1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_trans_priv.h" 22 #include "xfs_alloc.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_trace.h" 25 #include "xfs_icache.h" 26 #include "xfs_error.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_ag.h" 29 #include "xfs_quota.h" 30 #include "xfs_reflink.h" 31 32 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 33 34 STATIC int 35 xlog_find_zeroed( 36 struct xlog *, 37 xfs_daddr_t *); 38 STATIC int 39 xlog_clear_stale_blocks( 40 struct xlog *, 41 xfs_lsn_t); 42 STATIC int 43 xlog_do_recovery_pass( 44 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 45 46 /* 47 * Sector aligned buffer routines for buffer create/read/write/access 48 */ 49 50 /* 51 * Verify the log-relative block number and length in basic blocks are valid for 52 * an operation involving the given XFS log buffer. Returns true if the fields 53 * are valid, false otherwise. 54 */ 55 static inline bool 56 xlog_verify_bno( 57 struct xlog *log, 58 xfs_daddr_t blk_no, 59 int bbcount) 60 { 61 if (blk_no < 0 || blk_no >= log->l_logBBsize) 62 return false; 63 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 64 return false; 65 return true; 66 } 67 68 /* 69 * Allocate a buffer to hold log data. The buffer needs to be able to map to 70 * a range of nbblks basic blocks at any valid offset within the log. 71 */ 72 static char * 73 xlog_alloc_buffer( 74 struct xlog *log, 75 int nbblks) 76 { 77 /* 78 * Pass log block 0 since we don't have an addr yet, buffer will be 79 * verified on read. 80 */ 81 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 82 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 83 nbblks); 84 return NULL; 85 } 86 87 /* 88 * We do log I/O in units of log sectors (a power-of-2 multiple of the 89 * basic block size), so we round up the requested size to accommodate 90 * the basic blocks required for complete log sectors. 91 * 92 * In addition, the buffer may be used for a non-sector-aligned block 93 * offset, in which case an I/O of the requested size could extend 94 * beyond the end of the buffer. If the requested size is only 1 basic 95 * block it will never straddle a sector boundary, so this won't be an 96 * issue. Nor will this be a problem if the log I/O is done in basic 97 * blocks (sector size 1). But otherwise we extend the buffer by one 98 * extra log sector to ensure there's space to accommodate this 99 * possibility. 100 */ 101 if (nbblks > 1 && log->l_sectBBsize > 1) 102 nbblks += log->l_sectBBsize; 103 nbblks = round_up(nbblks, log->l_sectBBsize); 104 return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 105 } 106 107 /* 108 * Return the address of the start of the given block number's data 109 * in a log buffer. The buffer covers a log sector-aligned region. 110 */ 111 static inline unsigned int 112 xlog_align( 113 struct xlog *log, 114 xfs_daddr_t blk_no) 115 { 116 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 117 } 118 119 static int 120 xlog_do_io( 121 struct xlog *log, 122 xfs_daddr_t blk_no, 123 unsigned int nbblks, 124 char *data, 125 enum req_op op) 126 { 127 int error; 128 129 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 130 xfs_warn(log->l_mp, 131 "Invalid log block/length (0x%llx, 0x%x) for buffer", 132 blk_no, nbblks); 133 return -EFSCORRUPTED; 134 } 135 136 blk_no = round_down(blk_no, log->l_sectBBsize); 137 nbblks = round_up(nbblks, log->l_sectBBsize); 138 ASSERT(nbblks > 0); 139 140 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 141 BBTOB(nbblks), data, op); 142 if (error && !xlog_is_shutdown(log)) { 143 xfs_alert(log->l_mp, 144 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 145 op == REQ_OP_WRITE ? "write" : "read", 146 blk_no, nbblks, error); 147 } 148 return error; 149 } 150 151 STATIC int 152 xlog_bread_noalign( 153 struct xlog *log, 154 xfs_daddr_t blk_no, 155 int nbblks, 156 char *data) 157 { 158 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 159 } 160 161 STATIC int 162 xlog_bread( 163 struct xlog *log, 164 xfs_daddr_t blk_no, 165 int nbblks, 166 char *data, 167 char **offset) 168 { 169 int error; 170 171 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 172 if (!error) 173 *offset = data + xlog_align(log, blk_no); 174 return error; 175 } 176 177 STATIC int 178 xlog_bwrite( 179 struct xlog *log, 180 xfs_daddr_t blk_no, 181 int nbblks, 182 char *data) 183 { 184 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 185 } 186 187 #ifdef DEBUG 188 /* 189 * dump debug superblock and log record information 190 */ 191 STATIC void 192 xlog_header_check_dump( 193 xfs_mount_t *mp, 194 xlog_rec_header_t *head) 195 { 196 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 197 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 198 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 199 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 200 } 201 #else 202 #define xlog_header_check_dump(mp, head) 203 #endif 204 205 /* 206 * check log record header for recovery 207 */ 208 STATIC int 209 xlog_header_check_recover( 210 xfs_mount_t *mp, 211 xlog_rec_header_t *head) 212 { 213 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 214 215 /* 216 * IRIX doesn't write the h_fmt field and leaves it zeroed 217 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 218 * a dirty log created in IRIX. 219 */ 220 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 221 xfs_warn(mp, 222 "dirty log written in incompatible format - can't recover"); 223 xlog_header_check_dump(mp, head); 224 return -EFSCORRUPTED; 225 } 226 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 227 &head->h_fs_uuid))) { 228 xfs_warn(mp, 229 "dirty log entry has mismatched uuid - can't recover"); 230 xlog_header_check_dump(mp, head); 231 return -EFSCORRUPTED; 232 } 233 return 0; 234 } 235 236 /* 237 * read the head block of the log and check the header 238 */ 239 STATIC int 240 xlog_header_check_mount( 241 xfs_mount_t *mp, 242 xlog_rec_header_t *head) 243 { 244 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 245 246 if (uuid_is_null(&head->h_fs_uuid)) { 247 /* 248 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 249 * h_fs_uuid is null, we assume this log was last mounted 250 * by IRIX and continue. 251 */ 252 xfs_warn(mp, "null uuid in log - IRIX style log"); 253 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 254 &head->h_fs_uuid))) { 255 xfs_warn(mp, "log has mismatched uuid - can't recover"); 256 xlog_header_check_dump(mp, head); 257 return -EFSCORRUPTED; 258 } 259 return 0; 260 } 261 262 /* 263 * This routine finds (to an approximation) the first block in the physical 264 * log which contains the given cycle. It uses a binary search algorithm. 265 * Note that the algorithm can not be perfect because the disk will not 266 * necessarily be perfect. 267 */ 268 STATIC int 269 xlog_find_cycle_start( 270 struct xlog *log, 271 char *buffer, 272 xfs_daddr_t first_blk, 273 xfs_daddr_t *last_blk, 274 uint cycle) 275 { 276 char *offset; 277 xfs_daddr_t mid_blk; 278 xfs_daddr_t end_blk; 279 uint mid_cycle; 280 int error; 281 282 end_blk = *last_blk; 283 mid_blk = BLK_AVG(first_blk, end_blk); 284 while (mid_blk != first_blk && mid_blk != end_blk) { 285 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 286 if (error) 287 return error; 288 mid_cycle = xlog_get_cycle(offset); 289 if (mid_cycle == cycle) 290 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 291 else 292 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 293 mid_blk = BLK_AVG(first_blk, end_blk); 294 } 295 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 296 (mid_blk == end_blk && mid_blk-1 == first_blk)); 297 298 *last_blk = end_blk; 299 300 return 0; 301 } 302 303 /* 304 * Check that a range of blocks does not contain stop_on_cycle_no. 305 * Fill in *new_blk with the block offset where such a block is 306 * found, or with -1 (an invalid block number) if there is no such 307 * block in the range. The scan needs to occur from front to back 308 * and the pointer into the region must be updated since a later 309 * routine will need to perform another test. 310 */ 311 STATIC int 312 xlog_find_verify_cycle( 313 struct xlog *log, 314 xfs_daddr_t start_blk, 315 int nbblks, 316 uint stop_on_cycle_no, 317 xfs_daddr_t *new_blk) 318 { 319 xfs_daddr_t i, j; 320 uint cycle; 321 char *buffer; 322 xfs_daddr_t bufblks; 323 char *buf = NULL; 324 int error = 0; 325 326 /* 327 * Greedily allocate a buffer big enough to handle the full 328 * range of basic blocks we'll be examining. If that fails, 329 * try a smaller size. We need to be able to read at least 330 * a log sector, or we're out of luck. 331 */ 332 bufblks = roundup_pow_of_two(nbblks); 333 while (bufblks > log->l_logBBsize) 334 bufblks >>= 1; 335 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 336 bufblks >>= 1; 337 if (bufblks < log->l_sectBBsize) 338 return -ENOMEM; 339 } 340 341 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 342 int bcount; 343 344 bcount = min(bufblks, (start_blk + nbblks - i)); 345 346 error = xlog_bread(log, i, bcount, buffer, &buf); 347 if (error) 348 goto out; 349 350 for (j = 0; j < bcount; j++) { 351 cycle = xlog_get_cycle(buf); 352 if (cycle == stop_on_cycle_no) { 353 *new_blk = i+j; 354 goto out; 355 } 356 357 buf += BBSIZE; 358 } 359 } 360 361 *new_blk = -1; 362 363 out: 364 kvfree(buffer); 365 return error; 366 } 367 368 static inline int 369 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh) 370 { 371 if (xfs_has_logv2(log->l_mp)) { 372 int h_size = be32_to_cpu(rh->h_size); 373 374 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) && 375 h_size > XLOG_HEADER_CYCLE_SIZE) 376 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 377 } 378 return 1; 379 } 380 381 /* 382 * Potentially backup over partial log record write. 383 * 384 * In the typical case, last_blk is the number of the block directly after 385 * a good log record. Therefore, we subtract one to get the block number 386 * of the last block in the given buffer. extra_bblks contains the number 387 * of blocks we would have read on a previous read. This happens when the 388 * last log record is split over the end of the physical log. 389 * 390 * extra_bblks is the number of blocks potentially verified on a previous 391 * call to this routine. 392 */ 393 STATIC int 394 xlog_find_verify_log_record( 395 struct xlog *log, 396 xfs_daddr_t start_blk, 397 xfs_daddr_t *last_blk, 398 int extra_bblks) 399 { 400 xfs_daddr_t i; 401 char *buffer; 402 char *offset = NULL; 403 xlog_rec_header_t *head = NULL; 404 int error = 0; 405 int smallmem = 0; 406 int num_blks = *last_blk - start_blk; 407 int xhdrs; 408 409 ASSERT(start_blk != 0 || *last_blk != start_blk); 410 411 buffer = xlog_alloc_buffer(log, num_blks); 412 if (!buffer) { 413 buffer = xlog_alloc_buffer(log, 1); 414 if (!buffer) 415 return -ENOMEM; 416 smallmem = 1; 417 } else { 418 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 419 if (error) 420 goto out; 421 offset += ((num_blks - 1) << BBSHIFT); 422 } 423 424 for (i = (*last_blk) - 1; i >= 0; i--) { 425 if (i < start_blk) { 426 /* valid log record not found */ 427 xfs_warn(log->l_mp, 428 "Log inconsistent (didn't find previous header)"); 429 ASSERT(0); 430 error = -EFSCORRUPTED; 431 goto out; 432 } 433 434 if (smallmem) { 435 error = xlog_bread(log, i, 1, buffer, &offset); 436 if (error) 437 goto out; 438 } 439 440 head = (xlog_rec_header_t *)offset; 441 442 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 443 break; 444 445 if (!smallmem) 446 offset -= BBSIZE; 447 } 448 449 /* 450 * We hit the beginning of the physical log & still no header. Return 451 * to caller. If caller can handle a return of -1, then this routine 452 * will be called again for the end of the physical log. 453 */ 454 if (i == -1) { 455 error = 1; 456 goto out; 457 } 458 459 /* 460 * We have the final block of the good log (the first block 461 * of the log record _before_ the head. So we check the uuid. 462 */ 463 if ((error = xlog_header_check_mount(log->l_mp, head))) 464 goto out; 465 466 /* 467 * We may have found a log record header before we expected one. 468 * last_blk will be the 1st block # with a given cycle #. We may end 469 * up reading an entire log record. In this case, we don't want to 470 * reset last_blk. Only when last_blk points in the middle of a log 471 * record do we update last_blk. 472 */ 473 xhdrs = xlog_logrec_hblks(log, head); 474 475 if (*last_blk - i + extra_bblks != 476 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 477 *last_blk = i; 478 479 out: 480 kvfree(buffer); 481 return error; 482 } 483 484 /* 485 * Head is defined to be the point of the log where the next log write 486 * could go. This means that incomplete LR writes at the end are 487 * eliminated when calculating the head. We aren't guaranteed that previous 488 * LR have complete transactions. We only know that a cycle number of 489 * current cycle number -1 won't be present in the log if we start writing 490 * from our current block number. 491 * 492 * last_blk contains the block number of the first block with a given 493 * cycle number. 494 * 495 * Return: zero if normal, non-zero if error. 496 */ 497 STATIC int 498 xlog_find_head( 499 struct xlog *log, 500 xfs_daddr_t *return_head_blk) 501 { 502 char *buffer; 503 char *offset; 504 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 505 int num_scan_bblks; 506 uint first_half_cycle, last_half_cycle; 507 uint stop_on_cycle; 508 int error, log_bbnum = log->l_logBBsize; 509 510 /* Is the end of the log device zeroed? */ 511 error = xlog_find_zeroed(log, &first_blk); 512 if (error < 0) { 513 xfs_warn(log->l_mp, "empty log check failed"); 514 return error; 515 } 516 if (error == 1) { 517 *return_head_blk = first_blk; 518 519 /* Is the whole lot zeroed? */ 520 if (!first_blk) { 521 /* Linux XFS shouldn't generate totally zeroed logs - 522 * mkfs etc write a dummy unmount record to a fresh 523 * log so we can store the uuid in there 524 */ 525 xfs_warn(log->l_mp, "totally zeroed log"); 526 } 527 528 return 0; 529 } 530 531 first_blk = 0; /* get cycle # of 1st block */ 532 buffer = xlog_alloc_buffer(log, 1); 533 if (!buffer) 534 return -ENOMEM; 535 536 error = xlog_bread(log, 0, 1, buffer, &offset); 537 if (error) 538 goto out_free_buffer; 539 540 first_half_cycle = xlog_get_cycle(offset); 541 542 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 543 error = xlog_bread(log, last_blk, 1, buffer, &offset); 544 if (error) 545 goto out_free_buffer; 546 547 last_half_cycle = xlog_get_cycle(offset); 548 ASSERT(last_half_cycle != 0); 549 550 /* 551 * If the 1st half cycle number is equal to the last half cycle number, 552 * then the entire log is stamped with the same cycle number. In this 553 * case, head_blk can't be set to zero (which makes sense). The below 554 * math doesn't work out properly with head_blk equal to zero. Instead, 555 * we set it to log_bbnum which is an invalid block number, but this 556 * value makes the math correct. If head_blk doesn't changed through 557 * all the tests below, *head_blk is set to zero at the very end rather 558 * than log_bbnum. In a sense, log_bbnum and zero are the same block 559 * in a circular file. 560 */ 561 if (first_half_cycle == last_half_cycle) { 562 /* 563 * In this case we believe that the entire log should have 564 * cycle number last_half_cycle. We need to scan backwards 565 * from the end verifying that there are no holes still 566 * containing last_half_cycle - 1. If we find such a hole, 567 * then the start of that hole will be the new head. The 568 * simple case looks like 569 * x | x ... | x - 1 | x 570 * Another case that fits this picture would be 571 * x | x + 1 | x ... | x 572 * In this case the head really is somewhere at the end of the 573 * log, as one of the latest writes at the beginning was 574 * incomplete. 575 * One more case is 576 * x | x + 1 | x ... | x - 1 | x 577 * This is really the combination of the above two cases, and 578 * the head has to end up at the start of the x-1 hole at the 579 * end of the log. 580 * 581 * In the 256k log case, we will read from the beginning to the 582 * end of the log and search for cycle numbers equal to x-1. 583 * We don't worry about the x+1 blocks that we encounter, 584 * because we know that they cannot be the head since the log 585 * started with x. 586 */ 587 head_blk = log_bbnum; 588 stop_on_cycle = last_half_cycle - 1; 589 } else { 590 /* 591 * In this case we want to find the first block with cycle 592 * number matching last_half_cycle. We expect the log to be 593 * some variation on 594 * x + 1 ... | x ... | x 595 * The first block with cycle number x (last_half_cycle) will 596 * be where the new head belongs. First we do a binary search 597 * for the first occurrence of last_half_cycle. The binary 598 * search may not be totally accurate, so then we scan back 599 * from there looking for occurrences of last_half_cycle before 600 * us. If that backwards scan wraps around the beginning of 601 * the log, then we look for occurrences of last_half_cycle - 1 602 * at the end of the log. The cases we're looking for look 603 * like 604 * v binary search stopped here 605 * x + 1 ... | x | x + 1 | x ... | x 606 * ^ but we want to locate this spot 607 * or 608 * <---------> less than scan distance 609 * x + 1 ... | x ... | x - 1 | x 610 * ^ we want to locate this spot 611 */ 612 stop_on_cycle = last_half_cycle; 613 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 614 last_half_cycle); 615 if (error) 616 goto out_free_buffer; 617 } 618 619 /* 620 * Now validate the answer. Scan back some number of maximum possible 621 * blocks and make sure each one has the expected cycle number. The 622 * maximum is determined by the total possible amount of buffering 623 * in the in-core log. The following number can be made tighter if 624 * we actually look at the block size of the filesystem. 625 */ 626 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 627 if (head_blk >= num_scan_bblks) { 628 /* 629 * We are guaranteed that the entire check can be performed 630 * in one buffer. 631 */ 632 start_blk = head_blk - num_scan_bblks; 633 if ((error = xlog_find_verify_cycle(log, 634 start_blk, num_scan_bblks, 635 stop_on_cycle, &new_blk))) 636 goto out_free_buffer; 637 if (new_blk != -1) 638 head_blk = new_blk; 639 } else { /* need to read 2 parts of log */ 640 /* 641 * We are going to scan backwards in the log in two parts. 642 * First we scan the physical end of the log. In this part 643 * of the log, we are looking for blocks with cycle number 644 * last_half_cycle - 1. 645 * If we find one, then we know that the log starts there, as 646 * we've found a hole that didn't get written in going around 647 * the end of the physical log. The simple case for this is 648 * x + 1 ... | x ... | x - 1 | x 649 * <---------> less than scan distance 650 * If all of the blocks at the end of the log have cycle number 651 * last_half_cycle, then we check the blocks at the start of 652 * the log looking for occurrences of last_half_cycle. If we 653 * find one, then our current estimate for the location of the 654 * first occurrence of last_half_cycle is wrong and we move 655 * back to the hole we've found. This case looks like 656 * x + 1 ... | x | x + 1 | x ... 657 * ^ binary search stopped here 658 * Another case we need to handle that only occurs in 256k 659 * logs is 660 * x + 1 ... | x ... | x+1 | x ... 661 * ^ binary search stops here 662 * In a 256k log, the scan at the end of the log will see the 663 * x + 1 blocks. We need to skip past those since that is 664 * certainly not the head of the log. By searching for 665 * last_half_cycle-1 we accomplish that. 666 */ 667 ASSERT(head_blk <= INT_MAX && 668 (xfs_daddr_t) num_scan_bblks >= head_blk); 669 start_blk = log_bbnum - (num_scan_bblks - head_blk); 670 if ((error = xlog_find_verify_cycle(log, start_blk, 671 num_scan_bblks - (int)head_blk, 672 (stop_on_cycle - 1), &new_blk))) 673 goto out_free_buffer; 674 if (new_blk != -1) { 675 head_blk = new_blk; 676 goto validate_head; 677 } 678 679 /* 680 * Scan beginning of log now. The last part of the physical 681 * log is good. This scan needs to verify that it doesn't find 682 * the last_half_cycle. 683 */ 684 start_blk = 0; 685 ASSERT(head_blk <= INT_MAX); 686 if ((error = xlog_find_verify_cycle(log, 687 start_blk, (int)head_blk, 688 stop_on_cycle, &new_blk))) 689 goto out_free_buffer; 690 if (new_blk != -1) 691 head_blk = new_blk; 692 } 693 694 validate_head: 695 /* 696 * Now we need to make sure head_blk is not pointing to a block in 697 * the middle of a log record. 698 */ 699 num_scan_bblks = XLOG_REC_SHIFT(log); 700 if (head_blk >= num_scan_bblks) { 701 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 702 703 /* start ptr at last block ptr before head_blk */ 704 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 705 if (error == 1) 706 error = -EIO; 707 if (error) 708 goto out_free_buffer; 709 } else { 710 start_blk = 0; 711 ASSERT(head_blk <= INT_MAX); 712 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 713 if (error < 0) 714 goto out_free_buffer; 715 if (error == 1) { 716 /* We hit the beginning of the log during our search */ 717 start_blk = log_bbnum - (num_scan_bblks - head_blk); 718 new_blk = log_bbnum; 719 ASSERT(start_blk <= INT_MAX && 720 (xfs_daddr_t) log_bbnum-start_blk >= 0); 721 ASSERT(head_blk <= INT_MAX); 722 error = xlog_find_verify_log_record(log, start_blk, 723 &new_blk, (int)head_blk); 724 if (error == 1) 725 error = -EIO; 726 if (error) 727 goto out_free_buffer; 728 if (new_blk != log_bbnum) 729 head_blk = new_blk; 730 } else if (error) 731 goto out_free_buffer; 732 } 733 734 kvfree(buffer); 735 if (head_blk == log_bbnum) 736 *return_head_blk = 0; 737 else 738 *return_head_blk = head_blk; 739 /* 740 * When returning here, we have a good block number. Bad block 741 * means that during a previous crash, we didn't have a clean break 742 * from cycle number N to cycle number N-1. In this case, we need 743 * to find the first block with cycle number N-1. 744 */ 745 return 0; 746 747 out_free_buffer: 748 kvfree(buffer); 749 if (error) 750 xfs_warn(log->l_mp, "failed to find log head"); 751 return error; 752 } 753 754 /* 755 * Seek backwards in the log for log record headers. 756 * 757 * Given a starting log block, walk backwards until we find the provided number 758 * of records or hit the provided tail block. The return value is the number of 759 * records encountered or a negative error code. The log block and buffer 760 * pointer of the last record seen are returned in rblk and rhead respectively. 761 */ 762 STATIC int 763 xlog_rseek_logrec_hdr( 764 struct xlog *log, 765 xfs_daddr_t head_blk, 766 xfs_daddr_t tail_blk, 767 int count, 768 char *buffer, 769 xfs_daddr_t *rblk, 770 struct xlog_rec_header **rhead, 771 bool *wrapped) 772 { 773 int i; 774 int error; 775 int found = 0; 776 char *offset = NULL; 777 xfs_daddr_t end_blk; 778 779 *wrapped = false; 780 781 /* 782 * Walk backwards from the head block until we hit the tail or the first 783 * block in the log. 784 */ 785 end_blk = head_blk > tail_blk ? tail_blk : 0; 786 for (i = (int) head_blk - 1; i >= end_blk; i--) { 787 error = xlog_bread(log, i, 1, buffer, &offset); 788 if (error) 789 goto out_error; 790 791 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 792 *rblk = i; 793 *rhead = (struct xlog_rec_header *) offset; 794 if (++found == count) 795 break; 796 } 797 } 798 799 /* 800 * If we haven't hit the tail block or the log record header count, 801 * start looking again from the end of the physical log. Note that 802 * callers can pass head == tail if the tail is not yet known. 803 */ 804 if (tail_blk >= head_blk && found != count) { 805 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 806 error = xlog_bread(log, i, 1, buffer, &offset); 807 if (error) 808 goto out_error; 809 810 if (*(__be32 *)offset == 811 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 812 *wrapped = true; 813 *rblk = i; 814 *rhead = (struct xlog_rec_header *) offset; 815 if (++found == count) 816 break; 817 } 818 } 819 } 820 821 return found; 822 823 out_error: 824 return error; 825 } 826 827 /* 828 * Seek forward in the log for log record headers. 829 * 830 * Given head and tail blocks, walk forward from the tail block until we find 831 * the provided number of records or hit the head block. The return value is the 832 * number of records encountered or a negative error code. The log block and 833 * buffer pointer of the last record seen are returned in rblk and rhead 834 * respectively. 835 */ 836 STATIC int 837 xlog_seek_logrec_hdr( 838 struct xlog *log, 839 xfs_daddr_t head_blk, 840 xfs_daddr_t tail_blk, 841 int count, 842 char *buffer, 843 xfs_daddr_t *rblk, 844 struct xlog_rec_header **rhead, 845 bool *wrapped) 846 { 847 int i; 848 int error; 849 int found = 0; 850 char *offset = NULL; 851 xfs_daddr_t end_blk; 852 853 *wrapped = false; 854 855 /* 856 * Walk forward from the tail block until we hit the head or the last 857 * block in the log. 858 */ 859 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 860 for (i = (int) tail_blk; i <= end_blk; i++) { 861 error = xlog_bread(log, i, 1, buffer, &offset); 862 if (error) 863 goto out_error; 864 865 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 866 *rblk = i; 867 *rhead = (struct xlog_rec_header *) offset; 868 if (++found == count) 869 break; 870 } 871 } 872 873 /* 874 * If we haven't hit the head block or the log record header count, 875 * start looking again from the start of the physical log. 876 */ 877 if (tail_blk > head_blk && found != count) { 878 for (i = 0; i < (int) head_blk; i++) { 879 error = xlog_bread(log, i, 1, buffer, &offset); 880 if (error) 881 goto out_error; 882 883 if (*(__be32 *)offset == 884 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 885 *wrapped = true; 886 *rblk = i; 887 *rhead = (struct xlog_rec_header *) offset; 888 if (++found == count) 889 break; 890 } 891 } 892 } 893 894 return found; 895 896 out_error: 897 return error; 898 } 899 900 /* 901 * Calculate distance from head to tail (i.e., unused space in the log). 902 */ 903 static inline int 904 xlog_tail_distance( 905 struct xlog *log, 906 xfs_daddr_t head_blk, 907 xfs_daddr_t tail_blk) 908 { 909 if (head_blk < tail_blk) 910 return tail_blk - head_blk; 911 912 return tail_blk + (log->l_logBBsize - head_blk); 913 } 914 915 /* 916 * Verify the log tail. This is particularly important when torn or incomplete 917 * writes have been detected near the front of the log and the head has been 918 * walked back accordingly. 919 * 920 * We also have to handle the case where the tail was pinned and the head 921 * blocked behind the tail right before a crash. If the tail had been pushed 922 * immediately prior to the crash and the subsequent checkpoint was only 923 * partially written, it's possible it overwrote the last referenced tail in the 924 * log with garbage. This is not a coherency problem because the tail must have 925 * been pushed before it can be overwritten, but appears as log corruption to 926 * recovery because we have no way to know the tail was updated if the 927 * subsequent checkpoint didn't write successfully. 928 * 929 * Therefore, CRC check the log from tail to head. If a failure occurs and the 930 * offending record is within max iclog bufs from the head, walk the tail 931 * forward and retry until a valid tail is found or corruption is detected out 932 * of the range of a possible overwrite. 933 */ 934 STATIC int 935 xlog_verify_tail( 936 struct xlog *log, 937 xfs_daddr_t head_blk, 938 xfs_daddr_t *tail_blk, 939 int hsize) 940 { 941 struct xlog_rec_header *thead; 942 char *buffer; 943 xfs_daddr_t first_bad; 944 int error = 0; 945 bool wrapped; 946 xfs_daddr_t tmp_tail; 947 xfs_daddr_t orig_tail = *tail_blk; 948 949 buffer = xlog_alloc_buffer(log, 1); 950 if (!buffer) 951 return -ENOMEM; 952 953 /* 954 * Make sure the tail points to a record (returns positive count on 955 * success). 956 */ 957 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 958 &tmp_tail, &thead, &wrapped); 959 if (error < 0) 960 goto out; 961 if (*tail_blk != tmp_tail) 962 *tail_blk = tmp_tail; 963 964 /* 965 * Run a CRC check from the tail to the head. We can't just check 966 * MAX_ICLOGS records past the tail because the tail may point to stale 967 * blocks cleared during the search for the head/tail. These blocks are 968 * overwritten with zero-length records and thus record count is not a 969 * reliable indicator of the iclog state before a crash. 970 */ 971 first_bad = 0; 972 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 973 XLOG_RECOVER_CRCPASS, &first_bad); 974 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 975 int tail_distance; 976 977 /* 978 * Is corruption within range of the head? If so, retry from 979 * the next record. Otherwise return an error. 980 */ 981 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 982 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 983 break; 984 985 /* skip to the next record; returns positive count on success */ 986 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 987 buffer, &tmp_tail, &thead, &wrapped); 988 if (error < 0) 989 goto out; 990 991 *tail_blk = tmp_tail; 992 first_bad = 0; 993 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 994 XLOG_RECOVER_CRCPASS, &first_bad); 995 } 996 997 if (!error && *tail_blk != orig_tail) 998 xfs_warn(log->l_mp, 999 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1000 orig_tail, *tail_blk); 1001 out: 1002 kvfree(buffer); 1003 return error; 1004 } 1005 1006 /* 1007 * Detect and trim torn writes from the head of the log. 1008 * 1009 * Storage without sector atomicity guarantees can result in torn writes in the 1010 * log in the event of a crash. Our only means to detect this scenario is via 1011 * CRC verification. While we can't always be certain that CRC verification 1012 * failure is due to a torn write vs. an unrelated corruption, we do know that 1013 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1014 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1015 * the log and treat failures in this range as torn writes as a matter of 1016 * policy. In the event of CRC failure, the head is walked back to the last good 1017 * record in the log and the tail is updated from that record and verified. 1018 */ 1019 STATIC int 1020 xlog_verify_head( 1021 struct xlog *log, 1022 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1023 xfs_daddr_t *tail_blk, /* out: tail block */ 1024 char *buffer, 1025 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1026 struct xlog_rec_header **rhead, /* ptr to last record */ 1027 bool *wrapped) /* last rec. wraps phys. log */ 1028 { 1029 struct xlog_rec_header *tmp_rhead; 1030 char *tmp_buffer; 1031 xfs_daddr_t first_bad; 1032 xfs_daddr_t tmp_rhead_blk; 1033 int found; 1034 int error; 1035 bool tmp_wrapped; 1036 1037 /* 1038 * Check the head of the log for torn writes. Search backwards from the 1039 * head until we hit the tail or the maximum number of log record I/Os 1040 * that could have been in flight at one time. Use a temporary buffer so 1041 * we don't trash the rhead/buffer pointers from the caller. 1042 */ 1043 tmp_buffer = xlog_alloc_buffer(log, 1); 1044 if (!tmp_buffer) 1045 return -ENOMEM; 1046 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1047 XLOG_MAX_ICLOGS, tmp_buffer, 1048 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1049 kvfree(tmp_buffer); 1050 if (error < 0) 1051 return error; 1052 1053 /* 1054 * Now run a CRC verification pass over the records starting at the 1055 * block found above to the current head. If a CRC failure occurs, the 1056 * log block of the first bad record is saved in first_bad. 1057 */ 1058 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1059 XLOG_RECOVER_CRCPASS, &first_bad); 1060 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1061 /* 1062 * We've hit a potential torn write. Reset the error and warn 1063 * about it. 1064 */ 1065 error = 0; 1066 xfs_warn(log->l_mp, 1067 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1068 first_bad, *head_blk); 1069 1070 /* 1071 * Get the header block and buffer pointer for the last good 1072 * record before the bad record. 1073 * 1074 * Note that xlog_find_tail() clears the blocks at the new head 1075 * (i.e., the records with invalid CRC) if the cycle number 1076 * matches the current cycle. 1077 */ 1078 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1079 buffer, rhead_blk, rhead, wrapped); 1080 if (found < 0) 1081 return found; 1082 if (found == 0) /* XXX: right thing to do here? */ 1083 return -EIO; 1084 1085 /* 1086 * Reset the head block to the starting block of the first bad 1087 * log record and set the tail block based on the last good 1088 * record. 1089 * 1090 * Bail out if the updated head/tail match as this indicates 1091 * possible corruption outside of the acceptable 1092 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1093 */ 1094 *head_blk = first_bad; 1095 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1096 if (*head_blk == *tail_blk) { 1097 ASSERT(0); 1098 return 0; 1099 } 1100 } 1101 if (error) 1102 return error; 1103 1104 return xlog_verify_tail(log, *head_blk, tail_blk, 1105 be32_to_cpu((*rhead)->h_size)); 1106 } 1107 1108 /* 1109 * We need to make sure we handle log wrapping properly, so we can't use the 1110 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1111 * log. 1112 * 1113 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1114 * operation here and cast it back to a 64 bit daddr on return. 1115 */ 1116 static inline xfs_daddr_t 1117 xlog_wrap_logbno( 1118 struct xlog *log, 1119 xfs_daddr_t bno) 1120 { 1121 int mod; 1122 1123 div_s64_rem(bno, log->l_logBBsize, &mod); 1124 return mod; 1125 } 1126 1127 /* 1128 * Check whether the head of the log points to an unmount record. In other 1129 * words, determine whether the log is clean. If so, update the in-core state 1130 * appropriately. 1131 */ 1132 static int 1133 xlog_check_unmount_rec( 1134 struct xlog *log, 1135 xfs_daddr_t *head_blk, 1136 xfs_daddr_t *tail_blk, 1137 struct xlog_rec_header *rhead, 1138 xfs_daddr_t rhead_blk, 1139 char *buffer, 1140 bool *clean) 1141 { 1142 struct xlog_op_header *op_head; 1143 xfs_daddr_t umount_data_blk; 1144 xfs_daddr_t after_umount_blk; 1145 int hblks; 1146 int error; 1147 char *offset; 1148 1149 *clean = false; 1150 1151 /* 1152 * Look for unmount record. If we find it, then we know there was a 1153 * clean unmount. Since 'i' could be the last block in the physical 1154 * log, we convert to a log block before comparing to the head_blk. 1155 * 1156 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1157 * below. We won't want to clear the unmount record if there is one, so 1158 * we pass the lsn of the unmount record rather than the block after it. 1159 */ 1160 hblks = xlog_logrec_hblks(log, rhead); 1161 after_umount_blk = xlog_wrap_logbno(log, 1162 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1163 1164 if (*head_blk == after_umount_blk && 1165 be32_to_cpu(rhead->h_num_logops) == 1) { 1166 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1167 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1168 if (error) 1169 return error; 1170 1171 op_head = (struct xlog_op_header *)offset; 1172 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1173 /* 1174 * Set tail and last sync so that newly written log 1175 * records will point recovery to after the current 1176 * unmount record. 1177 */ 1178 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1179 log->l_curr_cycle, after_umount_blk); 1180 log->l_ailp->ail_head_lsn = 1181 atomic64_read(&log->l_tail_lsn); 1182 *tail_blk = after_umount_blk; 1183 1184 *clean = true; 1185 } 1186 } 1187 1188 return 0; 1189 } 1190 1191 static void 1192 xlog_set_state( 1193 struct xlog *log, 1194 xfs_daddr_t head_blk, 1195 struct xlog_rec_header *rhead, 1196 xfs_daddr_t rhead_blk, 1197 bool bump_cycle) 1198 { 1199 /* 1200 * Reset log values according to the state of the log when we 1201 * crashed. In the case where head_blk == 0, we bump curr_cycle 1202 * one because the next write starts a new cycle rather than 1203 * continuing the cycle of the last good log record. At this 1204 * point we have guaranteed that all partial log records have been 1205 * accounted for. Therefore, we know that the last good log record 1206 * written was complete and ended exactly on the end boundary 1207 * of the physical log. 1208 */ 1209 log->l_prev_block = rhead_blk; 1210 log->l_curr_block = (int)head_blk; 1211 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1212 if (bump_cycle) 1213 log->l_curr_cycle++; 1214 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1215 log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn); 1216 } 1217 1218 /* 1219 * Find the sync block number or the tail of the log. 1220 * 1221 * This will be the block number of the last record to have its 1222 * associated buffers synced to disk. Every log record header has 1223 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1224 * to get a sync block number. The only concern is to figure out which 1225 * log record header to believe. 1226 * 1227 * The following algorithm uses the log record header with the largest 1228 * lsn. The entire log record does not need to be valid. We only care 1229 * that the header is valid. 1230 * 1231 * We could speed up search by using current head_blk buffer, but it is not 1232 * available. 1233 */ 1234 STATIC int 1235 xlog_find_tail( 1236 struct xlog *log, 1237 xfs_daddr_t *head_blk, 1238 xfs_daddr_t *tail_blk) 1239 { 1240 xlog_rec_header_t *rhead; 1241 char *offset = NULL; 1242 char *buffer; 1243 int error; 1244 xfs_daddr_t rhead_blk; 1245 xfs_lsn_t tail_lsn; 1246 bool wrapped = false; 1247 bool clean = false; 1248 1249 /* 1250 * Find previous log record 1251 */ 1252 if ((error = xlog_find_head(log, head_blk))) 1253 return error; 1254 ASSERT(*head_blk < INT_MAX); 1255 1256 buffer = xlog_alloc_buffer(log, 1); 1257 if (!buffer) 1258 return -ENOMEM; 1259 if (*head_blk == 0) { /* special case */ 1260 error = xlog_bread(log, 0, 1, buffer, &offset); 1261 if (error) 1262 goto done; 1263 1264 if (xlog_get_cycle(offset) == 0) { 1265 *tail_blk = 0; 1266 /* leave all other log inited values alone */ 1267 goto done; 1268 } 1269 } 1270 1271 /* 1272 * Search backwards through the log looking for the log record header 1273 * block. This wraps all the way back around to the head so something is 1274 * seriously wrong if we can't find it. 1275 */ 1276 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1277 &rhead_blk, &rhead, &wrapped); 1278 if (error < 0) 1279 goto done; 1280 if (!error) { 1281 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1282 error = -EFSCORRUPTED; 1283 goto done; 1284 } 1285 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1286 1287 /* 1288 * Set the log state based on the current head record. 1289 */ 1290 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1291 tail_lsn = atomic64_read(&log->l_tail_lsn); 1292 1293 /* 1294 * Look for an unmount record at the head of the log. This sets the log 1295 * state to determine whether recovery is necessary. 1296 */ 1297 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1298 rhead_blk, buffer, &clean); 1299 if (error) 1300 goto done; 1301 1302 /* 1303 * Verify the log head if the log is not clean (e.g., we have anything 1304 * but an unmount record at the head). This uses CRC verification to 1305 * detect and trim torn writes. If discovered, CRC failures are 1306 * considered torn writes and the log head is trimmed accordingly. 1307 * 1308 * Note that we can only run CRC verification when the log is dirty 1309 * because there's no guarantee that the log data behind an unmount 1310 * record is compatible with the current architecture. 1311 */ 1312 if (!clean) { 1313 xfs_daddr_t orig_head = *head_blk; 1314 1315 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1316 &rhead_blk, &rhead, &wrapped); 1317 if (error) 1318 goto done; 1319 1320 /* update in-core state again if the head changed */ 1321 if (*head_blk != orig_head) { 1322 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1323 wrapped); 1324 tail_lsn = atomic64_read(&log->l_tail_lsn); 1325 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1326 rhead, rhead_blk, buffer, 1327 &clean); 1328 if (error) 1329 goto done; 1330 } 1331 } 1332 1333 /* 1334 * Note that the unmount was clean. If the unmount was not clean, we 1335 * need to know this to rebuild the superblock counters from the perag 1336 * headers if we have a filesystem using non-persistent counters. 1337 */ 1338 if (clean) 1339 xfs_set_clean(log->l_mp); 1340 1341 /* 1342 * Make sure that there are no blocks in front of the head 1343 * with the same cycle number as the head. This can happen 1344 * because we allow multiple outstanding log writes concurrently, 1345 * and the later writes might make it out before earlier ones. 1346 * 1347 * We use the lsn from before modifying it so that we'll never 1348 * overwrite the unmount record after a clean unmount. 1349 * 1350 * Do this only if we are going to recover the filesystem 1351 * 1352 * NOTE: This used to say "if (!readonly)" 1353 * However on Linux, we can & do recover a read-only filesystem. 1354 * We only skip recovery if NORECOVERY is specified on mount, 1355 * in which case we would not be here. 1356 * 1357 * But... if the -device- itself is readonly, just skip this. 1358 * We can't recover this device anyway, so it won't matter. 1359 */ 1360 if (!xfs_readonly_buftarg(log->l_targ)) 1361 error = xlog_clear_stale_blocks(log, tail_lsn); 1362 1363 done: 1364 kvfree(buffer); 1365 1366 if (error) 1367 xfs_warn(log->l_mp, "failed to locate log tail"); 1368 return error; 1369 } 1370 1371 /* 1372 * Is the log zeroed at all? 1373 * 1374 * The last binary search should be changed to perform an X block read 1375 * once X becomes small enough. You can then search linearly through 1376 * the X blocks. This will cut down on the number of reads we need to do. 1377 * 1378 * If the log is partially zeroed, this routine will pass back the blkno 1379 * of the first block with cycle number 0. It won't have a complete LR 1380 * preceding it. 1381 * 1382 * Return: 1383 * 0 => the log is completely written to 1384 * 1 => use *blk_no as the first block of the log 1385 * <0 => error has occurred 1386 */ 1387 STATIC int 1388 xlog_find_zeroed( 1389 struct xlog *log, 1390 xfs_daddr_t *blk_no) 1391 { 1392 char *buffer; 1393 char *offset; 1394 uint first_cycle, last_cycle; 1395 xfs_daddr_t new_blk, last_blk, start_blk; 1396 xfs_daddr_t num_scan_bblks; 1397 int error, log_bbnum = log->l_logBBsize; 1398 int ret = 1; 1399 1400 *blk_no = 0; 1401 1402 /* check totally zeroed log */ 1403 buffer = xlog_alloc_buffer(log, 1); 1404 if (!buffer) 1405 return -ENOMEM; 1406 error = xlog_bread(log, 0, 1, buffer, &offset); 1407 if (error) 1408 goto out_free_buffer; 1409 1410 first_cycle = xlog_get_cycle(offset); 1411 if (first_cycle == 0) { /* completely zeroed log */ 1412 *blk_no = 0; 1413 goto out_free_buffer; 1414 } 1415 1416 /* check partially zeroed log */ 1417 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1418 if (error) 1419 goto out_free_buffer; 1420 1421 last_cycle = xlog_get_cycle(offset); 1422 if (last_cycle != 0) { /* log completely written to */ 1423 ret = 0; 1424 goto out_free_buffer; 1425 } 1426 1427 /* we have a partially zeroed log */ 1428 last_blk = log_bbnum-1; 1429 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1430 if (error) 1431 goto out_free_buffer; 1432 1433 /* 1434 * Validate the answer. Because there is no way to guarantee that 1435 * the entire log is made up of log records which are the same size, 1436 * we scan over the defined maximum blocks. At this point, the maximum 1437 * is not chosen to mean anything special. XXXmiken 1438 */ 1439 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1440 ASSERT(num_scan_bblks <= INT_MAX); 1441 1442 if (last_blk < num_scan_bblks) 1443 num_scan_bblks = last_blk; 1444 start_blk = last_blk - num_scan_bblks; 1445 1446 /* 1447 * We search for any instances of cycle number 0 that occur before 1448 * our current estimate of the head. What we're trying to detect is 1449 * 1 ... | 0 | 1 | 0... 1450 * ^ binary search ends here 1451 */ 1452 if ((error = xlog_find_verify_cycle(log, start_blk, 1453 (int)num_scan_bblks, 0, &new_blk))) 1454 goto out_free_buffer; 1455 if (new_blk != -1) 1456 last_blk = new_blk; 1457 1458 /* 1459 * Potentially backup over partial log record write. We don't need 1460 * to search the end of the log because we know it is zero. 1461 */ 1462 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1463 if (error == 1) 1464 error = -EIO; 1465 if (error) 1466 goto out_free_buffer; 1467 1468 *blk_no = last_blk; 1469 out_free_buffer: 1470 kvfree(buffer); 1471 if (error) 1472 return error; 1473 return ret; 1474 } 1475 1476 /* 1477 * These are simple subroutines used by xlog_clear_stale_blocks() below 1478 * to initialize a buffer full of empty log record headers and write 1479 * them into the log. 1480 */ 1481 STATIC void 1482 xlog_add_record( 1483 struct xlog *log, 1484 char *buf, 1485 int cycle, 1486 int block, 1487 int tail_cycle, 1488 int tail_block) 1489 { 1490 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1491 1492 memset(buf, 0, BBSIZE); 1493 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1494 recp->h_cycle = cpu_to_be32(cycle); 1495 recp->h_version = cpu_to_be32( 1496 xfs_has_logv2(log->l_mp) ? 2 : 1); 1497 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1498 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1499 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1500 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1501 } 1502 1503 STATIC int 1504 xlog_write_log_records( 1505 struct xlog *log, 1506 int cycle, 1507 int start_block, 1508 int blocks, 1509 int tail_cycle, 1510 int tail_block) 1511 { 1512 char *offset; 1513 char *buffer; 1514 int balign, ealign; 1515 int sectbb = log->l_sectBBsize; 1516 int end_block = start_block + blocks; 1517 int bufblks; 1518 int error = 0; 1519 int i, j = 0; 1520 1521 /* 1522 * Greedily allocate a buffer big enough to handle the full 1523 * range of basic blocks to be written. If that fails, try 1524 * a smaller size. We need to be able to write at least a 1525 * log sector, or we're out of luck. 1526 */ 1527 bufblks = roundup_pow_of_two(blocks); 1528 while (bufblks > log->l_logBBsize) 1529 bufblks >>= 1; 1530 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1531 bufblks >>= 1; 1532 if (bufblks < sectbb) 1533 return -ENOMEM; 1534 } 1535 1536 /* We may need to do a read at the start to fill in part of 1537 * the buffer in the starting sector not covered by the first 1538 * write below. 1539 */ 1540 balign = round_down(start_block, sectbb); 1541 if (balign != start_block) { 1542 error = xlog_bread_noalign(log, start_block, 1, buffer); 1543 if (error) 1544 goto out_free_buffer; 1545 1546 j = start_block - balign; 1547 } 1548 1549 for (i = start_block; i < end_block; i += bufblks) { 1550 int bcount, endcount; 1551 1552 bcount = min(bufblks, end_block - start_block); 1553 endcount = bcount - j; 1554 1555 /* We may need to do a read at the end to fill in part of 1556 * the buffer in the final sector not covered by the write. 1557 * If this is the same sector as the above read, skip it. 1558 */ 1559 ealign = round_down(end_block, sectbb); 1560 if (j == 0 && (start_block + endcount > ealign)) { 1561 error = xlog_bread_noalign(log, ealign, sectbb, 1562 buffer + BBTOB(ealign - start_block)); 1563 if (error) 1564 break; 1565 1566 } 1567 1568 offset = buffer + xlog_align(log, start_block); 1569 for (; j < endcount; j++) { 1570 xlog_add_record(log, offset, cycle, i+j, 1571 tail_cycle, tail_block); 1572 offset += BBSIZE; 1573 } 1574 error = xlog_bwrite(log, start_block, endcount, buffer); 1575 if (error) 1576 break; 1577 start_block += endcount; 1578 j = 0; 1579 } 1580 1581 out_free_buffer: 1582 kvfree(buffer); 1583 return error; 1584 } 1585 1586 /* 1587 * This routine is called to blow away any incomplete log writes out 1588 * in front of the log head. We do this so that we won't become confused 1589 * if we come up, write only a little bit more, and then crash again. 1590 * If we leave the partial log records out there, this situation could 1591 * cause us to think those partial writes are valid blocks since they 1592 * have the current cycle number. We get rid of them by overwriting them 1593 * with empty log records with the old cycle number rather than the 1594 * current one. 1595 * 1596 * The tail lsn is passed in rather than taken from 1597 * the log so that we will not write over the unmount record after a 1598 * clean unmount in a 512 block log. Doing so would leave the log without 1599 * any valid log records in it until a new one was written. If we crashed 1600 * during that time we would not be able to recover. 1601 */ 1602 STATIC int 1603 xlog_clear_stale_blocks( 1604 struct xlog *log, 1605 xfs_lsn_t tail_lsn) 1606 { 1607 int tail_cycle, head_cycle; 1608 int tail_block, head_block; 1609 int tail_distance, max_distance; 1610 int distance; 1611 int error; 1612 1613 tail_cycle = CYCLE_LSN(tail_lsn); 1614 tail_block = BLOCK_LSN(tail_lsn); 1615 head_cycle = log->l_curr_cycle; 1616 head_block = log->l_curr_block; 1617 1618 /* 1619 * Figure out the distance between the new head of the log 1620 * and the tail. We want to write over any blocks beyond the 1621 * head that we may have written just before the crash, but 1622 * we don't want to overwrite the tail of the log. 1623 */ 1624 if (head_cycle == tail_cycle) { 1625 /* 1626 * The tail is behind the head in the physical log, 1627 * so the distance from the head to the tail is the 1628 * distance from the head to the end of the log plus 1629 * the distance from the beginning of the log to the 1630 * tail. 1631 */ 1632 if (XFS_IS_CORRUPT(log->l_mp, 1633 head_block < tail_block || 1634 head_block >= log->l_logBBsize)) 1635 return -EFSCORRUPTED; 1636 tail_distance = tail_block + (log->l_logBBsize - head_block); 1637 } else { 1638 /* 1639 * The head is behind the tail in the physical log, 1640 * so the distance from the head to the tail is just 1641 * the tail block minus the head block. 1642 */ 1643 if (XFS_IS_CORRUPT(log->l_mp, 1644 head_block >= tail_block || 1645 head_cycle != tail_cycle + 1)) 1646 return -EFSCORRUPTED; 1647 tail_distance = tail_block - head_block; 1648 } 1649 1650 /* 1651 * If the head is right up against the tail, we can't clear 1652 * anything. 1653 */ 1654 if (tail_distance <= 0) { 1655 ASSERT(tail_distance == 0); 1656 return 0; 1657 } 1658 1659 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1660 /* 1661 * Take the smaller of the maximum amount of outstanding I/O 1662 * we could have and the distance to the tail to clear out. 1663 * We take the smaller so that we don't overwrite the tail and 1664 * we don't waste all day writing from the head to the tail 1665 * for no reason. 1666 */ 1667 max_distance = min(max_distance, tail_distance); 1668 1669 if ((head_block + max_distance) <= log->l_logBBsize) { 1670 /* 1671 * We can stomp all the blocks we need to without 1672 * wrapping around the end of the log. Just do it 1673 * in a single write. Use the cycle number of the 1674 * current cycle minus one so that the log will look like: 1675 * n ... | n - 1 ... 1676 */ 1677 error = xlog_write_log_records(log, (head_cycle - 1), 1678 head_block, max_distance, tail_cycle, 1679 tail_block); 1680 if (error) 1681 return error; 1682 } else { 1683 /* 1684 * We need to wrap around the end of the physical log in 1685 * order to clear all the blocks. Do it in two separate 1686 * I/Os. The first write should be from the head to the 1687 * end of the physical log, and it should use the current 1688 * cycle number minus one just like above. 1689 */ 1690 distance = log->l_logBBsize - head_block; 1691 error = xlog_write_log_records(log, (head_cycle - 1), 1692 head_block, distance, tail_cycle, 1693 tail_block); 1694 1695 if (error) 1696 return error; 1697 1698 /* 1699 * Now write the blocks at the start of the physical log. 1700 * This writes the remainder of the blocks we want to clear. 1701 * It uses the current cycle number since we're now on the 1702 * same cycle as the head so that we get: 1703 * n ... n ... | n - 1 ... 1704 * ^^^^^ blocks we're writing 1705 */ 1706 distance = max_distance - (log->l_logBBsize - head_block); 1707 error = xlog_write_log_records(log, head_cycle, 0, distance, 1708 tail_cycle, tail_block); 1709 if (error) 1710 return error; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /* 1717 * Release the recovered intent item in the AIL that matches the given intent 1718 * type and intent id. 1719 */ 1720 void 1721 xlog_recover_release_intent( 1722 struct xlog *log, 1723 unsigned short intent_type, 1724 uint64_t intent_id) 1725 { 1726 struct xfs_defer_pending *dfp, *n; 1727 1728 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 1729 struct xfs_log_item *lip = dfp->dfp_intent; 1730 1731 if (lip->li_type != intent_type) 1732 continue; 1733 if (!lip->li_ops->iop_match(lip, intent_id)) 1734 continue; 1735 1736 ASSERT(xlog_item_is_intent(lip)); 1737 1738 xfs_defer_cancel_recovery(log->l_mp, dfp); 1739 } 1740 } 1741 1742 int 1743 xlog_recover_iget( 1744 struct xfs_mount *mp, 1745 xfs_ino_t ino, 1746 struct xfs_inode **ipp) 1747 { 1748 int error; 1749 1750 error = xfs_iget(mp, NULL, ino, 0, 0, ipp); 1751 if (error) 1752 return error; 1753 1754 error = xfs_qm_dqattach(*ipp); 1755 if (error) { 1756 xfs_irele(*ipp); 1757 return error; 1758 } 1759 1760 if (VFS_I(*ipp)->i_nlink == 0) 1761 xfs_iflags_set(*ipp, XFS_IRECOVERY); 1762 1763 return 0; 1764 } 1765 1766 /* 1767 * Get an inode so that we can recover a log operation. 1768 * 1769 * Log intent items that target inodes effectively contain a file handle. 1770 * Check that the generation number matches the intent item like we do for 1771 * other file handles. Log intent items defined after this validation weakness 1772 * was identified must use this function. 1773 */ 1774 int 1775 xlog_recover_iget_handle( 1776 struct xfs_mount *mp, 1777 xfs_ino_t ino, 1778 uint32_t gen, 1779 struct xfs_inode **ipp) 1780 { 1781 struct xfs_inode *ip; 1782 int error; 1783 1784 error = xlog_recover_iget(mp, ino, &ip); 1785 if (error) 1786 return error; 1787 1788 if (VFS_I(ip)->i_generation != gen) { 1789 xfs_irele(ip); 1790 return -EFSCORRUPTED; 1791 } 1792 1793 *ipp = ip; 1794 return 0; 1795 } 1796 1797 /****************************************************************************** 1798 * 1799 * Log recover routines 1800 * 1801 ****************************************************************************** 1802 */ 1803 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { 1804 &xlog_buf_item_ops, 1805 &xlog_inode_item_ops, 1806 &xlog_dquot_item_ops, 1807 &xlog_quotaoff_item_ops, 1808 &xlog_icreate_item_ops, 1809 &xlog_efi_item_ops, 1810 &xlog_efd_item_ops, 1811 &xlog_rui_item_ops, 1812 &xlog_rud_item_ops, 1813 &xlog_cui_item_ops, 1814 &xlog_cud_item_ops, 1815 &xlog_bui_item_ops, 1816 &xlog_bud_item_ops, 1817 &xlog_attri_item_ops, 1818 &xlog_attrd_item_ops, 1819 &xlog_xmi_item_ops, 1820 &xlog_xmd_item_ops, 1821 &xlog_rtefi_item_ops, 1822 &xlog_rtefd_item_ops, 1823 &xlog_rtrui_item_ops, 1824 &xlog_rtrud_item_ops, 1825 &xlog_rtcui_item_ops, 1826 &xlog_rtcud_item_ops, 1827 }; 1828 1829 static const struct xlog_recover_item_ops * 1830 xlog_find_item_ops( 1831 struct xlog_recover_item *item) 1832 { 1833 unsigned int i; 1834 1835 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) 1836 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) 1837 return xlog_recover_item_ops[i]; 1838 1839 return NULL; 1840 } 1841 1842 /* 1843 * Sort the log items in the transaction. 1844 * 1845 * The ordering constraints are defined by the inode allocation and unlink 1846 * behaviour. The rules are: 1847 * 1848 * 1. Every item is only logged once in a given transaction. Hence it 1849 * represents the last logged state of the item. Hence ordering is 1850 * dependent on the order in which operations need to be performed so 1851 * required initial conditions are always met. 1852 * 1853 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1854 * there's nothing to replay from them so we can simply cull them 1855 * from the transaction. However, we can't do that until after we've 1856 * replayed all the other items because they may be dependent on the 1857 * cancelled buffer and replaying the cancelled buffer can remove it 1858 * form the cancelled buffer table. Hence they have to be done last. 1859 * 1860 * 3. Inode allocation buffers must be replayed before inode items that 1861 * read the buffer and replay changes into it. For filesystems using the 1862 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1863 * treated the same as inode allocation buffers as they create and 1864 * initialise the buffers directly. 1865 * 1866 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1867 * This ensures that inodes are completely flushed to the inode buffer 1868 * in a "free" state before we remove the unlinked inode list pointer. 1869 * 1870 * Hence the ordering needs to be inode allocation buffers first, inode items 1871 * second, inode unlink buffers third and cancelled buffers last. 1872 * 1873 * But there's a problem with that - we can't tell an inode allocation buffer 1874 * apart from a regular buffer, so we can't separate them. We can, however, 1875 * tell an inode unlink buffer from the others, and so we can separate them out 1876 * from all the other buffers and move them to last. 1877 * 1878 * Hence, 4 lists, in order from head to tail: 1879 * - buffer_list for all buffers except cancelled/inode unlink buffers 1880 * - item_list for all non-buffer items 1881 * - inode_buffer_list for inode unlink buffers 1882 * - cancel_list for the cancelled buffers 1883 * 1884 * Note that we add objects to the tail of the lists so that first-to-last 1885 * ordering is preserved within the lists. Adding objects to the head of the 1886 * list means when we traverse from the head we walk them in last-to-first 1887 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1888 * but for all other items there may be specific ordering that we need to 1889 * preserve. 1890 */ 1891 STATIC int 1892 xlog_recover_reorder_trans( 1893 struct xlog *log, 1894 struct xlog_recover *trans, 1895 int pass) 1896 { 1897 struct xlog_recover_item *item, *n; 1898 int error = 0; 1899 LIST_HEAD(sort_list); 1900 LIST_HEAD(cancel_list); 1901 LIST_HEAD(buffer_list); 1902 LIST_HEAD(inode_buffer_list); 1903 LIST_HEAD(item_list); 1904 1905 list_splice_init(&trans->r_itemq, &sort_list); 1906 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1907 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; 1908 1909 item->ri_ops = xlog_find_item_ops(item); 1910 if (!item->ri_ops) { 1911 xfs_warn(log->l_mp, 1912 "%s: unrecognized type of log operation (%d)", 1913 __func__, ITEM_TYPE(item)); 1914 ASSERT(0); 1915 /* 1916 * return the remaining items back to the transaction 1917 * item list so they can be freed in caller. 1918 */ 1919 if (!list_empty(&sort_list)) 1920 list_splice_init(&sort_list, &trans->r_itemq); 1921 error = -EFSCORRUPTED; 1922 break; 1923 } 1924 1925 if (item->ri_ops->reorder) 1926 fate = item->ri_ops->reorder(item); 1927 1928 switch (fate) { 1929 case XLOG_REORDER_BUFFER_LIST: 1930 list_move_tail(&item->ri_list, &buffer_list); 1931 break; 1932 case XLOG_REORDER_CANCEL_LIST: 1933 trace_xfs_log_recover_item_reorder_head(log, 1934 trans, item, pass); 1935 list_move(&item->ri_list, &cancel_list); 1936 break; 1937 case XLOG_REORDER_INODE_BUFFER_LIST: 1938 list_move(&item->ri_list, &inode_buffer_list); 1939 break; 1940 case XLOG_REORDER_ITEM_LIST: 1941 trace_xfs_log_recover_item_reorder_tail(log, 1942 trans, item, pass); 1943 list_move_tail(&item->ri_list, &item_list); 1944 break; 1945 } 1946 } 1947 1948 ASSERT(list_empty(&sort_list)); 1949 if (!list_empty(&buffer_list)) 1950 list_splice(&buffer_list, &trans->r_itemq); 1951 if (!list_empty(&item_list)) 1952 list_splice_tail(&item_list, &trans->r_itemq); 1953 if (!list_empty(&inode_buffer_list)) 1954 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1955 if (!list_empty(&cancel_list)) 1956 list_splice_tail(&cancel_list, &trans->r_itemq); 1957 return error; 1958 } 1959 1960 void 1961 xlog_buf_readahead( 1962 struct xlog *log, 1963 xfs_daddr_t blkno, 1964 uint len, 1965 const struct xfs_buf_ops *ops) 1966 { 1967 if (!xlog_is_buffer_cancelled(log, blkno, len)) 1968 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); 1969 } 1970 1971 /* 1972 * Create a deferred work structure for resuming and tracking the progress of a 1973 * log intent item that was found during recovery. 1974 */ 1975 void 1976 xlog_recover_intent_item( 1977 struct xlog *log, 1978 struct xfs_log_item *lip, 1979 xfs_lsn_t lsn, 1980 const struct xfs_defer_op_type *ops) 1981 { 1982 ASSERT(xlog_item_is_intent(lip)); 1983 1984 xfs_defer_start_recovery(lip, &log->r_dfops, ops); 1985 1986 /* 1987 * Insert the intent into the AIL directly and drop one reference so 1988 * that finishing or canceling the work will drop the other. 1989 */ 1990 xfs_trans_ail_insert(log->l_ailp, lip, lsn); 1991 lip->li_ops->iop_unpin(lip, 0); 1992 } 1993 1994 STATIC int 1995 xlog_recover_items_pass2( 1996 struct xlog *log, 1997 struct xlog_recover *trans, 1998 struct list_head *buffer_list, 1999 struct list_head *item_list) 2000 { 2001 struct xlog_recover_item *item; 2002 int error = 0; 2003 2004 list_for_each_entry(item, item_list, ri_list) { 2005 trace_xfs_log_recover_item_recover(log, trans, item, 2006 XLOG_RECOVER_PASS2); 2007 2008 if (item->ri_ops->commit_pass2) 2009 error = item->ri_ops->commit_pass2(log, buffer_list, 2010 item, trans->r_lsn); 2011 if (error) 2012 return error; 2013 } 2014 2015 return error; 2016 } 2017 2018 /* 2019 * Perform the transaction. 2020 * 2021 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2022 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2023 */ 2024 STATIC int 2025 xlog_recover_commit_trans( 2026 struct xlog *log, 2027 struct xlog_recover *trans, 2028 int pass, 2029 struct list_head *buffer_list) 2030 { 2031 int error = 0; 2032 int items_queued = 0; 2033 struct xlog_recover_item *item; 2034 struct xlog_recover_item *next; 2035 LIST_HEAD (ra_list); 2036 LIST_HEAD (done_list); 2037 2038 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 2039 2040 hlist_del_init(&trans->r_list); 2041 2042 error = xlog_recover_reorder_trans(log, trans, pass); 2043 if (error) 2044 return error; 2045 2046 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 2047 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2048 2049 switch (pass) { 2050 case XLOG_RECOVER_PASS1: 2051 if (item->ri_ops->commit_pass1) 2052 error = item->ri_ops->commit_pass1(log, item); 2053 break; 2054 case XLOG_RECOVER_PASS2: 2055 if (item->ri_ops->ra_pass2) 2056 item->ri_ops->ra_pass2(log, item); 2057 list_move_tail(&item->ri_list, &ra_list); 2058 items_queued++; 2059 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 2060 error = xlog_recover_items_pass2(log, trans, 2061 buffer_list, &ra_list); 2062 list_splice_tail_init(&ra_list, &done_list); 2063 items_queued = 0; 2064 } 2065 2066 break; 2067 default: 2068 ASSERT(0); 2069 } 2070 2071 if (error) 2072 goto out; 2073 } 2074 2075 out: 2076 if (!list_empty(&ra_list)) { 2077 if (!error) 2078 error = xlog_recover_items_pass2(log, trans, 2079 buffer_list, &ra_list); 2080 list_splice_tail_init(&ra_list, &done_list); 2081 } 2082 2083 if (!list_empty(&done_list)) 2084 list_splice_init(&done_list, &trans->r_itemq); 2085 2086 return error; 2087 } 2088 2089 STATIC void 2090 xlog_recover_add_item( 2091 struct list_head *head) 2092 { 2093 struct xlog_recover_item *item; 2094 2095 item = kzalloc(sizeof(struct xlog_recover_item), 2096 GFP_KERNEL | __GFP_NOFAIL); 2097 INIT_LIST_HEAD(&item->ri_list); 2098 list_add_tail(&item->ri_list, head); 2099 } 2100 2101 STATIC int 2102 xlog_recover_add_to_cont_trans( 2103 struct xlog *log, 2104 struct xlog_recover *trans, 2105 char *dp, 2106 int len) 2107 { 2108 struct xlog_recover_item *item; 2109 char *ptr, *old_ptr; 2110 int old_len; 2111 2112 /* 2113 * If the transaction is empty, the header was split across this and the 2114 * previous record. Copy the rest of the header. 2115 */ 2116 if (list_empty(&trans->r_itemq)) { 2117 ASSERT(len <= sizeof(struct xfs_trans_header)); 2118 if (len > sizeof(struct xfs_trans_header)) { 2119 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2120 return -EFSCORRUPTED; 2121 } 2122 2123 xlog_recover_add_item(&trans->r_itemq); 2124 ptr = (char *)&trans->r_theader + 2125 sizeof(struct xfs_trans_header) - len; 2126 memcpy(ptr, dp, len); 2127 return 0; 2128 } 2129 2130 /* take the tail entry */ 2131 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2132 ri_list); 2133 2134 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 2135 old_len = item->ri_buf[item->ri_cnt-1].i_len; 2136 2137 ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL); 2138 if (!ptr) 2139 return -ENOMEM; 2140 memcpy(&ptr[old_len], dp, len); 2141 item->ri_buf[item->ri_cnt-1].i_len += len; 2142 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 2143 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 2144 return 0; 2145 } 2146 2147 /* 2148 * The next region to add is the start of a new region. It could be 2149 * a whole region or it could be the first part of a new region. Because 2150 * of this, the assumption here is that the type and size fields of all 2151 * format structures fit into the first 32 bits of the structure. 2152 * 2153 * This works because all regions must be 32 bit aligned. Therefore, we 2154 * either have both fields or we have neither field. In the case we have 2155 * neither field, the data part of the region is zero length. We only have 2156 * a log_op_header and can throw away the header since a new one will appear 2157 * later. If we have at least 4 bytes, then we can determine how many regions 2158 * will appear in the current log item. 2159 */ 2160 STATIC int 2161 xlog_recover_add_to_trans( 2162 struct xlog *log, 2163 struct xlog_recover *trans, 2164 char *dp, 2165 int len) 2166 { 2167 struct xfs_inode_log_format *in_f; /* any will do */ 2168 struct xlog_recover_item *item; 2169 char *ptr; 2170 2171 if (!len) 2172 return 0; 2173 if (list_empty(&trans->r_itemq)) { 2174 /* we need to catch log corruptions here */ 2175 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 2176 xfs_warn(log->l_mp, "%s: bad header magic number", 2177 __func__); 2178 ASSERT(0); 2179 return -EFSCORRUPTED; 2180 } 2181 2182 if (len > sizeof(struct xfs_trans_header)) { 2183 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2184 ASSERT(0); 2185 return -EFSCORRUPTED; 2186 } 2187 2188 /* 2189 * The transaction header can be arbitrarily split across op 2190 * records. If we don't have the whole thing here, copy what we 2191 * do have and handle the rest in the next record. 2192 */ 2193 if (len == sizeof(struct xfs_trans_header)) 2194 xlog_recover_add_item(&trans->r_itemq); 2195 memcpy(&trans->r_theader, dp, len); 2196 return 0; 2197 } 2198 2199 ptr = xlog_kvmalloc(len); 2200 memcpy(ptr, dp, len); 2201 in_f = (struct xfs_inode_log_format *)ptr; 2202 2203 /* take the tail entry */ 2204 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2205 ri_list); 2206 if (item->ri_total != 0 && 2207 item->ri_total == item->ri_cnt) { 2208 /* tail item is in use, get a new one */ 2209 xlog_recover_add_item(&trans->r_itemq); 2210 item = list_entry(trans->r_itemq.prev, 2211 struct xlog_recover_item, ri_list); 2212 } 2213 2214 if (item->ri_total == 0) { /* first region to be added */ 2215 if (in_f->ilf_size == 0 || 2216 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 2217 xfs_warn(log->l_mp, 2218 "bad number of regions (%d) in inode log format", 2219 in_f->ilf_size); 2220 ASSERT(0); 2221 kvfree(ptr); 2222 return -EFSCORRUPTED; 2223 } 2224 2225 item->ri_total = in_f->ilf_size; 2226 item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t), 2227 GFP_KERNEL | __GFP_NOFAIL); 2228 } 2229 2230 if (item->ri_total <= item->ri_cnt) { 2231 xfs_warn(log->l_mp, 2232 "log item region count (%d) overflowed size (%d)", 2233 item->ri_cnt, item->ri_total); 2234 ASSERT(0); 2235 kvfree(ptr); 2236 return -EFSCORRUPTED; 2237 } 2238 2239 /* Description region is ri_buf[0] */ 2240 item->ri_buf[item->ri_cnt].i_addr = ptr; 2241 item->ri_buf[item->ri_cnt].i_len = len; 2242 item->ri_cnt++; 2243 trace_xfs_log_recover_item_add(log, trans, item, 0); 2244 return 0; 2245 } 2246 2247 /* 2248 * Free up any resources allocated by the transaction 2249 * 2250 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2251 */ 2252 STATIC void 2253 xlog_recover_free_trans( 2254 struct xlog_recover *trans) 2255 { 2256 struct xlog_recover_item *item, *n; 2257 int i; 2258 2259 hlist_del_init(&trans->r_list); 2260 2261 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2262 /* Free the regions in the item. */ 2263 list_del(&item->ri_list); 2264 for (i = 0; i < item->ri_cnt; i++) 2265 kvfree(item->ri_buf[i].i_addr); 2266 /* Free the item itself */ 2267 kfree(item->ri_buf); 2268 kfree(item); 2269 } 2270 /* Free the transaction recover structure */ 2271 kfree(trans); 2272 } 2273 2274 /* 2275 * On error or completion, trans is freed. 2276 */ 2277 STATIC int 2278 xlog_recovery_process_trans( 2279 struct xlog *log, 2280 struct xlog_recover *trans, 2281 char *dp, 2282 unsigned int len, 2283 unsigned int flags, 2284 int pass, 2285 struct list_head *buffer_list) 2286 { 2287 int error = 0; 2288 bool freeit = false; 2289 2290 /* mask off ophdr transaction container flags */ 2291 flags &= ~XLOG_END_TRANS; 2292 if (flags & XLOG_WAS_CONT_TRANS) 2293 flags &= ~XLOG_CONTINUE_TRANS; 2294 2295 /* 2296 * Callees must not free the trans structure. We'll decide if we need to 2297 * free it or not based on the operation being done and it's result. 2298 */ 2299 switch (flags) { 2300 /* expected flag values */ 2301 case 0: 2302 case XLOG_CONTINUE_TRANS: 2303 error = xlog_recover_add_to_trans(log, trans, dp, len); 2304 break; 2305 case XLOG_WAS_CONT_TRANS: 2306 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 2307 break; 2308 case XLOG_COMMIT_TRANS: 2309 error = xlog_recover_commit_trans(log, trans, pass, 2310 buffer_list); 2311 /* success or fail, we are now done with this transaction. */ 2312 freeit = true; 2313 break; 2314 2315 /* unexpected flag values */ 2316 case XLOG_UNMOUNT_TRANS: 2317 /* just skip trans */ 2318 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2319 freeit = true; 2320 break; 2321 case XLOG_START_TRANS: 2322 default: 2323 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 2324 ASSERT(0); 2325 error = -EFSCORRUPTED; 2326 break; 2327 } 2328 if (error || freeit) 2329 xlog_recover_free_trans(trans); 2330 return error; 2331 } 2332 2333 /* 2334 * Lookup the transaction recovery structure associated with the ID in the 2335 * current ophdr. If the transaction doesn't exist and the start flag is set in 2336 * the ophdr, then allocate a new transaction for future ID matches to find. 2337 * Either way, return what we found during the lookup - an existing transaction 2338 * or nothing. 2339 */ 2340 STATIC struct xlog_recover * 2341 xlog_recover_ophdr_to_trans( 2342 struct hlist_head rhash[], 2343 struct xlog_rec_header *rhead, 2344 struct xlog_op_header *ohead) 2345 { 2346 struct xlog_recover *trans; 2347 xlog_tid_t tid; 2348 struct hlist_head *rhp; 2349 2350 tid = be32_to_cpu(ohead->oh_tid); 2351 rhp = &rhash[XLOG_RHASH(tid)]; 2352 hlist_for_each_entry(trans, rhp, r_list) { 2353 if (trans->r_log_tid == tid) 2354 return trans; 2355 } 2356 2357 /* 2358 * skip over non-start transaction headers - we could be 2359 * processing slack space before the next transaction starts 2360 */ 2361 if (!(ohead->oh_flags & XLOG_START_TRANS)) 2362 return NULL; 2363 2364 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 2365 2366 /* 2367 * This is a new transaction so allocate a new recovery container to 2368 * hold the recovery ops that will follow. 2369 */ 2370 trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL); 2371 trans->r_log_tid = tid; 2372 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 2373 INIT_LIST_HEAD(&trans->r_itemq); 2374 INIT_HLIST_NODE(&trans->r_list); 2375 hlist_add_head(&trans->r_list, rhp); 2376 2377 /* 2378 * Nothing more to do for this ophdr. Items to be added to this new 2379 * transaction will be in subsequent ophdr containers. 2380 */ 2381 return NULL; 2382 } 2383 2384 STATIC int 2385 xlog_recover_process_ophdr( 2386 struct xlog *log, 2387 struct hlist_head rhash[], 2388 struct xlog_rec_header *rhead, 2389 struct xlog_op_header *ohead, 2390 char *dp, 2391 char *end, 2392 int pass, 2393 struct list_head *buffer_list) 2394 { 2395 struct xlog_recover *trans; 2396 unsigned int len; 2397 int error; 2398 2399 /* Do we understand who wrote this op? */ 2400 if (ohead->oh_clientid != XFS_TRANSACTION && 2401 ohead->oh_clientid != XFS_LOG) { 2402 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2403 __func__, ohead->oh_clientid); 2404 ASSERT(0); 2405 return -EFSCORRUPTED; 2406 } 2407 2408 /* 2409 * Check the ophdr contains all the data it is supposed to contain. 2410 */ 2411 len = be32_to_cpu(ohead->oh_len); 2412 if (dp + len > end) { 2413 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 2414 WARN_ON(1); 2415 return -EFSCORRUPTED; 2416 } 2417 2418 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 2419 if (!trans) { 2420 /* nothing to do, so skip over this ophdr */ 2421 return 0; 2422 } 2423 2424 /* 2425 * The recovered buffer queue is drained only once we know that all 2426 * recovery items for the current LSN have been processed. This is 2427 * required because: 2428 * 2429 * - Buffer write submission updates the metadata LSN of the buffer. 2430 * - Log recovery skips items with a metadata LSN >= the current LSN of 2431 * the recovery item. 2432 * - Separate recovery items against the same metadata buffer can share 2433 * a current LSN. I.e., consider that the LSN of a recovery item is 2434 * defined as the starting LSN of the first record in which its 2435 * transaction appears, that a record can hold multiple transactions, 2436 * and/or that a transaction can span multiple records. 2437 * 2438 * In other words, we are allowed to submit a buffer from log recovery 2439 * once per current LSN. Otherwise, we may incorrectly skip recovery 2440 * items and cause corruption. 2441 * 2442 * We don't know up front whether buffers are updated multiple times per 2443 * LSN. Therefore, track the current LSN of each commit log record as it 2444 * is processed and drain the queue when it changes. Use commit records 2445 * because they are ordered correctly by the logging code. 2446 */ 2447 if (log->l_recovery_lsn != trans->r_lsn && 2448 ohead->oh_flags & XLOG_COMMIT_TRANS) { 2449 error = xfs_buf_delwri_submit(buffer_list); 2450 if (error) 2451 return error; 2452 log->l_recovery_lsn = trans->r_lsn; 2453 } 2454 2455 return xlog_recovery_process_trans(log, trans, dp, len, 2456 ohead->oh_flags, pass, buffer_list); 2457 } 2458 2459 /* 2460 * There are two valid states of the r_state field. 0 indicates that the 2461 * transaction structure is in a normal state. We have either seen the 2462 * start of the transaction or the last operation we added was not a partial 2463 * operation. If the last operation we added to the transaction was a 2464 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2465 * 2466 * NOTE: skip LRs with 0 data length. 2467 */ 2468 STATIC int 2469 xlog_recover_process_data( 2470 struct xlog *log, 2471 struct hlist_head rhash[], 2472 struct xlog_rec_header *rhead, 2473 char *dp, 2474 int pass, 2475 struct list_head *buffer_list) 2476 { 2477 struct xlog_op_header *ohead; 2478 char *end; 2479 int num_logops; 2480 int error; 2481 2482 end = dp + be32_to_cpu(rhead->h_len); 2483 num_logops = be32_to_cpu(rhead->h_num_logops); 2484 2485 /* check the log format matches our own - else we can't recover */ 2486 if (xlog_header_check_recover(log->l_mp, rhead)) 2487 return -EIO; 2488 2489 trace_xfs_log_recover_record(log, rhead, pass); 2490 while ((dp < end) && num_logops) { 2491 2492 ohead = (struct xlog_op_header *)dp; 2493 dp += sizeof(*ohead); 2494 if (dp > end) { 2495 xfs_warn(log->l_mp, "%s: op header overrun", __func__); 2496 return -EFSCORRUPTED; 2497 } 2498 2499 /* errors will abort recovery */ 2500 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 2501 dp, end, pass, buffer_list); 2502 if (error) 2503 return error; 2504 2505 dp += be32_to_cpu(ohead->oh_len); 2506 num_logops--; 2507 } 2508 return 0; 2509 } 2510 2511 /* Take all the collected deferred ops and finish them in order. */ 2512 static int 2513 xlog_finish_defer_ops( 2514 struct xfs_mount *mp, 2515 struct list_head *capture_list) 2516 { 2517 struct xfs_defer_capture *dfc, *next; 2518 struct xfs_trans *tp; 2519 int error = 0; 2520 2521 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2522 struct xfs_trans_res resv; 2523 struct xfs_defer_resources dres; 2524 2525 /* 2526 * Create a new transaction reservation from the captured 2527 * information. Set logcount to 1 to force the new transaction 2528 * to regrant every roll so that we can make forward progress 2529 * in recovery no matter how full the log might be. 2530 */ 2531 resv.tr_logres = dfc->dfc_logres; 2532 resv.tr_logcount = 1; 2533 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; 2534 2535 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, 2536 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); 2537 if (error) { 2538 xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR); 2539 return error; 2540 } 2541 2542 /* 2543 * Transfer to this new transaction all the dfops we captured 2544 * from recovering a single intent item. 2545 */ 2546 list_del_init(&dfc->dfc_list); 2547 xfs_defer_ops_continue(dfc, tp, &dres); 2548 error = xfs_trans_commit(tp); 2549 xfs_defer_resources_rele(&dres); 2550 if (error) 2551 return error; 2552 } 2553 2554 ASSERT(list_empty(capture_list)); 2555 return 0; 2556 } 2557 2558 /* Release all the captured defer ops and capture structures in this list. */ 2559 static void 2560 xlog_abort_defer_ops( 2561 struct xfs_mount *mp, 2562 struct list_head *capture_list) 2563 { 2564 struct xfs_defer_capture *dfc; 2565 struct xfs_defer_capture *next; 2566 2567 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2568 list_del_init(&dfc->dfc_list); 2569 xfs_defer_ops_capture_abort(mp, dfc); 2570 } 2571 } 2572 2573 /* 2574 * When this is called, all of the log intent items which did not have 2575 * corresponding log done items should be in the AIL. What we do now is update 2576 * the data structures associated with each one. 2577 * 2578 * Since we process the log intent items in normal transactions, they will be 2579 * removed at some point after the commit. This prevents us from just walking 2580 * down the list processing each one. We'll use a flag in the intent item to 2581 * skip those that we've already processed and use the AIL iteration mechanism's 2582 * generation count to try to speed this up at least a bit. 2583 * 2584 * When we start, we know that the intents are the only things in the AIL. As we 2585 * process them, however, other items are added to the AIL. Hence we know we 2586 * have started recovery on all the pending intents when we find an non-intent 2587 * item in the AIL. 2588 */ 2589 STATIC int 2590 xlog_recover_process_intents( 2591 struct xlog *log) 2592 { 2593 LIST_HEAD(capture_list); 2594 struct xfs_defer_pending *dfp, *n; 2595 int error = 0; 2596 #if defined(DEBUG) || defined(XFS_WARN) 2597 xfs_lsn_t last_lsn; 2598 2599 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 2600 #endif 2601 2602 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 2603 ASSERT(xlog_item_is_intent(dfp->dfp_intent)); 2604 2605 /* 2606 * We should never see a redo item with a LSN higher than 2607 * the last transaction we found in the log at the start 2608 * of recovery. 2609 */ 2610 ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0); 2611 2612 /* 2613 * NOTE: If your intent processing routine can create more 2614 * deferred ops, you /must/ attach them to the capture list in 2615 * the recover routine or else those subsequent intents will be 2616 * replayed in the wrong order! 2617 * 2618 * The recovery function can free the log item, so we must not 2619 * access dfp->dfp_intent after it returns. It must dispose of 2620 * @dfp if it returns 0. 2621 */ 2622 error = xfs_defer_finish_recovery(log->l_mp, dfp, 2623 &capture_list); 2624 if (error) 2625 break; 2626 } 2627 if (error) 2628 goto err; 2629 2630 error = xlog_finish_defer_ops(log->l_mp, &capture_list); 2631 if (error) 2632 goto err; 2633 2634 return 0; 2635 err: 2636 xlog_abort_defer_ops(log->l_mp, &capture_list); 2637 return error; 2638 } 2639 2640 /* 2641 * A cancel occurs when the mount has failed and we're bailing out. Release all 2642 * pending log intent items that we haven't started recovery on so they don't 2643 * pin the AIL. 2644 */ 2645 STATIC void 2646 xlog_recover_cancel_intents( 2647 struct xlog *log) 2648 { 2649 struct xfs_defer_pending *dfp, *n; 2650 2651 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 2652 ASSERT(xlog_item_is_intent(dfp->dfp_intent)); 2653 2654 xfs_defer_cancel_recovery(log->l_mp, dfp); 2655 } 2656 } 2657 2658 /* 2659 * Transfer ownership of the recovered pending work to the recovery transaction 2660 * and try to finish the work. If there is more work to be done, the dfp will 2661 * remain attached to the transaction. If not, the dfp is freed. 2662 */ 2663 int 2664 xlog_recover_finish_intent( 2665 struct xfs_trans *tp, 2666 struct xfs_defer_pending *dfp) 2667 { 2668 int error; 2669 2670 list_move(&dfp->dfp_list, &tp->t_dfops); 2671 error = xfs_defer_finish_one(tp, dfp); 2672 if (error == -EAGAIN) 2673 return 0; 2674 return error; 2675 } 2676 2677 /* 2678 * This routine performs a transaction to null out a bad inode pointer 2679 * in an agi unlinked inode hash bucket. 2680 */ 2681 STATIC void 2682 xlog_recover_clear_agi_bucket( 2683 struct xfs_perag *pag, 2684 int bucket) 2685 { 2686 struct xfs_mount *mp = pag_mount(pag); 2687 struct xfs_trans *tp; 2688 struct xfs_agi *agi; 2689 struct xfs_buf *agibp; 2690 int offset; 2691 int error; 2692 2693 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 2694 if (error) 2695 goto out_error; 2696 2697 error = xfs_read_agi(pag, tp, 0, &agibp); 2698 if (error) 2699 goto out_abort; 2700 2701 agi = agibp->b_addr; 2702 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 2703 offset = offsetof(xfs_agi_t, agi_unlinked) + 2704 (sizeof(xfs_agino_t) * bucket); 2705 xfs_trans_log_buf(tp, agibp, offset, 2706 (offset + sizeof(xfs_agino_t) - 1)); 2707 2708 error = xfs_trans_commit(tp); 2709 if (error) 2710 goto out_error; 2711 return; 2712 2713 out_abort: 2714 xfs_trans_cancel(tp); 2715 out_error: 2716 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, 2717 pag_agno(pag)); 2718 return; 2719 } 2720 2721 static int 2722 xlog_recover_iunlink_bucket( 2723 struct xfs_perag *pag, 2724 struct xfs_agi *agi, 2725 int bucket) 2726 { 2727 struct xfs_mount *mp = pag_mount(pag); 2728 struct xfs_inode *prev_ip = NULL; 2729 struct xfs_inode *ip; 2730 xfs_agino_t prev_agino, agino; 2731 int error = 0; 2732 2733 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2734 while (agino != NULLAGINO) { 2735 error = xfs_iget(mp, NULL, xfs_agino_to_ino(pag, agino), 0, 0, 2736 &ip); 2737 if (error) 2738 break; 2739 2740 ASSERT(VFS_I(ip)->i_nlink == 0); 2741 ASSERT(VFS_I(ip)->i_mode != 0); 2742 xfs_iflags_clear(ip, XFS_IRECOVERY); 2743 agino = ip->i_next_unlinked; 2744 2745 if (prev_ip) { 2746 ip->i_prev_unlinked = prev_agino; 2747 xfs_irele(prev_ip); 2748 2749 /* 2750 * Ensure the inode is removed from the unlinked list 2751 * before we continue so that it won't race with 2752 * building the in-memory list here. This could be 2753 * serialised with the agibp lock, but that just 2754 * serialises via lockstepping and it's much simpler 2755 * just to flush the inodegc queue and wait for it to 2756 * complete. 2757 */ 2758 error = xfs_inodegc_flush(mp); 2759 if (error) 2760 break; 2761 } 2762 2763 prev_agino = agino; 2764 prev_ip = ip; 2765 } 2766 2767 if (prev_ip) { 2768 int error2; 2769 2770 ip->i_prev_unlinked = prev_agino; 2771 xfs_irele(prev_ip); 2772 2773 error2 = xfs_inodegc_flush(mp); 2774 if (error2 && !error) 2775 return error2; 2776 } 2777 return error; 2778 } 2779 2780 /* 2781 * Recover AGI unlinked lists 2782 * 2783 * This is called during recovery to process any inodes which we unlinked but 2784 * not freed when the system crashed. These inodes will be on the lists in the 2785 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 2786 * any inodes found on the lists. Each inode is removed from the lists when it 2787 * has been fully truncated and is freed. The freeing of the inode and its 2788 * removal from the list must be atomic. 2789 * 2790 * If everything we touch in the agi processing loop is already in memory, this 2791 * loop can hold the cpu for a long time. It runs without lock contention, 2792 * memory allocation contention, the need wait for IO, etc, and so will run 2793 * until we either run out of inodes to process, run low on memory or we run out 2794 * of log space. 2795 * 2796 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 2797 * and can prevent other filesystem work (such as CIL pushes) from running. This 2798 * can lead to deadlocks if the recovery process runs out of log reservation 2799 * space. Hence we need to yield the CPU when there is other kernel work 2800 * scheduled on this CPU to ensure other scheduled work can run without undue 2801 * latency. 2802 */ 2803 static void 2804 xlog_recover_iunlink_ag( 2805 struct xfs_perag *pag) 2806 { 2807 struct xfs_agi *agi; 2808 struct xfs_buf *agibp; 2809 int bucket; 2810 int error; 2811 2812 error = xfs_read_agi(pag, NULL, 0, &agibp); 2813 if (error) { 2814 /* 2815 * AGI is b0rked. Don't process it. 2816 * 2817 * We should probably mark the filesystem as corrupt after we've 2818 * recovered all the ag's we can.... 2819 */ 2820 return; 2821 } 2822 2823 /* 2824 * Unlock the buffer so that it can be acquired in the normal course of 2825 * the transaction to truncate and free each inode. Because we are not 2826 * racing with anyone else here for the AGI buffer, we don't even need 2827 * to hold it locked to read the initial unlinked bucket entries out of 2828 * the buffer. We keep buffer reference though, so that it stays pinned 2829 * in memory while we need the buffer. 2830 */ 2831 agi = agibp->b_addr; 2832 xfs_buf_unlock(agibp); 2833 2834 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 2835 error = xlog_recover_iunlink_bucket(pag, agi, bucket); 2836 if (error) { 2837 /* 2838 * Bucket is unrecoverable, so only a repair scan can 2839 * free the remaining unlinked inodes. Just empty the 2840 * bucket and remaining inodes on it unreferenced and 2841 * unfreeable. 2842 */ 2843 xlog_recover_clear_agi_bucket(pag, bucket); 2844 } 2845 } 2846 2847 xfs_buf_rele(agibp); 2848 } 2849 2850 static void 2851 xlog_recover_process_iunlinks( 2852 struct xlog *log) 2853 { 2854 struct xfs_perag *pag = NULL; 2855 2856 while ((pag = xfs_perag_next(log->l_mp, pag))) 2857 xlog_recover_iunlink_ag(pag); 2858 } 2859 2860 STATIC void 2861 xlog_unpack_data( 2862 struct xlog_rec_header *rhead, 2863 char *dp, 2864 struct xlog *log) 2865 { 2866 int i, j, k; 2867 2868 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 2869 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 2870 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 2871 dp += BBSIZE; 2872 } 2873 2874 if (xfs_has_logv2(log->l_mp)) { 2875 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 2876 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 2877 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2878 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2879 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 2880 dp += BBSIZE; 2881 } 2882 } 2883 } 2884 2885 /* 2886 * CRC check, unpack and process a log record. 2887 */ 2888 STATIC int 2889 xlog_recover_process( 2890 struct xlog *log, 2891 struct hlist_head rhash[], 2892 struct xlog_rec_header *rhead, 2893 char *dp, 2894 int pass, 2895 struct list_head *buffer_list) 2896 { 2897 __le32 old_crc = rhead->h_crc; 2898 __le32 crc; 2899 2900 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 2901 2902 /* 2903 * Nothing else to do if this is a CRC verification pass. Just return 2904 * if this a record with a non-zero crc. Unfortunately, mkfs always 2905 * sets old_crc to 0 so we must consider this valid even on v5 supers. 2906 * Otherwise, return EFSBADCRC on failure so the callers up the stack 2907 * know precisely what failed. 2908 */ 2909 if (pass == XLOG_RECOVER_CRCPASS) { 2910 if (old_crc && crc != old_crc) 2911 return -EFSBADCRC; 2912 return 0; 2913 } 2914 2915 /* 2916 * We're in the normal recovery path. Issue a warning if and only if the 2917 * CRC in the header is non-zero. This is an advisory warning and the 2918 * zero CRC check prevents warnings from being emitted when upgrading 2919 * the kernel from one that does not add CRCs by default. 2920 */ 2921 if (crc != old_crc) { 2922 if (old_crc || xfs_has_crc(log->l_mp)) { 2923 xfs_alert(log->l_mp, 2924 "log record CRC mismatch: found 0x%x, expected 0x%x.", 2925 le32_to_cpu(old_crc), 2926 le32_to_cpu(crc)); 2927 xfs_hex_dump(dp, 32); 2928 } 2929 2930 /* 2931 * If the filesystem is CRC enabled, this mismatch becomes a 2932 * fatal log corruption failure. 2933 */ 2934 if (xfs_has_crc(log->l_mp)) { 2935 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 2936 return -EFSCORRUPTED; 2937 } 2938 } 2939 2940 xlog_unpack_data(rhead, dp, log); 2941 2942 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 2943 buffer_list); 2944 } 2945 2946 STATIC int 2947 xlog_valid_rec_header( 2948 struct xlog *log, 2949 struct xlog_rec_header *rhead, 2950 xfs_daddr_t blkno, 2951 int bufsize) 2952 { 2953 int hlen; 2954 2955 if (XFS_IS_CORRUPT(log->l_mp, 2956 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 2957 return -EFSCORRUPTED; 2958 if (XFS_IS_CORRUPT(log->l_mp, 2959 (!rhead->h_version || 2960 (be32_to_cpu(rhead->h_version) & 2961 (~XLOG_VERSION_OKBITS))))) { 2962 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 2963 __func__, be32_to_cpu(rhead->h_version)); 2964 return -EFSCORRUPTED; 2965 } 2966 2967 /* 2968 * LR body must have data (or it wouldn't have been written) 2969 * and h_len must not be greater than LR buffer size. 2970 */ 2971 hlen = be32_to_cpu(rhead->h_len); 2972 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize)) 2973 return -EFSCORRUPTED; 2974 2975 if (XFS_IS_CORRUPT(log->l_mp, 2976 blkno > log->l_logBBsize || blkno > INT_MAX)) 2977 return -EFSCORRUPTED; 2978 return 0; 2979 } 2980 2981 /* 2982 * Read the log from tail to head and process the log records found. 2983 * Handle the two cases where the tail and head are in the same cycle 2984 * and where the active portion of the log wraps around the end of 2985 * the physical log separately. The pass parameter is passed through 2986 * to the routines called to process the data and is not looked at 2987 * here. 2988 */ 2989 STATIC int 2990 xlog_do_recovery_pass( 2991 struct xlog *log, 2992 xfs_daddr_t head_blk, 2993 xfs_daddr_t tail_blk, 2994 int pass, 2995 xfs_daddr_t *first_bad) /* out: first bad log rec */ 2996 { 2997 xlog_rec_header_t *rhead; 2998 xfs_daddr_t blk_no, rblk_no; 2999 xfs_daddr_t rhead_blk; 3000 char *offset; 3001 char *hbp, *dbp; 3002 int error = 0, h_size, h_len; 3003 int error2 = 0; 3004 int bblks, split_bblks; 3005 int hblks = 1, split_hblks, wrapped_hblks; 3006 int i; 3007 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3008 LIST_HEAD (buffer_list); 3009 3010 ASSERT(head_blk != tail_blk); 3011 blk_no = rhead_blk = tail_blk; 3012 3013 for (i = 0; i < XLOG_RHASH_SIZE; i++) 3014 INIT_HLIST_HEAD(&rhash[i]); 3015 3016 hbp = xlog_alloc_buffer(log, hblks); 3017 if (!hbp) 3018 return -ENOMEM; 3019 3020 /* 3021 * Read the header of the tail block and get the iclog buffer size from 3022 * h_size. Use this to tell how many sectors make up the log header. 3023 */ 3024 if (xfs_has_logv2(log->l_mp)) { 3025 /* 3026 * When using variable length iclogs, read first sector of 3027 * iclog header and extract the header size from it. Get a 3028 * new hbp that is the correct size. 3029 */ 3030 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3031 if (error) 3032 goto bread_err1; 3033 3034 rhead = (xlog_rec_header_t *)offset; 3035 3036 /* 3037 * xfsprogs has a bug where record length is based on lsunit but 3038 * h_size (iclog size) is hardcoded to 32k. Now that we 3039 * unconditionally CRC verify the unmount record, this means the 3040 * log buffer can be too small for the record and cause an 3041 * overrun. 3042 * 3043 * Detect this condition here. Use lsunit for the buffer size as 3044 * long as this looks like the mkfs case. Otherwise, return an 3045 * error to avoid a buffer overrun. 3046 */ 3047 h_size = be32_to_cpu(rhead->h_size); 3048 h_len = be32_to_cpu(rhead->h_len); 3049 if (h_len > h_size && h_len <= log->l_mp->m_logbsize && 3050 rhead->h_num_logops == cpu_to_be32(1)) { 3051 xfs_warn(log->l_mp, 3052 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 3053 h_size, log->l_mp->m_logbsize); 3054 h_size = log->l_mp->m_logbsize; 3055 } 3056 3057 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size); 3058 if (error) 3059 goto bread_err1; 3060 3061 /* 3062 * This open codes xlog_logrec_hblks so that we can reuse the 3063 * fixed up h_size value calculated above. Without that we'd 3064 * still allocate the buffer based on the incorrect on-disk 3065 * size. 3066 */ 3067 if (h_size > XLOG_HEADER_CYCLE_SIZE && 3068 (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) { 3069 hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 3070 if (hblks > 1) { 3071 kvfree(hbp); 3072 hbp = xlog_alloc_buffer(log, hblks); 3073 if (!hbp) 3074 return -ENOMEM; 3075 } 3076 } 3077 } else { 3078 ASSERT(log->l_sectBBsize == 1); 3079 h_size = XLOG_BIG_RECORD_BSIZE; 3080 } 3081 3082 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 3083 if (!dbp) { 3084 kvfree(hbp); 3085 return -ENOMEM; 3086 } 3087 3088 memset(rhash, 0, sizeof(rhash)); 3089 if (tail_blk > head_blk) { 3090 /* 3091 * Perform recovery around the end of the physical log. 3092 * When the head is not on the same cycle number as the tail, 3093 * we can't do a sequential recovery. 3094 */ 3095 while (blk_no < log->l_logBBsize) { 3096 /* 3097 * Check for header wrapping around physical end-of-log 3098 */ 3099 offset = hbp; 3100 split_hblks = 0; 3101 wrapped_hblks = 0; 3102 if (blk_no + hblks <= log->l_logBBsize) { 3103 /* Read header in one read */ 3104 error = xlog_bread(log, blk_no, hblks, hbp, 3105 &offset); 3106 if (error) 3107 goto bread_err2; 3108 } else { 3109 /* This LR is split across physical log end */ 3110 if (blk_no != log->l_logBBsize) { 3111 /* some data before physical log end */ 3112 ASSERT(blk_no <= INT_MAX); 3113 split_hblks = log->l_logBBsize - (int)blk_no; 3114 ASSERT(split_hblks > 0); 3115 error = xlog_bread(log, blk_no, 3116 split_hblks, hbp, 3117 &offset); 3118 if (error) 3119 goto bread_err2; 3120 } 3121 3122 /* 3123 * Note: this black magic still works with 3124 * large sector sizes (non-512) only because: 3125 * - we increased the buffer size originally 3126 * by 1 sector giving us enough extra space 3127 * for the second read; 3128 * - the log start is guaranteed to be sector 3129 * aligned; 3130 * - we read the log end (LR header start) 3131 * _first_, then the log start (LR header end) 3132 * - order is important. 3133 */ 3134 wrapped_hblks = hblks - split_hblks; 3135 error = xlog_bread_noalign(log, 0, 3136 wrapped_hblks, 3137 offset + BBTOB(split_hblks)); 3138 if (error) 3139 goto bread_err2; 3140 } 3141 rhead = (xlog_rec_header_t *)offset; 3142 error = xlog_valid_rec_header(log, rhead, 3143 split_hblks ? blk_no : 0, h_size); 3144 if (error) 3145 goto bread_err2; 3146 3147 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3148 blk_no += hblks; 3149 3150 /* 3151 * Read the log record data in multiple reads if it 3152 * wraps around the end of the log. Note that if the 3153 * header already wrapped, blk_no could point past the 3154 * end of the log. The record data is contiguous in 3155 * that case. 3156 */ 3157 if (blk_no + bblks <= log->l_logBBsize || 3158 blk_no >= log->l_logBBsize) { 3159 rblk_no = xlog_wrap_logbno(log, blk_no); 3160 error = xlog_bread(log, rblk_no, bblks, dbp, 3161 &offset); 3162 if (error) 3163 goto bread_err2; 3164 } else { 3165 /* This log record is split across the 3166 * physical end of log */ 3167 offset = dbp; 3168 split_bblks = 0; 3169 if (blk_no != log->l_logBBsize) { 3170 /* some data is before the physical 3171 * end of log */ 3172 ASSERT(!wrapped_hblks); 3173 ASSERT(blk_no <= INT_MAX); 3174 split_bblks = 3175 log->l_logBBsize - (int)blk_no; 3176 ASSERT(split_bblks > 0); 3177 error = xlog_bread(log, blk_no, 3178 split_bblks, dbp, 3179 &offset); 3180 if (error) 3181 goto bread_err2; 3182 } 3183 3184 /* 3185 * Note: this black magic still works with 3186 * large sector sizes (non-512) only because: 3187 * - we increased the buffer size originally 3188 * by 1 sector giving us enough extra space 3189 * for the second read; 3190 * - the log start is guaranteed to be sector 3191 * aligned; 3192 * - we read the log end (LR header start) 3193 * _first_, then the log start (LR header end) 3194 * - order is important. 3195 */ 3196 error = xlog_bread_noalign(log, 0, 3197 bblks - split_bblks, 3198 offset + BBTOB(split_bblks)); 3199 if (error) 3200 goto bread_err2; 3201 } 3202 3203 error = xlog_recover_process(log, rhash, rhead, offset, 3204 pass, &buffer_list); 3205 if (error) 3206 goto bread_err2; 3207 3208 blk_no += bblks; 3209 rhead_blk = blk_no; 3210 } 3211 3212 ASSERT(blk_no >= log->l_logBBsize); 3213 blk_no -= log->l_logBBsize; 3214 rhead_blk = blk_no; 3215 } 3216 3217 /* read first part of physical log */ 3218 while (blk_no < head_blk) { 3219 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3220 if (error) 3221 goto bread_err2; 3222 3223 rhead = (xlog_rec_header_t *)offset; 3224 error = xlog_valid_rec_header(log, rhead, blk_no, h_size); 3225 if (error) 3226 goto bread_err2; 3227 3228 /* blocks in data section */ 3229 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3230 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3231 &offset); 3232 if (error) 3233 goto bread_err2; 3234 3235 error = xlog_recover_process(log, rhash, rhead, offset, pass, 3236 &buffer_list); 3237 if (error) 3238 goto bread_err2; 3239 3240 blk_no += bblks + hblks; 3241 rhead_blk = blk_no; 3242 } 3243 3244 bread_err2: 3245 kvfree(dbp); 3246 bread_err1: 3247 kvfree(hbp); 3248 3249 /* 3250 * Submit buffers that have been dirtied by the last record recovered. 3251 */ 3252 if (!list_empty(&buffer_list)) { 3253 if (error) { 3254 /* 3255 * If there has been an item recovery error then we 3256 * cannot allow partial checkpoint writeback to 3257 * occur. We might have multiple checkpoints with the 3258 * same start LSN in this buffer list, and partial 3259 * writeback of a checkpoint in this situation can 3260 * prevent future recovery of all the changes in the 3261 * checkpoints at this start LSN. 3262 * 3263 * Note: Shutting down the filesystem will result in the 3264 * delwri submission marking all the buffers stale, 3265 * completing them and cleaning up _XBF_LOGRECOVERY 3266 * state without doing any IO. 3267 */ 3268 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3269 } 3270 error2 = xfs_buf_delwri_submit(&buffer_list); 3271 } 3272 3273 if (error && first_bad) 3274 *first_bad = rhead_blk; 3275 3276 /* 3277 * Transactions are freed at commit time but transactions without commit 3278 * records on disk are never committed. Free any that may be left in the 3279 * hash table. 3280 */ 3281 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 3282 struct hlist_node *tmp; 3283 struct xlog_recover *trans; 3284 3285 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 3286 xlog_recover_free_trans(trans); 3287 } 3288 3289 return error ? error : error2; 3290 } 3291 3292 /* 3293 * Do the recovery of the log. We actually do this in two phases. 3294 * The two passes are necessary in order to implement the function 3295 * of cancelling a record written into the log. The first pass 3296 * determines those things which have been cancelled, and the 3297 * second pass replays log items normally except for those which 3298 * have been cancelled. The handling of the replay and cancellations 3299 * takes place in the log item type specific routines. 3300 * 3301 * The table of items which have cancel records in the log is allocated 3302 * and freed at this level, since only here do we know when all of 3303 * the log recovery has been completed. 3304 */ 3305 STATIC int 3306 xlog_do_log_recovery( 3307 struct xlog *log, 3308 xfs_daddr_t head_blk, 3309 xfs_daddr_t tail_blk) 3310 { 3311 int error; 3312 3313 ASSERT(head_blk != tail_blk); 3314 3315 /* 3316 * First do a pass to find all of the cancelled buf log items. 3317 * Store them in the buf_cancel_table for use in the second pass. 3318 */ 3319 error = xlog_alloc_buf_cancel_table(log); 3320 if (error) 3321 return error; 3322 3323 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3324 XLOG_RECOVER_PASS1, NULL); 3325 if (error != 0) 3326 goto out_cancel; 3327 3328 /* 3329 * Then do a second pass to actually recover the items in the log. 3330 * When it is complete free the table of buf cancel items. 3331 */ 3332 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3333 XLOG_RECOVER_PASS2, NULL); 3334 if (!error) 3335 xlog_check_buf_cancel_table(log); 3336 out_cancel: 3337 xlog_free_buf_cancel_table(log); 3338 return error; 3339 } 3340 3341 /* 3342 * Do the actual recovery 3343 */ 3344 STATIC int 3345 xlog_do_recover( 3346 struct xlog *log, 3347 xfs_daddr_t head_blk, 3348 xfs_daddr_t tail_blk) 3349 { 3350 struct xfs_mount *mp = log->l_mp; 3351 struct xfs_buf *bp = mp->m_sb_bp; 3352 struct xfs_sb *sbp = &mp->m_sb; 3353 int error; 3354 3355 trace_xfs_log_recover(log, head_blk, tail_blk); 3356 3357 /* 3358 * First replay the images in the log. 3359 */ 3360 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3361 if (error) 3362 return error; 3363 3364 if (xlog_is_shutdown(log)) 3365 return -EIO; 3366 3367 /* 3368 * We now update the tail_lsn since much of the recovery has completed 3369 * and there may be space available to use. If there were no extent or 3370 * iunlinks, we can free up the entire log. This was set in 3371 * xlog_find_tail to be the lsn of the last known good LR on disk. If 3372 * there are extent frees or iunlinks they will have some entries in the 3373 * AIL; so we look at the AIL to determine how to set the tail_lsn. 3374 */ 3375 xfs_ail_assign_tail_lsn(log->l_ailp); 3376 3377 /* 3378 * Now that we've finished replaying all buffer and inode updates, 3379 * re-read the superblock and reverify it. 3380 */ 3381 xfs_buf_lock(bp); 3382 xfs_buf_hold(bp); 3383 error = _xfs_buf_read(bp, XBF_READ); 3384 if (error) { 3385 if (!xlog_is_shutdown(log)) { 3386 xfs_buf_ioerror_alert(bp, __this_address); 3387 ASSERT(0); 3388 } 3389 xfs_buf_relse(bp); 3390 return error; 3391 } 3392 3393 /* Convert superblock from on-disk format */ 3394 xfs_sb_from_disk(sbp, bp->b_addr); 3395 xfs_buf_relse(bp); 3396 3397 /* re-initialise in-core superblock and geometry structures */ 3398 mp->m_features |= xfs_sb_version_to_features(sbp); 3399 xfs_reinit_percpu_counters(mp); 3400 3401 /* Normal transactions can now occur */ 3402 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 3403 return 0; 3404 } 3405 3406 /* 3407 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3408 * 3409 * Return error or zero. 3410 */ 3411 int 3412 xlog_recover( 3413 struct xlog *log) 3414 { 3415 xfs_daddr_t head_blk, tail_blk; 3416 int error; 3417 3418 /* find the tail of the log */ 3419 error = xlog_find_tail(log, &head_blk, &tail_blk); 3420 if (error) 3421 return error; 3422 3423 /* 3424 * The superblock was read before the log was available and thus the LSN 3425 * could not be verified. Check the superblock LSN against the current 3426 * LSN now that it's known. 3427 */ 3428 if (xfs_has_crc(log->l_mp) && 3429 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 3430 return -EINVAL; 3431 3432 if (tail_blk != head_blk) { 3433 /* There used to be a comment here: 3434 * 3435 * disallow recovery on read-only mounts. note -- mount 3436 * checks for ENOSPC and turns it into an intelligent 3437 * error message. 3438 * ...but this is no longer true. Now, unless you specify 3439 * NORECOVERY (in which case this function would never be 3440 * called), we just go ahead and recover. We do this all 3441 * under the vfs layer, so we can get away with it unless 3442 * the device itself is read-only, in which case we fail. 3443 */ 3444 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3445 return error; 3446 } 3447 3448 /* 3449 * Version 5 superblock log feature mask validation. We know the 3450 * log is dirty so check if there are any unknown log features 3451 * in what we need to recover. If there are unknown features 3452 * (e.g. unsupported transactions, then simply reject the 3453 * attempt at recovery before touching anything. 3454 */ 3455 if (xfs_sb_is_v5(&log->l_mp->m_sb) && 3456 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3457 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3458 xfs_warn(log->l_mp, 3459 "Superblock has unknown incompatible log features (0x%x) enabled.", 3460 (log->l_mp->m_sb.sb_features_log_incompat & 3461 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3462 xfs_warn(log->l_mp, 3463 "The log can not be fully and/or safely recovered by this kernel."); 3464 xfs_warn(log->l_mp, 3465 "Please recover the log on a kernel that supports the unknown features."); 3466 return -EINVAL; 3467 } 3468 3469 /* 3470 * Delay log recovery if the debug hook is set. This is debug 3471 * instrumentation to coordinate simulation of I/O failures with 3472 * log recovery. 3473 */ 3474 if (xfs_globals.log_recovery_delay) { 3475 xfs_notice(log->l_mp, 3476 "Delaying log recovery for %d seconds.", 3477 xfs_globals.log_recovery_delay); 3478 msleep(xfs_globals.log_recovery_delay * 1000); 3479 } 3480 3481 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3482 log->l_mp->m_logname ? log->l_mp->m_logname 3483 : "internal"); 3484 3485 error = xlog_do_recover(log, head_blk, tail_blk); 3486 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 3487 } 3488 return error; 3489 } 3490 3491 /* 3492 * In the first part of recovery we replay inodes and buffers and build up the 3493 * list of intents which need to be processed. Here we process the intents and 3494 * clean up the on disk unlinked inode lists. This is separated from the first 3495 * part of recovery so that the root and real-time bitmap inodes can be read in 3496 * from disk in between the two stages. This is necessary so that we can free 3497 * space in the real-time portion of the file system. 3498 * 3499 * We run this whole process under GFP_NOFS allocation context. We do a 3500 * combination of non-transactional and transactional work, yet we really don't 3501 * want to recurse into the filesystem from direct reclaim during any of this 3502 * processing. This allows all the recovery code run here not to care about the 3503 * memory allocation context it is running in. 3504 */ 3505 int 3506 xlog_recover_finish( 3507 struct xlog *log) 3508 { 3509 unsigned int nofs_flags = memalloc_nofs_save(); 3510 int error; 3511 3512 error = xlog_recover_process_intents(log); 3513 if (error) { 3514 /* 3515 * Cancel all the unprocessed intent items now so that we don't 3516 * leave them pinned in the AIL. This can cause the AIL to 3517 * livelock on the pinned item if anyone tries to push the AIL 3518 * (inode reclaim does this) before we get around to 3519 * xfs_log_mount_cancel. 3520 */ 3521 xlog_recover_cancel_intents(log); 3522 xfs_alert(log->l_mp, "Failed to recover intents"); 3523 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3524 goto out_error; 3525 } 3526 3527 /* 3528 * Sync the log to get all the intents out of the AIL. This isn't 3529 * absolutely necessary, but it helps in case the unlink transactions 3530 * would have problems pushing the intents out of the way. 3531 */ 3532 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3533 3534 xlog_recover_process_iunlinks(log); 3535 3536 /* 3537 * Recover any CoW staging blocks that are still referenced by the 3538 * ondisk refcount metadata. During mount there cannot be any live 3539 * staging extents as we have not permitted any user modifications. 3540 * Therefore, it is safe to free them all right now, even on a 3541 * read-only mount. 3542 */ 3543 error = xfs_reflink_recover_cow(log->l_mp); 3544 if (error) { 3545 xfs_alert(log->l_mp, 3546 "Failed to recover leftover CoW staging extents, err %d.", 3547 error); 3548 /* 3549 * If we get an error here, make sure the log is shut down 3550 * but return zero so that any log items committed since the 3551 * end of intents processing can be pushed through the CIL 3552 * and AIL. 3553 */ 3554 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3555 error = 0; 3556 goto out_error; 3557 } 3558 3559 out_error: 3560 memalloc_nofs_restore(nofs_flags); 3561 return error; 3562 } 3563 3564 void 3565 xlog_recover_cancel( 3566 struct xlog *log) 3567 { 3568 if (xlog_recovery_needed(log)) 3569 xlog_recover_cancel_intents(log); 3570 } 3571 3572