLFT_ATTR_RMT_BUF: 2540 if (magic32 != XFS_ATTR3_RMT_MAGIC) { 2541 warnmsg = "Bad attr remote magic!"; 2542 break; 2543 } 2544 bp->b_ops = &xfs_attr3_rmt_buf_ops; 2545 break; 2546 case XFS_BLFT_SB_BUF: 2547 if (magic32 != XFS_SB_MAGIC) { 2548 warnmsg = "Bad SB block magic!"; 2549 break; 2550 } 2551 bp->b_ops = &xfs_sb_buf_ops; 2552 break; 2553 #ifdef CONFIG_XFS_RT 2554 case XFS_BLFT_RTBITMAP_BUF: 2555 case XFS_BLFT_RTSUMMARY_BUF: 2556 /* no magic numbers for verification of RT buffers */ 2557 bp->b_ops = &xfs_rtbuf_ops; 2558 break; 2559 #endif /* CONFIG_XFS_RT */ 2560 default: 2561 xfs_warn(mp, "Unknown buffer type %d!", 2562 xfs_blft_from_flags(buf_f)); 2563 break; 2564 } 2565 2566 /* 2567 * Nothing else to do in the case of a NULL current LSN as this means 2568 * the buffer is more recent than the change in the log and will be 2569 * skipped. 2570 */ 2571 if (current_lsn == NULLCOMMITLSN) 2572 return; 2573 2574 if (warnmsg) { 2575 xfs_warn(mp, warnmsg); 2576 ASSERT(0); 2577 } 2578 2579 /* 2580 * We must update the metadata LSN of the buffer as it is written out to 2581 * ensure that older transactions never replay over this one and corrupt 2582 * the buffer. This can occur if log recovery is interrupted at some 2583 * point after the current transaction completes, at which point a 2584 * subsequent mount starts recovery from the beginning. 2585 * 2586 * Write verifiers update the metadata LSN from log items attached to 2587 * the buffer. Therefore, initialize a bli purely to carry the LSN to 2588 * the verifier. We'll clean it up in our ->iodone() callback. 2589 */ 2590 if (bp->b_ops) { 2591 struct xfs_buf_log_item *bip; 2592 2593 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone); 2594 bp->b_iodone = xlog_recover_iodone; 2595 xfs_buf_item_init(bp, mp); 2596 bip = bp->b_fspriv; 2597 bip->bli_item.li_lsn = current_lsn; 2598 } 2599 } 2600 2601 /* 2602 * Perform a 'normal' buffer recovery. Each logged region of the 2603 * buffer should be copied over the corresponding region in the 2604 * given buffer. The bitmap in the buf log format structure indicates 2605 * where to place the logged data. 2606 */ 2607 STATIC void 2608 xlog_recover_do_reg_buffer( 2609 struct xfs_mount *mp, 2610 xlog_recover_item_t *item, 2611 struct xfs_buf *bp, 2612 xfs_buf_log_format_t *buf_f, 2613 xfs_lsn_t current_lsn) 2614 { 2615 int i; 2616 int bit; 2617 int nbits; 2618 int error; 2619 2620 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 2621 2622 bit = 0; 2623 i = 1; /* 0 is the buf format structure */ 2624 while (1) { 2625 bit = xfs_next_bit(buf_f->blf_data_map, 2626 buf_f->blf_map_size, bit); 2627 if (bit == -1) 2628 break; 2629 nbits = xfs_contig_bits(buf_f->blf_data_map, 2630 buf_f->blf_map_size, bit); 2631 ASSERT(nbits > 0); 2632 ASSERT(item->ri_buf[i].i_addr != NULL); 2633 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 2634 ASSERT(BBTOB(bp->b_io_length) >= 2635 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); 2636 2637 /* 2638 * The dirty regions logged in the buffer, even though 2639 * contiguous, may span multiple chunks. This is because the 2640 * dirty region may span a physical page boundary in a buffer 2641 * and hence be split into two separate vectors for writing into 2642 * the log. Hence we need to trim nbits back to the length of 2643 * the current region being copied out of the log. 2644 */ 2645 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) 2646 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; 2647 2648 /* 2649 * Do a sanity check if this is a dquot buffer. Just checking 2650 * the first dquot in the buffer should do. XXXThis is 2651 * probably a good thing to do for other buf types also. 2652 */ 2653 error = 0; 2654 if (buf_f->blf_flags & 2655 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2656 if (item->ri_buf[i].i_addr == NULL) { 2657 xfs_alert(mp, 2658 "XFS: NULL dquot in %s.", __func__); 2659 goto next; 2660 } 2661 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 2662 xfs_alert(mp, 2663 "XFS: dquot too small (%d) in %s.", 2664 item->ri_buf[i].i_len, __func__); 2665 goto next; 2666 } 2667 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, 2668 -1, 0, XFS_QMOPT_DOWARN, 2669 "dquot_buf_recover"); 2670 if (error) 2671 goto next; 2672 } 2673 2674 memcpy(xfs_buf_offset(bp, 2675 (uint)bit << XFS_BLF_SHIFT), /* dest */ 2676 item->ri_buf[i].i_addr, /* source */ 2677 nbits<<XFS_BLF_SHIFT); /* length */ 2678 next: 2679 i++; 2680 bit += nbits; 2681 } 2682 2683 /* Shouldn't be any more regions */ 2684 ASSERT(i == item->ri_total); 2685 2686 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn); 2687 } 2688 2689 /* 2690 * Perform a dquot buffer recovery. 2691 * Simple algorithm: if we have found a QUOTAOFF log item of the same type 2692 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2693 * Else, treat it as a regular buffer and do recovery. 2694 * 2695 * Return false if the buffer was tossed and true if we recovered the buffer to 2696 * indicate to the caller if the buffer needs writing. 2697 */ 2698 STATIC bool 2699 xlog_recover_do_dquot_buffer( 2700 struct xfs_mount *mp, 2701 struct xlog *log, 2702 struct xlog_recover_item *item, 2703 struct xfs_buf *bp, 2704 struct xfs_buf_log_format *buf_f) 2705 { 2706 uint type; 2707 2708 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2709 2710 /* 2711 * Filesystems are required to send in quota flags at mount time. 2712 */ 2713 if (!mp->m_qflags) 2714 return false; 2715 2716 type = 0; 2717 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2718 type |= XFS_DQ_USER; 2719 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2720 type |= XFS_DQ_PROJ; 2721 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2722 type |= XFS_DQ_GROUP; 2723 /* 2724 * This type of quotas was turned off, so ignore this buffer 2725 */ 2726 if (log->l_quotaoffs_flag & type) 2727 return false; 2728 2729 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN); 2730 return true; 2731 } 2732 2733 /* 2734 * This routine replays a modification made to a buffer at runtime. 2735 * There are actually two types of buffer, regular and inode, which 2736 * are handled differently. Inode buffers are handled differently 2737 * in that we only recover a specific set of data from them, namely 2738 * the inode di_next_unlinked fields. This is because all other inode 2739 * data is actually logged via inode records and any data we replay 2740 * here which overlaps that may be stale. 2741 * 2742 * When meta-data buffers are freed at run time we log a buffer item 2743 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2744 * of the buffer in the log should not be replayed at recovery time. 2745 * This is so that if the blocks covered by the buffer are reused for 2746 * file data before we crash we don't end up replaying old, freed 2747 * meta-data into a user's file. 2748 * 2749 * To handle the cancellation of buffer log items, we make two passes 2750 * over the log during recovery. During the first we build a table of 2751 * those buffers which have been cancelled, and during the second we 2752 * only replay those buffers which do not have corresponding cancel 2753 * records in the table. See xlog_recover_buffer_pass[1,2] above 2754 * for more details on the implementation of the table of cancel records. 2755 */ 2756 STATIC int 2757 xlog_recover_buffer_pass2( 2758 struct xlog *log, 2759 struct list_head *buffer_list, 2760 struct xlog_recover_item *item, 2761 xfs_lsn_t current_lsn) 2762 { 2763 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2764 xfs_mount_t *mp = log->l_mp; 2765 xfs_buf_t *bp; 2766 int error; 2767 uint buf_flags; 2768 xfs_lsn_t lsn; 2769 2770 /* 2771 * In this pass we only want to recover all the buffers which have 2772 * not been cancelled and are not cancellation buffers themselves. 2773 */ 2774 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2775 buf_f->blf_len, buf_f->blf_flags)) { 2776 trace_xfs_log_recover_buf_cancel(log, buf_f); 2777 return 0; 2778 } 2779 2780 trace_xfs_log_recover_buf_recover(log, buf_f); 2781 2782 buf_flags = 0; 2783 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) 2784 buf_flags |= XBF_UNMAPPED; 2785 2786 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2787 buf_flags, NULL); 2788 if (!bp) 2789 return -ENOMEM; 2790 error = bp->b_error; 2791 if (error) { 2792 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2793 goto out_release; 2794 } 2795 2796 /* 2797 * Recover the buffer only if we get an LSN from it and it's less than 2798 * the lsn of the transaction we are replaying. 2799 * 2800 * Note that we have to be extremely careful of readahead here. 2801 * Readahead does not attach verfiers to the buffers so if we don't 2802 * actually do any replay after readahead because of the LSN we found 2803 * in the buffer if more recent than that current transaction then we 2804 * need to attach the verifier directly. Failure to do so can lead to 2805 * future recovery actions (e.g. EFI and unlinked list recovery) can 2806 * operate on the buffers and they won't get the verifier attached. This 2807 * can lead to blocks on disk having the correct content but a stale 2808 * CRC. 2809 * 2810 * It is safe to assume these clean buffers are currently up to date. 2811 * If the buffer is dirtied by a later transaction being replayed, then 2812 * the verifier will be reset to match whatever recover turns that 2813 * buffer into. 2814 */ 2815 lsn = xlog_recover_get_buf_lsn(mp, bp); 2816 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 2817 trace_xfs_log_recover_buf_skip(log, buf_f); 2818 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN); 2819 goto out_release; 2820 } 2821 2822 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2823 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2824 if (error) 2825 goto out_release; 2826 } else if (buf_f->blf_flags & 2827 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2828 bool dirty; 2829 2830 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2831 if (!dirty) 2832 goto out_release; 2833 } else { 2834 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn); 2835 } 2836 2837 /* 2838 * Perform delayed write on the buffer. Asynchronous writes will be 2839 * slower when taking into account all the buffers to be flushed. 2840 * 2841 * Also make sure that only inode buffers with good sizes stay in 2842 * the buffer cache. The kernel moves inodes in buffers of 1 block 2843 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode 2844 * buffers in the log can be a different size if the log was generated 2845 * by an older kernel using unclustered inode buffers or a newer kernel 2846 * running with a different inode cluster size. Regardless, if the 2847 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) 2848 * for *our* value of mp->m_inode_cluster_size, then we need to keep 2849 * the buffer out of the buffer cache so that the buffer won't 2850 * overlap with future reads of those inodes. 2851 */ 2852 if (XFS_DINODE_MAGIC == 2853 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2854 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, 2855 (__uint32_t)log->l_mp->m_inode_cluster_size))) { 2856 xfs_buf_stale(bp); 2857 error = xfs_bwrite(bp); 2858 } else { 2859 ASSERT(bp->b_target->bt_mount == mp); 2860 bp->b_iodone = xlog_recover_iodone; 2861 xfs_buf_delwri_queue(bp, buffer_list); 2862 } 2863 2864 out_release: 2865 xfs_buf_relse(bp); 2866 return error; 2867 } 2868 2869 /* 2870 * Inode fork owner changes 2871 * 2872 * If we have been told that we have to reparent the inode fork, it's because an 2873 * extent swap operation on a CRC enabled filesystem has been done and we are 2874 * replaying it. We need to walk the BMBT of the appropriate fork and change the 2875 * owners of it. 2876 * 2877 * The complexity here is that we don't have an inode context to work with, so 2878 * after we've replayed the inode we need to instantiate one. This is where the 2879 * fun begins. 2880 * 2881 * We are in the middle of log recovery, so we can't run transactions. That 2882 * means we cannot use cache coherent inode instantiation via xfs_iget(), as 2883 * that will result in the corresponding iput() running the inode through 2884 * xfs_inactive(). If we've just replayed an inode core that changes the link 2885 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run 2886 * transactions (bad!). 2887 * 2888 * So, to avoid this, we instantiate an inode directly from the inode core we've 2889 * just recovered. We have the buffer still locked, and all we really need to 2890 * instantiate is the inode core and the forks being modified. We can do this 2891 * manually, then run the inode btree owner change, and then tear down the 2892 * xfs_inode without having to run any transactions at all. 2893 * 2894 * Also, because we don't have a transaction context available here but need to 2895 * gather all the buffers we modify for writeback so we pass the buffer_list 2896 * instead for the operation to use. 2897 */ 2898 2899 STATIC int 2900 xfs_recover_inode_owner_change( 2901 struct xfs_mount *mp, 2902 struct xfs_dinode *dip, 2903 struct xfs_inode_log_format *in_f, 2904 struct list_head *buffer_list) 2905 { 2906 struct xfs_inode *ip; 2907 int error; 2908 2909 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); 2910 2911 ip = xfs_inode_alloc(mp, in_f->ilf_ino); 2912 if (!ip) 2913 return -ENOMEM; 2914 2915 /* instantiate the inode */ 2916 xfs_inode_from_disk(ip, dip); 2917 ASSERT(ip->i_d.di_version >= 3); 2918 2919 error = xfs_iformat_fork(ip, dip); 2920 if (error) 2921 goto out_free_ip; 2922 2923 2924 if (in_f->ilf_fields & XFS_ILOG_DOWNER) { 2925 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); 2926 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, 2927 ip->i_ino, buffer_list); 2928 if (error) 2929 goto out_free_ip; 2930 } 2931 2932 if (in_f->ilf_fields & XFS_ILOG_AOWNER) { 2933 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); 2934 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, 2935 ip->i_ino, buffer_list); 2936 if (error) 2937 goto out_free_ip; 2938 } 2939 2940 out_free_ip: 2941 xfs_inode_free(ip); 2942 return error; 2943 } 2944 2945 STATIC int 2946 xlog_recover_inode_pass2( 2947 struct xlog *log, 2948 struct list_head *buffer_list, 2949 struct xlog_recover_item *item, 2950 xfs_lsn_t current_lsn) 2951 { 2952 xfs_inode_log_format_t *in_f; 2953 xfs_mount_t *mp = log->l_mp; 2954 xfs_buf_t *bp; 2955 xfs_dinode_t *dip; 2956 int len; 2957 char *src; 2958 char *dest; 2959 int error; 2960 int attr_index; 2961 uint fields; 2962 struct xfs_log_dinode *ldip; 2963 uint isize; 2964 int need_free = 0; 2965 2966 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2967 in_f = item->ri_buf[0].i_addr; 2968 } else { 2969 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2970 need_free = 1; 2971 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2972 if (error) 2973 goto error; 2974 } 2975 2976 /* 2977 * Inode buffers can be freed, look out for it, 2978 * and do not replay the inode. 2979 */ 2980 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2981 in_f->ilf_len, 0)) { 2982 error = 0; 2983 trace_xfs_log_recover_inode_cancel(log, in_f); 2984 goto error; 2985 } 2986 trace_xfs_log_recover_inode_recover(log, in_f); 2987 2988 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, 2989 &xfs_inode_buf_ops); 2990 if (!bp) { 2991 error = -ENOMEM; 2992 goto error; 2993 } 2994 error = bp->b_error; 2995 if (error) { 2996 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2997 goto out_release; 2998 } 2999 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 3000 dip = xfs_buf_offset(bp, in_f->ilf_boffset); 3001 3002 /* 3003 * Make sure the place we're flushing out to really looks 3004 * like an inode! 3005 */ 3006 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 3007 xfs_alert(mp, 3008 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 3009 __func__, dip, bp, in_f->ilf_ino); 3010 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 3011 XFS_ERRLEVEL_LOW, mp); 3012 error = -EFSCORRUPTED; 3013 goto out_release; 3014 } 3015 ldip = item->ri_buf[1].i_addr; 3016 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) { 3017 xfs_alert(mp, 3018 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 3019 __func__, item, in_f->ilf_ino); 3020 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 3021 XFS_ERRLEVEL_LOW, mp); 3022 error = -EFSCORRUPTED; 3023 goto out_release; 3024 } 3025 3026 /* 3027 * If the inode has an LSN in it, recover the inode only if it's less 3028 * than the lsn of the transaction we are replaying. Note: we still 3029 * need to replay an owner change even though the inode is more recent 3030 * than the transaction as there is no guarantee that all the btree 3031 * blocks are more recent than this transaction, too. 3032 */ 3033 if (dip->di_version >= 3) { 3034 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); 3035 3036 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3037 trace_xfs_log_recover_inode_skip(log, in_f); 3038 error = 0; 3039 goto out_owner_change; 3040 } 3041 } 3042 3043 /* 3044 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes 3045 * are transactional and if ordering is necessary we can determine that 3046 * more accurately by the LSN field in the V3 inode core. Don't trust 3047 * the inode versions we might be changing them here - use the 3048 * superblock flag to determine whether we need to look at di_flushiter 3049 * to skip replay when the on disk inode is newer than the log one 3050 */ 3051 if (!xfs_sb_version_hascrc(&mp->m_sb) && 3052 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 3053 /* 3054 * Deal with the wrap case, DI_MAX_FLUSH is less 3055 * than smaller numbers 3056 */ 3057 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 3058 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) { 3059 /* do nothing */ 3060 } else { 3061 trace_xfs_log_recover_inode_skip(log, in_f); 3062 error = 0; 3063 goto out_release; 3064 } 3065 } 3066 3067 /* Take the opportunity to reset the flush iteration count */ 3068 ldip->di_flushiter = 0; 3069 3070 if (unlikely(S_ISREG(ldip->di_mode))) { 3071 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3072 (ldip->di_format != XFS_DINODE_FMT_BTREE)) { 3073 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 3074 XFS_ERRLEVEL_LOW, mp, ldip); 3075 xfs_alert(mp, 3076 "%s: Bad regular inode log record, rec ptr 0x%p, " 3077 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3078 __func__, item, dip, bp, in_f->ilf_ino); 3079 error = -EFSCORRUPTED; 3080 goto out_release; 3081 } 3082 } else if (unlikely(S_ISDIR(ldip->di_mode))) { 3083 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) && 3084 (ldip->di_format != XFS_DINODE_FMT_BTREE) && 3085 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) { 3086 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 3087 XFS_ERRLEVEL_LOW, mp, ldip); 3088 xfs_alert(mp, 3089 "%s: Bad dir inode log record, rec ptr 0x%p, " 3090 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 3091 __func__, item, dip, bp, in_f->ilf_ino); 3092 error = -EFSCORRUPTED; 3093 goto out_release; 3094 } 3095 } 3096 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){ 3097 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 3098 XFS_ERRLEVEL_LOW, mp, ldip); 3099 xfs_alert(mp, 3100 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3101 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 3102 __func__, item, dip, bp, in_f->ilf_ino, 3103 ldip->di_nextents + ldip->di_anextents, 3104 ldip->di_nblocks); 3105 error = -EFSCORRUPTED; 3106 goto out_release; 3107 } 3108 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) { 3109 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 3110 XFS_ERRLEVEL_LOW, mp, ldip); 3111 xfs_alert(mp, 3112 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 3113 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 3114 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff); 3115 error = -EFSCORRUPTED; 3116 goto out_release; 3117 } 3118 isize = xfs_log_dinode_size(ldip->di_version); 3119 if (unlikely(item->ri_buf[1].i_len > isize)) { 3120 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 3121 XFS_ERRLEVEL_LOW, mp, ldip); 3122 xfs_alert(mp, 3123 "%s: Bad inode log record length %d, rec ptr 0x%p", 3124 __func__, item->ri_buf[1].i_len, item); 3125 error = -EFSCORRUPTED; 3126 goto out_release; 3127 } 3128 3129 /* recover the log dinode inode into the on disk inode */ 3130 xfs_log_dinode_to_disk(ldip, dip); 3131 3132 /* the rest is in on-disk format */ 3133 if (item->ri_buf[1].i_len > isize) { 3134 memcpy((char *)dip + isize, 3135 item->ri_buf[1].i_addr + isize, 3136 item->ri_buf[1].i_len - isize); 3137 } 3138 3139 fields = in_f->ilf_fields; 3140 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 3141 case XFS_ILOG_DEV: 3142 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 3143 break; 3144 case XFS_ILOG_UUID: 3145 memcpy(XFS_DFORK_DPTR(dip), 3146 &in_f->ilf_u.ilfu_uuid, 3147 sizeof(uuid_t)); 3148 break; 3149 } 3150 3151 if (in_f->ilf_size == 2) 3152 goto out_owner_change; 3153 len = item->ri_buf[2].i_len; 3154 src = item->ri_buf[2].i_addr; 3155 ASSERT(in_f->ilf_size <= 4); 3156 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 3157 ASSERT(!(fields & XFS_ILOG_DFORK) || 3158 (len == in_f->ilf_dsize)); 3159 3160 switch (fields & XFS_ILOG_DFORK) { 3161 case XFS_ILOG_DDATA: 3162 case XFS_ILOG_DEXT: 3163 memcpy(XFS_DFORK_DPTR(dip), src, len); 3164 break; 3165 3166 case XFS_ILOG_DBROOT: 3167 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 3168 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 3169 XFS_DFORK_DSIZE(dip, mp)); 3170 break; 3171 3172 default: 3173 /* 3174 * There are no data fork flags set. 3175 */ 3176 ASSERT((fields & XFS_ILOG_DFORK) == 0); 3177 break; 3178 } 3179 3180 /* 3181 * If we logged any attribute data, recover it. There may or 3182 * may not have been any other non-core data logged in this 3183 * transaction. 3184 */ 3185 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 3186 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 3187 attr_index = 3; 3188 } else { 3189 attr_index = 2; 3190 } 3191 len = item->ri_buf[attr_index].i_len; 3192 src = item->ri_buf[attr_index].i_addr; 3193 ASSERT(len == in_f->ilf_asize); 3194 3195 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 3196 case XFS_ILOG_ADATA: 3197 case XFS_ILOG_AEXT: 3198 dest = XFS_DFORK_APTR(dip); 3199 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 3200 memcpy(dest, src, len); 3201 break; 3202 3203 case XFS_ILOG_ABROOT: 3204 dest = XFS_DFORK_APTR(dip); 3205 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 3206 len, (xfs_bmdr_block_t*)dest, 3207 XFS_DFORK_ASIZE(dip, mp)); 3208 break; 3209 3210 default: 3211 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 3212 ASSERT(0); 3213 error = -EIO; 3214 goto out_release; 3215 } 3216 } 3217 3218 out_owner_change: 3219 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) 3220 error = xfs_recover_inode_owner_change(mp, dip, in_f, 3221 buffer_list); 3222 /* re-generate the checksum. */ 3223 xfs_dinode_calc_crc(log->l_mp, dip); 3224 3225 ASSERT(bp->b_target->bt_mount == mp); 3226 bp->b_iodone = xlog_recover_iodone; 3227 xfs_buf_delwri_queue(bp, buffer_list); 3228 3229 out_release: 3230 xfs_buf_relse(bp); 3231 error: 3232 if (need_free) 3233 kmem_free(in_f); 3234 return error; 3235 } 3236 3237 /* 3238 * Recover QUOTAOFF records. We simply make a note of it in the xlog 3239 * structure, so that we know not to do any dquot item or dquot buffer recovery, 3240 * of that type. 3241 */ 3242 STATIC int 3243 xlog_recover_quotaoff_pass1( 3244 struct xlog *log, 3245 struct xlog_recover_item *item) 3246 { 3247 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 3248 ASSERT(qoff_f); 3249 3250 /* 3251 * The logitem format's flag tells us if this was user quotaoff, 3252 * group/project quotaoff or both. 3253 */ 3254 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 3255 log->l_quotaoffs_flag |= XFS_DQ_USER; 3256 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 3257 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 3258 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 3259 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * Recover a dquot record 3266 */ 3267 STATIC int 3268 xlog_recover_dquot_pass2( 3269 struct xlog *log, 3270 struct list_head *buffer_list, 3271 struct xlog_recover_item *item, 3272 xfs_lsn_t current_lsn) 3273 { 3274 xfs_mount_t *mp = log->l_mp; 3275 xfs_buf_t *bp; 3276 struct xfs_disk_dquot *ddq, *recddq; 3277 int error; 3278 xfs_dq_logformat_t *dq_f; 3279 uint type; 3280 3281 3282 /* 3283 * Filesystems are required to send in quota flags at mount time. 3284 */ 3285 if (mp->m_qflags == 0) 3286 return 0; 3287 3288 recddq = item->ri_buf[1].i_addr; 3289 if (recddq == NULL) { 3290 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 3291 return -EIO; 3292 } 3293 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 3294 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 3295 item->ri_buf[1].i_len, __func__); 3296 return -EIO; 3297 } 3298 3299 /* 3300 * This type of quotas was turned off, so ignore this record. 3301 */ 3302 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3303 ASSERT(type); 3304 if (log->l_quotaoffs_flag & type) 3305 return 0; 3306 3307 /* 3308 * At this point we know that quota was _not_ turned off. 3309 * Since the mount flags are not indicating to us otherwise, this 3310 * must mean that quota is on, and the dquot needs to be replayed. 3311 * Remember that we may not have fully recovered the superblock yet, 3312 * so we can't do the usual trick of looking at the SB quota bits. 3313 * 3314 * The other possibility, of course, is that the quota subsystem was 3315 * removed since the last mount - ENOSYS. 3316 */ 3317 dq_f = item->ri_buf[0].i_addr; 3318 ASSERT(dq_f); 3319 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 3320 "xlog_recover_dquot_pass2 (log copy)"); 3321 if (error) 3322 return -EIO; 3323 ASSERT(dq_f->qlf_len == 1); 3324 3325 /* 3326 * At this point we are assuming that the dquots have been allocated 3327 * and hence the buffer has valid dquots stamped in it. It should, 3328 * therefore, pass verifier validation. If the dquot is bad, then the 3329 * we'll return an error here, so we don't need to specifically check 3330 * the dquot in the buffer after the verifier has run. 3331 */ 3332 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, 3333 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, 3334 &xfs_dquot_buf_ops); 3335 if (error) 3336 return error; 3337 3338 ASSERT(bp); 3339 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset); 3340 3341 /* 3342 * If the dquot has an LSN in it, recover the dquot only if it's less 3343 * than the lsn of the transaction we are replaying. 3344 */ 3345 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3346 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; 3347 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); 3348 3349 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { 3350 goto out_release; 3351 } 3352 } 3353 3354 memcpy(ddq, recddq, item->ri_buf[1].i_len); 3355 if (xfs_sb_version_hascrc(&mp->m_sb)) { 3356 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), 3357 XFS_DQUOT_CRC_OFF); 3358 } 3359 3360 ASSERT(dq_f->qlf_size == 2); 3361 ASSERT(bp->b_target->bt_mount == mp); 3362 bp->b_iodone = xlog_recover_iodone; 3363 xfs_buf_delwri_queue(bp, buffer_list); 3364 3365 out_release: 3366 xfs_buf_relse(bp); 3367 return 0; 3368 } 3369 3370 /* 3371 * This routine is called to create an in-core extent free intent 3372 * item from the efi format structure which was logged on disk. 3373 * It allocates an in-core efi, copies the extents from the format 3374 * structure into it, and adds the efi to the AIL with the given 3375 * LSN. 3376 */ 3377 STATIC int 3378 xlog_recover_efi_pass2( 3379 struct xlog *log, 3380 struct xlog_recover_item *item, 3381 xfs_lsn_t lsn) 3382 { 3383 int error; 3384 struct xfs_mount *mp = log->l_mp; 3385 struct xfs_efi_log_item *efip; 3386 struct xfs_efi_log_format *efi_formatp; 3387 3388 efi_formatp = item->ri_buf[0].i_addr; 3389 3390 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 3391 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 3392 if (error) { 3393 xfs_efi_item_free(efip); 3394 return error; 3395 } 3396 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 3397 3398 spin_lock(&log->l_ailp->xa_lock); 3399 /* 3400 * The EFI has two references. One for the EFD and one for EFI to ensure 3401 * it makes it into the AIL. Insert the EFI into the AIL directly and 3402 * drop the EFI reference. Note that xfs_trans_ail_update() drops the 3403 * AIL lock. 3404 */ 3405 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 3406 xfs_efi_release(efip); 3407 return 0; 3408 } 3409 3410 3411 /* 3412 * This routine is called when an EFD format structure is found in a committed 3413 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 3414 * was still in the log. To do this it searches the AIL for the EFI with an id 3415 * equal to that in the EFD format structure. If we find it we drop the EFD 3416 * reference, which removes the EFI from the AIL and frees it. 3417 */ 3418 STATIC int 3419 xlog_recover_efd_pass2( 3420 struct xlog *log, 3421 struct xlog_recover_item *item) 3422 { 3423 xfs_efd_log_format_t *efd_formatp; 3424 xfs_efi_log_item_t *efip = NULL; 3425 xfs_log_item_t *lip; 3426 __uint64_t efi_id; 3427 struct xfs_ail_cursor cur; 3428 struct xfs_ail *ailp = log->l_ailp; 3429 3430 efd_formatp = item->ri_buf[0].i_addr; 3431 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 3432 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 3433 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 3434 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 3435 efi_id = efd_formatp->efd_efi_id; 3436 3437 /* 3438 * Search for the EFI with the id in the EFD format structure in the 3439 * AIL. 3440 */ 3441 spin_lock(&ailp->xa_lock); 3442 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3443 while (lip != NULL) { 3444 if (lip->li_type == XFS_LI_EFI) { 3445 efip = (xfs_efi_log_item_t *)lip; 3446 if (efip->efi_format.efi_id == efi_id) { 3447 /* 3448 * Drop the EFD reference to the EFI. This 3449 * removes the EFI from the AIL and frees it. 3450 */ 3451 spin_unlock(&ailp->xa_lock); 3452 xfs_efi_release(efip); 3453 spin_lock(&ailp->xa_lock); 3454 break; 3455 } 3456 } 3457 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3458 } 3459 3460 xfs_trans_ail_cursor_done(&cur); 3461 spin_unlock(&ailp->xa_lock); 3462 3463 return 0; 3464 } 3465 3466 /* 3467 * This routine is called to create an in-core extent rmap update 3468 * item from the rui format structure which was logged on disk. 3469 * It allocates an in-core rui, copies the extents from the format 3470 * structure into it, and adds the rui to the AIL with the given 3471 * LSN. 3472 */ 3473 STATIC int 3474 xlog_recover_rui_pass2( 3475 struct xlog *log, 3476 struct xlog_recover_item *item, 3477 xfs_lsn_t lsn) 3478 { 3479 int error; 3480 struct xfs_mount *mp = log->l_mp; 3481 struct xfs_rui_log_item *ruip; 3482 struct xfs_rui_log_format *rui_formatp; 3483 3484 rui_formatp = item->ri_buf[0].i_addr; 3485 3486 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents); 3487 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format); 3488 if (error) { 3489 xfs_rui_item_free(ruip); 3490 return error; 3491 } 3492 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents); 3493 3494 spin_lock(&log->l_ailp->xa_lock); 3495 /* 3496 * The RUI has two references. One for the RUD and one for RUI to ensure 3497 * it makes it into the AIL. Insert the RUI into the AIL directly and 3498 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3499 * AIL lock. 3500 */ 3501 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn); 3502 xfs_rui_release(ruip); 3503 return 0; 3504 } 3505 3506 3507 /* 3508 * This routine is called when an RUD format structure is found in a committed 3509 * transaction in the log. Its purpose is to cancel the corresponding RUI if it 3510 * was still in the log. To do this it searches the AIL for the RUI with an id 3511 * equal to that in the RUD format structure. If we find it we drop the RUD 3512 * reference, which removes the RUI from the AIL and frees it. 3513 */ 3514 STATIC int 3515 xlog_recover_rud_pass2( 3516 struct xlog *log, 3517 struct xlog_recover_item *item) 3518 { 3519 struct xfs_rud_log_format *rud_formatp; 3520 struct xfs_rui_log_item *ruip = NULL; 3521 struct xfs_log_item *lip; 3522 __uint64_t rui_id; 3523 struct xfs_ail_cursor cur; 3524 struct xfs_ail *ailp = log->l_ailp; 3525 3526 rud_formatp = item->ri_buf[0].i_addr; 3527 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format)); 3528 rui_id = rud_formatp->rud_rui_id; 3529 3530 /* 3531 * Search for the RUI with the id in the RUD format structure in the 3532 * AIL. 3533 */ 3534 spin_lock(&ailp->xa_lock); 3535 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3536 while (lip != NULL) { 3537 if (lip->li_type == XFS_LI_RUI) { 3538 ruip = (struct xfs_rui_log_item *)lip; 3539 if (ruip->rui_format.rui_id == rui_id) { 3540 /* 3541 * Drop the RUD reference to the RUI. This 3542 * removes the RUI from the AIL and frees it. 3543 */ 3544 spin_unlock(&ailp->xa_lock); 3545 xfs_rui_release(ruip); 3546 spin_lock(&ailp->xa_lock); 3547 break; 3548 } 3549 } 3550 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3551 } 3552 3553 xfs_trans_ail_cursor_done(&cur); 3554 spin_unlock(&ailp->xa_lock); 3555 3556 return 0; 3557 } 3558 3559 /* 3560 * Copy an CUI format buffer from the given buf, and into the destination 3561 * CUI format structure. The CUI/CUD items were designed not to need any 3562 * special alignment handling. 3563 */ 3564 static int 3565 xfs_cui_copy_format( 3566 struct xfs_log_iovec *buf, 3567 struct xfs_cui_log_format *dst_cui_fmt) 3568 { 3569 struct xfs_cui_log_format *src_cui_fmt; 3570 uint len; 3571 3572 src_cui_fmt = buf->i_addr; 3573 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 3574 3575 if (buf->i_len == len) { 3576 memcpy(dst_cui_fmt, src_cui_fmt, len); 3577 return 0; 3578 } 3579 return -EFSCORRUPTED; 3580 } 3581 3582 /* 3583 * This routine is called to create an in-core extent refcount update 3584 * item from the cui format structure which was logged on disk. 3585 * It allocates an in-core cui, copies the extents from the format 3586 * structure into it, and adds the cui to the AIL with the given 3587 * LSN. 3588 */ 3589 STATIC int 3590 xlog_recover_cui_pass2( 3591 struct xlog *log, 3592 struct xlog_recover_item *item, 3593 xfs_lsn_t lsn) 3594 { 3595 int error; 3596 struct xfs_mount *mp = log->l_mp; 3597 struct xfs_cui_log_item *cuip; 3598 struct xfs_cui_log_format *cui_formatp; 3599 3600 cui_formatp = item->ri_buf[0].i_addr; 3601 3602 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 3603 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 3604 if (error) { 3605 xfs_cui_item_free(cuip); 3606 return error; 3607 } 3608 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 3609 3610 spin_lock(&log->l_ailp->xa_lock); 3611 /* 3612 * The CUI has two references. One for the CUD and one for CUI to ensure 3613 * it makes it into the AIL. Insert the CUI into the AIL directly and 3614 * drop the CUI reference. Note that xfs_trans_ail_update() drops the 3615 * AIL lock. 3616 */ 3617 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn); 3618 xfs_cui_release(cuip); 3619 return 0; 3620 } 3621 3622 3623 /* 3624 * This routine is called when an CUD format structure is found in a committed 3625 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 3626 * was still in the log. To do this it searches the AIL for the CUI with an id 3627 * equal to that in the CUD format structure. If we find it we drop the CUD 3628 * reference, which removes the CUI from the AIL and frees it. 3629 */ 3630 STATIC int 3631 xlog_recover_cud_pass2( 3632 struct xlog *log, 3633 struct xlog_recover_item *item) 3634 { 3635 struct xfs_cud_log_format *cud_formatp; 3636 struct xfs_cui_log_item *cuip = NULL; 3637 struct xfs_log_item *lip; 3638 __uint64_t cui_id; 3639 struct xfs_ail_cursor cur; 3640 struct xfs_ail *ailp = log->l_ailp; 3641 3642 cud_formatp = item->ri_buf[0].i_addr; 3643 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) 3644 return -EFSCORRUPTED; 3645 cui_id = cud_formatp->cud_cui_id; 3646 3647 /* 3648 * Search for the CUI with the id in the CUD format structure in the 3649 * AIL. 3650 */ 3651 spin_lock(&ailp->xa_lock); 3652 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3653 while (lip != NULL) { 3654 if (lip->li_type == XFS_LI_CUI) { 3655 cuip = (struct xfs_cui_log_item *)lip; 3656 if (cuip->cui_format.cui_id == cui_id) { 3657 /* 3658 * Drop the CUD reference to the CUI. This 3659 * removes the CUI from the AIL and frees it. 3660 */ 3661 spin_unlock(&ailp->xa_lock); 3662 xfs_cui_release(cuip); 3663 spin_lock(&ailp->xa_lock); 3664 break; 3665 } 3666 } 3667 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3668 } 3669 3670 xfs_trans_ail_cursor_done(&cur); 3671 spin_unlock(&ailp->xa_lock); 3672 3673 return 0; 3674 } 3675 3676 /* 3677 * Copy an BUI format buffer from the given buf, and into the destination 3678 * BUI format structure. The BUI/BUD items were designed not to need any 3679 * special alignment handling. 3680 */ 3681 static int 3682 xfs_bui_copy_format( 3683 struct xfs_log_iovec *buf, 3684 struct xfs_bui_log_format *dst_bui_fmt) 3685 { 3686 struct xfs_bui_log_format *src_bui_fmt; 3687 uint len; 3688 3689 src_bui_fmt = buf->i_addr; 3690 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents); 3691 3692 if (buf->i_len == len) { 3693 memcpy(dst_bui_fmt, src_bui_fmt, len); 3694 return 0; 3695 } 3696 return -EFSCORRUPTED; 3697 } 3698 3699 /* 3700 * This routine is called to create an in-core extent bmap update 3701 * item from the bui format structure which was logged on disk. 3702 * It allocates an in-core bui, copies the extents from the format 3703 * structure into it, and adds the bui to the AIL with the given 3704 * LSN. 3705 */ 3706 STATIC int 3707 xlog_recover_bui_pass2( 3708 struct xlog *log, 3709 struct xlog_recover_item *item, 3710 xfs_lsn_t lsn) 3711 { 3712 int error; 3713 struct xfs_mount *mp = log->l_mp; 3714 struct xfs_bui_log_item *buip; 3715 struct xfs_bui_log_format *bui_formatp; 3716 3717 bui_formatp = item->ri_buf[0].i_addr; 3718 3719 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) 3720 return -EFSCORRUPTED; 3721 buip = xfs_bui_init(mp); 3722 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format); 3723 if (error) { 3724 xfs_bui_item_free(buip); 3725 return error; 3726 } 3727 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents); 3728 3729 spin_lock(&log->l_ailp->xa_lock); 3730 /* 3731 * The RUI has two references. One for the RUD and one for RUI to ensure 3732 * it makes it into the AIL. Insert the RUI into the AIL directly and 3733 * drop the RUI reference. Note that xfs_trans_ail_update() drops the 3734 * AIL lock. 3735 */ 3736 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn); 3737 xfs_bui_release(buip); 3738 return 0; 3739 } 3740 3741 3742 /* 3743 * This routine is called when an BUD format structure is found in a committed 3744 * transaction in the log. Its purpose is to cancel the corresponding BUI if it 3745 * was still in the log. To do this it searches the AIL for the BUI with an id 3746 * equal to that in the BUD format structure. If we find it we drop the BUD 3747 * reference, which removes the BUI from the AIL and frees it. 3748 */ 3749 STATIC int 3750 xlog_recover_bud_pass2( 3751 struct xlog *log, 3752 struct xlog_recover_item *item) 3753 { 3754 struct xfs_bud_log_format *bud_formatp; 3755 struct xfs_bui_log_item *buip = NULL; 3756 struct xfs_log_item *lip; 3757 __uint64_t bui_id; 3758 struct xfs_ail_cursor cur; 3759 struct xfs_ail *ailp = log->l_ailp; 3760 3761 bud_formatp = item->ri_buf[0].i_addr; 3762 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) 3763 return -EFSCORRUPTED; 3764 bui_id = bud_formatp->bud_bui_id; 3765 3766 /* 3767 * Search for the BUI with the id in the BUD format structure in the 3768 * AIL. 3769 */ 3770 spin_lock(&ailp->xa_lock); 3771 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 3772 while (lip != NULL) { 3773 if (lip->li_type == XFS_LI_BUI) { 3774 buip = (struct xfs_bui_log_item *)lip; 3775 if (buip->bui_format.bui_id == bui_id) { 3776 /* 3777 * Drop the BUD reference to the BUI. This 3778 * removes the BUI from the AIL and frees it. 3779 */ 3780 spin_unlock(&ailp->xa_lock); 3781 xfs_bui_release(buip); 3782 spin_lock(&ailp->xa_lock); 3783 break; 3784 } 3785 } 3786 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3787 } 3788 3789 xfs_trans_ail_cursor_done(&cur); 3790 spin_unlock(&ailp->xa_lock); 3791 3792 return 0; 3793 } 3794 3795 /* 3796 * This routine is called when an inode create format structure is found in a 3797 * committed transaction in the log. It's purpose is to initialise the inodes 3798 * being allocated on disk. This requires us to get inode cluster buffers that 3799 * match the range to be intialised, stamped with inode templates and written 3800 * by delayed write so that subsequent modifications will hit the cached buffer 3801 * and only need writing out at the end of recovery. 3802 */ 3803 STATIC int 3804 xlog_recover_do_icreate_pass2( 3805 struct xlog *log, 3806 struct list_head *buffer_list, 3807 xlog_recover_item_t *item) 3808 { 3809 struct xfs_mount *mp = log->l_mp; 3810 struct xfs_icreate_log *icl; 3811 xfs_agnumber_t agno; 3812 xfs_agblock_t agbno; 3813 unsigned int count; 3814 unsigned int isize; 3815 xfs_agblock_t length; 3816 int blks_per_cluster; 3817 int bb_per_cluster; 3818 int cancel_count; 3819 int nbufs; 3820 int i; 3821 3822 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; 3823 if (icl->icl_type != XFS_LI_ICREATE) { 3824 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); 3825 return -EINVAL; 3826 } 3827 3828 if (icl->icl_size != 1) { 3829 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); 3830 return -EINVAL; 3831 } 3832 3833 agno = be32_to_cpu(icl->icl_ag); 3834 if (agno >= mp->m_sb.sb_agcount) { 3835 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); 3836 return -EINVAL; 3837 } 3838 agbno = be32_to_cpu(icl->icl_agbno); 3839 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { 3840 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); 3841 return -EINVAL; 3842 } 3843 isize = be32_to_cpu(icl->icl_isize); 3844 if (isize != mp->m_sb.sb_inodesize) { 3845 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); 3846 return -EINVAL; 3847 } 3848 count = be32_to_cpu(icl->icl_count); 3849 if (!count) { 3850 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); 3851 return -EINVAL; 3852 } 3853 length = be32_to_cpu(icl->icl_length); 3854 if (!length || length >= mp->m_sb.sb_agblocks) { 3855 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); 3856 return -EINVAL; 3857 } 3858 3859 /* 3860 * The inode chunk is either full or sparse and we only support 3861 * m_ialloc_min_blks sized sparse allocations at this time. 3862 */ 3863 if (length != mp->m_ialloc_blks && 3864 length != mp->m_ialloc_min_blks) { 3865 xfs_warn(log->l_mp, 3866 "%s: unsupported chunk length", __FUNCTION__); 3867 return -EINVAL; 3868 } 3869 3870 /* verify inode count is consistent with extent length */ 3871 if ((count >> mp->m_sb.sb_inopblog) != length) { 3872 xfs_warn(log->l_mp, 3873 "%s: inconsistent inode count and chunk length", 3874 __FUNCTION__); 3875 return -EINVAL; 3876 } 3877 3878 /* 3879 * The icreate transaction can cover multiple cluster buffers and these 3880 * buffers could have been freed and reused. Check the individual 3881 * buffers for cancellation so we don't overwrite anything written after 3882 * a cancellation. 3883 */ 3884 blks_per_cluster = xfs_icluster_size_fsb(mp); 3885 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster); 3886 nbufs = length / blks_per_cluster; 3887 for (i = 0, cancel_count = 0; i < nbufs; i++) { 3888 xfs_daddr_t daddr; 3889 3890 daddr = XFS_AGB_TO_DADDR(mp, agno, 3891 agbno + i * blks_per_cluster); 3892 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0)) 3893 cancel_count++; 3894 } 3895 3896 /* 3897 * We currently only use icreate for a single allocation at a time. This 3898 * means we should expect either all or none of the buffers to be 3899 * cancelled. Be conservative and skip replay if at least one buffer is 3900 * cancelled, but warn the user that something is awry if the buffers 3901 * are not consistent. 3902 * 3903 * XXX: This must be refined to only skip cancelled clusters once we use 3904 * icreate for multiple chunk allocations. 3905 */ 3906 ASSERT(!cancel_count || cancel_count == nbufs); 3907 if (cancel_count) { 3908 if (cancel_count != nbufs) 3909 xfs_warn(mp, 3910 "WARNING: partial inode chunk cancellation, skipped icreate."); 3911 trace_xfs_log_recover_icreate_cancel(log, icl); 3912 return 0; 3913 } 3914 3915 trace_xfs_log_recover_icreate_recover(log, icl); 3916 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno, 3917 length, be32_to_cpu(icl->icl_gen)); 3918 } 3919 3920 STATIC void 3921 xlog_recover_buffer_ra_pass2( 3922 struct xlog *log, 3923 struct xlog_recover_item *item) 3924 { 3925 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; 3926 struct xfs_mount *mp = log->l_mp; 3927 3928 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, 3929 buf_f->blf_len, buf_f->blf_flags)) { 3930 return; 3931 } 3932 3933 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, 3934 buf_f->blf_len, NULL); 3935 } 3936 3937 STATIC void 3938 xlog_recover_inode_ra_pass2( 3939 struct xlog *log, 3940 struct xlog_recover_item *item) 3941 { 3942 struct xfs_inode_log_format ilf_buf; 3943 struct xfs_inode_log_format *ilfp; 3944 struct xfs_mount *mp = log->l_mp; 3945 int error; 3946 3947 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { 3948 ilfp = item->ri_buf[0].i_addr; 3949 } else { 3950 ilfp = &ilf_buf; 3951 memset(ilfp, 0, sizeof(*ilfp)); 3952 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); 3953 if (error) 3954 return; 3955 } 3956 3957 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) 3958 return; 3959 3960 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, 3961 ilfp->ilf_len, &xfs_inode_buf_ra_ops); 3962 } 3963 3964 STATIC void 3965 xlog_recover_dquot_ra_pass2( 3966 struct xlog *log, 3967 struct xlog_recover_item *item) 3968 { 3969 struct xfs_mount *mp = log->l_mp; 3970 struct xfs_disk_dquot *recddq; 3971 struct xfs_dq_logformat *dq_f; 3972 uint type; 3973 int len; 3974 3975 3976 if (mp->m_qflags == 0) 3977 return; 3978 3979 recddq = item->ri_buf[1].i_addr; 3980 if (recddq == NULL) 3981 return; 3982 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) 3983 return; 3984 3985 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 3986 ASSERT(type); 3987 if (log->l_quotaoffs_flag & type) 3988 return; 3989 3990 dq_f = item->ri_buf[0].i_addr; 3991 ASSERT(dq_f); 3992 ASSERT(dq_f->qlf_len == 1); 3993 3994 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len); 3995 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0)) 3996 return; 3997 3998 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len, 3999 &xfs_dquot_buf_ra_ops); 4000 } 4001 4002 STATIC void 4003 xlog_recover_ra_pass2( 4004 struct xlog *log, 4005 struct xlog_recover_item *item) 4006 { 4007 switch (ITEM_TYPE(item)) { 4008 case XFS_LI_BUF: 4009 xlog_recover_buffer_ra_pass2(log, item); 4010 break; 4011 case XFS_LI_INODE: 4012 xlog_recover_inode_ra_pass2(log, item); 4013 break; 4014 case XFS_LI_DQUOT: 4015 xlog_recover_dquot_ra_pass2(log, item); 4016 break; 4017 case XFS_LI_EFI: 4018 case XFS_LI_EFD: 4019 case XFS_LI_QUOTAOFF: 4020 case XFS_LI_RUI: 4021 case XFS_LI_RUD: 4022 case XFS_LI_CUI: 4023 case XFS_LI_CUD: 4024 case XFS_LI_BUI: 4025 case XFS_LI_BUD: 4026 default: 4027 break; 4028 } 4029 } 4030 4031 STATIC int 4032 xlog_recover_commit_pass1( 4033 struct xlog *log, 4034 struct xlog_recover *trans, 4035 struct xlog_recover_item *item) 4036 { 4037 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 4038 4039 switch (ITEM_TYPE(item)) { 4040 case XFS_LI_BUF: 4041 return xlog_recover_buffer_pass1(log, item); 4042 case XFS_LI_QUOTAOFF: 4043 return xlog_recover_quotaoff_pass1(log, item); 4044 case XFS_LI_INODE: 4045 case XFS_LI_EFI: 4046 case XFS_LI_EFD: 4047 case XFS_LI_DQUOT: 4048 case XFS_LI_ICREATE: 4049 case XFS_LI_RUI: 4050 case XFS_LI_RUD: 4051 case XFS_LI_CUI: 4052 case XFS_LI_CUD: 4053 case XFS_LI_BUI: 4054 case XFS_LI_BUD: 4055 /* nothing to do in pass 1 */ 4056 return 0; 4057 default: 4058 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4059 __func__, ITEM_TYPE(item)); 4060 ASSERT(0); 4061 return -EIO; 4062 } 4063 } 4064 4065 STATIC int 4066 xlog_recover_commit_pass2( 4067 struct xlog *log, 4068 struct xlog_recover *trans, 4069 struct list_head *buffer_list, 4070 struct xlog_recover_item *item) 4071 { 4072 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 4073 4074 switch (ITEM_TYPE(item)) { 4075 case XFS_LI_BUF: 4076 return xlog_recover_buffer_pass2(log, buffer_list, item, 4077 trans->r_lsn); 4078 case XFS_LI_INODE: 4079 return xlog_recover_inode_pass2(log, buffer_list, item, 4080 trans->r_lsn); 4081 case XFS_LI_EFI: 4082 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 4083 case XFS_LI_EFD: 4084 return xlog_recover_efd_pass2(log, item); 4085 case XFS_LI_RUI: 4086 return xlog_recover_rui_pass2(log, item, trans->r_lsn); 4087 case XFS_LI_RUD: 4088 return xlog_recover_rud_pass2(log, item); 4089 case XFS_LI_CUI: 4090 return xlog_recover_cui_pass2(log, item, trans->r_lsn); 4091 case XFS_LI_CUD: 4092 return xlog_recover_cud_pass2(log, item); 4093 case XFS_LI_BUI: 4094 return xlog_recover_bui_pass2(log, item, trans->r_lsn); 4095 case XFS_LI_BUD: 4096 return xlog_recover_bud_pass2(log, item); 4097 case XFS_LI_DQUOT: 4098 return xlog_recover_dquot_pass2(log, buffer_list, item, 4099 trans->r_lsn); 4100 case XFS_LI_ICREATE: 4101 return xlog_recover_do_icreate_pass2(log, buffer_list, item); 4102 case XFS_LI_QUOTAOFF: 4103 /* nothing to do in pass2 */ 4104 return 0; 4105 default: 4106 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 4107 __func__, ITEM_TYPE(item)); 4108 ASSERT(0); 4109 return -EIO; 4110 } 4111 } 4112 4113 STATIC int 4114 xlog_recover_items_pass2( 4115 struct xlog *log, 4116 struct xlog_recover *trans, 4117 struct list_head *buffer_list, 4118 struct list_head *item_list) 4119 { 4120 struct xlog_recover_item *item; 4121 int error = 0; 4122 4123 list_for_each_entry(item, item_list, ri_list) { 4124 error = xlog_recover_commit_pass2(log, trans, 4125 buffer_list, item); 4126 if (error) 4127 return error; 4128 } 4129 4130 return error; 4131 } 4132 4133 /* 4134 * Perform the transaction. 4135 * 4136 * If the transaction modifies a buffer or inode, do it now. Otherwise, 4137 * EFIs and EFDs get queued up by adding entries into the AIL for them. 4138 */ 4139 STATIC int 4140 xlog_recover_commit_trans( 4141 struct xlog *log, 4142 struct xlog_recover *trans, 4143 int pass, 4144 struct list_head *buffer_list) 4145 { 4146 int error = 0; 4147 int items_queued = 0; 4148 struct xlog_recover_item *item; 4149 struct xlog_recover_item *next; 4150 LIST_HEAD (ra_list); 4151 LIST_HEAD (done_list); 4152 4153 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 4154 4155 hlist_del(&trans->r_list); 4156 4157 error = xlog_recover_reorder_trans(log, trans, pass); 4158 if (error) 4159 return error; 4160 4161 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 4162 switch (pass) { 4163 case XLOG_RECOVER_PASS1: 4164 error = xlog_recover_commit_pass1(log, trans, item); 4165 break; 4166 case XLOG_RECOVER_PASS2: 4167 xlog_recover_ra_pass2(log, item); 4168 list_move_tail(&item->ri_list, &ra_list); 4169 items_queued++; 4170 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 4171 error = xlog_recover_items_pass2(log, trans, 4172 buffer_list, &ra_list); 4173 list_splice_tail_init(&ra_list, &done_list); 4174 items_queued = 0; 4175 } 4176 4177 break; 4178 default: 4179 ASSERT(0); 4180 } 4181 4182 if (error) 4183 goto out; 4184 } 4185 4186 out: 4187 if (!list_empty(&ra_list)) { 4188 if (!error) 4189 error = xlog_recover_items_pass2(log, trans, 4190 buffer_list, &ra_list); 4191 list_splice_tail_init(&ra_list, &done_list); 4192 } 4193 4194 if (!list_empty(&done_list)) 4195 list_splice_init(&done_list, &trans->r_itemq); 4196 4197 return error; 4198 } 4199 4200 STATIC void 4201 xlog_recover_add_item( 4202 struct list_head *head) 4203 { 4204 xlog_recover_item_t *item; 4205 4206 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 4207 INIT_LIST_HEAD(&item->ri_list); 4208 list_add_tail(&item->ri_list, head); 4209 } 4210 4211 STATIC int 4212 xlog_recover_add_to_cont_trans( 4213 struct xlog *log, 4214 struct xlog_recover *trans, 4215 char *dp, 4216 int len) 4217 { 4218 xlog_recover_item_t *item; 4219 char *ptr, *old_ptr; 4220 int old_len; 4221 4222 /* 4223 * If the transaction is empty, the header was split across this and the 4224 * previous record. Copy the rest of the header. 4225 */ 4226 if (list_empty(&trans->r_itemq)) { 4227 ASSERT(len <= sizeof(struct xfs_trans_header)); 4228 if (len > sizeof(struct xfs_trans_header)) { 4229 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4230 return -EIO; 4231 } 4232 4233 xlog_recover_add_item(&trans->r_itemq); 4234 ptr = (char *)&trans->r_theader + 4235 sizeof(struct xfs_trans_header) - len; 4236 memcpy(ptr, dp, len); 4237 return 0; 4238 } 4239 4240 /* take the tail entry */ 4241 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4242 4243 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 4244 old_len = item->ri_buf[item->ri_cnt-1].i_len; 4245 4246 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP); 4247 memcpy(&ptr[old_len], dp, len); 4248 item->ri_buf[item->ri_cnt-1].i_len += len; 4249 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 4250 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 4251 return 0; 4252 } 4253 4254 /* 4255 * The next region to add is the start of a new region. It could be 4256 * a whole region or it could be the first part of a new region. Because 4257 * of this, the assumption here is that the type and size fields of all 4258 * format structures fit into the first 32 bits of the structure. 4259 * 4260 * This works because all regions must be 32 bit aligned. Therefore, we 4261 * either have both fields or we have neither field. In the case we have 4262 * neither field, the data part of the region is zero length. We only have 4263 * a log_op_header and can throw away the header since a new one will appear 4264 * later. If we have at least 4 bytes, then we can determine how many regions 4265 * will appear in the current log item. 4266 */ 4267 STATIC int 4268 xlog_recover_add_to_trans( 4269 struct xlog *log, 4270 struct xlog_recover *trans, 4271 char *dp, 4272 int len) 4273 { 4274 xfs_inode_log_format_t *in_f; /* any will do */ 4275 xlog_recover_item_t *item; 4276 char *ptr; 4277 4278 if (!len) 4279 return 0; 4280 if (list_empty(&trans->r_itemq)) { 4281 /* we need to catch log corruptions here */ 4282 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 4283 xfs_warn(log->l_mp, "%s: bad header magic number", 4284 __func__); 4285 ASSERT(0); 4286 return -EIO; 4287 } 4288 4289 if (len > sizeof(struct xfs_trans_header)) { 4290 xfs_warn(log->l_mp, "%s: bad header length", __func__); 4291 ASSERT(0); 4292 return -EIO; 4293 } 4294 4295 /* 4296 * The transaction header can be arbitrarily split across op 4297 * records. If we don't have the whole thing here, copy what we 4298 * do have and handle the rest in the next record. 4299 */ 4300 if (len == sizeof(struct xfs_trans_header)) 4301 xlog_recover_add_item(&trans->r_itemq); 4302 memcpy(&trans->r_theader, dp, len); 4303 return 0; 4304 } 4305 4306 ptr = kmem_alloc(len, KM_SLEEP); 4307 memcpy(ptr, dp, len); 4308 in_f = (xfs_inode_log_format_t *)ptr; 4309 4310 /* take the tail entry */ 4311 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 4312 if (item->ri_total != 0 && 4313 item->ri_total == item->ri_cnt) { 4314 /* tail item is in use, get a new one */ 4315 xlog_recover_add_item(&trans->r_itemq); 4316 item = list_entry(trans->r_itemq.prev, 4317 xlog_recover_item_t, ri_list); 4318 } 4319 4320 if (item->ri_total == 0) { /* first region to be added */ 4321 if (in_f->ilf_size == 0 || 4322 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 4323 xfs_warn(log->l_mp, 4324 "bad number of regions (%d) in inode log format", 4325 in_f->ilf_size); 4326 ASSERT(0); 4327 kmem_free(ptr); 4328 return -EIO; 4329 } 4330 4331 item->ri_total = in_f->ilf_size; 4332 item->ri_buf = 4333 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 4334 KM_SLEEP); 4335 } 4336 ASSERT(item->ri_total > item->ri_cnt); 4337 /* Description region is ri_buf[0] */ 4338 item->ri_buf[item->ri_cnt].i_addr = ptr; 4339 item->ri_buf[item->ri_cnt].i_len = len; 4340 item->ri_cnt++; 4341 trace_xfs_log_recover_item_add(log, trans, item, 0); 4342 return 0; 4343 } 4344 4345 /* 4346 * Free up any resources allocated by the transaction 4347 * 4348 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 4349 */ 4350 STATIC void 4351 xlog_recover_free_trans( 4352 struct xlog_recover *trans) 4353 { 4354 xlog_recover_item_t *item, *n; 4355 int i; 4356 4357 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 4358 /* Free the regions in the item. */ 4359 list_del(&item->ri_list); 4360 for (i = 0; i < item->ri_cnt; i++) 4361 kmem_free(item->ri_buf[i].i_addr); 4362 /* Free the item itself */ 4363 kmem_free(item->ri_buf); 4364 kmem_free(item); 4365 } 4366 /* Free the transaction recover structure */ 4367 kmem_free(trans); 4368 } 4369 4370 /* 4371 * On error or completion, trans is freed. 4372 */ 4373 STATIC int 4374 xlog_recovery_process_trans( 4375 struct xlog *log, 4376 struct xlog_recover *trans, 4377 char *dp, 4378 unsigned int len, 4379 unsigned int flags, 4380 int pass, 4381 struct list_head *buffer_list) 4382 { 4383 int error = 0; 4384 bool freeit = false; 4385 4386 /* mask off ophdr transaction container flags */ 4387 flags &= ~XLOG_END_TRANS; 4388 if (flags & XLOG_WAS_CONT_TRANS) 4389 flags &= ~XLOG_CONTINUE_TRANS; 4390 4391 /* 4392 * Callees must not free the trans structure. We'll decide if we need to 4393 * free it or not based on the operation being done and it's result. 4394 */ 4395 switch (flags) { 4396 /* expected flag values */ 4397 case 0: 4398 case XLOG_CONTINUE_TRANS: 4399 error = xlog_recover_add_to_trans(log, trans, dp, len); 4400 break; 4401 case XLOG_WAS_CONT_TRANS: 4402 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 4403 break; 4404 case XLOG_COMMIT_TRANS: 4405 error = xlog_recover_commit_trans(log, trans, pass, 4406 buffer_list); 4407 /* success or fail, we are now done with this transaction. */ 4408 freeit = true; 4409 break; 4410 4411 /* unexpected flag values */ 4412 case XLOG_UNMOUNT_TRANS: 4413 /* just skip trans */ 4414 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 4415 freeit = true; 4416 break; 4417 case XLOG_START_TRANS: 4418 default: 4419 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 4420 ASSERT(0); 4421 error = -EIO; 4422 break; 4423 } 4424 if (error || freeit) 4425 xlog_recover_free_trans(trans); 4426 return error; 4427 } 4428 4429 /* 4430 * Lookup the transaction recovery structure associated with the ID in the 4431 * current ophdr. If the transaction doesn't exist and the start flag is set in 4432 * the ophdr, then allocate a new transaction for future ID matches to find. 4433 * Either way, return what we found during the lookup - an existing transaction 4434 * or nothing. 4435 */ 4436 STATIC struct xlog_recover * 4437 xlog_recover_ophdr_to_trans( 4438 struct hlist_head rhash[], 4439 struct xlog_rec_header *rhead, 4440 struct xlog_op_header *ohead) 4441 { 4442 struct xlog_recover *trans; 4443 xlog_tid_t tid; 4444 struct hlist_head *rhp; 4445 4446 tid = be32_to_cpu(ohead->oh_tid); 4447 rhp = &rhash[XLOG_RHASH(tid)]; 4448 hlist_for_each_entry(trans, rhp, r_list) { 4449 if (trans->r_log_tid == tid) 4450 return trans; 4451 } 4452 4453 /* 4454 * skip over non-start transaction headers - we could be 4455 * processing slack space before the next transaction starts 4456 */ 4457 if (!(ohead->oh_flags & XLOG_START_TRANS)) 4458 return NULL; 4459 4460 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 4461 4462 /* 4463 * This is a new transaction so allocate a new recovery container to 4464 * hold the recovery ops that will follow. 4465 */ 4466 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP); 4467 trans->r_log_tid = tid; 4468 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 4469 INIT_LIST_HEAD(&trans->r_itemq); 4470 INIT_HLIST_NODE(&trans->r_list); 4471 hlist_add_head(&trans->r_list, rhp); 4472 4473 /* 4474 * Nothing more to do for this ophdr. Items to be added to this new 4475 * transaction will be in subsequent ophdr containers. 4476 */ 4477 return NULL; 4478 } 4479 4480 STATIC int 4481 xlog_recover_process_ophdr( 4482 struct xlog *log, 4483 struct hlist_head rhash[], 4484 struct xlog_rec_header *rhead, 4485 struct xlog_op_header *ohead, 4486 char *dp, 4487 char *end, 4488 int pass, 4489 struct list_head *buffer_list) 4490 { 4491 struct xlog_recover *trans; 4492 unsigned int len; 4493 int error; 4494 4495 /* Do we understand who wrote this op? */ 4496 if (ohead->oh_clientid != XFS_TRANSACTION && 4497 ohead->oh_clientid != XFS_LOG) { 4498 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 4499 __func__, ohead->oh_clientid); 4500 ASSERT(0); 4501 return -EIO; 4502 } 4503 4504 /* 4505 * Check the ophdr contains all the data it is supposed to contain. 4506 */ 4507 len = be32_to_cpu(ohead->oh_len); 4508 if (dp + len > end) { 4509 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 4510 WARN_ON(1); 4511 return -EIO; 4512 } 4513 4514 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 4515 if (!trans) { 4516 /* nothing to do, so skip over this ophdr */ 4517 return 0; 4518 } 4519 4520 /* 4521 * The recovered buffer queue is drained only once we know that all 4522 * recovery items for the current LSN have been processed. This is 4523 * required because: 4524 * 4525 * - Buffer write submission updates the metadata LSN of the buffer. 4526 * - Log recovery skips items with a metadata LSN >= the current LSN of 4527 * the recovery item. 4528 * - Separate recovery items against the same metadata buffer can share 4529 * a current LSN. I.e., consider that the LSN of a recovery item is 4530 * defined as the starting LSN of the first record in which its 4531 * transaction appears, that a record can hold multiple transactions, 4532 * and/or that a transaction can span multiple records. 4533 * 4534 * In other words, we are allowed to submit a buffer from log recovery 4535 * once per current LSN. Otherwise, we may incorrectly skip recovery 4536 * items and cause corruption. 4537 * 4538 * We don't know up front whether buffers are updated multiple times per 4539 * LSN. Therefore, track the current LSN of each commit log record as it 4540 * is processed and drain the queue when it changes. Use commit records 4541 * because they are ordered correctly by the logging code. 4542 */ 4543 if (log->l_recovery_lsn != trans->r_lsn && 4544 ohead->oh_flags & XLOG_COMMIT_TRANS) { 4545 error = xfs_buf_delwri_submit(buffer_list); 4546 if (error) 4547 return error; 4548 log->l_recovery_lsn = trans->r_lsn; 4549 } 4550 4551 return xlog_recovery_process_trans(log, trans, dp, len, 4552 ohead->oh_flags, pass, buffer_list); 4553 } 4554 4555 /* 4556 * There are two valid states of the r_state field. 0 indicates that the 4557 * transaction structure is in a normal state. We have either seen the 4558 * start of the transaction or the last operation we added was not a partial 4559 * operation. If the last operation we added to the transaction was a 4560 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 4561 * 4562 * NOTE: skip LRs with 0 data length. 4563 */ 4564 STATIC int 4565 xlog_recover_process_data( 4566 struct xlog *log, 4567 struct hlist_head rhash[], 4568 struct xlog_rec_header *rhead, 4569 char *dp, 4570 int pass, 4571 struct list_head *buffer_list) 4572 { 4573 struct xlog_op_header *ohead; 4574 char *end; 4575 int num_logops; 4576 int error; 4577 4578 end = dp + be32_to_cpu(rhead->h_len); 4579 num_logops = be32_to_cpu(rhead->h_num_logops); 4580 4581 /* check the log format matches our own - else we can't recover */ 4582 if (xlog_header_check_recover(log->l_mp, rhead)) 4583 return -EIO; 4584 4585 trace_xfs_log_recover_record(log, rhead, pass); 4586 while ((dp < end) && num_logops) { 4587 4588 ohead = (struct xlog_op_header *)dp; 4589 dp += sizeof(*ohead); 4590 ASSERT(dp <= end); 4591 4592 /* errors will abort recovery */ 4593 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 4594 dp, end, pass, buffer_list); 4595 if (error) 4596 return error; 4597 4598 dp += be32_to_cpu(ohead->oh_len); 4599 num_logops--; 4600 } 4601 return 0; 4602 } 4603 4604 /* Recover the EFI if necessary. */ 4605 STATIC int 4606 xlog_recover_process_efi( 4607 struct xfs_mount *mp, 4608 struct xfs_ail *ailp, 4609 struct xfs_log_item *lip) 4610 { 4611 struct xfs_efi_log_item *efip; 4612 int error; 4613 4614 /* 4615 * Skip EFIs that we've already processed. 4616 */ 4617 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4618 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) 4619 return 0; 4620 4621 spin_unlock(&ailp->xa_lock); 4622 error = xfs_efi_recover(mp, efip); 4623 spin_lock(&ailp->xa_lock); 4624 4625 return error; 4626 } 4627 4628 /* Release the EFI since we're cancelling everything. */ 4629 STATIC void 4630 xlog_recover_cancel_efi( 4631 struct xfs_mount *mp, 4632 struct xfs_ail *ailp, 4633 struct xfs_log_item *lip) 4634 { 4635 struct xfs_efi_log_item *efip; 4636 4637 efip = container_of(lip, struct xfs_efi_log_item, efi_item); 4638 4639 spin_unlock(&ailp->xa_lock); 4640 xfs_efi_release(efip); 4641 spin_lock(&ailp->xa_lock); 4642 } 4643 4644 /* Recover the RUI if necessary. */ 4645 STATIC int 4646 xlog_recover_process_rui( 4647 struct xfs_mount *mp, 4648 struct xfs_ail *ailp, 4649 struct xfs_log_item *lip) 4650 { 4651 struct xfs_rui_log_item *ruip; 4652 int error; 4653 4654 /* 4655 * Skip RUIs that we've already processed. 4656 */ 4657 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4658 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)) 4659 return 0; 4660 4661 spin_unlock(&ailp->xa_lock); 4662 error = xfs_rui_recover(mp, ruip); 4663 spin_lock(&ailp->xa_lock); 4664 4665 return error; 4666 } 4667 4668 /* Release the RUI since we're cancelling everything. */ 4669 STATIC void 4670 xlog_recover_cancel_rui( 4671 struct xfs_mount *mp, 4672 struct xfs_ail *ailp, 4673 struct xfs_log_item *lip) 4674 { 4675 struct xfs_rui_log_item *ruip; 4676 4677 ruip = container_of(lip, struct xfs_rui_log_item, rui_item); 4678 4679 spin_unlock(&ailp->xa_lock); 4680 xfs_rui_release(ruip); 4681 spin_lock(&ailp->xa_lock); 4682 } 4683 4684 /* Recover the CUI if necessary. */ 4685 STATIC int 4686 xlog_recover_process_cui( 4687 struct xfs_mount *mp, 4688 struct xfs_ail *ailp, 4689 struct xfs_log_item *lip) 4690 { 4691 struct xfs_cui_log_item *cuip; 4692 int error; 4693 4694 /* 4695 * Skip CUIs that we've already processed. 4696 */ 4697 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4698 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)) 4699 return 0; 4700 4701 spin_unlock(&ailp->xa_lock); 4702 error = xfs_cui_recover(mp, cuip); 4703 spin_lock(&ailp->xa_lock); 4704 4705 return error; 4706 } 4707 4708 /* Release the CUI since we're cancelling everything. */ 4709 STATIC void 4710 xlog_recover_cancel_cui( 4711 struct xfs_mount *mp, 4712 struct xfs_ail *ailp, 4713 struct xfs_log_item *lip) 4714 { 4715 struct xfs_cui_log_item *cuip; 4716 4717 cuip = container_of(lip, struct xfs_cui_log_item, cui_item); 4718 4719 spin_unlock(&ailp->xa_lock); 4720 xfs_cui_release(cuip); 4721 spin_lock(&ailp->xa_lock); 4722 } 4723 4724 /* Recover the BUI if necessary. */ 4725 STATIC int 4726 xlog_recover_process_bui( 4727 struct xfs_mount *mp, 4728 struct xfs_ail *ailp, 4729 struct xfs_log_item *lip) 4730 { 4731 struct xfs_bui_log_item *buip; 4732 int error; 4733 4734 /* 4735 * Skip BUIs that we've already processed. 4736 */ 4737 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4738 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)) 4739 return 0; 4740 4741 spin_unlock(&ailp->xa_lock); 4742 error = xfs_bui_recover(mp, buip); 4743 spin_lock(&ailp->xa_lock); 4744 4745 return error; 4746 } 4747 4748 /* Release the BUI since we're cancelling everything. */ 4749 STATIC void 4750 xlog_recover_cancel_bui( 4751 struct xfs_mount *mp, 4752 struct xfs_ail *ailp, 4753 struct xfs_log_item *lip) 4754 { 4755 struct xfs_bui_log_item *buip; 4756 4757 buip = container_of(lip, struct xfs_bui_log_item, bui_item); 4758 4759 spin_unlock(&ailp->xa_lock); 4760 xfs_bui_release(buip); 4761 spin_lock(&ailp->xa_lock); 4762 } 4763 4764 /* Is this log item a deferred action intent? */ 4765 static inline bool xlog_item_is_intent(struct xfs_log_item *lip) 4766 { 4767 switch (lip->li_type) { 4768 case XFS_LI_EFI: 4769 case XFS_LI_RUI: 4770 case XFS_LI_CUI: 4771 case XFS_LI_BUI: 4772 return true; 4773 default: 4774 return false; 4775 } 4776 } 4777 4778 /* 4779 * When this is called, all of the log intent items which did not have 4780 * corresponding log done items should be in the AIL. What we do now 4781 * is update the data structures associated with each one. 4782 * 4783 * Since we process the log intent items in normal transactions, they 4784 * will be removed at some point after the commit. This prevents us 4785 * from just walking down the list processing each one. We'll use a 4786 * flag in the intent item to skip those that we've already processed 4787 * and use the AIL iteration mechanism's generation count to try to 4788 * speed this up at least a bit. 4789 * 4790 * When we start, we know that the intents are the only things in the 4791 * AIL. As we process them, however, other items are added to the 4792 * AIL. 4793 */ 4794 STATIC int 4795 xlog_recover_process_intents( 4796 struct xlog *log) 4797 { 4798 struct xfs_log_item *lip; 4799 int error = 0; 4800 struct xfs_ail_cursor cur; 4801 struct xfs_ail *ailp; 4802 xfs_lsn_t last_lsn; 4803 4804 ailp = log->l_ailp; 4805 spin_lock(&ailp->xa_lock); 4806 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4807 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 4808 while (lip != NULL) { 4809 /* 4810 * We're done when we see something other than an intent. 4811 * There should be no intents left in the AIL now. 4812 */ 4813 if (!xlog_item_is_intent(lip)) { 4814 #ifdef DEBUG 4815 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4816 ASSERT(!xlog_item_is_intent(lip)); 4817 #endif 4818 break; 4819 } 4820 4821 /* 4822 * We should never see a redo item with a LSN higher than 4823 * the last transaction we found in the log at the start 4824 * of recovery. 4825 */ 4826 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0); 4827 4828 switch (lip->li_type) { 4829 case XFS_LI_EFI: 4830 error = xlog_recover_process_efi(log->l_mp, ailp, lip); 4831 break; 4832 case XFS_LI_RUI: 4833 error = xlog_recover_process_rui(log->l_mp, ailp, lip); 4834 break; 4835 case XFS_LI_CUI: 4836 error = xlog_recover_process_cui(log->l_mp, ailp, lip); 4837 break; 4838 case XFS_LI_BUI: 4839 error = xlog_recover_process_bui(log->l_mp, ailp, lip); 4840 break; 4841 } 4842 if (error) 4843 goto out; 4844 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4845 } 4846 out: 4847 xfs_trans_ail_cursor_done(&cur); 4848 spin_unlock(&ailp->xa_lock); 4849 return error; 4850 } 4851 4852 /* 4853 * A cancel occurs when the mount has failed and we're bailing out. 4854 * Release all pending log intent items so they don't pin the AIL. 4855 */ 4856 STATIC int 4857 xlog_recover_cancel_intents( 4858 struct xlog *log) 4859 { 4860 struct xfs_log_item *lip; 4861 int error = 0; 4862 struct xfs_ail_cursor cur; 4863 struct xfs_ail *ailp; 4864 4865 ailp = log->l_ailp; 4866 spin_lock(&ailp->xa_lock); 4867 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 4868 while (lip != NULL) { 4869 /* 4870 * We're done when we see something other than an intent. 4871 * There should be no intents left in the AIL now. 4872 */ 4873 if (!xlog_item_is_intent(lip)) { 4874 #ifdef DEBUG 4875 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 4876 ASSERT(!xlog_item_is_intent(lip)); 4877 #endif 4878 break; 4879 } 4880 4881 switch (lip->li_type) { 4882 case XFS_LI_EFI: 4883 xlog_recover_cancel_efi(log->l_mp, ailp, lip); 4884 break; 4885 case XFS_LI_RUI: 4886 xlog_recover_cancel_rui(log->l_mp, ailp, lip); 4887 break; 4888 case XFS_LI_CUI: 4889 xlog_recover_cancel_cui(log->l_mp, ailp, lip); 4890 break; 4891 case XFS_LI_BUI: 4892 xlog_recover_cancel_bui(log->l_mp, ailp, lip); 4893 break; 4894 } 4895 4896 lip = xfs_trans_ail_cursor_next(ailp, &cur); 4897 } 4898 4899 xfs_trans_ail_cursor_done(&cur); 4900 spin_unlock(&ailp->xa_lock); 4901 return error; 4902 } 4903 4904 /* 4905 * This routine performs a transaction to null out a bad inode pointer 4906 * in an agi unlinked inode hash bucket. 4907 */ 4908 STATIC void 4909 xlog_recover_clear_agi_bucket( 4910 xfs_mount_t *mp, 4911 xfs_agnumber_t agno, 4912 int bucket) 4913 { 4914 xfs_trans_t *tp; 4915 xfs_agi_t *agi; 4916 xfs_buf_t *agibp; 4917 int offset; 4918 int error; 4919 4920 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 4921 if (error) 4922 goto out_error; 4923 4924 error = xfs_read_agi(mp, tp, agno, &agibp); 4925 if (error) 4926 goto out_abort; 4927 4928 agi = XFS_BUF_TO_AGI(agibp); 4929 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 4930 offset = offsetof(xfs_agi_t, agi_unlinked) + 4931 (sizeof(xfs_agino_t) * bucket); 4932 xfs_trans_log_buf(tp, agibp, offset, 4933 (offset + sizeof(xfs_agino_t) - 1)); 4934 4935 error = xfs_trans_commit(tp); 4936 if (error) 4937 goto out_error; 4938 return; 4939 4940 out_abort: 4941 xfs_trans_cancel(tp); 4942 out_error: 4943 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 4944 return; 4945 } 4946 4947 STATIC xfs_agino_t 4948 xlog_recover_process_one_iunlink( 4949 struct xfs_mount *mp, 4950 xfs_agnumber_t agno, 4951 xfs_agino_t agino, 4952 int bucket) 4953 { 4954 struct xfs_buf *ibp; 4955 struct xfs_dinode *dip; 4956 struct xfs_inode *ip; 4957 xfs_ino_t ino; 4958 int error; 4959 4960 ino = XFS_AGINO_TO_INO(mp, agno, agino); 4961 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 4962 if (error) 4963 goto fail; 4964 4965 /* 4966 * Get the on disk inode to find the next inode in the bucket. 4967 */ 4968 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); 4969 if (error) 4970 goto fail_iput; 4971 4972 xfs_iflags_clear(ip, XFS_IRECOVERY); 4973 ASSERT(VFS_I(ip)->i_nlink == 0); 4974 ASSERT(VFS_I(ip)->i_mode != 0); 4975 4976 /* setup for the next pass */ 4977 agino = be32_to_cpu(dip->di_next_unlinked); 4978 xfs_buf_relse(ibp); 4979 4980 /* 4981 * Prevent any DMAPI event from being sent when the reference on 4982 * the inode is dropped. 4983 */ 4984 ip->i_d.di_dmevmask = 0; 4985 4986 IRELE(ip); 4987 return agino; 4988 4989 fail_iput: 4990 IRELE(ip); 4991 fail: 4992 /* 4993 * We can't read in the inode this bucket points to, or this inode 4994 * is messed up. Just ditch this bucket of inodes. We will lose 4995 * some inodes and space, but at least we won't hang. 4996 * 4997 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 4998 * clear the inode pointer in the bucket. 4999 */ 5000 xlog_recover_clear_agi_bucket(mp, agno, bucket); 5001 return NULLAGINO; 5002 } 5003 5004 /* 5005 * xlog_iunlink_recover 5006 * 5007 * This is called during recovery to process any inodes which 5008 * we unlinked but not freed when the system crashed. These 5009 * inodes will be on the lists in the AGI blocks. What we do 5010 * here is scan all the AGIs and fully truncate and free any 5011 * inodes found on the lists. Each inode is removed from the 5012 * lists when it has been fully truncated and is freed. The 5013 * freeing of the inode and its removal from the list must be 5014 * atomic. 5015 */ 5016 STATIC void 5017 xlog_recover_process_iunlinks( 5018 struct xlog *log) 5019 { 5020 xfs_mount_t *mp; 5021 xfs_agnumber_t agno; 5022 xfs_agi_t *agi; 5023 xfs_buf_t *agibp; 5024 xfs_agino_t agino; 5025 int bucket; 5026 int error; 5027 uint mp_dmevmask; 5028 5029 mp = log->l_mp; 5030 5031 /* 5032 * Prevent any DMAPI event from being sent while in this function. 5033 */ 5034 mp_dmevmask = mp->m_dmevmask; 5035 mp->m_dmevmask = 0; 5036 5037 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5038 /* 5039 * Find the agi for this ag. 5040 */ 5041 error = xfs_read_agi(mp, NULL, agno, &agibp); 5042 if (error) { 5043 /* 5044 * AGI is b0rked. Don't process it. 5045 * 5046 * We should probably mark the filesystem as corrupt 5047 * after we've recovered all the ag's we can.... 5048 */ 5049 continue; 5050 } 5051 /* 5052 * Unlock the buffer so that it can be acquired in the normal 5053 * course of the transaction to truncate and free each inode. 5054 * Because we are not racing with anyone else here for the AGI 5055 * buffer, we don't even need to hold it locked to read the 5056 * initial unlinked bucket entries out of the buffer. We keep 5057 * buffer reference though, so that it stays pinned in memory 5058 * while we need the buffer. 5059 */ 5060 agi = XFS_BUF_TO_AGI(agibp); 5061 xfs_buf_unlock(agibp); 5062 5063 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 5064 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 5065 while (agino != NULLAGINO) { 5066 agino = xlog_recover_process_one_iunlink(mp, 5067 agno, agino, bucket); 5068 } 5069 } 5070 xfs_buf_rele(agibp); 5071 } 5072 5073 mp->m_dmevmask = mp_dmevmask; 5074 } 5075 5076 STATIC int 5077 xlog_unpack_data( 5078 struct xlog_rec_header *rhead, 5079 char *dp, 5080 struct xlog *log) 5081 { 5082 int i, j, k; 5083 5084 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 5085 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 5086 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 5087 dp += BBSIZE; 5088 } 5089 5090 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5091 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 5092 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 5093 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5094 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 5095 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 5096 dp += BBSIZE; 5097 } 5098 } 5099 5100 return 0; 5101 } 5102 5103 /* 5104 * CRC check, unpack and process a log record. 5105 */ 5106 STATIC int 5107 xlog_recover_process( 5108 struct xlog *log, 5109 struct hlist_head rhash[], 5110 struct xlog_rec_header *rhead, 5111 char *dp, 5112 int pass, 5113 struct list_head *buffer_list) 5114 { 5115 int error; 5116 __le32 crc; 5117 5118 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 5119 5120 /* 5121 * Nothing else to do if this is a CRC verification pass. Just return 5122 * if this a record with a non-zero crc. Unfortunately, mkfs always 5123 * sets h_crc to 0 so we must consider this valid even on v5 supers. 5124 * Otherwise, return EFSBADCRC on failure so the callers up the stack 5125 * know precisely what failed. 5126 */ 5127 if (pass == XLOG_RECOVER_CRCPASS) { 5128 if (rhead->h_crc && crc != rhead->h_crc) 5129 return -EFSBADCRC; 5130 return 0; 5131 } 5132 5133 /* 5134 * We're in the normal recovery path. Issue a warning if and only if the 5135 * CRC in the header is non-zero. This is an advisory warning and the 5136 * zero CRC check prevents warnings from being emitted when upgrading 5137 * the kernel from one that does not add CRCs by default. 5138 */ 5139 if (crc != rhead->h_crc) { 5140 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { 5141 xfs_alert(log->l_mp, 5142 "log record CRC mismatch: found 0x%x, expected 0x%x.", 5143 le32_to_cpu(rhead->h_crc), 5144 le32_to_cpu(crc)); 5145 xfs_hex_dump(dp, 32); 5146 } 5147 5148 /* 5149 * If the filesystem is CRC enabled, this mismatch becomes a 5150 * fatal log corruption failure. 5151 */ 5152 if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) 5153 return -EFSCORRUPTED; 5154 } 5155 5156 error = xlog_unpack_data(rhead, dp, log); 5157 if (error) 5158 return error; 5159 5160 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 5161 buffer_list); 5162 } 5163 5164 STATIC int 5165 xlog_valid_rec_header( 5166 struct xlog *log, 5167 struct xlog_rec_header *rhead, 5168 xfs_daddr_t blkno) 5169 { 5170 int hlen; 5171 5172 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 5173 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 5174 XFS_ERRLEVEL_LOW, log->l_mp); 5175 return -EFSCORRUPTED; 5176 } 5177 if (unlikely( 5178 (!rhead->h_version || 5179 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 5180 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 5181 __func__, be32_to_cpu(rhead->h_version)); 5182 return -EIO; 5183 } 5184 5185 /* LR body must have data or it wouldn't have been written */ 5186 hlen = be32_to_cpu(rhead->h_len); 5187 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 5188 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 5189 XFS_ERRLEVEL_LOW, log->l_mp); 5190 return -EFSCORRUPTED; 5191 } 5192 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 5193 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 5194 XFS_ERRLEVEL_LOW, log->l_mp); 5195 return -EFSCORRUPTED; 5196 } 5197 return 0; 5198 } 5199 5200 /* 5201 * Read the log from tail to head and process the log records found. 5202 * Handle the two cases where the tail and head are in the same cycle 5203 * and where the active portion of the log wraps around the end of 5204 * the physical log separately. The pass parameter is passed through 5205 * to the routines called to process the data and is not looked at 5206 * here. 5207 */ 5208 STATIC int 5209 xlog_do_recovery_pass( 5210 struct xlog *log, 5211 xfs_daddr_t head_blk, 5212 xfs_daddr_t tail_blk, 5213 int pass, 5214 xfs_daddr_t *first_bad) /* out: first bad log rec */ 5215 { 5216 xlog_rec_header_t *rhead; 5217 xfs_daddr_t blk_no; 5218 xfs_daddr_t rhead_blk; 5219 char *offset; 5220 xfs_buf_t *hbp, *dbp; 5221 int error = 0, h_size, h_len; 5222 int error2 = 0; 5223 int bblks, split_bblks; 5224 int hblks, split_hblks, wrapped_hblks; 5225 struct hlist_head rhash[XLOG_RHASH_SIZE]; 5226 LIST_HEAD (buffer_list); 5227 5228 ASSERT(head_blk != tail_blk); 5229 rhead_blk = 0; 5230 5231 /* 5232 * Read the header of the tail block and get the iclog buffer size from 5233 * h_size. Use this to tell how many sectors make up the log header. 5234 */ 5235 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 5236 /* 5237 * When using variable length iclogs, read first sector of 5238 * iclog header and extract the header size from it. Get a 5239 * new hbp that is the correct size. 5240 */ 5241 hbp = xlog_get_bp(log, 1); 5242 if (!hbp) 5243 return -ENOMEM; 5244 5245 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 5246 if (error) 5247 goto bread_err1; 5248 5249 rhead = (xlog_rec_header_t *)offset; 5250 error = xlog_valid_rec_header(log, rhead, tail_blk); 5251 if (error) 5252 goto bread_err1; 5253 5254 /* 5255 * xfsprogs has a bug where record length is based on lsunit but 5256 * h_size (iclog size) is hardcoded to 32k. Now that we 5257 * unconditionally CRC verify the unmount record, this means the 5258 * log buffer can be too small for the record and cause an 5259 * overrun. 5260 * 5261 * Detect this condition here. Use lsunit for the buffer size as 5262 * long as this looks like the mkfs case. Otherwise, return an 5263 * error to avoid a buffer overrun. 5264 */ 5265 h_size = be32_to_cpu(rhead->h_size); 5266 h_len = be32_to_cpu(rhead->h_len); 5267 if (h_len > h_size) { 5268 if (h_len <= log->l_mp->m_logbsize && 5269 be32_to_cpu(rhead->h_num_logops) == 1) { 5270 xfs_warn(log->l_mp, 5271 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 5272 h_size, log->l_mp->m_logbsize); 5273 h_size = log->l_mp->m_logbsize; 5274 } else 5275 return -EFSCORRUPTED; 5276 } 5277 5278 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 5279 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 5280 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 5281 if (h_size % XLOG_HEADER_CYCLE_SIZE) 5282 hblks++; 5283 xlog_put_bp(hbp); 5284 hbp = xlog_get_bp(log, hblks); 5285 } else { 5286 hblks = 1; 5287 } 5288 } else { 5289 ASSERT(log->l_sectBBsize == 1); 5290 hblks = 1; 5291 hbp = xlog_get_bp(log, 1); 5292 h_size = XLOG_BIG_RECORD_BSIZE; 5293 } 5294 5295 if (!hbp) 5296 return -ENOMEM; 5297 dbp = xlog_get_bp(log, BTOBB(h_size)); 5298 if (!dbp) { 5299 xlog_put_bp(hbp); 5300 return -ENOMEM; 5301 } 5302 5303 memset(rhash, 0, sizeof(rhash)); 5304 blk_no = rhead_blk = tail_blk; 5305 if (tail_blk > head_blk) { 5306 /* 5307 * Perform recovery around the end of the physical log. 5308 * When the head is not on the same cycle number as the tail, 5309 * we can't do a sequential recovery. 5310 */ 5311 while (blk_no < log->l_logBBsize) { 5312 /* 5313 * Check for header wrapping around physical end-of-log 5314 */ 5315 offset = hbp->b_addr; 5316 split_hblks = 0; 5317 wrapped_hblks = 0; 5318 if (blk_no + hblks <= log->l_logBBsize) { 5319 /* Read header in one read */ 5320 error = xlog_bread(log, blk_no, hblks, hbp, 5321 &offset); 5322 if (error) 5323 goto bread_err2; 5324 } else { 5325 /* This LR is split across physical log end */ 5326 if (blk_no != log->l_logBBsize) { 5327 /* some data before physical log end */ 5328 ASSERT(blk_no <= INT_MAX); 5329 split_hblks = log->l_logBBsize - (int)blk_no; 5330 ASSERT(split_hblks > 0); 5331 error = xlog_bread(log, blk_no, 5332 split_hblks, hbp, 5333 &offset); 5334 if (error) 5335 goto bread_err2; 5336 } 5337 5338 /* 5339 * Note: this black magic still works with 5340 * large sector sizes (non-512) only because: 5341 * - we increased the buffer size originally 5342 * by 1 sector giving us enough extra space 5343 * for the second read; 5344 * - the log start is guaranteed to be sector 5345 * aligned; 5346 * - we read the log end (LR header start) 5347 * _first_, then the log start (LR header end) 5348 * - order is important. 5349 */ 5350 wrapped_hblks = hblks - split_hblks; 5351 error = xlog_bread_offset(log, 0, 5352 wrapped_hblks, hbp, 5353 offset + BBTOB(split_hblks)); 5354 if (error) 5355 goto bread_err2; 5356 } 5357 rhead = (xlog_rec_header_t *)offset; 5358 error = xlog_valid_rec_header(log, rhead, 5359 split_hblks ? blk_no : 0); 5360 if (error) 5361 goto bread_err2; 5362 5363 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5364 blk_no += hblks; 5365 5366 /* Read in data for log record */ 5367 if (blk_no + bblks <= log->l_logBBsize) { 5368 error = xlog_bread(log, blk_no, bblks, dbp, 5369 &offset); 5370 if (error) 5371 goto bread_err2; 5372 } else { 5373 /* This log record is split across the 5374 * physical end of log */ 5375 offset = dbp->b_addr; 5376 split_bblks = 0; 5377 if (blk_no != log->l_logBBsize) { 5378 /* some data is before the physical 5379 * end of log */ 5380 ASSERT(!wrapped_hblks); 5381 ASSERT(blk_no <= INT_MAX); 5382 split_bblks = 5383 log->l_logBBsize - (int)blk_no; 5384 ASSERT(split_bblks > 0); 5385 error = xlog_bread(log, blk_no, 5386 split_bblks, dbp, 5387 &offset); 5388 if (error) 5389 goto bread_err2; 5390 } 5391 5392 /* 5393 * Note: this black magic still works with 5394 * large sector sizes (non-512) only because: 5395 * - we increased the buffer size originally 5396 * by 1 sector giving us enough extra space 5397 * for the second read; 5398 * - the log start is guaranteed to be sector 5399 * aligned; 5400 * - we read the log end (LR header start) 5401 * _first_, then the log start (LR header end) 5402 * - order is important. 5403 */ 5404 error = xlog_bread_offset(log, 0, 5405 bblks - split_bblks, dbp, 5406 offset + BBTOB(split_bblks)); 5407 if (error) 5408 goto bread_err2; 5409 } 5410 5411 error = xlog_recover_process(log, rhash, rhead, offset, 5412 pass, &buffer_list); 5413 if (error) 5414 goto bread_err2; 5415 5416 blk_no += bblks; 5417 rhead_blk = blk_no; 5418 } 5419 5420 ASSERT(blk_no >= log->l_logBBsize); 5421 blk_no -= log->l_logBBsize; 5422 rhead_blk = blk_no; 5423 } 5424 5425 /* read first part of physical log */ 5426 while (blk_no < head_blk) { 5427 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 5428 if (error) 5429 goto bread_err2; 5430 5431 rhead = (xlog_rec_header_t *)offset; 5432 error = xlog_valid_rec_header(log, rhead, blk_no); 5433 if (error) 5434 goto bread_err2; 5435 5436 /* blocks in data section */ 5437 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 5438 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 5439 &offset); 5440 if (error) 5441 goto bread_err2; 5442 5443 error = xlog_recover_process(log, rhash, rhead, offset, pass, 5444 &buffer_list); 5445 if (error) 5446 goto bread_err2; 5447 5448 blk_no += bblks + hblks; 5449 rhead_blk = blk_no; 5450 } 5451 5452 bread_err2: 5453 xlog_put_bp(dbp); 5454 bread_err1: 5455 xlog_put_bp(hbp); 5456 5457 /* 5458 * Submit buffers that have been added from the last record processed, 5459 * regardless of error status. 5460 */ 5461 if (!list_empty(&buffer_list)) 5462 error2 = xfs_buf_delwri_submit(&buffer_list); 5463 5464 if (error && first_bad) 5465 *first_bad = rhead_blk; 5466 5467 return error ? error : error2; 5468 } 5469 5470 /* 5471 * Do the recovery of the log. We actually do this in two phases. 5472 * The two passes are necessary in order to implement the function 5473 * of cancelling a record written into the log. The first pass 5474 * determines those things which have been cancelled, and the 5475 * second pass replays log items normally except for those which 5476 * have been cancelled. The handling of the replay and cancellations 5477 * takes place in the log item type specific routines. 5478 * 5479 * The table of items which have cancel records in the log is allocated 5480 * and freed at this level, since only here do we know when all of 5481 * the log recovery has been completed. 5482 */ 5483 STATIC int 5484 xlog_do_log_recovery( 5485 struct xlog *log, 5486 xfs_daddr_t head_blk, 5487 xfs_daddr_t tail_blk) 5488 { 5489 int error, i; 5490 5491 ASSERT(head_blk != tail_blk); 5492 5493 /* 5494 * First do a pass to find all of the cancelled buf log items. 5495 * Store them in the buf_cancel_table for use in the second pass. 5496 */ 5497 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 5498 sizeof(struct list_head), 5499 KM_SLEEP); 5500 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5501 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 5502 5503 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5504 XLOG_RECOVER_PASS1, NULL); 5505 if (error != 0) { 5506 kmem_free(log->l_buf_cancel_table); 5507 log->l_buf_cancel_table = NULL; 5508 return error; 5509 } 5510 /* 5511 * Then do a second pass to actually recover the items in the log. 5512 * When it is complete free the table of buf cancel items. 5513 */ 5514 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 5515 XLOG_RECOVER_PASS2, NULL); 5516 #ifdef DEBUG 5517 if (!error) { 5518 int i; 5519 5520 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 5521 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 5522 } 5523 #endif /* DEBUG */ 5524 5525 kmem_free(log->l_buf_cancel_table); 5526 log->l_buf_cancel_table = NULL; 5527 5528 return error; 5529 } 5530 5531 /* 5532 * Do the actual recovery 5533 */ 5534 STATIC int 5535 xlog_do_recover( 5536 struct xlog *log, 5537 xfs_daddr_t head_blk, 5538 xfs_daddr_t tail_blk) 5539 { 5540 struct xfs_mount *mp = log->l_mp; 5541 int error; 5542 xfs_buf_t *bp; 5543 xfs_sb_t *sbp; 5544 5545 /* 5546 * First replay the images in the log. 5547 */ 5548 error = xlog_do_log_recovery(log, head_blk, tail_blk); 5549 if (error) 5550 return error; 5551 5552 /* 5553 * If IO errors happened during recovery, bail out. 5554 */ 5555 if (XFS_FORCED_SHUTDOWN(mp)) { 5556 return -EIO; 5557 } 5558 5559 /* 5560 * We now update the tail_lsn since much of the recovery has completed 5561 * and there may be space available to use. If there were no extent 5562 * or iunlinks, we can free up the entire log and set the tail_lsn to 5563 * be the last_sync_lsn. This was set in xlog_find_tail to be the 5564 * lsn of the last known good LR on disk. If there are extent frees 5565 * or iunlinks they will have some entries in the AIL; so we look at 5566 * the AIL to determine how to set the tail_lsn. 5567 */ 5568 xlog_assign_tail_lsn(mp); 5569 5570 /* 5571 * Now that we've finished replaying all buffer and inode 5572 * updates, re-read in the superblock and reverify it. 5573 */ 5574 bp = xfs_getsb(mp, 0); 5575 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); 5576 ASSERT(!(bp->b_flags & XBF_WRITE)); 5577 bp->b_flags |= XBF_READ; 5578 bp->b_ops = &xfs_sb_buf_ops; 5579 5580 error = xfs_buf_submit_wait(bp); 5581 if (error) { 5582 if (!XFS_FORCED_SHUTDOWN(mp)) { 5583 xfs_buf_ioerror_alert(bp, __func__); 5584 ASSERT(0); 5585 } 5586 xfs_buf_relse(bp); 5587 return error; 5588 } 5589 5590 /* Convert superblock from on-disk format */ 5591 sbp = &mp->m_sb; 5592 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 5593 xfs_buf_relse(bp); 5594 5595 /* re-initialise in-core superblock and geometry structures */ 5596 xfs_reinit_percpu_counters(mp); 5597 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 5598 if (error) { 5599 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error); 5600 return error; 5601 } 5602 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 5603 5604 xlog_recover_check_summary(log); 5605 5606 /* Normal transactions can now occur */ 5607 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 5608 return 0; 5609 } 5610 5611 /* 5612 * Perform recovery and re-initialize some log variables in xlog_find_tail. 5613 * 5614 * Return error or zero. 5615 */ 5616 int 5617 xlog_recover( 5618 struct xlog *log) 5619 { 5620 xfs_daddr_t head_blk, tail_blk; 5621 int error; 5622 5623 /* find the tail of the log */ 5624 error = xlog_find_tail(log, &head_blk, &tail_blk); 5625 if (error) 5626 return error; 5627 5628 /* 5629 * The superblock was read before the log was available and thus the LSN 5630 * could not be verified. Check the superblock LSN against the current 5631 * LSN now that it's known. 5632 */ 5633 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) && 5634 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 5635 return -EINVAL; 5636 5637 if (tail_blk != head_blk) { 5638 /* There used to be a comment here: 5639 * 5640 * disallow recovery on read-only mounts. note -- mount 5641 * checks for ENOSPC and turns it into an intelligent 5642 * error message. 5643 * ...but this is no longer true. Now, unless you specify 5644 * NORECOVERY (in which case this function would never be 5645 * called), we just go ahead and recover. We do this all 5646 * under the vfs layer, so we can get away with it unless 5647 * the device itself is read-only, in which case we fail. 5648 */ 5649 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 5650 return error; 5651 } 5652 5653 /* 5654 * Version 5 superblock log feature mask validation. We know the 5655 * log is dirty so check if there are any unknown log features 5656 * in what we need to recover. If there are unknown features 5657 * (e.g. unsupported transactions, then simply reject the 5658 * attempt at recovery before touching anything. 5659 */ 5660 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && 5661 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 5662 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 5663 xfs_warn(log->l_mp, 5664 "Superblock has unknown incompatible log features (0x%x) enabled.", 5665 (log->l_mp->m_sb.sb_features_log_incompat & 5666 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 5667 xfs_warn(log->l_mp, 5668 "The log can not be fully and/or safely recovered by this kernel."); 5669 xfs_warn(log->l_mp, 5670 "Please recover the log on a kernel that supports the unknown features."); 5671 return -EINVAL; 5672 } 5673 5674 /* 5675 * Delay log recovery if the debug hook is set. This is debug 5676 * instrumention to coordinate simulation of I/O failures with 5677 * log recovery. 5678 */ 5679 if (xfs_globals.log_recovery_delay) { 5680 xfs_notice(log->l_mp, 5681 "Delaying log recovery for %d seconds.", 5682 xfs_globals.log_recovery_delay); 5683 msleep(xfs_globals.log_recovery_delay * 1000); 5684 } 5685 5686 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 5687 log->l_mp->m_logname ? log->l_mp->m_logname 5688 : "internal"); 5689 5690 error = xlog_do_recover(log, head_blk, tail_blk); 5691 log->l_flags |= XLOG_RECOVERY_NEEDED; 5692 } 5693 return error; 5694 } 5695 5696 /* 5697 * In the first part of recovery we replay inodes and buffers and build 5698 * up the list of extent free items which need to be processed. Here 5699 * we process the extent free items and clean up the on disk unlinked 5700 * inode lists. This is separated from the first part of recovery so 5701 * that the root and real-time bitmap inodes can be read in from disk in 5702 * between the two stages. This is necessary so that we can free space 5703 * in the real-time portion of the file system. 5704 */ 5705 int 5706 xlog_recover_finish( 5707 struct xlog *log) 5708 { 5709 /* 5710 * Now we're ready to do the transactions needed for the 5711 * rest of recovery. Start with completing all the extent 5712 * free intent records and then process the unlinked inode 5713 * lists. At this point, we essentially run in normal mode 5714 * except that we're still performing recovery actions 5715 * rather than accepting new requests. 5716 */ 5717 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 5718 int error; 5719 error = xlog_recover_process_intents(log); 5720 if (error) { 5721 xfs_alert(log->l_mp, "Failed to recover intents"); 5722 return error; 5723 } 5724 5725 /* 5726 * Sync the log to get all the intents out of the AIL. 5727 * This isn't absolutely necessary, but it helps in 5728 * case the unlink transactions would have problems 5729 * pushing the intents out of the way. 5730 */ 5731 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 5732 5733 xlog_recover_process_iunlinks(log); 5734 5735 xlog_recover_check_summary(log); 5736 5737 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 5738 log->l_mp->m_logname ? log->l_mp->m_logname 5739 : "internal"); 5740 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 5741 } else { 5742 xfs_info(log->l_mp, "Ending clean mount"); 5743 } 5744 return 0; 5745 } 5746 5747 int 5748 xlog_recover_cancel( 5749 struct xlog *log) 5750 { 5751 int error = 0; 5752 5753 if (log->l_flags & XLOG_RECOVERY_NEEDED) 5754 error = xlog_recover_cancel_intents(log); 5755 5756 return error; 5757 } 5758 5759 #if defined(DEBUG) 5760 /* 5761 * Read all of the agf and agi counters and check that they 5762 * are consistent with the superblock counters. 5763 */ 5764 void 5765 xlog_recover_check_summary( 5766 struct xlog *log) 5767 { 5768 xfs_mount_t *mp; 5769 xfs_agf_t *agfp; 5770 xfs_buf_t *agfbp; 5771 xfs_buf_t *agibp; 5772 xfs_agnumber_t agno; 5773 __uint64_t freeblks; 5774 __uint64_t itotal; 5775 __uint64_t ifree; 5776 int error; 5777 5778 mp = log->l_mp; 5779 5780 freeblks = 0LL; 5781 itotal = 0LL; 5782 ifree = 0LL; 5783 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 5784 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 5785 if (error) { 5786 xfs_alert(mp, "%s agf read failed agno %d error %d", 5787 __func__, agno, error); 5788 } else { 5789 agfp = XFS_BUF_TO_AGF(agfbp); 5790 freeblks += be32_to_cpu(agfp->agf_freeblks) + 5791 be32_to_cpu(agfp->agf_flcount); 5792 xfs_buf_relse(agfbp); 5793 } 5794 5795 error = xfs_read_agi(mp, NULL, agno, &agibp); 5796 if (error) { 5797 xfs_alert(mp, "%s agi read failed agno %d error %d", 5798 __func__, agno, error); 5799 } else { 5800 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 5801 5802 itotal += be32_to_cpu(agi->agi_count); 5803 ifree += be32_to_cpu(agi->agi_freecount); 5804 xfs_buf_relse(agibp); 5805 } 5806 } 5807 } 5808 #endif /* DEBUG */ 5809