1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_mount.h" 28 #include "xfs_error.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_inode_item.h" 35 #include "xfs_alloc.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_log_priv.h" 38 #include "xfs_buf_item.h" 39 #include "xfs_log_recover.h" 40 #include "xfs_extfree_item.h" 41 #include "xfs_trans_priv.h" 42 #include "xfs_quota.h" 43 #include "xfs_rw.h" 44 #include "xfs_utils.h" 45 #include "xfs_trace.h" 46 47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); 48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); 49 #if defined(DEBUG) 50 STATIC void xlog_recover_check_summary(xlog_t *); 51 #else 52 #define xlog_recover_check_summary(log) 53 #endif 54 55 /* 56 * This structure is used during recovery to record the buf log items which 57 * have been canceled and should not be replayed. 58 */ 59 struct xfs_buf_cancel { 60 xfs_daddr_t bc_blkno; 61 uint bc_len; 62 int bc_refcount; 63 struct list_head bc_list; 64 }; 65 66 /* 67 * Sector aligned buffer routines for buffer create/read/write/access 68 */ 69 70 /* 71 * Verify the given count of basic blocks is valid number of blocks 72 * to specify for an operation involving the given XFS log buffer. 73 * Returns nonzero if the count is valid, 0 otherwise. 74 */ 75 76 static inline int 77 xlog_buf_bbcount_valid( 78 xlog_t *log, 79 int bbcount) 80 { 81 return bbcount > 0 && bbcount <= log->l_logBBsize; 82 } 83 84 /* 85 * Allocate a buffer to hold log data. The buffer needs to be able 86 * to map to a range of nbblks basic blocks at any valid (basic 87 * block) offset within the log. 88 */ 89 STATIC xfs_buf_t * 90 xlog_get_bp( 91 xlog_t *log, 92 int nbblks) 93 { 94 struct xfs_buf *bp; 95 96 if (!xlog_buf_bbcount_valid(log, nbblks)) { 97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 98 nbblks); 99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 100 return NULL; 101 } 102 103 /* 104 * We do log I/O in units of log sectors (a power-of-2 105 * multiple of the basic block size), so we round up the 106 * requested size to accommodate the basic blocks required 107 * for complete log sectors. 108 * 109 * In addition, the buffer may be used for a non-sector- 110 * aligned block offset, in which case an I/O of the 111 * requested size could extend beyond the end of the 112 * buffer. If the requested size is only 1 basic block it 113 * will never straddle a sector boundary, so this won't be 114 * an issue. Nor will this be a problem if the log I/O is 115 * done in basic blocks (sector size 1). But otherwise we 116 * extend the buffer by one extra log sector to ensure 117 * there's space to accommodate this possibility. 118 */ 119 if (nbblks > 1 && log->l_sectBBsize > 1) 120 nbblks += log->l_sectBBsize; 121 nbblks = round_up(nbblks, log->l_sectBBsize); 122 123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0); 124 if (bp) 125 xfs_buf_unlock(bp); 126 return bp; 127 } 128 129 STATIC void 130 xlog_put_bp( 131 xfs_buf_t *bp) 132 { 133 xfs_buf_free(bp); 134 } 135 136 /* 137 * Return the address of the start of the given block number's data 138 * in a log buffer. The buffer covers a log sector-aligned region. 139 */ 140 STATIC xfs_caddr_t 141 xlog_align( 142 xlog_t *log, 143 xfs_daddr_t blk_no, 144 int nbblks, 145 xfs_buf_t *bp) 146 { 147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); 148 149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp)); 150 return bp->b_addr + BBTOB(offset); 151 } 152 153 154 /* 155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length. 156 */ 157 STATIC int 158 xlog_bread_noalign( 159 xlog_t *log, 160 xfs_daddr_t blk_no, 161 int nbblks, 162 xfs_buf_t *bp) 163 { 164 int error; 165 166 if (!xlog_buf_bbcount_valid(log, nbblks)) { 167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 168 nbblks); 169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 170 return EFSCORRUPTED; 171 } 172 173 blk_no = round_down(blk_no, log->l_sectBBsize); 174 nbblks = round_up(nbblks, log->l_sectBBsize); 175 176 ASSERT(nbblks > 0); 177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 178 179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 180 XFS_BUF_READ(bp); 181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 182 183 xfsbdstrat(log->l_mp, bp); 184 error = xfs_buf_iowait(bp); 185 if (error) 186 xfs_buf_ioerror_alert(bp, __func__); 187 return error; 188 } 189 190 STATIC int 191 xlog_bread( 192 xlog_t *log, 193 xfs_daddr_t blk_no, 194 int nbblks, 195 xfs_buf_t *bp, 196 xfs_caddr_t *offset) 197 { 198 int error; 199 200 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 201 if (error) 202 return error; 203 204 *offset = xlog_align(log, blk_no, nbblks, bp); 205 return 0; 206 } 207 208 /* 209 * Read at an offset into the buffer. Returns with the buffer in it's original 210 * state regardless of the result of the read. 211 */ 212 STATIC int 213 xlog_bread_offset( 214 xlog_t *log, 215 xfs_daddr_t blk_no, /* block to read from */ 216 int nbblks, /* blocks to read */ 217 xfs_buf_t *bp, 218 xfs_caddr_t offset) 219 { 220 xfs_caddr_t orig_offset = bp->b_addr; 221 int orig_len = bp->b_buffer_length; 222 int error, error2; 223 224 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); 225 if (error) 226 return error; 227 228 error = xlog_bread_noalign(log, blk_no, nbblks, bp); 229 230 /* must reset buffer pointer even on error */ 231 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); 232 if (error) 233 return error; 234 return error2; 235 } 236 237 /* 238 * Write out the buffer at the given block for the given number of blocks. 239 * The buffer is kept locked across the write and is returned locked. 240 * This can only be used for synchronous log writes. 241 */ 242 STATIC int 243 xlog_bwrite( 244 xlog_t *log, 245 xfs_daddr_t blk_no, 246 int nbblks, 247 xfs_buf_t *bp) 248 { 249 int error; 250 251 if (!xlog_buf_bbcount_valid(log, nbblks)) { 252 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 253 nbblks); 254 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); 255 return EFSCORRUPTED; 256 } 257 258 blk_no = round_down(blk_no, log->l_sectBBsize); 259 nbblks = round_up(nbblks, log->l_sectBBsize); 260 261 ASSERT(nbblks > 0); 262 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); 263 264 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); 265 XFS_BUF_ZEROFLAGS(bp); 266 xfs_buf_hold(bp); 267 xfs_buf_lock(bp); 268 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); 269 270 error = xfs_bwrite(bp); 271 if (error) 272 xfs_buf_ioerror_alert(bp, __func__); 273 xfs_buf_relse(bp); 274 return error; 275 } 276 277 #ifdef DEBUG 278 /* 279 * dump debug superblock and log record information 280 */ 281 STATIC void 282 xlog_header_check_dump( 283 xfs_mount_t *mp, 284 xlog_rec_header_t *head) 285 { 286 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n", 287 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 288 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n", 289 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 290 } 291 #else 292 #define xlog_header_check_dump(mp, head) 293 #endif 294 295 /* 296 * check log record header for recovery 297 */ 298 STATIC int 299 xlog_header_check_recover( 300 xfs_mount_t *mp, 301 xlog_rec_header_t *head) 302 { 303 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 304 305 /* 306 * IRIX doesn't write the h_fmt field and leaves it zeroed 307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 308 * a dirty log created in IRIX. 309 */ 310 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { 311 xfs_warn(mp, 312 "dirty log written in incompatible format - can't recover"); 313 xlog_header_check_dump(mp, head); 314 XFS_ERROR_REPORT("xlog_header_check_recover(1)", 315 XFS_ERRLEVEL_HIGH, mp); 316 return XFS_ERROR(EFSCORRUPTED); 317 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 318 xfs_warn(mp, 319 "dirty log entry has mismatched uuid - can't recover"); 320 xlog_header_check_dump(mp, head); 321 XFS_ERROR_REPORT("xlog_header_check_recover(2)", 322 XFS_ERRLEVEL_HIGH, mp); 323 return XFS_ERROR(EFSCORRUPTED); 324 } 325 return 0; 326 } 327 328 /* 329 * read the head block of the log and check the header 330 */ 331 STATIC int 332 xlog_header_check_mount( 333 xfs_mount_t *mp, 334 xlog_rec_header_t *head) 335 { 336 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 337 338 if (uuid_is_nil(&head->h_fs_uuid)) { 339 /* 340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 341 * h_fs_uuid is nil, we assume this log was last mounted 342 * by IRIX and continue. 343 */ 344 xfs_warn(mp, "nil uuid in log - IRIX style log"); 345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { 346 xfs_warn(mp, "log has mismatched uuid - can't recover"); 347 xlog_header_check_dump(mp, head); 348 XFS_ERROR_REPORT("xlog_header_check_mount", 349 XFS_ERRLEVEL_HIGH, mp); 350 return XFS_ERROR(EFSCORRUPTED); 351 } 352 return 0; 353 } 354 355 STATIC void 356 xlog_recover_iodone( 357 struct xfs_buf *bp) 358 { 359 if (bp->b_error) { 360 /* 361 * We're not going to bother about retrying 362 * this during recovery. One strike! 363 */ 364 xfs_buf_ioerror_alert(bp, __func__); 365 xfs_force_shutdown(bp->b_target->bt_mount, 366 SHUTDOWN_META_IO_ERROR); 367 } 368 bp->b_iodone = NULL; 369 xfs_buf_ioend(bp, 0); 370 } 371 372 /* 373 * This routine finds (to an approximation) the first block in the physical 374 * log which contains the given cycle. It uses a binary search algorithm. 375 * Note that the algorithm can not be perfect because the disk will not 376 * necessarily be perfect. 377 */ 378 STATIC int 379 xlog_find_cycle_start( 380 xlog_t *log, 381 xfs_buf_t *bp, 382 xfs_daddr_t first_blk, 383 xfs_daddr_t *last_blk, 384 uint cycle) 385 { 386 xfs_caddr_t offset; 387 xfs_daddr_t mid_blk; 388 xfs_daddr_t end_blk; 389 uint mid_cycle; 390 int error; 391 392 end_blk = *last_blk; 393 mid_blk = BLK_AVG(first_blk, end_blk); 394 while (mid_blk != first_blk && mid_blk != end_blk) { 395 error = xlog_bread(log, mid_blk, 1, bp, &offset); 396 if (error) 397 return error; 398 mid_cycle = xlog_get_cycle(offset); 399 if (mid_cycle == cycle) 400 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 401 else 402 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 403 mid_blk = BLK_AVG(first_blk, end_blk); 404 } 405 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 406 (mid_blk == end_blk && mid_blk-1 == first_blk)); 407 408 *last_blk = end_blk; 409 410 return 0; 411 } 412 413 /* 414 * Check that a range of blocks does not contain stop_on_cycle_no. 415 * Fill in *new_blk with the block offset where such a block is 416 * found, or with -1 (an invalid block number) if there is no such 417 * block in the range. The scan needs to occur from front to back 418 * and the pointer into the region must be updated since a later 419 * routine will need to perform another test. 420 */ 421 STATIC int 422 xlog_find_verify_cycle( 423 xlog_t *log, 424 xfs_daddr_t start_blk, 425 int nbblks, 426 uint stop_on_cycle_no, 427 xfs_daddr_t *new_blk) 428 { 429 xfs_daddr_t i, j; 430 uint cycle; 431 xfs_buf_t *bp; 432 xfs_daddr_t bufblks; 433 xfs_caddr_t buf = NULL; 434 int error = 0; 435 436 /* 437 * Greedily allocate a buffer big enough to handle the full 438 * range of basic blocks we'll be examining. If that fails, 439 * try a smaller size. We need to be able to read at least 440 * a log sector, or we're out of luck. 441 */ 442 bufblks = 1 << ffs(nbblks); 443 while (!(bp = xlog_get_bp(log, bufblks))) { 444 bufblks >>= 1; 445 if (bufblks < log->l_sectBBsize) 446 return ENOMEM; 447 } 448 449 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 450 int bcount; 451 452 bcount = min(bufblks, (start_blk + nbblks - i)); 453 454 error = xlog_bread(log, i, bcount, bp, &buf); 455 if (error) 456 goto out; 457 458 for (j = 0; j < bcount; j++) { 459 cycle = xlog_get_cycle(buf); 460 if (cycle == stop_on_cycle_no) { 461 *new_blk = i+j; 462 goto out; 463 } 464 465 buf += BBSIZE; 466 } 467 } 468 469 *new_blk = -1; 470 471 out: 472 xlog_put_bp(bp); 473 return error; 474 } 475 476 /* 477 * Potentially backup over partial log record write. 478 * 479 * In the typical case, last_blk is the number of the block directly after 480 * a good log record. Therefore, we subtract one to get the block number 481 * of the last block in the given buffer. extra_bblks contains the number 482 * of blocks we would have read on a previous read. This happens when the 483 * last log record is split over the end of the physical log. 484 * 485 * extra_bblks is the number of blocks potentially verified on a previous 486 * call to this routine. 487 */ 488 STATIC int 489 xlog_find_verify_log_record( 490 xlog_t *log, 491 xfs_daddr_t start_blk, 492 xfs_daddr_t *last_blk, 493 int extra_bblks) 494 { 495 xfs_daddr_t i; 496 xfs_buf_t *bp; 497 xfs_caddr_t offset = NULL; 498 xlog_rec_header_t *head = NULL; 499 int error = 0; 500 int smallmem = 0; 501 int num_blks = *last_blk - start_blk; 502 int xhdrs; 503 504 ASSERT(start_blk != 0 || *last_blk != start_blk); 505 506 if (!(bp = xlog_get_bp(log, num_blks))) { 507 if (!(bp = xlog_get_bp(log, 1))) 508 return ENOMEM; 509 smallmem = 1; 510 } else { 511 error = xlog_bread(log, start_blk, num_blks, bp, &offset); 512 if (error) 513 goto out; 514 offset += ((num_blks - 1) << BBSHIFT); 515 } 516 517 for (i = (*last_blk) - 1; i >= 0; i--) { 518 if (i < start_blk) { 519 /* valid log record not found */ 520 xfs_warn(log->l_mp, 521 "Log inconsistent (didn't find previous header)"); 522 ASSERT(0); 523 error = XFS_ERROR(EIO); 524 goto out; 525 } 526 527 if (smallmem) { 528 error = xlog_bread(log, i, 1, bp, &offset); 529 if (error) 530 goto out; 531 } 532 533 head = (xlog_rec_header_t *)offset; 534 535 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 536 break; 537 538 if (!smallmem) 539 offset -= BBSIZE; 540 } 541 542 /* 543 * We hit the beginning of the physical log & still no header. Return 544 * to caller. If caller can handle a return of -1, then this routine 545 * will be called again for the end of the physical log. 546 */ 547 if (i == -1) { 548 error = -1; 549 goto out; 550 } 551 552 /* 553 * We have the final block of the good log (the first block 554 * of the log record _before_ the head. So we check the uuid. 555 */ 556 if ((error = xlog_header_check_mount(log->l_mp, head))) 557 goto out; 558 559 /* 560 * We may have found a log record header before we expected one. 561 * last_blk will be the 1st block # with a given cycle #. We may end 562 * up reading an entire log record. In this case, we don't want to 563 * reset last_blk. Only when last_blk points in the middle of a log 564 * record do we update last_blk. 565 */ 566 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 567 uint h_size = be32_to_cpu(head->h_size); 568 569 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; 570 if (h_size % XLOG_HEADER_CYCLE_SIZE) 571 xhdrs++; 572 } else { 573 xhdrs = 1; 574 } 575 576 if (*last_blk - i + extra_bblks != 577 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 578 *last_blk = i; 579 580 out: 581 xlog_put_bp(bp); 582 return error; 583 } 584 585 /* 586 * Head is defined to be the point of the log where the next log write 587 * write could go. This means that incomplete LR writes at the end are 588 * eliminated when calculating the head. We aren't guaranteed that previous 589 * LR have complete transactions. We only know that a cycle number of 590 * current cycle number -1 won't be present in the log if we start writing 591 * from our current block number. 592 * 593 * last_blk contains the block number of the first block with a given 594 * cycle number. 595 * 596 * Return: zero if normal, non-zero if error. 597 */ 598 STATIC int 599 xlog_find_head( 600 xlog_t *log, 601 xfs_daddr_t *return_head_blk) 602 { 603 xfs_buf_t *bp; 604 xfs_caddr_t offset; 605 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 606 int num_scan_bblks; 607 uint first_half_cycle, last_half_cycle; 608 uint stop_on_cycle; 609 int error, log_bbnum = log->l_logBBsize; 610 611 /* Is the end of the log device zeroed? */ 612 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { 613 *return_head_blk = first_blk; 614 615 /* Is the whole lot zeroed? */ 616 if (!first_blk) { 617 /* Linux XFS shouldn't generate totally zeroed logs - 618 * mkfs etc write a dummy unmount record to a fresh 619 * log so we can store the uuid in there 620 */ 621 xfs_warn(log->l_mp, "totally zeroed log"); 622 } 623 624 return 0; 625 } else if (error) { 626 xfs_warn(log->l_mp, "empty log check failed"); 627 return error; 628 } 629 630 first_blk = 0; /* get cycle # of 1st block */ 631 bp = xlog_get_bp(log, 1); 632 if (!bp) 633 return ENOMEM; 634 635 error = xlog_bread(log, 0, 1, bp, &offset); 636 if (error) 637 goto bp_err; 638 639 first_half_cycle = xlog_get_cycle(offset); 640 641 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 642 error = xlog_bread(log, last_blk, 1, bp, &offset); 643 if (error) 644 goto bp_err; 645 646 last_half_cycle = xlog_get_cycle(offset); 647 ASSERT(last_half_cycle != 0); 648 649 /* 650 * If the 1st half cycle number is equal to the last half cycle number, 651 * then the entire log is stamped with the same cycle number. In this 652 * case, head_blk can't be set to zero (which makes sense). The below 653 * math doesn't work out properly with head_blk equal to zero. Instead, 654 * we set it to log_bbnum which is an invalid block number, but this 655 * value makes the math correct. If head_blk doesn't changed through 656 * all the tests below, *head_blk is set to zero at the very end rather 657 * than log_bbnum. In a sense, log_bbnum and zero are the same block 658 * in a circular file. 659 */ 660 if (first_half_cycle == last_half_cycle) { 661 /* 662 * In this case we believe that the entire log should have 663 * cycle number last_half_cycle. We need to scan backwards 664 * from the end verifying that there are no holes still 665 * containing last_half_cycle - 1. If we find such a hole, 666 * then the start of that hole will be the new head. The 667 * simple case looks like 668 * x | x ... | x - 1 | x 669 * Another case that fits this picture would be 670 * x | x + 1 | x ... | x 671 * In this case the head really is somewhere at the end of the 672 * log, as one of the latest writes at the beginning was 673 * incomplete. 674 * One more case is 675 * x | x + 1 | x ... | x - 1 | x 676 * This is really the combination of the above two cases, and 677 * the head has to end up at the start of the x-1 hole at the 678 * end of the log. 679 * 680 * In the 256k log case, we will read from the beginning to the 681 * end of the log and search for cycle numbers equal to x-1. 682 * We don't worry about the x+1 blocks that we encounter, 683 * because we know that they cannot be the head since the log 684 * started with x. 685 */ 686 head_blk = log_bbnum; 687 stop_on_cycle = last_half_cycle - 1; 688 } else { 689 /* 690 * In this case we want to find the first block with cycle 691 * number matching last_half_cycle. We expect the log to be 692 * some variation on 693 * x + 1 ... | x ... | x 694 * The first block with cycle number x (last_half_cycle) will 695 * be where the new head belongs. First we do a binary search 696 * for the first occurrence of last_half_cycle. The binary 697 * search may not be totally accurate, so then we scan back 698 * from there looking for occurrences of last_half_cycle before 699 * us. If that backwards scan wraps around the beginning of 700 * the log, then we look for occurrences of last_half_cycle - 1 701 * at the end of the log. The cases we're looking for look 702 * like 703 * v binary search stopped here 704 * x + 1 ... | x | x + 1 | x ... | x 705 * ^ but we want to locate this spot 706 * or 707 * <---------> less than scan distance 708 * x + 1 ... | x ... | x - 1 | x 709 * ^ we want to locate this spot 710 */ 711 stop_on_cycle = last_half_cycle; 712 if ((error = xlog_find_cycle_start(log, bp, first_blk, 713 &head_blk, last_half_cycle))) 714 goto bp_err; 715 } 716 717 /* 718 * Now validate the answer. Scan back some number of maximum possible 719 * blocks and make sure each one has the expected cycle number. The 720 * maximum is determined by the total possible amount of buffering 721 * in the in-core log. The following number can be made tighter if 722 * we actually look at the block size of the filesystem. 723 */ 724 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 725 if (head_blk >= num_scan_bblks) { 726 /* 727 * We are guaranteed that the entire check can be performed 728 * in one buffer. 729 */ 730 start_blk = head_blk - num_scan_bblks; 731 if ((error = xlog_find_verify_cycle(log, 732 start_blk, num_scan_bblks, 733 stop_on_cycle, &new_blk))) 734 goto bp_err; 735 if (new_blk != -1) 736 head_blk = new_blk; 737 } else { /* need to read 2 parts of log */ 738 /* 739 * We are going to scan backwards in the log in two parts. 740 * First we scan the physical end of the log. In this part 741 * of the log, we are looking for blocks with cycle number 742 * last_half_cycle - 1. 743 * If we find one, then we know that the log starts there, as 744 * we've found a hole that didn't get written in going around 745 * the end of the physical log. The simple case for this is 746 * x + 1 ... | x ... | x - 1 | x 747 * <---------> less than scan distance 748 * If all of the blocks at the end of the log have cycle number 749 * last_half_cycle, then we check the blocks at the start of 750 * the log looking for occurrences of last_half_cycle. If we 751 * find one, then our current estimate for the location of the 752 * first occurrence of last_half_cycle is wrong and we move 753 * back to the hole we've found. This case looks like 754 * x + 1 ... | x | x + 1 | x ... 755 * ^ binary search stopped here 756 * Another case we need to handle that only occurs in 256k 757 * logs is 758 * x + 1 ... | x ... | x+1 | x ... 759 * ^ binary search stops here 760 * In a 256k log, the scan at the end of the log will see the 761 * x + 1 blocks. We need to skip past those since that is 762 * certainly not the head of the log. By searching for 763 * last_half_cycle-1 we accomplish that. 764 */ 765 ASSERT(head_blk <= INT_MAX && 766 (xfs_daddr_t) num_scan_bblks >= head_blk); 767 start_blk = log_bbnum - (num_scan_bblks - head_blk); 768 if ((error = xlog_find_verify_cycle(log, start_blk, 769 num_scan_bblks - (int)head_blk, 770 (stop_on_cycle - 1), &new_blk))) 771 goto bp_err; 772 if (new_blk != -1) { 773 head_blk = new_blk; 774 goto validate_head; 775 } 776 777 /* 778 * Scan beginning of log now. The last part of the physical 779 * log is good. This scan needs to verify that it doesn't find 780 * the last_half_cycle. 781 */ 782 start_blk = 0; 783 ASSERT(head_blk <= INT_MAX); 784 if ((error = xlog_find_verify_cycle(log, 785 start_blk, (int)head_blk, 786 stop_on_cycle, &new_blk))) 787 goto bp_err; 788 if (new_blk != -1) 789 head_blk = new_blk; 790 } 791 792 validate_head: 793 /* 794 * Now we need to make sure head_blk is not pointing to a block in 795 * the middle of a log record. 796 */ 797 num_scan_bblks = XLOG_REC_SHIFT(log); 798 if (head_blk >= num_scan_bblks) { 799 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 800 801 /* start ptr at last block ptr before head_blk */ 802 if ((error = xlog_find_verify_log_record(log, start_blk, 803 &head_blk, 0)) == -1) { 804 error = XFS_ERROR(EIO); 805 goto bp_err; 806 } else if (error) 807 goto bp_err; 808 } else { 809 start_blk = 0; 810 ASSERT(head_blk <= INT_MAX); 811 if ((error = xlog_find_verify_log_record(log, start_blk, 812 &head_blk, 0)) == -1) { 813 /* We hit the beginning of the log during our search */ 814 start_blk = log_bbnum - (num_scan_bblks - head_blk); 815 new_blk = log_bbnum; 816 ASSERT(start_blk <= INT_MAX && 817 (xfs_daddr_t) log_bbnum-start_blk >= 0); 818 ASSERT(head_blk <= INT_MAX); 819 if ((error = xlog_find_verify_log_record(log, 820 start_blk, &new_blk, 821 (int)head_blk)) == -1) { 822 error = XFS_ERROR(EIO); 823 goto bp_err; 824 } else if (error) 825 goto bp_err; 826 if (new_blk != log_bbnum) 827 head_blk = new_blk; 828 } else if (error) 829 goto bp_err; 830 } 831 832 xlog_put_bp(bp); 833 if (head_blk == log_bbnum) 834 *return_head_blk = 0; 835 else 836 *return_head_blk = head_blk; 837 /* 838 * When returning here, we have a good block number. Bad block 839 * means that during a previous crash, we didn't have a clean break 840 * from cycle number N to cycle number N-1. In this case, we need 841 * to find the first block with cycle number N-1. 842 */ 843 return 0; 844 845 bp_err: 846 xlog_put_bp(bp); 847 848 if (error) 849 xfs_warn(log->l_mp, "failed to find log head"); 850 return error; 851 } 852 853 /* 854 * Find the sync block number or the tail of the log. 855 * 856 * This will be the block number of the last record to have its 857 * associated buffers synced to disk. Every log record header has 858 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 859 * to get a sync block number. The only concern is to figure out which 860 * log record header to believe. 861 * 862 * The following algorithm uses the log record header with the largest 863 * lsn. The entire log record does not need to be valid. We only care 864 * that the header is valid. 865 * 866 * We could speed up search by using current head_blk buffer, but it is not 867 * available. 868 */ 869 STATIC int 870 xlog_find_tail( 871 xlog_t *log, 872 xfs_daddr_t *head_blk, 873 xfs_daddr_t *tail_blk) 874 { 875 xlog_rec_header_t *rhead; 876 xlog_op_header_t *op_head; 877 xfs_caddr_t offset = NULL; 878 xfs_buf_t *bp; 879 int error, i, found; 880 xfs_daddr_t umount_data_blk; 881 xfs_daddr_t after_umount_blk; 882 xfs_lsn_t tail_lsn; 883 int hblks; 884 885 found = 0; 886 887 /* 888 * Find previous log record 889 */ 890 if ((error = xlog_find_head(log, head_blk))) 891 return error; 892 893 bp = xlog_get_bp(log, 1); 894 if (!bp) 895 return ENOMEM; 896 if (*head_blk == 0) { /* special case */ 897 error = xlog_bread(log, 0, 1, bp, &offset); 898 if (error) 899 goto done; 900 901 if (xlog_get_cycle(offset) == 0) { 902 *tail_blk = 0; 903 /* leave all other log inited values alone */ 904 goto done; 905 } 906 } 907 908 /* 909 * Search backwards looking for log record header block 910 */ 911 ASSERT(*head_blk < INT_MAX); 912 for (i = (int)(*head_blk) - 1; i >= 0; i--) { 913 error = xlog_bread(log, i, 1, bp, &offset); 914 if (error) 915 goto done; 916 917 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 918 found = 1; 919 break; 920 } 921 } 922 /* 923 * If we haven't found the log record header block, start looking 924 * again from the end of the physical log. XXXmiken: There should be 925 * a check here to make sure we didn't search more than N blocks in 926 * the previous code. 927 */ 928 if (!found) { 929 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { 930 error = xlog_bread(log, i, 1, bp, &offset); 931 if (error) 932 goto done; 933 934 if (*(__be32 *)offset == 935 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 936 found = 2; 937 break; 938 } 939 } 940 } 941 if (!found) { 942 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 943 ASSERT(0); 944 return XFS_ERROR(EIO); 945 } 946 947 /* find blk_no of tail of log */ 948 rhead = (xlog_rec_header_t *)offset; 949 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 950 951 /* 952 * Reset log values according to the state of the log when we 953 * crashed. In the case where head_blk == 0, we bump curr_cycle 954 * one because the next write starts a new cycle rather than 955 * continuing the cycle of the last good log record. At this 956 * point we have guaranteed that all partial log records have been 957 * accounted for. Therefore, we know that the last good log record 958 * written was complete and ended exactly on the end boundary 959 * of the physical log. 960 */ 961 log->l_prev_block = i; 962 log->l_curr_block = (int)*head_blk; 963 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 964 if (found == 2) 965 log->l_curr_cycle++; 966 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 967 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); 968 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle, 969 BBTOB(log->l_curr_block)); 970 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle, 971 BBTOB(log->l_curr_block)); 972 973 /* 974 * Look for unmount record. If we find it, then we know there 975 * was a clean unmount. Since 'i' could be the last block in 976 * the physical log, we convert to a log block before comparing 977 * to the head_blk. 978 * 979 * Save the current tail lsn to use to pass to 980 * xlog_clear_stale_blocks() below. We won't want to clear the 981 * unmount record if there is one, so we pass the lsn of the 982 * unmount record rather than the block after it. 983 */ 984 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 985 int h_size = be32_to_cpu(rhead->h_size); 986 int h_version = be32_to_cpu(rhead->h_version); 987 988 if ((h_version & XLOG_VERSION_2) && 989 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 990 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 991 if (h_size % XLOG_HEADER_CYCLE_SIZE) 992 hblks++; 993 } else { 994 hblks = 1; 995 } 996 } else { 997 hblks = 1; 998 } 999 after_umount_blk = (i + hblks + (int) 1000 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; 1001 tail_lsn = atomic64_read(&log->l_tail_lsn); 1002 if (*head_blk == after_umount_blk && 1003 be32_to_cpu(rhead->h_num_logops) == 1) { 1004 umount_data_blk = (i + hblks) % log->l_logBBsize; 1005 error = xlog_bread(log, umount_data_blk, 1, bp, &offset); 1006 if (error) 1007 goto done; 1008 1009 op_head = (xlog_op_header_t *)offset; 1010 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1011 /* 1012 * Set tail and last sync so that newly written 1013 * log records will point recovery to after the 1014 * current unmount record. 1015 */ 1016 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1017 log->l_curr_cycle, after_umount_blk); 1018 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1019 log->l_curr_cycle, after_umount_blk); 1020 *tail_blk = after_umount_blk; 1021 1022 /* 1023 * Note that the unmount was clean. If the unmount 1024 * was not clean, we need to know this to rebuild the 1025 * superblock counters from the perag headers if we 1026 * have a filesystem using non-persistent counters. 1027 */ 1028 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; 1029 } 1030 } 1031 1032 /* 1033 * Make sure that there are no blocks in front of the head 1034 * with the same cycle number as the head. This can happen 1035 * because we allow multiple outstanding log writes concurrently, 1036 * and the later writes might make it out before earlier ones. 1037 * 1038 * We use the lsn from before modifying it so that we'll never 1039 * overwrite the unmount record after a clean unmount. 1040 * 1041 * Do this only if we are going to recover the filesystem 1042 * 1043 * NOTE: This used to say "if (!readonly)" 1044 * However on Linux, we can & do recover a read-only filesystem. 1045 * We only skip recovery if NORECOVERY is specified on mount, 1046 * in which case we would not be here. 1047 * 1048 * But... if the -device- itself is readonly, just skip this. 1049 * We can't recover this device anyway, so it won't matter. 1050 */ 1051 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) 1052 error = xlog_clear_stale_blocks(log, tail_lsn); 1053 1054 done: 1055 xlog_put_bp(bp); 1056 1057 if (error) 1058 xfs_warn(log->l_mp, "failed to locate log tail"); 1059 return error; 1060 } 1061 1062 /* 1063 * Is the log zeroed at all? 1064 * 1065 * The last binary search should be changed to perform an X block read 1066 * once X becomes small enough. You can then search linearly through 1067 * the X blocks. This will cut down on the number of reads we need to do. 1068 * 1069 * If the log is partially zeroed, this routine will pass back the blkno 1070 * of the first block with cycle number 0. It won't have a complete LR 1071 * preceding it. 1072 * 1073 * Return: 1074 * 0 => the log is completely written to 1075 * -1 => use *blk_no as the first block of the log 1076 * >0 => error has occurred 1077 */ 1078 STATIC int 1079 xlog_find_zeroed( 1080 xlog_t *log, 1081 xfs_daddr_t *blk_no) 1082 { 1083 xfs_buf_t *bp; 1084 xfs_caddr_t offset; 1085 uint first_cycle, last_cycle; 1086 xfs_daddr_t new_blk, last_blk, start_blk; 1087 xfs_daddr_t num_scan_bblks; 1088 int error, log_bbnum = log->l_logBBsize; 1089 1090 *blk_no = 0; 1091 1092 /* check totally zeroed log */ 1093 bp = xlog_get_bp(log, 1); 1094 if (!bp) 1095 return ENOMEM; 1096 error = xlog_bread(log, 0, 1, bp, &offset); 1097 if (error) 1098 goto bp_err; 1099 1100 first_cycle = xlog_get_cycle(offset); 1101 if (first_cycle == 0) { /* completely zeroed log */ 1102 *blk_no = 0; 1103 xlog_put_bp(bp); 1104 return -1; 1105 } 1106 1107 /* check partially zeroed log */ 1108 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); 1109 if (error) 1110 goto bp_err; 1111 1112 last_cycle = xlog_get_cycle(offset); 1113 if (last_cycle != 0) { /* log completely written to */ 1114 xlog_put_bp(bp); 1115 return 0; 1116 } else if (first_cycle != 1) { 1117 /* 1118 * If the cycle of the last block is zero, the cycle of 1119 * the first block must be 1. If it's not, maybe we're 1120 * not looking at a log... Bail out. 1121 */ 1122 xfs_warn(log->l_mp, 1123 "Log inconsistent or not a log (last==0, first!=1)"); 1124 return XFS_ERROR(EINVAL); 1125 } 1126 1127 /* we have a partially zeroed log */ 1128 last_blk = log_bbnum-1; 1129 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) 1130 goto bp_err; 1131 1132 /* 1133 * Validate the answer. Because there is no way to guarantee that 1134 * the entire log is made up of log records which are the same size, 1135 * we scan over the defined maximum blocks. At this point, the maximum 1136 * is not chosen to mean anything special. XXXmiken 1137 */ 1138 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1139 ASSERT(num_scan_bblks <= INT_MAX); 1140 1141 if (last_blk < num_scan_bblks) 1142 num_scan_bblks = last_blk; 1143 start_blk = last_blk - num_scan_bblks; 1144 1145 /* 1146 * We search for any instances of cycle number 0 that occur before 1147 * our current estimate of the head. What we're trying to detect is 1148 * 1 ... | 0 | 1 | 0... 1149 * ^ binary search ends here 1150 */ 1151 if ((error = xlog_find_verify_cycle(log, start_blk, 1152 (int)num_scan_bblks, 0, &new_blk))) 1153 goto bp_err; 1154 if (new_blk != -1) 1155 last_blk = new_blk; 1156 1157 /* 1158 * Potentially backup over partial log record write. We don't need 1159 * to search the end of the log because we know it is zero. 1160 */ 1161 if ((error = xlog_find_verify_log_record(log, start_blk, 1162 &last_blk, 0)) == -1) { 1163 error = XFS_ERROR(EIO); 1164 goto bp_err; 1165 } else if (error) 1166 goto bp_err; 1167 1168 *blk_no = last_blk; 1169 bp_err: 1170 xlog_put_bp(bp); 1171 if (error) 1172 return error; 1173 return -1; 1174 } 1175 1176 /* 1177 * These are simple subroutines used by xlog_clear_stale_blocks() below 1178 * to initialize a buffer full of empty log record headers and write 1179 * them into the log. 1180 */ 1181 STATIC void 1182 xlog_add_record( 1183 xlog_t *log, 1184 xfs_caddr_t buf, 1185 int cycle, 1186 int block, 1187 int tail_cycle, 1188 int tail_block) 1189 { 1190 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1191 1192 memset(buf, 0, BBSIZE); 1193 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1194 recp->h_cycle = cpu_to_be32(cycle); 1195 recp->h_version = cpu_to_be32( 1196 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1197 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1198 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1199 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1200 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1201 } 1202 1203 STATIC int 1204 xlog_write_log_records( 1205 xlog_t *log, 1206 int cycle, 1207 int start_block, 1208 int blocks, 1209 int tail_cycle, 1210 int tail_block) 1211 { 1212 xfs_caddr_t offset; 1213 xfs_buf_t *bp; 1214 int balign, ealign; 1215 int sectbb = log->l_sectBBsize; 1216 int end_block = start_block + blocks; 1217 int bufblks; 1218 int error = 0; 1219 int i, j = 0; 1220 1221 /* 1222 * Greedily allocate a buffer big enough to handle the full 1223 * range of basic blocks to be written. If that fails, try 1224 * a smaller size. We need to be able to write at least a 1225 * log sector, or we're out of luck. 1226 */ 1227 bufblks = 1 << ffs(blocks); 1228 while (!(bp = xlog_get_bp(log, bufblks))) { 1229 bufblks >>= 1; 1230 if (bufblks < sectbb) 1231 return ENOMEM; 1232 } 1233 1234 /* We may need to do a read at the start to fill in part of 1235 * the buffer in the starting sector not covered by the first 1236 * write below. 1237 */ 1238 balign = round_down(start_block, sectbb); 1239 if (balign != start_block) { 1240 error = xlog_bread_noalign(log, start_block, 1, bp); 1241 if (error) 1242 goto out_put_bp; 1243 1244 j = start_block - balign; 1245 } 1246 1247 for (i = start_block; i < end_block; i += bufblks) { 1248 int bcount, endcount; 1249 1250 bcount = min(bufblks, end_block - start_block); 1251 endcount = bcount - j; 1252 1253 /* We may need to do a read at the end to fill in part of 1254 * the buffer in the final sector not covered by the write. 1255 * If this is the same sector as the above read, skip it. 1256 */ 1257 ealign = round_down(end_block, sectbb); 1258 if (j == 0 && (start_block + endcount > ealign)) { 1259 offset = bp->b_addr + BBTOB(ealign - start_block); 1260 error = xlog_bread_offset(log, ealign, sectbb, 1261 bp, offset); 1262 if (error) 1263 break; 1264 1265 } 1266 1267 offset = xlog_align(log, start_block, endcount, bp); 1268 for (; j < endcount; j++) { 1269 xlog_add_record(log, offset, cycle, i+j, 1270 tail_cycle, tail_block); 1271 offset += BBSIZE; 1272 } 1273 error = xlog_bwrite(log, start_block, endcount, bp); 1274 if (error) 1275 break; 1276 start_block += endcount; 1277 j = 0; 1278 } 1279 1280 out_put_bp: 1281 xlog_put_bp(bp); 1282 return error; 1283 } 1284 1285 /* 1286 * This routine is called to blow away any incomplete log writes out 1287 * in front of the log head. We do this so that we won't become confused 1288 * if we come up, write only a little bit more, and then crash again. 1289 * If we leave the partial log records out there, this situation could 1290 * cause us to think those partial writes are valid blocks since they 1291 * have the current cycle number. We get rid of them by overwriting them 1292 * with empty log records with the old cycle number rather than the 1293 * current one. 1294 * 1295 * The tail lsn is passed in rather than taken from 1296 * the log so that we will not write over the unmount record after a 1297 * clean unmount in a 512 block log. Doing so would leave the log without 1298 * any valid log records in it until a new one was written. If we crashed 1299 * during that time we would not be able to recover. 1300 */ 1301 STATIC int 1302 xlog_clear_stale_blocks( 1303 xlog_t *log, 1304 xfs_lsn_t tail_lsn) 1305 { 1306 int tail_cycle, head_cycle; 1307 int tail_block, head_block; 1308 int tail_distance, max_distance; 1309 int distance; 1310 int error; 1311 1312 tail_cycle = CYCLE_LSN(tail_lsn); 1313 tail_block = BLOCK_LSN(tail_lsn); 1314 head_cycle = log->l_curr_cycle; 1315 head_block = log->l_curr_block; 1316 1317 /* 1318 * Figure out the distance between the new head of the log 1319 * and the tail. We want to write over any blocks beyond the 1320 * head that we may have written just before the crash, but 1321 * we don't want to overwrite the tail of the log. 1322 */ 1323 if (head_cycle == tail_cycle) { 1324 /* 1325 * The tail is behind the head in the physical log, 1326 * so the distance from the head to the tail is the 1327 * distance from the head to the end of the log plus 1328 * the distance from the beginning of the log to the 1329 * tail. 1330 */ 1331 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { 1332 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", 1333 XFS_ERRLEVEL_LOW, log->l_mp); 1334 return XFS_ERROR(EFSCORRUPTED); 1335 } 1336 tail_distance = tail_block + (log->l_logBBsize - head_block); 1337 } else { 1338 /* 1339 * The head is behind the tail in the physical log, 1340 * so the distance from the head to the tail is just 1341 * the tail block minus the head block. 1342 */ 1343 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ 1344 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", 1345 XFS_ERRLEVEL_LOW, log->l_mp); 1346 return XFS_ERROR(EFSCORRUPTED); 1347 } 1348 tail_distance = tail_block - head_block; 1349 } 1350 1351 /* 1352 * If the head is right up against the tail, we can't clear 1353 * anything. 1354 */ 1355 if (tail_distance <= 0) { 1356 ASSERT(tail_distance == 0); 1357 return 0; 1358 } 1359 1360 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1361 /* 1362 * Take the smaller of the maximum amount of outstanding I/O 1363 * we could have and the distance to the tail to clear out. 1364 * We take the smaller so that we don't overwrite the tail and 1365 * we don't waste all day writing from the head to the tail 1366 * for no reason. 1367 */ 1368 max_distance = MIN(max_distance, tail_distance); 1369 1370 if ((head_block + max_distance) <= log->l_logBBsize) { 1371 /* 1372 * We can stomp all the blocks we need to without 1373 * wrapping around the end of the log. Just do it 1374 * in a single write. Use the cycle number of the 1375 * current cycle minus one so that the log will look like: 1376 * n ... | n - 1 ... 1377 */ 1378 error = xlog_write_log_records(log, (head_cycle - 1), 1379 head_block, max_distance, tail_cycle, 1380 tail_block); 1381 if (error) 1382 return error; 1383 } else { 1384 /* 1385 * We need to wrap around the end of the physical log in 1386 * order to clear all the blocks. Do it in two separate 1387 * I/Os. The first write should be from the head to the 1388 * end of the physical log, and it should use the current 1389 * cycle number minus one just like above. 1390 */ 1391 distance = log->l_logBBsize - head_block; 1392 error = xlog_write_log_records(log, (head_cycle - 1), 1393 head_block, distance, tail_cycle, 1394 tail_block); 1395 1396 if (error) 1397 return error; 1398 1399 /* 1400 * Now write the blocks at the start of the physical log. 1401 * This writes the remainder of the blocks we want to clear. 1402 * It uses the current cycle number since we're now on the 1403 * same cycle as the head so that we get: 1404 * n ... n ... | n - 1 ... 1405 * ^^^^^ blocks we're writing 1406 */ 1407 distance = max_distance - (log->l_logBBsize - head_block); 1408 error = xlog_write_log_records(log, head_cycle, 0, distance, 1409 tail_cycle, tail_block); 1410 if (error) 1411 return error; 1412 } 1413 1414 return 0; 1415 } 1416 1417 /****************************************************************************** 1418 * 1419 * Log recover routines 1420 * 1421 ****************************************************************************** 1422 */ 1423 1424 STATIC xlog_recover_t * 1425 xlog_recover_find_tid( 1426 struct hlist_head *head, 1427 xlog_tid_t tid) 1428 { 1429 xlog_recover_t *trans; 1430 struct hlist_node *n; 1431 1432 hlist_for_each_entry(trans, n, head, r_list) { 1433 if (trans->r_log_tid == tid) 1434 return trans; 1435 } 1436 return NULL; 1437 } 1438 1439 STATIC void 1440 xlog_recover_new_tid( 1441 struct hlist_head *head, 1442 xlog_tid_t tid, 1443 xfs_lsn_t lsn) 1444 { 1445 xlog_recover_t *trans; 1446 1447 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); 1448 trans->r_log_tid = tid; 1449 trans->r_lsn = lsn; 1450 INIT_LIST_HEAD(&trans->r_itemq); 1451 1452 INIT_HLIST_NODE(&trans->r_list); 1453 hlist_add_head(&trans->r_list, head); 1454 } 1455 1456 STATIC void 1457 xlog_recover_add_item( 1458 struct list_head *head) 1459 { 1460 xlog_recover_item_t *item; 1461 1462 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); 1463 INIT_LIST_HEAD(&item->ri_list); 1464 list_add_tail(&item->ri_list, head); 1465 } 1466 1467 STATIC int 1468 xlog_recover_add_to_cont_trans( 1469 struct log *log, 1470 xlog_recover_t *trans, 1471 xfs_caddr_t dp, 1472 int len) 1473 { 1474 xlog_recover_item_t *item; 1475 xfs_caddr_t ptr, old_ptr; 1476 int old_len; 1477 1478 if (list_empty(&trans->r_itemq)) { 1479 /* finish copying rest of trans header */ 1480 xlog_recover_add_item(&trans->r_itemq); 1481 ptr = (xfs_caddr_t) &trans->r_theader + 1482 sizeof(xfs_trans_header_t) - len; 1483 memcpy(ptr, dp, len); /* d, s, l */ 1484 return 0; 1485 } 1486 /* take the tail entry */ 1487 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1488 1489 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 1490 old_len = item->ri_buf[item->ri_cnt-1].i_len; 1491 1492 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u); 1493 memcpy(&ptr[old_len], dp, len); /* d, s, l */ 1494 item->ri_buf[item->ri_cnt-1].i_len += len; 1495 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 1496 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 1497 return 0; 1498 } 1499 1500 /* 1501 * The next region to add is the start of a new region. It could be 1502 * a whole region or it could be the first part of a new region. Because 1503 * of this, the assumption here is that the type and size fields of all 1504 * format structures fit into the first 32 bits of the structure. 1505 * 1506 * This works because all regions must be 32 bit aligned. Therefore, we 1507 * either have both fields or we have neither field. In the case we have 1508 * neither field, the data part of the region is zero length. We only have 1509 * a log_op_header and can throw away the header since a new one will appear 1510 * later. If we have at least 4 bytes, then we can determine how many regions 1511 * will appear in the current log item. 1512 */ 1513 STATIC int 1514 xlog_recover_add_to_trans( 1515 struct log *log, 1516 xlog_recover_t *trans, 1517 xfs_caddr_t dp, 1518 int len) 1519 { 1520 xfs_inode_log_format_t *in_f; /* any will do */ 1521 xlog_recover_item_t *item; 1522 xfs_caddr_t ptr; 1523 1524 if (!len) 1525 return 0; 1526 if (list_empty(&trans->r_itemq)) { 1527 /* we need to catch log corruptions here */ 1528 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 1529 xfs_warn(log->l_mp, "%s: bad header magic number", 1530 __func__); 1531 ASSERT(0); 1532 return XFS_ERROR(EIO); 1533 } 1534 if (len == sizeof(xfs_trans_header_t)) 1535 xlog_recover_add_item(&trans->r_itemq); 1536 memcpy(&trans->r_theader, dp, len); /* d, s, l */ 1537 return 0; 1538 } 1539 1540 ptr = kmem_alloc(len, KM_SLEEP); 1541 memcpy(ptr, dp, len); 1542 in_f = (xfs_inode_log_format_t *)ptr; 1543 1544 /* take the tail entry */ 1545 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); 1546 if (item->ri_total != 0 && 1547 item->ri_total == item->ri_cnt) { 1548 /* tail item is in use, get a new one */ 1549 xlog_recover_add_item(&trans->r_itemq); 1550 item = list_entry(trans->r_itemq.prev, 1551 xlog_recover_item_t, ri_list); 1552 } 1553 1554 if (item->ri_total == 0) { /* first region to be added */ 1555 if (in_f->ilf_size == 0 || 1556 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 1557 xfs_warn(log->l_mp, 1558 "bad number of regions (%d) in inode log format", 1559 in_f->ilf_size); 1560 ASSERT(0); 1561 return XFS_ERROR(EIO); 1562 } 1563 1564 item->ri_total = in_f->ilf_size; 1565 item->ri_buf = 1566 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), 1567 KM_SLEEP); 1568 } 1569 ASSERT(item->ri_total > item->ri_cnt); 1570 /* Description region is ri_buf[0] */ 1571 item->ri_buf[item->ri_cnt].i_addr = ptr; 1572 item->ri_buf[item->ri_cnt].i_len = len; 1573 item->ri_cnt++; 1574 trace_xfs_log_recover_item_add(log, trans, item, 0); 1575 return 0; 1576 } 1577 1578 /* 1579 * Sort the log items in the transaction. Cancelled buffers need 1580 * to be put first so they are processed before any items that might 1581 * modify the buffers. If they are cancelled, then the modifications 1582 * don't need to be replayed. 1583 */ 1584 STATIC int 1585 xlog_recover_reorder_trans( 1586 struct log *log, 1587 xlog_recover_t *trans, 1588 int pass) 1589 { 1590 xlog_recover_item_t *item, *n; 1591 LIST_HEAD(sort_list); 1592 1593 list_splice_init(&trans->r_itemq, &sort_list); 1594 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1595 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1596 1597 switch (ITEM_TYPE(item)) { 1598 case XFS_LI_BUF: 1599 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1600 trace_xfs_log_recover_item_reorder_head(log, 1601 trans, item, pass); 1602 list_move(&item->ri_list, &trans->r_itemq); 1603 break; 1604 } 1605 case XFS_LI_INODE: 1606 case XFS_LI_DQUOT: 1607 case XFS_LI_QUOTAOFF: 1608 case XFS_LI_EFD: 1609 case XFS_LI_EFI: 1610 trace_xfs_log_recover_item_reorder_tail(log, 1611 trans, item, pass); 1612 list_move_tail(&item->ri_list, &trans->r_itemq); 1613 break; 1614 default: 1615 xfs_warn(log->l_mp, 1616 "%s: unrecognized type of log operation", 1617 __func__); 1618 ASSERT(0); 1619 return XFS_ERROR(EIO); 1620 } 1621 } 1622 ASSERT(list_empty(&sort_list)); 1623 return 0; 1624 } 1625 1626 /* 1627 * Build up the table of buf cancel records so that we don't replay 1628 * cancelled data in the second pass. For buffer records that are 1629 * not cancel records, there is nothing to do here so we just return. 1630 * 1631 * If we get a cancel record which is already in the table, this indicates 1632 * that the buffer was cancelled multiple times. In order to ensure 1633 * that during pass 2 we keep the record in the table until we reach its 1634 * last occurrence in the log, we keep a reference count in the cancel 1635 * record in the table to tell us how many times we expect to see this 1636 * record during the second pass. 1637 */ 1638 STATIC int 1639 xlog_recover_buffer_pass1( 1640 struct log *log, 1641 xlog_recover_item_t *item) 1642 { 1643 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 1644 struct list_head *bucket; 1645 struct xfs_buf_cancel *bcp; 1646 1647 /* 1648 * If this isn't a cancel buffer item, then just return. 1649 */ 1650 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { 1651 trace_xfs_log_recover_buf_not_cancel(log, buf_f); 1652 return 0; 1653 } 1654 1655 /* 1656 * Insert an xfs_buf_cancel record into the hash table of them. 1657 * If there is already an identical record, bump its reference count. 1658 */ 1659 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); 1660 list_for_each_entry(bcp, bucket, bc_list) { 1661 if (bcp->bc_blkno == buf_f->blf_blkno && 1662 bcp->bc_len == buf_f->blf_len) { 1663 bcp->bc_refcount++; 1664 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); 1665 return 0; 1666 } 1667 } 1668 1669 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); 1670 bcp->bc_blkno = buf_f->blf_blkno; 1671 bcp->bc_len = buf_f->blf_len; 1672 bcp->bc_refcount = 1; 1673 list_add_tail(&bcp->bc_list, bucket); 1674 1675 trace_xfs_log_recover_buf_cancel_add(log, buf_f); 1676 return 0; 1677 } 1678 1679 /* 1680 * Check to see whether the buffer being recovered has a corresponding 1681 * entry in the buffer cancel record table. If it does then return 1 1682 * so that it will be cancelled, otherwise return 0. If the buffer is 1683 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement 1684 * the refcount on the entry in the table and remove it from the table 1685 * if this is the last reference. 1686 * 1687 * We remove the cancel record from the table when we encounter its 1688 * last occurrence in the log so that if the same buffer is re-used 1689 * again after its last cancellation we actually replay the changes 1690 * made at that point. 1691 */ 1692 STATIC int 1693 xlog_check_buffer_cancelled( 1694 struct log *log, 1695 xfs_daddr_t blkno, 1696 uint len, 1697 ushort flags) 1698 { 1699 struct list_head *bucket; 1700 struct xfs_buf_cancel *bcp; 1701 1702 if (log->l_buf_cancel_table == NULL) { 1703 /* 1704 * There is nothing in the table built in pass one, 1705 * so this buffer must not be cancelled. 1706 */ 1707 ASSERT(!(flags & XFS_BLF_CANCEL)); 1708 return 0; 1709 } 1710 1711 /* 1712 * Search for an entry in the cancel table that matches our buffer. 1713 */ 1714 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); 1715 list_for_each_entry(bcp, bucket, bc_list) { 1716 if (bcp->bc_blkno == blkno && bcp->bc_len == len) 1717 goto found; 1718 } 1719 1720 /* 1721 * We didn't find a corresponding entry in the table, so return 0 so 1722 * that the buffer is NOT cancelled. 1723 */ 1724 ASSERT(!(flags & XFS_BLF_CANCEL)); 1725 return 0; 1726 1727 found: 1728 /* 1729 * We've go a match, so return 1 so that the recovery of this buffer 1730 * is cancelled. If this buffer is actually a buffer cancel log 1731 * item, then decrement the refcount on the one in the table and 1732 * remove it if this is the last reference. 1733 */ 1734 if (flags & XFS_BLF_CANCEL) { 1735 if (--bcp->bc_refcount == 0) { 1736 list_del(&bcp->bc_list); 1737 kmem_free(bcp); 1738 } 1739 } 1740 return 1; 1741 } 1742 1743 /* 1744 * Perform recovery for a buffer full of inodes. In these buffers, the only 1745 * data which should be recovered is that which corresponds to the 1746 * di_next_unlinked pointers in the on disk inode structures. The rest of the 1747 * data for the inodes is always logged through the inodes themselves rather 1748 * than the inode buffer and is recovered in xlog_recover_inode_pass2(). 1749 * 1750 * The only time when buffers full of inodes are fully recovered is when the 1751 * buffer is full of newly allocated inodes. In this case the buffer will 1752 * not be marked as an inode buffer and so will be sent to 1753 * xlog_recover_do_reg_buffer() below during recovery. 1754 */ 1755 STATIC int 1756 xlog_recover_do_inode_buffer( 1757 struct xfs_mount *mp, 1758 xlog_recover_item_t *item, 1759 struct xfs_buf *bp, 1760 xfs_buf_log_format_t *buf_f) 1761 { 1762 int i; 1763 int item_index = 0; 1764 int bit = 0; 1765 int nbits = 0; 1766 int reg_buf_offset = 0; 1767 int reg_buf_bytes = 0; 1768 int next_unlinked_offset; 1769 int inodes_per_buf; 1770 xfs_agino_t *logged_nextp; 1771 xfs_agino_t *buffer_nextp; 1772 1773 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); 1774 1775 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; 1776 for (i = 0; i < inodes_per_buf; i++) { 1777 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + 1778 offsetof(xfs_dinode_t, di_next_unlinked); 1779 1780 while (next_unlinked_offset >= 1781 (reg_buf_offset + reg_buf_bytes)) { 1782 /* 1783 * The next di_next_unlinked field is beyond 1784 * the current logged region. Find the next 1785 * logged region that contains or is beyond 1786 * the current di_next_unlinked field. 1787 */ 1788 bit += nbits; 1789 bit = xfs_next_bit(buf_f->blf_data_map, 1790 buf_f->blf_map_size, bit); 1791 1792 /* 1793 * If there are no more logged regions in the 1794 * buffer, then we're done. 1795 */ 1796 if (bit == -1) 1797 return 0; 1798 1799 nbits = xfs_contig_bits(buf_f->blf_data_map, 1800 buf_f->blf_map_size, bit); 1801 ASSERT(nbits > 0); 1802 reg_buf_offset = bit << XFS_BLF_SHIFT; 1803 reg_buf_bytes = nbits << XFS_BLF_SHIFT; 1804 item_index++; 1805 } 1806 1807 /* 1808 * If the current logged region starts after the current 1809 * di_next_unlinked field, then move on to the next 1810 * di_next_unlinked field. 1811 */ 1812 if (next_unlinked_offset < reg_buf_offset) 1813 continue; 1814 1815 ASSERT(item->ri_buf[item_index].i_addr != NULL); 1816 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); 1817 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); 1818 1819 /* 1820 * The current logged region contains a copy of the 1821 * current di_next_unlinked field. Extract its value 1822 * and copy it to the buffer copy. 1823 */ 1824 logged_nextp = item->ri_buf[item_index].i_addr + 1825 next_unlinked_offset - reg_buf_offset; 1826 if (unlikely(*logged_nextp == 0)) { 1827 xfs_alert(mp, 1828 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " 1829 "Trying to replay bad (0) inode di_next_unlinked field.", 1830 item, bp); 1831 XFS_ERROR_REPORT("xlog_recover_do_inode_buf", 1832 XFS_ERRLEVEL_LOW, mp); 1833 return XFS_ERROR(EFSCORRUPTED); 1834 } 1835 1836 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, 1837 next_unlinked_offset); 1838 *buffer_nextp = *logged_nextp; 1839 } 1840 1841 return 0; 1842 } 1843 1844 /* 1845 * Perform a 'normal' buffer recovery. Each logged region of the 1846 * buffer should be copied over the corresponding region in the 1847 * given buffer. The bitmap in the buf log format structure indicates 1848 * where to place the logged data. 1849 */ 1850 STATIC void 1851 xlog_recover_do_reg_buffer( 1852 struct xfs_mount *mp, 1853 xlog_recover_item_t *item, 1854 struct xfs_buf *bp, 1855 xfs_buf_log_format_t *buf_f) 1856 { 1857 int i; 1858 int bit; 1859 int nbits; 1860 int error; 1861 1862 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); 1863 1864 bit = 0; 1865 i = 1; /* 0 is the buf format structure */ 1866 while (1) { 1867 bit = xfs_next_bit(buf_f->blf_data_map, 1868 buf_f->blf_map_size, bit); 1869 if (bit == -1) 1870 break; 1871 nbits = xfs_contig_bits(buf_f->blf_data_map, 1872 buf_f->blf_map_size, bit); 1873 ASSERT(nbits > 0); 1874 ASSERT(item->ri_buf[i].i_addr != NULL); 1875 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); 1876 ASSERT(XFS_BUF_COUNT(bp) >= 1877 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT)); 1878 1879 /* 1880 * Do a sanity check if this is a dquot buffer. Just checking 1881 * the first dquot in the buffer should do. XXXThis is 1882 * probably a good thing to do for other buf types also. 1883 */ 1884 error = 0; 1885 if (buf_f->blf_flags & 1886 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 1887 if (item->ri_buf[i].i_addr == NULL) { 1888 xfs_alert(mp, 1889 "XFS: NULL dquot in %s.", __func__); 1890 goto next; 1891 } 1892 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { 1893 xfs_alert(mp, 1894 "XFS: dquot too small (%d) in %s.", 1895 item->ri_buf[i].i_len, __func__); 1896 goto next; 1897 } 1898 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr, 1899 -1, 0, XFS_QMOPT_DOWARN, 1900 "dquot_buf_recover"); 1901 if (error) 1902 goto next; 1903 } 1904 1905 memcpy(xfs_buf_offset(bp, 1906 (uint)bit << XFS_BLF_SHIFT), /* dest */ 1907 item->ri_buf[i].i_addr, /* source */ 1908 nbits<<XFS_BLF_SHIFT); /* length */ 1909 next: 1910 i++; 1911 bit += nbits; 1912 } 1913 1914 /* Shouldn't be any more regions */ 1915 ASSERT(i == item->ri_total); 1916 } 1917 1918 /* 1919 * Do some primitive error checking on ondisk dquot data structures. 1920 */ 1921 int 1922 xfs_qm_dqcheck( 1923 struct xfs_mount *mp, 1924 xfs_disk_dquot_t *ddq, 1925 xfs_dqid_t id, 1926 uint type, /* used only when IO_dorepair is true */ 1927 uint flags, 1928 char *str) 1929 { 1930 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; 1931 int errs = 0; 1932 1933 /* 1934 * We can encounter an uninitialized dquot buffer for 2 reasons: 1935 * 1. If we crash while deleting the quotainode(s), and those blks got 1936 * used for user data. This is because we take the path of regular 1937 * file deletion; however, the size field of quotainodes is never 1938 * updated, so all the tricks that we play in itruncate_finish 1939 * don't quite matter. 1940 * 1941 * 2. We don't play the quota buffers when there's a quotaoff logitem. 1942 * But the allocation will be replayed so we'll end up with an 1943 * uninitialized quota block. 1944 * 1945 * This is all fine; things are still consistent, and we haven't lost 1946 * any quota information. Just don't complain about bad dquot blks. 1947 */ 1948 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) { 1949 if (flags & XFS_QMOPT_DOWARN) 1950 xfs_alert(mp, 1951 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", 1952 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC); 1953 errs++; 1954 } 1955 if (ddq->d_version != XFS_DQUOT_VERSION) { 1956 if (flags & XFS_QMOPT_DOWARN) 1957 xfs_alert(mp, 1958 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", 1959 str, id, ddq->d_version, XFS_DQUOT_VERSION); 1960 errs++; 1961 } 1962 1963 if (ddq->d_flags != XFS_DQ_USER && 1964 ddq->d_flags != XFS_DQ_PROJ && 1965 ddq->d_flags != XFS_DQ_GROUP) { 1966 if (flags & XFS_QMOPT_DOWARN) 1967 xfs_alert(mp, 1968 "%s : XFS dquot ID 0x%x, unknown flags 0x%x", 1969 str, id, ddq->d_flags); 1970 errs++; 1971 } 1972 1973 if (id != -1 && id != be32_to_cpu(ddq->d_id)) { 1974 if (flags & XFS_QMOPT_DOWARN) 1975 xfs_alert(mp, 1976 "%s : ondisk-dquot 0x%p, ID mismatch: " 1977 "0x%x expected, found id 0x%x", 1978 str, ddq, id, be32_to_cpu(ddq->d_id)); 1979 errs++; 1980 } 1981 1982 if (!errs && ddq->d_id) { 1983 if (ddq->d_blk_softlimit && 1984 be64_to_cpu(ddq->d_bcount) >= 1985 be64_to_cpu(ddq->d_blk_softlimit)) { 1986 if (!ddq->d_btimer) { 1987 if (flags & XFS_QMOPT_DOWARN) 1988 xfs_alert(mp, 1989 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED", 1990 str, (int)be32_to_cpu(ddq->d_id), ddq); 1991 errs++; 1992 } 1993 } 1994 if (ddq->d_ino_softlimit && 1995 be64_to_cpu(ddq->d_icount) >= 1996 be64_to_cpu(ddq->d_ino_softlimit)) { 1997 if (!ddq->d_itimer) { 1998 if (flags & XFS_QMOPT_DOWARN) 1999 xfs_alert(mp, 2000 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED", 2001 str, (int)be32_to_cpu(ddq->d_id), ddq); 2002 errs++; 2003 } 2004 } 2005 if (ddq->d_rtb_softlimit && 2006 be64_to_cpu(ddq->d_rtbcount) >= 2007 be64_to_cpu(ddq->d_rtb_softlimit)) { 2008 if (!ddq->d_rtbtimer) { 2009 if (flags & XFS_QMOPT_DOWARN) 2010 xfs_alert(mp, 2011 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED", 2012 str, (int)be32_to_cpu(ddq->d_id), ddq); 2013 errs++; 2014 } 2015 } 2016 } 2017 2018 if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) 2019 return errs; 2020 2021 if (flags & XFS_QMOPT_DOWARN) 2022 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id); 2023 2024 /* 2025 * Typically, a repair is only requested by quotacheck. 2026 */ 2027 ASSERT(id != -1); 2028 ASSERT(flags & XFS_QMOPT_DQREPAIR); 2029 memset(d, 0, sizeof(xfs_dqblk_t)); 2030 2031 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); 2032 d->dd_diskdq.d_version = XFS_DQUOT_VERSION; 2033 d->dd_diskdq.d_flags = type; 2034 d->dd_diskdq.d_id = cpu_to_be32(id); 2035 2036 return errs; 2037 } 2038 2039 /* 2040 * Perform a dquot buffer recovery. 2041 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type 2042 * (ie. USR or GRP), then just toss this buffer away; don't recover it. 2043 * Else, treat it as a regular buffer and do recovery. 2044 */ 2045 STATIC void 2046 xlog_recover_do_dquot_buffer( 2047 xfs_mount_t *mp, 2048 xlog_t *log, 2049 xlog_recover_item_t *item, 2050 xfs_buf_t *bp, 2051 xfs_buf_log_format_t *buf_f) 2052 { 2053 uint type; 2054 2055 trace_xfs_log_recover_buf_dquot_buf(log, buf_f); 2056 2057 /* 2058 * Filesystems are required to send in quota flags at mount time. 2059 */ 2060 if (mp->m_qflags == 0) { 2061 return; 2062 } 2063 2064 type = 0; 2065 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) 2066 type |= XFS_DQ_USER; 2067 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) 2068 type |= XFS_DQ_PROJ; 2069 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) 2070 type |= XFS_DQ_GROUP; 2071 /* 2072 * This type of quotas was turned off, so ignore this buffer 2073 */ 2074 if (log->l_quotaoffs_flag & type) 2075 return; 2076 2077 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2078 } 2079 2080 /* 2081 * This routine replays a modification made to a buffer at runtime. 2082 * There are actually two types of buffer, regular and inode, which 2083 * are handled differently. Inode buffers are handled differently 2084 * in that we only recover a specific set of data from them, namely 2085 * the inode di_next_unlinked fields. This is because all other inode 2086 * data is actually logged via inode records and any data we replay 2087 * here which overlaps that may be stale. 2088 * 2089 * When meta-data buffers are freed at run time we log a buffer item 2090 * with the XFS_BLF_CANCEL bit set to indicate that previous copies 2091 * of the buffer in the log should not be replayed at recovery time. 2092 * This is so that if the blocks covered by the buffer are reused for 2093 * file data before we crash we don't end up replaying old, freed 2094 * meta-data into a user's file. 2095 * 2096 * To handle the cancellation of buffer log items, we make two passes 2097 * over the log during recovery. During the first we build a table of 2098 * those buffers which have been cancelled, and during the second we 2099 * only replay those buffers which do not have corresponding cancel 2100 * records in the table. See xlog_recover_do_buffer_pass[1,2] above 2101 * for more details on the implementation of the table of cancel records. 2102 */ 2103 STATIC int 2104 xlog_recover_buffer_pass2( 2105 xlog_t *log, 2106 xlog_recover_item_t *item) 2107 { 2108 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; 2109 xfs_mount_t *mp = log->l_mp; 2110 xfs_buf_t *bp; 2111 int error; 2112 uint buf_flags; 2113 2114 /* 2115 * In this pass we only want to recover all the buffers which have 2116 * not been cancelled and are not cancellation buffers themselves. 2117 */ 2118 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, 2119 buf_f->blf_len, buf_f->blf_flags)) { 2120 trace_xfs_log_recover_buf_cancel(log, buf_f); 2121 return 0; 2122 } 2123 2124 trace_xfs_log_recover_buf_recover(log, buf_f); 2125 2126 buf_flags = XBF_LOCK; 2127 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF)) 2128 buf_flags |= XBF_MAPPED; 2129 2130 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, 2131 buf_flags); 2132 if (!bp) 2133 return XFS_ERROR(ENOMEM); 2134 error = bp->b_error; 2135 if (error) { 2136 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); 2137 xfs_buf_relse(bp); 2138 return error; 2139 } 2140 2141 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { 2142 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); 2143 } else if (buf_f->blf_flags & 2144 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { 2145 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); 2146 } else { 2147 xlog_recover_do_reg_buffer(mp, item, bp, buf_f); 2148 } 2149 if (error) 2150 return XFS_ERROR(error); 2151 2152 /* 2153 * Perform delayed write on the buffer. Asynchronous writes will be 2154 * slower when taking into account all the buffers to be flushed. 2155 * 2156 * Also make sure that only inode buffers with good sizes stay in 2157 * the buffer cache. The kernel moves inodes in buffers of 1 block 2158 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode 2159 * buffers in the log can be a different size if the log was generated 2160 * by an older kernel using unclustered inode buffers or a newer kernel 2161 * running with a different inode cluster size. Regardless, if the 2162 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) 2163 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep 2164 * the buffer out of the buffer cache so that the buffer won't 2165 * overlap with future reads of those inodes. 2166 */ 2167 if (XFS_DINODE_MAGIC == 2168 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && 2169 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, 2170 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { 2171 xfs_buf_stale(bp); 2172 error = xfs_bwrite(bp); 2173 } else { 2174 ASSERT(bp->b_target->bt_mount == mp); 2175 bp->b_iodone = xlog_recover_iodone; 2176 xfs_buf_delwri_queue(bp); 2177 } 2178 2179 xfs_buf_relse(bp); 2180 return error; 2181 } 2182 2183 STATIC int 2184 xlog_recover_inode_pass2( 2185 xlog_t *log, 2186 xlog_recover_item_t *item) 2187 { 2188 xfs_inode_log_format_t *in_f; 2189 xfs_mount_t *mp = log->l_mp; 2190 xfs_buf_t *bp; 2191 xfs_dinode_t *dip; 2192 int len; 2193 xfs_caddr_t src; 2194 xfs_caddr_t dest; 2195 int error; 2196 int attr_index; 2197 uint fields; 2198 xfs_icdinode_t *dicp; 2199 int need_free = 0; 2200 2201 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { 2202 in_f = item->ri_buf[0].i_addr; 2203 } else { 2204 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); 2205 need_free = 1; 2206 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); 2207 if (error) 2208 goto error; 2209 } 2210 2211 /* 2212 * Inode buffers can be freed, look out for it, 2213 * and do not replay the inode. 2214 */ 2215 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, 2216 in_f->ilf_len, 0)) { 2217 error = 0; 2218 trace_xfs_log_recover_inode_cancel(log, in_f); 2219 goto error; 2220 } 2221 trace_xfs_log_recover_inode_recover(log, in_f); 2222 2223 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 2224 XBF_LOCK); 2225 if (!bp) { 2226 error = ENOMEM; 2227 goto error; 2228 } 2229 error = bp->b_error; 2230 if (error) { 2231 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); 2232 xfs_buf_relse(bp); 2233 goto error; 2234 } 2235 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); 2236 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); 2237 2238 /* 2239 * Make sure the place we're flushing out to really looks 2240 * like an inode! 2241 */ 2242 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { 2243 xfs_buf_relse(bp); 2244 xfs_alert(mp, 2245 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", 2246 __func__, dip, bp, in_f->ilf_ino); 2247 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", 2248 XFS_ERRLEVEL_LOW, mp); 2249 error = EFSCORRUPTED; 2250 goto error; 2251 } 2252 dicp = item->ri_buf[1].i_addr; 2253 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { 2254 xfs_buf_relse(bp); 2255 xfs_alert(mp, 2256 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", 2257 __func__, item, in_f->ilf_ino); 2258 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", 2259 XFS_ERRLEVEL_LOW, mp); 2260 error = EFSCORRUPTED; 2261 goto error; 2262 } 2263 2264 /* Skip replay when the on disk inode is newer than the log one */ 2265 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { 2266 /* 2267 * Deal with the wrap case, DI_MAX_FLUSH is less 2268 * than smaller numbers 2269 */ 2270 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && 2271 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { 2272 /* do nothing */ 2273 } else { 2274 xfs_buf_relse(bp); 2275 trace_xfs_log_recover_inode_skip(log, in_f); 2276 error = 0; 2277 goto error; 2278 } 2279 } 2280 /* Take the opportunity to reset the flush iteration count */ 2281 dicp->di_flushiter = 0; 2282 2283 if (unlikely(S_ISREG(dicp->di_mode))) { 2284 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2285 (dicp->di_format != XFS_DINODE_FMT_BTREE)) { 2286 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", 2287 XFS_ERRLEVEL_LOW, mp, dicp); 2288 xfs_buf_relse(bp); 2289 xfs_alert(mp, 2290 "%s: Bad regular inode log record, rec ptr 0x%p, " 2291 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2292 __func__, item, dip, bp, in_f->ilf_ino); 2293 error = EFSCORRUPTED; 2294 goto error; 2295 } 2296 } else if (unlikely(S_ISDIR(dicp->di_mode))) { 2297 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && 2298 (dicp->di_format != XFS_DINODE_FMT_BTREE) && 2299 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { 2300 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", 2301 XFS_ERRLEVEL_LOW, mp, dicp); 2302 xfs_buf_relse(bp); 2303 xfs_alert(mp, 2304 "%s: Bad dir inode log record, rec ptr 0x%p, " 2305 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", 2306 __func__, item, dip, bp, in_f->ilf_ino); 2307 error = EFSCORRUPTED; 2308 goto error; 2309 } 2310 } 2311 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ 2312 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", 2313 XFS_ERRLEVEL_LOW, mp, dicp); 2314 xfs_buf_relse(bp); 2315 xfs_alert(mp, 2316 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2317 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", 2318 __func__, item, dip, bp, in_f->ilf_ino, 2319 dicp->di_nextents + dicp->di_anextents, 2320 dicp->di_nblocks); 2321 error = EFSCORRUPTED; 2322 goto error; 2323 } 2324 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { 2325 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", 2326 XFS_ERRLEVEL_LOW, mp, dicp); 2327 xfs_buf_relse(bp); 2328 xfs_alert(mp, 2329 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " 2330 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, 2331 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); 2332 error = EFSCORRUPTED; 2333 goto error; 2334 } 2335 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) { 2336 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", 2337 XFS_ERRLEVEL_LOW, mp, dicp); 2338 xfs_buf_relse(bp); 2339 xfs_alert(mp, 2340 "%s: Bad inode log record length %d, rec ptr 0x%p", 2341 __func__, item->ri_buf[1].i_len, item); 2342 error = EFSCORRUPTED; 2343 goto error; 2344 } 2345 2346 /* The core is in in-core format */ 2347 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr); 2348 2349 /* the rest is in on-disk format */ 2350 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) { 2351 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode), 2352 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode), 2353 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode)); 2354 } 2355 2356 fields = in_f->ilf_fields; 2357 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { 2358 case XFS_ILOG_DEV: 2359 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); 2360 break; 2361 case XFS_ILOG_UUID: 2362 memcpy(XFS_DFORK_DPTR(dip), 2363 &in_f->ilf_u.ilfu_uuid, 2364 sizeof(uuid_t)); 2365 break; 2366 } 2367 2368 if (in_f->ilf_size == 2) 2369 goto write_inode_buffer; 2370 len = item->ri_buf[2].i_len; 2371 src = item->ri_buf[2].i_addr; 2372 ASSERT(in_f->ilf_size <= 4); 2373 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); 2374 ASSERT(!(fields & XFS_ILOG_DFORK) || 2375 (len == in_f->ilf_dsize)); 2376 2377 switch (fields & XFS_ILOG_DFORK) { 2378 case XFS_ILOG_DDATA: 2379 case XFS_ILOG_DEXT: 2380 memcpy(XFS_DFORK_DPTR(dip), src, len); 2381 break; 2382 2383 case XFS_ILOG_DBROOT: 2384 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, 2385 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), 2386 XFS_DFORK_DSIZE(dip, mp)); 2387 break; 2388 2389 default: 2390 /* 2391 * There are no data fork flags set. 2392 */ 2393 ASSERT((fields & XFS_ILOG_DFORK) == 0); 2394 break; 2395 } 2396 2397 /* 2398 * If we logged any attribute data, recover it. There may or 2399 * may not have been any other non-core data logged in this 2400 * transaction. 2401 */ 2402 if (in_f->ilf_fields & XFS_ILOG_AFORK) { 2403 if (in_f->ilf_fields & XFS_ILOG_DFORK) { 2404 attr_index = 3; 2405 } else { 2406 attr_index = 2; 2407 } 2408 len = item->ri_buf[attr_index].i_len; 2409 src = item->ri_buf[attr_index].i_addr; 2410 ASSERT(len == in_f->ilf_asize); 2411 2412 switch (in_f->ilf_fields & XFS_ILOG_AFORK) { 2413 case XFS_ILOG_ADATA: 2414 case XFS_ILOG_AEXT: 2415 dest = XFS_DFORK_APTR(dip); 2416 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); 2417 memcpy(dest, src, len); 2418 break; 2419 2420 case XFS_ILOG_ABROOT: 2421 dest = XFS_DFORK_APTR(dip); 2422 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, 2423 len, (xfs_bmdr_block_t*)dest, 2424 XFS_DFORK_ASIZE(dip, mp)); 2425 break; 2426 2427 default: 2428 xfs_warn(log->l_mp, "%s: Invalid flag", __func__); 2429 ASSERT(0); 2430 xfs_buf_relse(bp); 2431 error = EIO; 2432 goto error; 2433 } 2434 } 2435 2436 write_inode_buffer: 2437 ASSERT(bp->b_target->bt_mount == mp); 2438 bp->b_iodone = xlog_recover_iodone; 2439 xfs_buf_delwri_queue(bp); 2440 xfs_buf_relse(bp); 2441 error: 2442 if (need_free) 2443 kmem_free(in_f); 2444 return XFS_ERROR(error); 2445 } 2446 2447 /* 2448 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t 2449 * structure, so that we know not to do any dquot item or dquot buffer recovery, 2450 * of that type. 2451 */ 2452 STATIC int 2453 xlog_recover_quotaoff_pass1( 2454 xlog_t *log, 2455 xlog_recover_item_t *item) 2456 { 2457 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; 2458 ASSERT(qoff_f); 2459 2460 /* 2461 * The logitem format's flag tells us if this was user quotaoff, 2462 * group/project quotaoff or both. 2463 */ 2464 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) 2465 log->l_quotaoffs_flag |= XFS_DQ_USER; 2466 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) 2467 log->l_quotaoffs_flag |= XFS_DQ_PROJ; 2468 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) 2469 log->l_quotaoffs_flag |= XFS_DQ_GROUP; 2470 2471 return (0); 2472 } 2473 2474 /* 2475 * Recover a dquot record 2476 */ 2477 STATIC int 2478 xlog_recover_dquot_pass2( 2479 xlog_t *log, 2480 xlog_recover_item_t *item) 2481 { 2482 xfs_mount_t *mp = log->l_mp; 2483 xfs_buf_t *bp; 2484 struct xfs_disk_dquot *ddq, *recddq; 2485 int error; 2486 xfs_dq_logformat_t *dq_f; 2487 uint type; 2488 2489 2490 /* 2491 * Filesystems are required to send in quota flags at mount time. 2492 */ 2493 if (mp->m_qflags == 0) 2494 return (0); 2495 2496 recddq = item->ri_buf[1].i_addr; 2497 if (recddq == NULL) { 2498 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); 2499 return XFS_ERROR(EIO); 2500 } 2501 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { 2502 xfs_alert(log->l_mp, "dquot too small (%d) in %s.", 2503 item->ri_buf[1].i_len, __func__); 2504 return XFS_ERROR(EIO); 2505 } 2506 2507 /* 2508 * This type of quotas was turned off, so ignore this record. 2509 */ 2510 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); 2511 ASSERT(type); 2512 if (log->l_quotaoffs_flag & type) 2513 return (0); 2514 2515 /* 2516 * At this point we know that quota was _not_ turned off. 2517 * Since the mount flags are not indicating to us otherwise, this 2518 * must mean that quota is on, and the dquot needs to be replayed. 2519 * Remember that we may not have fully recovered the superblock yet, 2520 * so we can't do the usual trick of looking at the SB quota bits. 2521 * 2522 * The other possibility, of course, is that the quota subsystem was 2523 * removed since the last mount - ENOSYS. 2524 */ 2525 dq_f = item->ri_buf[0].i_addr; 2526 ASSERT(dq_f); 2527 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2528 "xlog_recover_dquot_pass2 (log copy)"); 2529 if (error) 2530 return XFS_ERROR(EIO); 2531 ASSERT(dq_f->qlf_len == 1); 2532 2533 error = xfs_read_buf(mp, mp->m_ddev_targp, 2534 dq_f->qlf_blkno, 2535 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 2536 0, &bp); 2537 if (error) { 2538 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#3)"); 2539 return error; 2540 } 2541 ASSERT(bp); 2542 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); 2543 2544 /* 2545 * At least the magic num portion should be on disk because this 2546 * was among a chunk of dquots created earlier, and we did some 2547 * minimal initialization then. 2548 */ 2549 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, 2550 "xlog_recover_dquot_pass2"); 2551 if (error) { 2552 xfs_buf_relse(bp); 2553 return XFS_ERROR(EIO); 2554 } 2555 2556 memcpy(ddq, recddq, item->ri_buf[1].i_len); 2557 2558 ASSERT(dq_f->qlf_size == 2); 2559 ASSERT(bp->b_target->bt_mount == mp); 2560 bp->b_iodone = xlog_recover_iodone; 2561 xfs_buf_delwri_queue(bp); 2562 xfs_buf_relse(bp); 2563 2564 return (0); 2565 } 2566 2567 /* 2568 * This routine is called to create an in-core extent free intent 2569 * item from the efi format structure which was logged on disk. 2570 * It allocates an in-core efi, copies the extents from the format 2571 * structure into it, and adds the efi to the AIL with the given 2572 * LSN. 2573 */ 2574 STATIC int 2575 xlog_recover_efi_pass2( 2576 xlog_t *log, 2577 xlog_recover_item_t *item, 2578 xfs_lsn_t lsn) 2579 { 2580 int error; 2581 xfs_mount_t *mp = log->l_mp; 2582 xfs_efi_log_item_t *efip; 2583 xfs_efi_log_format_t *efi_formatp; 2584 2585 efi_formatp = item->ri_buf[0].i_addr; 2586 2587 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 2588 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), 2589 &(efip->efi_format)))) { 2590 xfs_efi_item_free(efip); 2591 return error; 2592 } 2593 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 2594 2595 spin_lock(&log->l_ailp->xa_lock); 2596 /* 2597 * xfs_trans_ail_update() drops the AIL lock. 2598 */ 2599 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); 2600 return 0; 2601 } 2602 2603 2604 /* 2605 * This routine is called when an efd format structure is found in 2606 * a committed transaction in the log. It's purpose is to cancel 2607 * the corresponding efi if it was still in the log. To do this 2608 * it searches the AIL for the efi with an id equal to that in the 2609 * efd format structure. If we find it, we remove the efi from the 2610 * AIL and free it. 2611 */ 2612 STATIC int 2613 xlog_recover_efd_pass2( 2614 xlog_t *log, 2615 xlog_recover_item_t *item) 2616 { 2617 xfs_efd_log_format_t *efd_formatp; 2618 xfs_efi_log_item_t *efip = NULL; 2619 xfs_log_item_t *lip; 2620 __uint64_t efi_id; 2621 struct xfs_ail_cursor cur; 2622 struct xfs_ail *ailp = log->l_ailp; 2623 2624 efd_formatp = item->ri_buf[0].i_addr; 2625 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + 2626 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || 2627 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + 2628 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); 2629 efi_id = efd_formatp->efd_efi_id; 2630 2631 /* 2632 * Search for the efi with the id in the efd format structure 2633 * in the AIL. 2634 */ 2635 spin_lock(&ailp->xa_lock); 2636 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2637 while (lip != NULL) { 2638 if (lip->li_type == XFS_LI_EFI) { 2639 efip = (xfs_efi_log_item_t *)lip; 2640 if (efip->efi_format.efi_id == efi_id) { 2641 /* 2642 * xfs_trans_ail_delete() drops the 2643 * AIL lock. 2644 */ 2645 xfs_trans_ail_delete(ailp, lip); 2646 xfs_efi_item_free(efip); 2647 spin_lock(&ailp->xa_lock); 2648 break; 2649 } 2650 } 2651 lip = xfs_trans_ail_cursor_next(ailp, &cur); 2652 } 2653 xfs_trans_ail_cursor_done(ailp, &cur); 2654 spin_unlock(&ailp->xa_lock); 2655 2656 return 0; 2657 } 2658 2659 /* 2660 * Free up any resources allocated by the transaction 2661 * 2662 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2663 */ 2664 STATIC void 2665 xlog_recover_free_trans( 2666 struct xlog_recover *trans) 2667 { 2668 xlog_recover_item_t *item, *n; 2669 int i; 2670 2671 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2672 /* Free the regions in the item. */ 2673 list_del(&item->ri_list); 2674 for (i = 0; i < item->ri_cnt; i++) 2675 kmem_free(item->ri_buf[i].i_addr); 2676 /* Free the item itself */ 2677 kmem_free(item->ri_buf); 2678 kmem_free(item); 2679 } 2680 /* Free the transaction recover structure */ 2681 kmem_free(trans); 2682 } 2683 2684 STATIC int 2685 xlog_recover_commit_pass1( 2686 struct log *log, 2687 struct xlog_recover *trans, 2688 xlog_recover_item_t *item) 2689 { 2690 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); 2691 2692 switch (ITEM_TYPE(item)) { 2693 case XFS_LI_BUF: 2694 return xlog_recover_buffer_pass1(log, item); 2695 case XFS_LI_QUOTAOFF: 2696 return xlog_recover_quotaoff_pass1(log, item); 2697 case XFS_LI_INODE: 2698 case XFS_LI_EFI: 2699 case XFS_LI_EFD: 2700 case XFS_LI_DQUOT: 2701 /* nothing to do in pass 1 */ 2702 return 0; 2703 default: 2704 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2705 __func__, ITEM_TYPE(item)); 2706 ASSERT(0); 2707 return XFS_ERROR(EIO); 2708 } 2709 } 2710 2711 STATIC int 2712 xlog_recover_commit_pass2( 2713 struct log *log, 2714 struct xlog_recover *trans, 2715 xlog_recover_item_t *item) 2716 { 2717 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); 2718 2719 switch (ITEM_TYPE(item)) { 2720 case XFS_LI_BUF: 2721 return xlog_recover_buffer_pass2(log, item); 2722 case XFS_LI_INODE: 2723 return xlog_recover_inode_pass2(log, item); 2724 case XFS_LI_EFI: 2725 return xlog_recover_efi_pass2(log, item, trans->r_lsn); 2726 case XFS_LI_EFD: 2727 return xlog_recover_efd_pass2(log, item); 2728 case XFS_LI_DQUOT: 2729 return xlog_recover_dquot_pass2(log, item); 2730 case XFS_LI_QUOTAOFF: 2731 /* nothing to do in pass2 */ 2732 return 0; 2733 default: 2734 xfs_warn(log->l_mp, "%s: invalid item type (%d)", 2735 __func__, ITEM_TYPE(item)); 2736 ASSERT(0); 2737 return XFS_ERROR(EIO); 2738 } 2739 } 2740 2741 /* 2742 * Perform the transaction. 2743 * 2744 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2745 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2746 */ 2747 STATIC int 2748 xlog_recover_commit_trans( 2749 struct log *log, 2750 struct xlog_recover *trans, 2751 int pass) 2752 { 2753 int error = 0; 2754 xlog_recover_item_t *item; 2755 2756 hlist_del(&trans->r_list); 2757 2758 error = xlog_recover_reorder_trans(log, trans, pass); 2759 if (error) 2760 return error; 2761 2762 list_for_each_entry(item, &trans->r_itemq, ri_list) { 2763 if (pass == XLOG_RECOVER_PASS1) 2764 error = xlog_recover_commit_pass1(log, trans, item); 2765 else 2766 error = xlog_recover_commit_pass2(log, trans, item); 2767 if (error) 2768 return error; 2769 } 2770 2771 xlog_recover_free_trans(trans); 2772 return 0; 2773 } 2774 2775 STATIC int 2776 xlog_recover_unmount_trans( 2777 struct log *log, 2778 xlog_recover_t *trans) 2779 { 2780 /* Do nothing now */ 2781 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2782 return 0; 2783 } 2784 2785 /* 2786 * There are two valid states of the r_state field. 0 indicates that the 2787 * transaction structure is in a normal state. We have either seen the 2788 * start of the transaction or the last operation we added was not a partial 2789 * operation. If the last operation we added to the transaction was a 2790 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2791 * 2792 * NOTE: skip LRs with 0 data length. 2793 */ 2794 STATIC int 2795 xlog_recover_process_data( 2796 xlog_t *log, 2797 struct hlist_head rhash[], 2798 xlog_rec_header_t *rhead, 2799 xfs_caddr_t dp, 2800 int pass) 2801 { 2802 xfs_caddr_t lp; 2803 int num_logops; 2804 xlog_op_header_t *ohead; 2805 xlog_recover_t *trans; 2806 xlog_tid_t tid; 2807 int error; 2808 unsigned long hash; 2809 uint flags; 2810 2811 lp = dp + be32_to_cpu(rhead->h_len); 2812 num_logops = be32_to_cpu(rhead->h_num_logops); 2813 2814 /* check the log format matches our own - else we can't recover */ 2815 if (xlog_header_check_recover(log->l_mp, rhead)) 2816 return (XFS_ERROR(EIO)); 2817 2818 while ((dp < lp) && num_logops) { 2819 ASSERT(dp + sizeof(xlog_op_header_t) <= lp); 2820 ohead = (xlog_op_header_t *)dp; 2821 dp += sizeof(xlog_op_header_t); 2822 if (ohead->oh_clientid != XFS_TRANSACTION && 2823 ohead->oh_clientid != XFS_LOG) { 2824 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2825 __func__, ohead->oh_clientid); 2826 ASSERT(0); 2827 return (XFS_ERROR(EIO)); 2828 } 2829 tid = be32_to_cpu(ohead->oh_tid); 2830 hash = XLOG_RHASH(tid); 2831 trans = xlog_recover_find_tid(&rhash[hash], tid); 2832 if (trans == NULL) { /* not found; add new tid */ 2833 if (ohead->oh_flags & XLOG_START_TRANS) 2834 xlog_recover_new_tid(&rhash[hash], tid, 2835 be64_to_cpu(rhead->h_lsn)); 2836 } else { 2837 if (dp + be32_to_cpu(ohead->oh_len) > lp) { 2838 xfs_warn(log->l_mp, "%s: bad length 0x%x", 2839 __func__, be32_to_cpu(ohead->oh_len)); 2840 WARN_ON(1); 2841 return (XFS_ERROR(EIO)); 2842 } 2843 flags = ohead->oh_flags & ~XLOG_END_TRANS; 2844 if (flags & XLOG_WAS_CONT_TRANS) 2845 flags &= ~XLOG_CONTINUE_TRANS; 2846 switch (flags) { 2847 case XLOG_COMMIT_TRANS: 2848 error = xlog_recover_commit_trans(log, 2849 trans, pass); 2850 break; 2851 case XLOG_UNMOUNT_TRANS: 2852 error = xlog_recover_unmount_trans(log, trans); 2853 break; 2854 case XLOG_WAS_CONT_TRANS: 2855 error = xlog_recover_add_to_cont_trans(log, 2856 trans, dp, 2857 be32_to_cpu(ohead->oh_len)); 2858 break; 2859 case XLOG_START_TRANS: 2860 xfs_warn(log->l_mp, "%s: bad transaction", 2861 __func__); 2862 ASSERT(0); 2863 error = XFS_ERROR(EIO); 2864 break; 2865 case 0: 2866 case XLOG_CONTINUE_TRANS: 2867 error = xlog_recover_add_to_trans(log, trans, 2868 dp, be32_to_cpu(ohead->oh_len)); 2869 break; 2870 default: 2871 xfs_warn(log->l_mp, "%s: bad flag 0x%x", 2872 __func__, flags); 2873 ASSERT(0); 2874 error = XFS_ERROR(EIO); 2875 break; 2876 } 2877 if (error) 2878 return error; 2879 } 2880 dp += be32_to_cpu(ohead->oh_len); 2881 num_logops--; 2882 } 2883 return 0; 2884 } 2885 2886 /* 2887 * Process an extent free intent item that was recovered from 2888 * the log. We need to free the extents that it describes. 2889 */ 2890 STATIC int 2891 xlog_recover_process_efi( 2892 xfs_mount_t *mp, 2893 xfs_efi_log_item_t *efip) 2894 { 2895 xfs_efd_log_item_t *efdp; 2896 xfs_trans_t *tp; 2897 int i; 2898 int error = 0; 2899 xfs_extent_t *extp; 2900 xfs_fsblock_t startblock_fsb; 2901 2902 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); 2903 2904 /* 2905 * First check the validity of the extents described by the 2906 * EFI. If any are bad, then assume that all are bad and 2907 * just toss the EFI. 2908 */ 2909 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2910 extp = &(efip->efi_format.efi_extents[i]); 2911 startblock_fsb = XFS_BB_TO_FSB(mp, 2912 XFS_FSB_TO_DADDR(mp, extp->ext_start)); 2913 if ((startblock_fsb == 0) || 2914 (extp->ext_len == 0) || 2915 (startblock_fsb >= mp->m_sb.sb_dblocks) || 2916 (extp->ext_len >= mp->m_sb.sb_agblocks)) { 2917 /* 2918 * This will pull the EFI from the AIL and 2919 * free the memory associated with it. 2920 */ 2921 xfs_efi_release(efip, efip->efi_format.efi_nextents); 2922 return XFS_ERROR(EIO); 2923 } 2924 } 2925 2926 tp = xfs_trans_alloc(mp, 0); 2927 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); 2928 if (error) 2929 goto abort_error; 2930 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); 2931 2932 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 2933 extp = &(efip->efi_format.efi_extents[i]); 2934 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); 2935 if (error) 2936 goto abort_error; 2937 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, 2938 extp->ext_len); 2939 } 2940 2941 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); 2942 error = xfs_trans_commit(tp, 0); 2943 return error; 2944 2945 abort_error: 2946 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 2947 return error; 2948 } 2949 2950 /* 2951 * When this is called, all of the EFIs which did not have 2952 * corresponding EFDs should be in the AIL. What we do now 2953 * is free the extents associated with each one. 2954 * 2955 * Since we process the EFIs in normal transactions, they 2956 * will be removed at some point after the commit. This prevents 2957 * us from just walking down the list processing each one. 2958 * We'll use a flag in the EFI to skip those that we've already 2959 * processed and use the AIL iteration mechanism's generation 2960 * count to try to speed this up at least a bit. 2961 * 2962 * When we start, we know that the EFIs are the only things in 2963 * the AIL. As we process them, however, other items are added 2964 * to the AIL. Since everything added to the AIL must come after 2965 * everything already in the AIL, we stop processing as soon as 2966 * we see something other than an EFI in the AIL. 2967 */ 2968 STATIC int 2969 xlog_recover_process_efis( 2970 xlog_t *log) 2971 { 2972 xfs_log_item_t *lip; 2973 xfs_efi_log_item_t *efip; 2974 int error = 0; 2975 struct xfs_ail_cursor cur; 2976 struct xfs_ail *ailp; 2977 2978 ailp = log->l_ailp; 2979 spin_lock(&ailp->xa_lock); 2980 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); 2981 while (lip != NULL) { 2982 /* 2983 * We're done when we see something other than an EFI. 2984 * There should be no EFIs left in the AIL now. 2985 */ 2986 if (lip->li_type != XFS_LI_EFI) { 2987 #ifdef DEBUG 2988 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) 2989 ASSERT(lip->li_type != XFS_LI_EFI); 2990 #endif 2991 break; 2992 } 2993 2994 /* 2995 * Skip EFIs that we've already processed. 2996 */ 2997 efip = (xfs_efi_log_item_t *)lip; 2998 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { 2999 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3000 continue; 3001 } 3002 3003 spin_unlock(&ailp->xa_lock); 3004 error = xlog_recover_process_efi(log->l_mp, efip); 3005 spin_lock(&ailp->xa_lock); 3006 if (error) 3007 goto out; 3008 lip = xfs_trans_ail_cursor_next(ailp, &cur); 3009 } 3010 out: 3011 xfs_trans_ail_cursor_done(ailp, &cur); 3012 spin_unlock(&ailp->xa_lock); 3013 return error; 3014 } 3015 3016 /* 3017 * This routine performs a transaction to null out a bad inode pointer 3018 * in an agi unlinked inode hash bucket. 3019 */ 3020 STATIC void 3021 xlog_recover_clear_agi_bucket( 3022 xfs_mount_t *mp, 3023 xfs_agnumber_t agno, 3024 int bucket) 3025 { 3026 xfs_trans_t *tp; 3027 xfs_agi_t *agi; 3028 xfs_buf_t *agibp; 3029 int offset; 3030 int error; 3031 3032 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); 3033 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 3034 0, 0, 0); 3035 if (error) 3036 goto out_abort; 3037 3038 error = xfs_read_agi(mp, tp, agno, &agibp); 3039 if (error) 3040 goto out_abort; 3041 3042 agi = XFS_BUF_TO_AGI(agibp); 3043 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 3044 offset = offsetof(xfs_agi_t, agi_unlinked) + 3045 (sizeof(xfs_agino_t) * bucket); 3046 xfs_trans_log_buf(tp, agibp, offset, 3047 (offset + sizeof(xfs_agino_t) - 1)); 3048 3049 error = xfs_trans_commit(tp, 0); 3050 if (error) 3051 goto out_error; 3052 return; 3053 3054 out_abort: 3055 xfs_trans_cancel(tp, XFS_TRANS_ABORT); 3056 out_error: 3057 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); 3058 return; 3059 } 3060 3061 STATIC xfs_agino_t 3062 xlog_recover_process_one_iunlink( 3063 struct xfs_mount *mp, 3064 xfs_agnumber_t agno, 3065 xfs_agino_t agino, 3066 int bucket) 3067 { 3068 struct xfs_buf *ibp; 3069 struct xfs_dinode *dip; 3070 struct xfs_inode *ip; 3071 xfs_ino_t ino; 3072 int error; 3073 3074 ino = XFS_AGINO_TO_INO(mp, agno, agino); 3075 error = xfs_iget(mp, NULL, ino, 0, 0, &ip); 3076 if (error) 3077 goto fail; 3078 3079 /* 3080 * Get the on disk inode to find the next inode in the bucket. 3081 */ 3082 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK); 3083 if (error) 3084 goto fail_iput; 3085 3086 ASSERT(ip->i_d.di_nlink == 0); 3087 ASSERT(ip->i_d.di_mode != 0); 3088 3089 /* setup for the next pass */ 3090 agino = be32_to_cpu(dip->di_next_unlinked); 3091 xfs_buf_relse(ibp); 3092 3093 /* 3094 * Prevent any DMAPI event from being sent when the reference on 3095 * the inode is dropped. 3096 */ 3097 ip->i_d.di_dmevmask = 0; 3098 3099 IRELE(ip); 3100 return agino; 3101 3102 fail_iput: 3103 IRELE(ip); 3104 fail: 3105 /* 3106 * We can't read in the inode this bucket points to, or this inode 3107 * is messed up. Just ditch this bucket of inodes. We will lose 3108 * some inodes and space, but at least we won't hang. 3109 * 3110 * Call xlog_recover_clear_agi_bucket() to perform a transaction to 3111 * clear the inode pointer in the bucket. 3112 */ 3113 xlog_recover_clear_agi_bucket(mp, agno, bucket); 3114 return NULLAGINO; 3115 } 3116 3117 /* 3118 * xlog_iunlink_recover 3119 * 3120 * This is called during recovery to process any inodes which 3121 * we unlinked but not freed when the system crashed. These 3122 * inodes will be on the lists in the AGI blocks. What we do 3123 * here is scan all the AGIs and fully truncate and free any 3124 * inodes found on the lists. Each inode is removed from the 3125 * lists when it has been fully truncated and is freed. The 3126 * freeing of the inode and its removal from the list must be 3127 * atomic. 3128 */ 3129 STATIC void 3130 xlog_recover_process_iunlinks( 3131 xlog_t *log) 3132 { 3133 xfs_mount_t *mp; 3134 xfs_agnumber_t agno; 3135 xfs_agi_t *agi; 3136 xfs_buf_t *agibp; 3137 xfs_agino_t agino; 3138 int bucket; 3139 int error; 3140 uint mp_dmevmask; 3141 3142 mp = log->l_mp; 3143 3144 /* 3145 * Prevent any DMAPI event from being sent while in this function. 3146 */ 3147 mp_dmevmask = mp->m_dmevmask; 3148 mp->m_dmevmask = 0; 3149 3150 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3151 /* 3152 * Find the agi for this ag. 3153 */ 3154 error = xfs_read_agi(mp, NULL, agno, &agibp); 3155 if (error) { 3156 /* 3157 * AGI is b0rked. Don't process it. 3158 * 3159 * We should probably mark the filesystem as corrupt 3160 * after we've recovered all the ag's we can.... 3161 */ 3162 continue; 3163 } 3164 agi = XFS_BUF_TO_AGI(agibp); 3165 3166 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 3167 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 3168 while (agino != NULLAGINO) { 3169 /* 3170 * Release the agi buffer so that it can 3171 * be acquired in the normal course of the 3172 * transaction to truncate and free the inode. 3173 */ 3174 xfs_buf_relse(agibp); 3175 3176 agino = xlog_recover_process_one_iunlink(mp, 3177 agno, agino, bucket); 3178 3179 /* 3180 * Reacquire the agibuffer and continue around 3181 * the loop. This should never fail as we know 3182 * the buffer was good earlier on. 3183 */ 3184 error = xfs_read_agi(mp, NULL, agno, &agibp); 3185 ASSERT(error == 0); 3186 agi = XFS_BUF_TO_AGI(agibp); 3187 } 3188 } 3189 3190 /* 3191 * Release the buffer for the current agi so we can 3192 * go on to the next one. 3193 */ 3194 xfs_buf_relse(agibp); 3195 } 3196 3197 mp->m_dmevmask = mp_dmevmask; 3198 } 3199 3200 3201 #ifdef DEBUG 3202 STATIC void 3203 xlog_pack_data_checksum( 3204 xlog_t *log, 3205 xlog_in_core_t *iclog, 3206 int size) 3207 { 3208 int i; 3209 __be32 *up; 3210 uint chksum = 0; 3211 3212 up = (__be32 *)iclog->ic_datap; 3213 /* divide length by 4 to get # words */ 3214 for (i = 0; i < (size >> 2); i++) { 3215 chksum ^= be32_to_cpu(*up); 3216 up++; 3217 } 3218 iclog->ic_header.h_chksum = cpu_to_be32(chksum); 3219 } 3220 #else 3221 #define xlog_pack_data_checksum(log, iclog, size) 3222 #endif 3223 3224 /* 3225 * Stamp cycle number in every block 3226 */ 3227 void 3228 xlog_pack_data( 3229 xlog_t *log, 3230 xlog_in_core_t *iclog, 3231 int roundoff) 3232 { 3233 int i, j, k; 3234 int size = iclog->ic_offset + roundoff; 3235 __be32 cycle_lsn; 3236 xfs_caddr_t dp; 3237 3238 xlog_pack_data_checksum(log, iclog, size); 3239 3240 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 3241 3242 dp = iclog->ic_datap; 3243 for (i = 0; i < BTOBB(size) && 3244 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3245 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 3246 *(__be32 *)dp = cycle_lsn; 3247 dp += BBSIZE; 3248 } 3249 3250 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3251 xlog_in_core_2_t *xhdr = iclog->ic_data; 3252 3253 for ( ; i < BTOBB(size); i++) { 3254 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3255 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3256 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 3257 *(__be32 *)dp = cycle_lsn; 3258 dp += BBSIZE; 3259 } 3260 3261 for (i = 1; i < log->l_iclog_heads; i++) { 3262 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 3263 } 3264 } 3265 } 3266 3267 STATIC void 3268 xlog_unpack_data( 3269 xlog_rec_header_t *rhead, 3270 xfs_caddr_t dp, 3271 xlog_t *log) 3272 { 3273 int i, j, k; 3274 3275 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 3276 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 3277 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 3278 dp += BBSIZE; 3279 } 3280 3281 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3282 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 3283 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 3284 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3285 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3286 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 3287 dp += BBSIZE; 3288 } 3289 } 3290 } 3291 3292 STATIC int 3293 xlog_valid_rec_header( 3294 xlog_t *log, 3295 xlog_rec_header_t *rhead, 3296 xfs_daddr_t blkno) 3297 { 3298 int hlen; 3299 3300 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { 3301 XFS_ERROR_REPORT("xlog_valid_rec_header(1)", 3302 XFS_ERRLEVEL_LOW, log->l_mp); 3303 return XFS_ERROR(EFSCORRUPTED); 3304 } 3305 if (unlikely( 3306 (!rhead->h_version || 3307 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { 3308 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 3309 __func__, be32_to_cpu(rhead->h_version)); 3310 return XFS_ERROR(EIO); 3311 } 3312 3313 /* LR body must have data or it wouldn't have been written */ 3314 hlen = be32_to_cpu(rhead->h_len); 3315 if (unlikely( hlen <= 0 || hlen > INT_MAX )) { 3316 XFS_ERROR_REPORT("xlog_valid_rec_header(2)", 3317 XFS_ERRLEVEL_LOW, log->l_mp); 3318 return XFS_ERROR(EFSCORRUPTED); 3319 } 3320 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { 3321 XFS_ERROR_REPORT("xlog_valid_rec_header(3)", 3322 XFS_ERRLEVEL_LOW, log->l_mp); 3323 return XFS_ERROR(EFSCORRUPTED); 3324 } 3325 return 0; 3326 } 3327 3328 /* 3329 * Read the log from tail to head and process the log records found. 3330 * Handle the two cases where the tail and head are in the same cycle 3331 * and where the active portion of the log wraps around the end of 3332 * the physical log separately. The pass parameter is passed through 3333 * to the routines called to process the data and is not looked at 3334 * here. 3335 */ 3336 STATIC int 3337 xlog_do_recovery_pass( 3338 xlog_t *log, 3339 xfs_daddr_t head_blk, 3340 xfs_daddr_t tail_blk, 3341 int pass) 3342 { 3343 xlog_rec_header_t *rhead; 3344 xfs_daddr_t blk_no; 3345 xfs_caddr_t offset; 3346 xfs_buf_t *hbp, *dbp; 3347 int error = 0, h_size; 3348 int bblks, split_bblks; 3349 int hblks, split_hblks, wrapped_hblks; 3350 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3351 3352 ASSERT(head_blk != tail_blk); 3353 3354 /* 3355 * Read the header of the tail block and get the iclog buffer size from 3356 * h_size. Use this to tell how many sectors make up the log header. 3357 */ 3358 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 3359 /* 3360 * When using variable length iclogs, read first sector of 3361 * iclog header and extract the header size from it. Get a 3362 * new hbp that is the correct size. 3363 */ 3364 hbp = xlog_get_bp(log, 1); 3365 if (!hbp) 3366 return ENOMEM; 3367 3368 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3369 if (error) 3370 goto bread_err1; 3371 3372 rhead = (xlog_rec_header_t *)offset; 3373 error = xlog_valid_rec_header(log, rhead, tail_blk); 3374 if (error) 3375 goto bread_err1; 3376 h_size = be32_to_cpu(rhead->h_size); 3377 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && 3378 (h_size > XLOG_HEADER_CYCLE_SIZE)) { 3379 hblks = h_size / XLOG_HEADER_CYCLE_SIZE; 3380 if (h_size % XLOG_HEADER_CYCLE_SIZE) 3381 hblks++; 3382 xlog_put_bp(hbp); 3383 hbp = xlog_get_bp(log, hblks); 3384 } else { 3385 hblks = 1; 3386 } 3387 } else { 3388 ASSERT(log->l_sectBBsize == 1); 3389 hblks = 1; 3390 hbp = xlog_get_bp(log, 1); 3391 h_size = XLOG_BIG_RECORD_BSIZE; 3392 } 3393 3394 if (!hbp) 3395 return ENOMEM; 3396 dbp = xlog_get_bp(log, BTOBB(h_size)); 3397 if (!dbp) { 3398 xlog_put_bp(hbp); 3399 return ENOMEM; 3400 } 3401 3402 memset(rhash, 0, sizeof(rhash)); 3403 if (tail_blk <= head_blk) { 3404 for (blk_no = tail_blk; blk_no < head_blk; ) { 3405 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3406 if (error) 3407 goto bread_err2; 3408 3409 rhead = (xlog_rec_header_t *)offset; 3410 error = xlog_valid_rec_header(log, rhead, blk_no); 3411 if (error) 3412 goto bread_err2; 3413 3414 /* blocks in data section */ 3415 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3416 error = xlog_bread(log, blk_no + hblks, bblks, dbp, 3417 &offset); 3418 if (error) 3419 goto bread_err2; 3420 3421 xlog_unpack_data(rhead, offset, log); 3422 if ((error = xlog_recover_process_data(log, 3423 rhash, rhead, offset, pass))) 3424 goto bread_err2; 3425 blk_no += bblks + hblks; 3426 } 3427 } else { 3428 /* 3429 * Perform recovery around the end of the physical log. 3430 * When the head is not on the same cycle number as the tail, 3431 * we can't do a sequential recovery as above. 3432 */ 3433 blk_no = tail_blk; 3434 while (blk_no < log->l_logBBsize) { 3435 /* 3436 * Check for header wrapping around physical end-of-log 3437 */ 3438 offset = hbp->b_addr; 3439 split_hblks = 0; 3440 wrapped_hblks = 0; 3441 if (blk_no + hblks <= log->l_logBBsize) { 3442 /* Read header in one read */ 3443 error = xlog_bread(log, blk_no, hblks, hbp, 3444 &offset); 3445 if (error) 3446 goto bread_err2; 3447 } else { 3448 /* This LR is split across physical log end */ 3449 if (blk_no != log->l_logBBsize) { 3450 /* some data before physical log end */ 3451 ASSERT(blk_no <= INT_MAX); 3452 split_hblks = log->l_logBBsize - (int)blk_no; 3453 ASSERT(split_hblks > 0); 3454 error = xlog_bread(log, blk_no, 3455 split_hblks, hbp, 3456 &offset); 3457 if (error) 3458 goto bread_err2; 3459 } 3460 3461 /* 3462 * Note: this black magic still works with 3463 * large sector sizes (non-512) only because: 3464 * - we increased the buffer size originally 3465 * by 1 sector giving us enough extra space 3466 * for the second read; 3467 * - the log start is guaranteed to be sector 3468 * aligned; 3469 * - we read the log end (LR header start) 3470 * _first_, then the log start (LR header end) 3471 * - order is important. 3472 */ 3473 wrapped_hblks = hblks - split_hblks; 3474 error = xlog_bread_offset(log, 0, 3475 wrapped_hblks, hbp, 3476 offset + BBTOB(split_hblks)); 3477 if (error) 3478 goto bread_err2; 3479 } 3480 rhead = (xlog_rec_header_t *)offset; 3481 error = xlog_valid_rec_header(log, rhead, 3482 split_hblks ? blk_no : 0); 3483 if (error) 3484 goto bread_err2; 3485 3486 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3487 blk_no += hblks; 3488 3489 /* Read in data for log record */ 3490 if (blk_no + bblks <= log->l_logBBsize) { 3491 error = xlog_bread(log, blk_no, bblks, dbp, 3492 &offset); 3493 if (error) 3494 goto bread_err2; 3495 } else { 3496 /* This log record is split across the 3497 * physical end of log */ 3498 offset = dbp->b_addr; 3499 split_bblks = 0; 3500 if (blk_no != log->l_logBBsize) { 3501 /* some data is before the physical 3502 * end of log */ 3503 ASSERT(!wrapped_hblks); 3504 ASSERT(blk_no <= INT_MAX); 3505 split_bblks = 3506 log->l_logBBsize - (int)blk_no; 3507 ASSERT(split_bblks > 0); 3508 error = xlog_bread(log, blk_no, 3509 split_bblks, dbp, 3510 &offset); 3511 if (error) 3512 goto bread_err2; 3513 } 3514 3515 /* 3516 * Note: this black magic still works with 3517 * large sector sizes (non-512) only because: 3518 * - we increased the buffer size originally 3519 * by 1 sector giving us enough extra space 3520 * for the second read; 3521 * - the log start is guaranteed to be sector 3522 * aligned; 3523 * - we read the log end (LR header start) 3524 * _first_, then the log start (LR header end) 3525 * - order is important. 3526 */ 3527 error = xlog_bread_offset(log, 0, 3528 bblks - split_bblks, hbp, 3529 offset + BBTOB(split_bblks)); 3530 if (error) 3531 goto bread_err2; 3532 } 3533 xlog_unpack_data(rhead, offset, log); 3534 if ((error = xlog_recover_process_data(log, rhash, 3535 rhead, offset, pass))) 3536 goto bread_err2; 3537 blk_no += bblks; 3538 } 3539 3540 ASSERT(blk_no >= log->l_logBBsize); 3541 blk_no -= log->l_logBBsize; 3542 3543 /* read first part of physical log */ 3544 while (blk_no < head_blk) { 3545 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3546 if (error) 3547 goto bread_err2; 3548 3549 rhead = (xlog_rec_header_t *)offset; 3550 error = xlog_valid_rec_header(log, rhead, blk_no); 3551 if (error) 3552 goto bread_err2; 3553 3554 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3555 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3556 &offset); 3557 if (error) 3558 goto bread_err2; 3559 3560 xlog_unpack_data(rhead, offset, log); 3561 if ((error = xlog_recover_process_data(log, rhash, 3562 rhead, offset, pass))) 3563 goto bread_err2; 3564 blk_no += bblks + hblks; 3565 } 3566 } 3567 3568 bread_err2: 3569 xlog_put_bp(dbp); 3570 bread_err1: 3571 xlog_put_bp(hbp); 3572 return error; 3573 } 3574 3575 /* 3576 * Do the recovery of the log. We actually do this in two phases. 3577 * The two passes are necessary in order to implement the function 3578 * of cancelling a record written into the log. The first pass 3579 * determines those things which have been cancelled, and the 3580 * second pass replays log items normally except for those which 3581 * have been cancelled. The handling of the replay and cancellations 3582 * takes place in the log item type specific routines. 3583 * 3584 * The table of items which have cancel records in the log is allocated 3585 * and freed at this level, since only here do we know when all of 3586 * the log recovery has been completed. 3587 */ 3588 STATIC int 3589 xlog_do_log_recovery( 3590 xlog_t *log, 3591 xfs_daddr_t head_blk, 3592 xfs_daddr_t tail_blk) 3593 { 3594 int error, i; 3595 3596 ASSERT(head_blk != tail_blk); 3597 3598 /* 3599 * First do a pass to find all of the cancelled buf log items. 3600 * Store them in the buf_cancel_table for use in the second pass. 3601 */ 3602 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * 3603 sizeof(struct list_head), 3604 KM_SLEEP); 3605 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3606 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); 3607 3608 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3609 XLOG_RECOVER_PASS1); 3610 if (error != 0) { 3611 kmem_free(log->l_buf_cancel_table); 3612 log->l_buf_cancel_table = NULL; 3613 return error; 3614 } 3615 /* 3616 * Then do a second pass to actually recover the items in the log. 3617 * When it is complete free the table of buf cancel items. 3618 */ 3619 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3620 XLOG_RECOVER_PASS2); 3621 #ifdef DEBUG 3622 if (!error) { 3623 int i; 3624 3625 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) 3626 ASSERT(list_empty(&log->l_buf_cancel_table[i])); 3627 } 3628 #endif /* DEBUG */ 3629 3630 kmem_free(log->l_buf_cancel_table); 3631 log->l_buf_cancel_table = NULL; 3632 3633 return error; 3634 } 3635 3636 /* 3637 * Do the actual recovery 3638 */ 3639 STATIC int 3640 xlog_do_recover( 3641 xlog_t *log, 3642 xfs_daddr_t head_blk, 3643 xfs_daddr_t tail_blk) 3644 { 3645 int error; 3646 xfs_buf_t *bp; 3647 xfs_sb_t *sbp; 3648 3649 /* 3650 * First replay the images in the log. 3651 */ 3652 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3653 if (error) { 3654 return error; 3655 } 3656 3657 xfs_flush_buftarg(log->l_mp->m_ddev_targp, 1); 3658 3659 /* 3660 * If IO errors happened during recovery, bail out. 3661 */ 3662 if (XFS_FORCED_SHUTDOWN(log->l_mp)) { 3663 return (EIO); 3664 } 3665 3666 /* 3667 * We now update the tail_lsn since much of the recovery has completed 3668 * and there may be space available to use. If there were no extent 3669 * or iunlinks, we can free up the entire log and set the tail_lsn to 3670 * be the last_sync_lsn. This was set in xlog_find_tail to be the 3671 * lsn of the last known good LR on disk. If there are extent frees 3672 * or iunlinks they will have some entries in the AIL; so we look at 3673 * the AIL to determine how to set the tail_lsn. 3674 */ 3675 xlog_assign_tail_lsn(log->l_mp); 3676 3677 /* 3678 * Now that we've finished replaying all buffer and inode 3679 * updates, re-read in the superblock. 3680 */ 3681 bp = xfs_getsb(log->l_mp, 0); 3682 XFS_BUF_UNDONE(bp); 3683 ASSERT(!(XFS_BUF_ISWRITE(bp))); 3684 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); 3685 XFS_BUF_READ(bp); 3686 XFS_BUF_UNASYNC(bp); 3687 xfsbdstrat(log->l_mp, bp); 3688 error = xfs_buf_iowait(bp); 3689 if (error) { 3690 xfs_buf_ioerror_alert(bp, __func__); 3691 ASSERT(0); 3692 xfs_buf_relse(bp); 3693 return error; 3694 } 3695 3696 /* Convert superblock from on-disk format */ 3697 sbp = &log->l_mp->m_sb; 3698 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 3699 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); 3700 ASSERT(xfs_sb_good_version(sbp)); 3701 xfs_buf_relse(bp); 3702 3703 /* We've re-read the superblock so re-initialize per-cpu counters */ 3704 xfs_icsb_reinit_counters(log->l_mp); 3705 3706 xlog_recover_check_summary(log); 3707 3708 /* Normal transactions can now occur */ 3709 log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 3710 return 0; 3711 } 3712 3713 /* 3714 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3715 * 3716 * Return error or zero. 3717 */ 3718 int 3719 xlog_recover( 3720 xlog_t *log) 3721 { 3722 xfs_daddr_t head_blk, tail_blk; 3723 int error; 3724 3725 /* find the tail of the log */ 3726 if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) 3727 return error; 3728 3729 if (tail_blk != head_blk) { 3730 /* There used to be a comment here: 3731 * 3732 * disallow recovery on read-only mounts. note -- mount 3733 * checks for ENOSPC and turns it into an intelligent 3734 * error message. 3735 * ...but this is no longer true. Now, unless you specify 3736 * NORECOVERY (in which case this function would never be 3737 * called), we just go ahead and recover. We do this all 3738 * under the vfs layer, so we can get away with it unless 3739 * the device itself is read-only, in which case we fail. 3740 */ 3741 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3742 return error; 3743 } 3744 3745 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3746 log->l_mp->m_logname ? log->l_mp->m_logname 3747 : "internal"); 3748 3749 error = xlog_do_recover(log, head_blk, tail_blk); 3750 log->l_flags |= XLOG_RECOVERY_NEEDED; 3751 } 3752 return error; 3753 } 3754 3755 /* 3756 * In the first part of recovery we replay inodes and buffers and build 3757 * up the list of extent free items which need to be processed. Here 3758 * we process the extent free items and clean up the on disk unlinked 3759 * inode lists. This is separated from the first part of recovery so 3760 * that the root and real-time bitmap inodes can be read in from disk in 3761 * between the two stages. This is necessary so that we can free space 3762 * in the real-time portion of the file system. 3763 */ 3764 int 3765 xlog_recover_finish( 3766 xlog_t *log) 3767 { 3768 /* 3769 * Now we're ready to do the transactions needed for the 3770 * rest of recovery. Start with completing all the extent 3771 * free intent records and then process the unlinked inode 3772 * lists. At this point, we essentially run in normal mode 3773 * except that we're still performing recovery actions 3774 * rather than accepting new requests. 3775 */ 3776 if (log->l_flags & XLOG_RECOVERY_NEEDED) { 3777 int error; 3778 error = xlog_recover_process_efis(log); 3779 if (error) { 3780 xfs_alert(log->l_mp, "Failed to recover EFIs"); 3781 return error; 3782 } 3783 /* 3784 * Sync the log to get all the EFIs out of the AIL. 3785 * This isn't absolutely necessary, but it helps in 3786 * case the unlink transactions would have problems 3787 * pushing the EFIs out of the way. 3788 */ 3789 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3790 3791 xlog_recover_process_iunlinks(log); 3792 3793 xlog_recover_check_summary(log); 3794 3795 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", 3796 log->l_mp->m_logname ? log->l_mp->m_logname 3797 : "internal"); 3798 log->l_flags &= ~XLOG_RECOVERY_NEEDED; 3799 } else { 3800 xfs_info(log->l_mp, "Ending clean mount"); 3801 } 3802 return 0; 3803 } 3804 3805 3806 #if defined(DEBUG) 3807 /* 3808 * Read all of the agf and agi counters and check that they 3809 * are consistent with the superblock counters. 3810 */ 3811 void 3812 xlog_recover_check_summary( 3813 xlog_t *log) 3814 { 3815 xfs_mount_t *mp; 3816 xfs_agf_t *agfp; 3817 xfs_buf_t *agfbp; 3818 xfs_buf_t *agibp; 3819 xfs_agnumber_t agno; 3820 __uint64_t freeblks; 3821 __uint64_t itotal; 3822 __uint64_t ifree; 3823 int error; 3824 3825 mp = log->l_mp; 3826 3827 freeblks = 0LL; 3828 itotal = 0LL; 3829 ifree = 0LL; 3830 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 3831 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); 3832 if (error) { 3833 xfs_alert(mp, "%s agf read failed agno %d error %d", 3834 __func__, agno, error); 3835 } else { 3836 agfp = XFS_BUF_TO_AGF(agfbp); 3837 freeblks += be32_to_cpu(agfp->agf_freeblks) + 3838 be32_to_cpu(agfp->agf_flcount); 3839 xfs_buf_relse(agfbp); 3840 } 3841 3842 error = xfs_read_agi(mp, NULL, agno, &agibp); 3843 if (error) { 3844 xfs_alert(mp, "%s agi read failed agno %d error %d", 3845 __func__, agno, error); 3846 } else { 3847 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); 3848 3849 itotal += be32_to_cpu(agi->agi_count); 3850 ifree += be32_to_cpu(agi->agi_freecount); 3851 xfs_buf_relse(agibp); 3852 } 3853 } 3854 } 3855 #endif /* DEBUG */ 3856