xref: /linux/fs/xfs/xfs_log_recover.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_inode_item.h"
22 #include "xfs_extfree_item.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_alloc.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_quota.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_error.h"
31 #include "xfs_dir2.h"
32 #include "xfs_rmap_item.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_refcount_item.h"
35 #include "xfs_bmap_item.h"
36 
37 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
38 
39 STATIC int
40 xlog_find_zeroed(
41 	struct xlog	*,
42 	xfs_daddr_t	*);
43 STATIC int
44 xlog_clear_stale_blocks(
45 	struct xlog	*,
46 	xfs_lsn_t);
47 #if defined(DEBUG)
48 STATIC void
49 xlog_recover_check_summary(
50 	struct xlog *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 STATIC int
55 xlog_do_recovery_pass(
56         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
57 
58 /*
59  * This structure is used during recovery to record the buf log items which
60  * have been canceled and should not be replayed.
61  */
62 struct xfs_buf_cancel {
63 	xfs_daddr_t		bc_blkno;
64 	uint			bc_len;
65 	int			bc_refcount;
66 	struct list_head	bc_list;
67 };
68 
69 /*
70  * Sector aligned buffer routines for buffer create/read/write/access
71  */
72 
73 /*
74  * Verify the log-relative block number and length in basic blocks are valid for
75  * an operation involving the given XFS log buffer. Returns true if the fields
76  * are valid, false otherwise.
77  */
78 static inline bool
79 xlog_verify_bno(
80 	struct xlog	*log,
81 	xfs_daddr_t	blk_no,
82 	int		bbcount)
83 {
84 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
85 		return false;
86 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
87 		return false;
88 	return true;
89 }
90 
91 /*
92  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
93  * a range of nbblks basic blocks at any valid offset within the log.
94  */
95 static char *
96 xlog_alloc_buffer(
97 	struct xlog	*log,
98 	int		nbblks)
99 {
100 	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
101 
102 	/*
103 	 * Pass log block 0 since we don't have an addr yet, buffer will be
104 	 * verified on read.
105 	 */
106 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
107 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 			nbblks);
109 		return NULL;
110 	}
111 
112 	/*
113 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
114 	 * basic block size), so we round up the requested size to accommodate
115 	 * the basic blocks required for complete log sectors.
116 	 *
117 	 * In addition, the buffer may be used for a non-sector-aligned block
118 	 * offset, in which case an I/O of the requested size could extend
119 	 * beyond the end of the buffer.  If the requested size is only 1 basic
120 	 * block it will never straddle a sector boundary, so this won't be an
121 	 * issue.  Nor will this be a problem if the log I/O is done in basic
122 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
123 	 * extra log sector to ensure there's space to accommodate this
124 	 * possibility.
125 	 */
126 	if (nbblks > 1 && log->l_sectBBsize > 1)
127 		nbblks += log->l_sectBBsize;
128 	nbblks = round_up(nbblks, log->l_sectBBsize);
129 	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
130 }
131 
132 /*
133  * Return the address of the start of the given block number's data
134  * in a log buffer.  The buffer covers a log sector-aligned region.
135  */
136 static inline unsigned int
137 xlog_align(
138 	struct xlog	*log,
139 	xfs_daddr_t	blk_no)
140 {
141 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
142 }
143 
144 static int
145 xlog_do_io(
146 	struct xlog		*log,
147 	xfs_daddr_t		blk_no,
148 	unsigned int		nbblks,
149 	char			*data,
150 	unsigned int		op)
151 {
152 	int			error;
153 
154 	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
155 		xfs_warn(log->l_mp,
156 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
157 			 blk_no, nbblks);
158 		return -EFSCORRUPTED;
159 	}
160 
161 	blk_no = round_down(blk_no, log->l_sectBBsize);
162 	nbblks = round_up(nbblks, log->l_sectBBsize);
163 	ASSERT(nbblks > 0);
164 
165 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
166 			BBTOB(nbblks), data, op);
167 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
168 		xfs_alert(log->l_mp,
169 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
170 			  op == REQ_OP_WRITE ? "write" : "read",
171 			  blk_no, nbblks, error);
172 	}
173 	return error;
174 }
175 
176 STATIC int
177 xlog_bread_noalign(
178 	struct xlog	*log,
179 	xfs_daddr_t	blk_no,
180 	int		nbblks,
181 	char		*data)
182 {
183 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
184 }
185 
186 STATIC int
187 xlog_bread(
188 	struct xlog	*log,
189 	xfs_daddr_t	blk_no,
190 	int		nbblks,
191 	char		*data,
192 	char		**offset)
193 {
194 	int		error;
195 
196 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
197 	if (!error)
198 		*offset = data + xlog_align(log, blk_no);
199 	return error;
200 }
201 
202 STATIC int
203 xlog_bwrite(
204 	struct xlog	*log,
205 	xfs_daddr_t	blk_no,
206 	int		nbblks,
207 	char		*data)
208 {
209 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
210 }
211 
212 #ifdef DEBUG
213 /*
214  * dump debug superblock and log record information
215  */
216 STATIC void
217 xlog_header_check_dump(
218 	xfs_mount_t		*mp,
219 	xlog_rec_header_t	*head)
220 {
221 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
222 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
223 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
224 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
225 }
226 #else
227 #define xlog_header_check_dump(mp, head)
228 #endif
229 
230 /*
231  * check log record header for recovery
232  */
233 STATIC int
234 xlog_header_check_recover(
235 	xfs_mount_t		*mp,
236 	xlog_rec_header_t	*head)
237 {
238 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
239 
240 	/*
241 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
242 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
243 	 * a dirty log created in IRIX.
244 	 */
245 	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
246 		xfs_warn(mp,
247 	"dirty log written in incompatible format - can't recover");
248 		xlog_header_check_dump(mp, head);
249 		return -EFSCORRUPTED;
250 	}
251 	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
252 					   &head->h_fs_uuid))) {
253 		xfs_warn(mp,
254 	"dirty log entry has mismatched uuid - can't recover");
255 		xlog_header_check_dump(mp, head);
256 		return -EFSCORRUPTED;
257 	}
258 	return 0;
259 }
260 
261 /*
262  * read the head block of the log and check the header
263  */
264 STATIC int
265 xlog_header_check_mount(
266 	xfs_mount_t		*mp,
267 	xlog_rec_header_t	*head)
268 {
269 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
270 
271 	if (uuid_is_null(&head->h_fs_uuid)) {
272 		/*
273 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
274 		 * h_fs_uuid is null, we assume this log was last mounted
275 		 * by IRIX and continue.
276 		 */
277 		xfs_warn(mp, "null uuid in log - IRIX style log");
278 	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
279 						  &head->h_fs_uuid))) {
280 		xfs_warn(mp, "log has mismatched uuid - can't recover");
281 		xlog_header_check_dump(mp, head);
282 		return -EFSCORRUPTED;
283 	}
284 	return 0;
285 }
286 
287 STATIC void
288 xlog_recover_iodone(
289 	struct xfs_buf	*bp)
290 {
291 	if (bp->b_error) {
292 		/*
293 		 * We're not going to bother about retrying
294 		 * this during recovery. One strike!
295 		 */
296 		if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
297 			xfs_buf_ioerror_alert(bp, __func__);
298 			xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
299 		}
300 	}
301 
302 	/*
303 	 * On v5 supers, a bli could be attached to update the metadata LSN.
304 	 * Clean it up.
305 	 */
306 	if (bp->b_log_item)
307 		xfs_buf_item_relse(bp);
308 	ASSERT(bp->b_log_item == NULL);
309 
310 	bp->b_iodone = NULL;
311 	xfs_buf_ioend(bp);
312 }
313 
314 /*
315  * This routine finds (to an approximation) the first block in the physical
316  * log which contains the given cycle.  It uses a binary search algorithm.
317  * Note that the algorithm can not be perfect because the disk will not
318  * necessarily be perfect.
319  */
320 STATIC int
321 xlog_find_cycle_start(
322 	struct xlog	*log,
323 	char		*buffer,
324 	xfs_daddr_t	first_blk,
325 	xfs_daddr_t	*last_blk,
326 	uint		cycle)
327 {
328 	char		*offset;
329 	xfs_daddr_t	mid_blk;
330 	xfs_daddr_t	end_blk;
331 	uint		mid_cycle;
332 	int		error;
333 
334 	end_blk = *last_blk;
335 	mid_blk = BLK_AVG(first_blk, end_blk);
336 	while (mid_blk != first_blk && mid_blk != end_blk) {
337 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
338 		if (error)
339 			return error;
340 		mid_cycle = xlog_get_cycle(offset);
341 		if (mid_cycle == cycle)
342 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
343 		else
344 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
345 		mid_blk = BLK_AVG(first_blk, end_blk);
346 	}
347 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
348 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
349 
350 	*last_blk = end_blk;
351 
352 	return 0;
353 }
354 
355 /*
356  * Check that a range of blocks does not contain stop_on_cycle_no.
357  * Fill in *new_blk with the block offset where such a block is
358  * found, or with -1 (an invalid block number) if there is no such
359  * block in the range.  The scan needs to occur from front to back
360  * and the pointer into the region must be updated since a later
361  * routine will need to perform another test.
362  */
363 STATIC int
364 xlog_find_verify_cycle(
365 	struct xlog	*log,
366 	xfs_daddr_t	start_blk,
367 	int		nbblks,
368 	uint		stop_on_cycle_no,
369 	xfs_daddr_t	*new_blk)
370 {
371 	xfs_daddr_t	i, j;
372 	uint		cycle;
373 	char		*buffer;
374 	xfs_daddr_t	bufblks;
375 	char		*buf = NULL;
376 	int		error = 0;
377 
378 	/*
379 	 * Greedily allocate a buffer big enough to handle the full
380 	 * range of basic blocks we'll be examining.  If that fails,
381 	 * try a smaller size.  We need to be able to read at least
382 	 * a log sector, or we're out of luck.
383 	 */
384 	bufblks = 1 << ffs(nbblks);
385 	while (bufblks > log->l_logBBsize)
386 		bufblks >>= 1;
387 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
388 		bufblks >>= 1;
389 		if (bufblks < log->l_sectBBsize)
390 			return -ENOMEM;
391 	}
392 
393 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
394 		int	bcount;
395 
396 		bcount = min(bufblks, (start_blk + nbblks - i));
397 
398 		error = xlog_bread(log, i, bcount, buffer, &buf);
399 		if (error)
400 			goto out;
401 
402 		for (j = 0; j < bcount; j++) {
403 			cycle = xlog_get_cycle(buf);
404 			if (cycle == stop_on_cycle_no) {
405 				*new_blk = i+j;
406 				goto out;
407 			}
408 
409 			buf += BBSIZE;
410 		}
411 	}
412 
413 	*new_blk = -1;
414 
415 out:
416 	kmem_free(buffer);
417 	return error;
418 }
419 
420 /*
421  * Potentially backup over partial log record write.
422  *
423  * In the typical case, last_blk is the number of the block directly after
424  * a good log record.  Therefore, we subtract one to get the block number
425  * of the last block in the given buffer.  extra_bblks contains the number
426  * of blocks we would have read on a previous read.  This happens when the
427  * last log record is split over the end of the physical log.
428  *
429  * extra_bblks is the number of blocks potentially verified on a previous
430  * call to this routine.
431  */
432 STATIC int
433 xlog_find_verify_log_record(
434 	struct xlog		*log,
435 	xfs_daddr_t		start_blk,
436 	xfs_daddr_t		*last_blk,
437 	int			extra_bblks)
438 {
439 	xfs_daddr_t		i;
440 	char			*buffer;
441 	char			*offset = NULL;
442 	xlog_rec_header_t	*head = NULL;
443 	int			error = 0;
444 	int			smallmem = 0;
445 	int			num_blks = *last_blk - start_blk;
446 	int			xhdrs;
447 
448 	ASSERT(start_blk != 0 || *last_blk != start_blk);
449 
450 	buffer = xlog_alloc_buffer(log, num_blks);
451 	if (!buffer) {
452 		buffer = xlog_alloc_buffer(log, 1);
453 		if (!buffer)
454 			return -ENOMEM;
455 		smallmem = 1;
456 	} else {
457 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
458 		if (error)
459 			goto out;
460 		offset += ((num_blks - 1) << BBSHIFT);
461 	}
462 
463 	for (i = (*last_blk) - 1; i >= 0; i--) {
464 		if (i < start_blk) {
465 			/* valid log record not found */
466 			xfs_warn(log->l_mp,
467 		"Log inconsistent (didn't find previous header)");
468 			ASSERT(0);
469 			error = -EFSCORRUPTED;
470 			goto out;
471 		}
472 
473 		if (smallmem) {
474 			error = xlog_bread(log, i, 1, buffer, &offset);
475 			if (error)
476 				goto out;
477 		}
478 
479 		head = (xlog_rec_header_t *)offset;
480 
481 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
482 			break;
483 
484 		if (!smallmem)
485 			offset -= BBSIZE;
486 	}
487 
488 	/*
489 	 * We hit the beginning of the physical log & still no header.  Return
490 	 * to caller.  If caller can handle a return of -1, then this routine
491 	 * will be called again for the end of the physical log.
492 	 */
493 	if (i == -1) {
494 		error = 1;
495 		goto out;
496 	}
497 
498 	/*
499 	 * We have the final block of the good log (the first block
500 	 * of the log record _before_ the head. So we check the uuid.
501 	 */
502 	if ((error = xlog_header_check_mount(log->l_mp, head)))
503 		goto out;
504 
505 	/*
506 	 * We may have found a log record header before we expected one.
507 	 * last_blk will be the 1st block # with a given cycle #.  We may end
508 	 * up reading an entire log record.  In this case, we don't want to
509 	 * reset last_blk.  Only when last_blk points in the middle of a log
510 	 * record do we update last_blk.
511 	 */
512 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
513 		uint	h_size = be32_to_cpu(head->h_size);
514 
515 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
516 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
517 			xhdrs++;
518 	} else {
519 		xhdrs = 1;
520 	}
521 
522 	if (*last_blk - i + extra_bblks !=
523 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
524 		*last_blk = i;
525 
526 out:
527 	kmem_free(buffer);
528 	return error;
529 }
530 
531 /*
532  * Head is defined to be the point of the log where the next log write
533  * could go.  This means that incomplete LR writes at the end are
534  * eliminated when calculating the head.  We aren't guaranteed that previous
535  * LR have complete transactions.  We only know that a cycle number of
536  * current cycle number -1 won't be present in the log if we start writing
537  * from our current block number.
538  *
539  * last_blk contains the block number of the first block with a given
540  * cycle number.
541  *
542  * Return: zero if normal, non-zero if error.
543  */
544 STATIC int
545 xlog_find_head(
546 	struct xlog	*log,
547 	xfs_daddr_t	*return_head_blk)
548 {
549 	char		*buffer;
550 	char		*offset;
551 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
552 	int		num_scan_bblks;
553 	uint		first_half_cycle, last_half_cycle;
554 	uint		stop_on_cycle;
555 	int		error, log_bbnum = log->l_logBBsize;
556 
557 	/* Is the end of the log device zeroed? */
558 	error = xlog_find_zeroed(log, &first_blk);
559 	if (error < 0) {
560 		xfs_warn(log->l_mp, "empty log check failed");
561 		return error;
562 	}
563 	if (error == 1) {
564 		*return_head_blk = first_blk;
565 
566 		/* Is the whole lot zeroed? */
567 		if (!first_blk) {
568 			/* Linux XFS shouldn't generate totally zeroed logs -
569 			 * mkfs etc write a dummy unmount record to a fresh
570 			 * log so we can store the uuid in there
571 			 */
572 			xfs_warn(log->l_mp, "totally zeroed log");
573 		}
574 
575 		return 0;
576 	}
577 
578 	first_blk = 0;			/* get cycle # of 1st block */
579 	buffer = xlog_alloc_buffer(log, 1);
580 	if (!buffer)
581 		return -ENOMEM;
582 
583 	error = xlog_bread(log, 0, 1, buffer, &offset);
584 	if (error)
585 		goto out_free_buffer;
586 
587 	first_half_cycle = xlog_get_cycle(offset);
588 
589 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
590 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
591 	if (error)
592 		goto out_free_buffer;
593 
594 	last_half_cycle = xlog_get_cycle(offset);
595 	ASSERT(last_half_cycle != 0);
596 
597 	/*
598 	 * If the 1st half cycle number is equal to the last half cycle number,
599 	 * then the entire log is stamped with the same cycle number.  In this
600 	 * case, head_blk can't be set to zero (which makes sense).  The below
601 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
602 	 * we set it to log_bbnum which is an invalid block number, but this
603 	 * value makes the math correct.  If head_blk doesn't changed through
604 	 * all the tests below, *head_blk is set to zero at the very end rather
605 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
606 	 * in a circular file.
607 	 */
608 	if (first_half_cycle == last_half_cycle) {
609 		/*
610 		 * In this case we believe that the entire log should have
611 		 * cycle number last_half_cycle.  We need to scan backwards
612 		 * from the end verifying that there are no holes still
613 		 * containing last_half_cycle - 1.  If we find such a hole,
614 		 * then the start of that hole will be the new head.  The
615 		 * simple case looks like
616 		 *        x | x ... | x - 1 | x
617 		 * Another case that fits this picture would be
618 		 *        x | x + 1 | x ... | x
619 		 * In this case the head really is somewhere at the end of the
620 		 * log, as one of the latest writes at the beginning was
621 		 * incomplete.
622 		 * One more case is
623 		 *        x | x + 1 | x ... | x - 1 | x
624 		 * This is really the combination of the above two cases, and
625 		 * the head has to end up at the start of the x-1 hole at the
626 		 * end of the log.
627 		 *
628 		 * In the 256k log case, we will read from the beginning to the
629 		 * end of the log and search for cycle numbers equal to x-1.
630 		 * We don't worry about the x+1 blocks that we encounter,
631 		 * because we know that they cannot be the head since the log
632 		 * started with x.
633 		 */
634 		head_blk = log_bbnum;
635 		stop_on_cycle = last_half_cycle - 1;
636 	} else {
637 		/*
638 		 * In this case we want to find the first block with cycle
639 		 * number matching last_half_cycle.  We expect the log to be
640 		 * some variation on
641 		 *        x + 1 ... | x ... | x
642 		 * The first block with cycle number x (last_half_cycle) will
643 		 * be where the new head belongs.  First we do a binary search
644 		 * for the first occurrence of last_half_cycle.  The binary
645 		 * search may not be totally accurate, so then we scan back
646 		 * from there looking for occurrences of last_half_cycle before
647 		 * us.  If that backwards scan wraps around the beginning of
648 		 * the log, then we look for occurrences of last_half_cycle - 1
649 		 * at the end of the log.  The cases we're looking for look
650 		 * like
651 		 *                               v binary search stopped here
652 		 *        x + 1 ... | x | x + 1 | x ... | x
653 		 *                   ^ but we want to locate this spot
654 		 * or
655 		 *        <---------> less than scan distance
656 		 *        x + 1 ... | x ... | x - 1 | x
657 		 *                           ^ we want to locate this spot
658 		 */
659 		stop_on_cycle = last_half_cycle;
660 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
661 				last_half_cycle);
662 		if (error)
663 			goto out_free_buffer;
664 	}
665 
666 	/*
667 	 * Now validate the answer.  Scan back some number of maximum possible
668 	 * blocks and make sure each one has the expected cycle number.  The
669 	 * maximum is determined by the total possible amount of buffering
670 	 * in the in-core log.  The following number can be made tighter if
671 	 * we actually look at the block size of the filesystem.
672 	 */
673 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
674 	if (head_blk >= num_scan_bblks) {
675 		/*
676 		 * We are guaranteed that the entire check can be performed
677 		 * in one buffer.
678 		 */
679 		start_blk = head_blk - num_scan_bblks;
680 		if ((error = xlog_find_verify_cycle(log,
681 						start_blk, num_scan_bblks,
682 						stop_on_cycle, &new_blk)))
683 			goto out_free_buffer;
684 		if (new_blk != -1)
685 			head_blk = new_blk;
686 	} else {		/* need to read 2 parts of log */
687 		/*
688 		 * We are going to scan backwards in the log in two parts.
689 		 * First we scan the physical end of the log.  In this part
690 		 * of the log, we are looking for blocks with cycle number
691 		 * last_half_cycle - 1.
692 		 * If we find one, then we know that the log starts there, as
693 		 * we've found a hole that didn't get written in going around
694 		 * the end of the physical log.  The simple case for this is
695 		 *        x + 1 ... | x ... | x - 1 | x
696 		 *        <---------> less than scan distance
697 		 * If all of the blocks at the end of the log have cycle number
698 		 * last_half_cycle, then we check the blocks at the start of
699 		 * the log looking for occurrences of last_half_cycle.  If we
700 		 * find one, then our current estimate for the location of the
701 		 * first occurrence of last_half_cycle is wrong and we move
702 		 * back to the hole we've found.  This case looks like
703 		 *        x + 1 ... | x | x + 1 | x ...
704 		 *                               ^ binary search stopped here
705 		 * Another case we need to handle that only occurs in 256k
706 		 * logs is
707 		 *        x + 1 ... | x ... | x+1 | x ...
708 		 *                   ^ binary search stops here
709 		 * In a 256k log, the scan at the end of the log will see the
710 		 * x + 1 blocks.  We need to skip past those since that is
711 		 * certainly not the head of the log.  By searching for
712 		 * last_half_cycle-1 we accomplish that.
713 		 */
714 		ASSERT(head_blk <= INT_MAX &&
715 			(xfs_daddr_t) num_scan_bblks >= head_blk);
716 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
717 		if ((error = xlog_find_verify_cycle(log, start_blk,
718 					num_scan_bblks - (int)head_blk,
719 					(stop_on_cycle - 1), &new_blk)))
720 			goto out_free_buffer;
721 		if (new_blk != -1) {
722 			head_blk = new_blk;
723 			goto validate_head;
724 		}
725 
726 		/*
727 		 * Scan beginning of log now.  The last part of the physical
728 		 * log is good.  This scan needs to verify that it doesn't find
729 		 * the last_half_cycle.
730 		 */
731 		start_blk = 0;
732 		ASSERT(head_blk <= INT_MAX);
733 		if ((error = xlog_find_verify_cycle(log,
734 					start_blk, (int)head_blk,
735 					stop_on_cycle, &new_blk)))
736 			goto out_free_buffer;
737 		if (new_blk != -1)
738 			head_blk = new_blk;
739 	}
740 
741 validate_head:
742 	/*
743 	 * Now we need to make sure head_blk is not pointing to a block in
744 	 * the middle of a log record.
745 	 */
746 	num_scan_bblks = XLOG_REC_SHIFT(log);
747 	if (head_blk >= num_scan_bblks) {
748 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
749 
750 		/* start ptr at last block ptr before head_blk */
751 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
752 		if (error == 1)
753 			error = -EIO;
754 		if (error)
755 			goto out_free_buffer;
756 	} else {
757 		start_blk = 0;
758 		ASSERT(head_blk <= INT_MAX);
759 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
760 		if (error < 0)
761 			goto out_free_buffer;
762 		if (error == 1) {
763 			/* We hit the beginning of the log during our search */
764 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
765 			new_blk = log_bbnum;
766 			ASSERT(start_blk <= INT_MAX &&
767 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
768 			ASSERT(head_blk <= INT_MAX);
769 			error = xlog_find_verify_log_record(log, start_blk,
770 							&new_blk, (int)head_blk);
771 			if (error == 1)
772 				error = -EIO;
773 			if (error)
774 				goto out_free_buffer;
775 			if (new_blk != log_bbnum)
776 				head_blk = new_blk;
777 		} else if (error)
778 			goto out_free_buffer;
779 	}
780 
781 	kmem_free(buffer);
782 	if (head_blk == log_bbnum)
783 		*return_head_blk = 0;
784 	else
785 		*return_head_blk = head_blk;
786 	/*
787 	 * When returning here, we have a good block number.  Bad block
788 	 * means that during a previous crash, we didn't have a clean break
789 	 * from cycle number N to cycle number N-1.  In this case, we need
790 	 * to find the first block with cycle number N-1.
791 	 */
792 	return 0;
793 
794 out_free_buffer:
795 	kmem_free(buffer);
796 	if (error)
797 		xfs_warn(log->l_mp, "failed to find log head");
798 	return error;
799 }
800 
801 /*
802  * Seek backwards in the log for log record headers.
803  *
804  * Given a starting log block, walk backwards until we find the provided number
805  * of records or hit the provided tail block. The return value is the number of
806  * records encountered or a negative error code. The log block and buffer
807  * pointer of the last record seen are returned in rblk and rhead respectively.
808  */
809 STATIC int
810 xlog_rseek_logrec_hdr(
811 	struct xlog		*log,
812 	xfs_daddr_t		head_blk,
813 	xfs_daddr_t		tail_blk,
814 	int			count,
815 	char			*buffer,
816 	xfs_daddr_t		*rblk,
817 	struct xlog_rec_header	**rhead,
818 	bool			*wrapped)
819 {
820 	int			i;
821 	int			error;
822 	int			found = 0;
823 	char			*offset = NULL;
824 	xfs_daddr_t		end_blk;
825 
826 	*wrapped = false;
827 
828 	/*
829 	 * Walk backwards from the head block until we hit the tail or the first
830 	 * block in the log.
831 	 */
832 	end_blk = head_blk > tail_blk ? tail_blk : 0;
833 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
834 		error = xlog_bread(log, i, 1, buffer, &offset);
835 		if (error)
836 			goto out_error;
837 
838 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
839 			*rblk = i;
840 			*rhead = (struct xlog_rec_header *) offset;
841 			if (++found == count)
842 				break;
843 		}
844 	}
845 
846 	/*
847 	 * If we haven't hit the tail block or the log record header count,
848 	 * start looking again from the end of the physical log. Note that
849 	 * callers can pass head == tail if the tail is not yet known.
850 	 */
851 	if (tail_blk >= head_blk && found != count) {
852 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
853 			error = xlog_bread(log, i, 1, buffer, &offset);
854 			if (error)
855 				goto out_error;
856 
857 			if (*(__be32 *)offset ==
858 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
859 				*wrapped = true;
860 				*rblk = i;
861 				*rhead = (struct xlog_rec_header *) offset;
862 				if (++found == count)
863 					break;
864 			}
865 		}
866 	}
867 
868 	return found;
869 
870 out_error:
871 	return error;
872 }
873 
874 /*
875  * Seek forward in the log for log record headers.
876  *
877  * Given head and tail blocks, walk forward from the tail block until we find
878  * the provided number of records or hit the head block. The return value is the
879  * number of records encountered or a negative error code. The log block and
880  * buffer pointer of the last record seen are returned in rblk and rhead
881  * respectively.
882  */
883 STATIC int
884 xlog_seek_logrec_hdr(
885 	struct xlog		*log,
886 	xfs_daddr_t		head_blk,
887 	xfs_daddr_t		tail_blk,
888 	int			count,
889 	char			*buffer,
890 	xfs_daddr_t		*rblk,
891 	struct xlog_rec_header	**rhead,
892 	bool			*wrapped)
893 {
894 	int			i;
895 	int			error;
896 	int			found = 0;
897 	char			*offset = NULL;
898 	xfs_daddr_t		end_blk;
899 
900 	*wrapped = false;
901 
902 	/*
903 	 * Walk forward from the tail block until we hit the head or the last
904 	 * block in the log.
905 	 */
906 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
907 	for (i = (int) tail_blk; i <= end_blk; i++) {
908 		error = xlog_bread(log, i, 1, buffer, &offset);
909 		if (error)
910 			goto out_error;
911 
912 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
913 			*rblk = i;
914 			*rhead = (struct xlog_rec_header *) offset;
915 			if (++found == count)
916 				break;
917 		}
918 	}
919 
920 	/*
921 	 * If we haven't hit the head block or the log record header count,
922 	 * start looking again from the start of the physical log.
923 	 */
924 	if (tail_blk > head_blk && found != count) {
925 		for (i = 0; i < (int) head_blk; i++) {
926 			error = xlog_bread(log, i, 1, buffer, &offset);
927 			if (error)
928 				goto out_error;
929 
930 			if (*(__be32 *)offset ==
931 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
932 				*wrapped = true;
933 				*rblk = i;
934 				*rhead = (struct xlog_rec_header *) offset;
935 				if (++found == count)
936 					break;
937 			}
938 		}
939 	}
940 
941 	return found;
942 
943 out_error:
944 	return error;
945 }
946 
947 /*
948  * Calculate distance from head to tail (i.e., unused space in the log).
949  */
950 static inline int
951 xlog_tail_distance(
952 	struct xlog	*log,
953 	xfs_daddr_t	head_blk,
954 	xfs_daddr_t	tail_blk)
955 {
956 	if (head_blk < tail_blk)
957 		return tail_blk - head_blk;
958 
959 	return tail_blk + (log->l_logBBsize - head_blk);
960 }
961 
962 /*
963  * Verify the log tail. This is particularly important when torn or incomplete
964  * writes have been detected near the front of the log and the head has been
965  * walked back accordingly.
966  *
967  * We also have to handle the case where the tail was pinned and the head
968  * blocked behind the tail right before a crash. If the tail had been pushed
969  * immediately prior to the crash and the subsequent checkpoint was only
970  * partially written, it's possible it overwrote the last referenced tail in the
971  * log with garbage. This is not a coherency problem because the tail must have
972  * been pushed before it can be overwritten, but appears as log corruption to
973  * recovery because we have no way to know the tail was updated if the
974  * subsequent checkpoint didn't write successfully.
975  *
976  * Therefore, CRC check the log from tail to head. If a failure occurs and the
977  * offending record is within max iclog bufs from the head, walk the tail
978  * forward and retry until a valid tail is found or corruption is detected out
979  * of the range of a possible overwrite.
980  */
981 STATIC int
982 xlog_verify_tail(
983 	struct xlog		*log,
984 	xfs_daddr_t		head_blk,
985 	xfs_daddr_t		*tail_blk,
986 	int			hsize)
987 {
988 	struct xlog_rec_header	*thead;
989 	char			*buffer;
990 	xfs_daddr_t		first_bad;
991 	int			error = 0;
992 	bool			wrapped;
993 	xfs_daddr_t		tmp_tail;
994 	xfs_daddr_t		orig_tail = *tail_blk;
995 
996 	buffer = xlog_alloc_buffer(log, 1);
997 	if (!buffer)
998 		return -ENOMEM;
999 
1000 	/*
1001 	 * Make sure the tail points to a record (returns positive count on
1002 	 * success).
1003 	 */
1004 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1005 			&tmp_tail, &thead, &wrapped);
1006 	if (error < 0)
1007 		goto out;
1008 	if (*tail_blk != tmp_tail)
1009 		*tail_blk = tmp_tail;
1010 
1011 	/*
1012 	 * Run a CRC check from the tail to the head. We can't just check
1013 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1014 	 * blocks cleared during the search for the head/tail. These blocks are
1015 	 * overwritten with zero-length records and thus record count is not a
1016 	 * reliable indicator of the iclog state before a crash.
1017 	 */
1018 	first_bad = 0;
1019 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1020 				      XLOG_RECOVER_CRCPASS, &first_bad);
1021 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1022 		int	tail_distance;
1023 
1024 		/*
1025 		 * Is corruption within range of the head? If so, retry from
1026 		 * the next record. Otherwise return an error.
1027 		 */
1028 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1029 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1030 			break;
1031 
1032 		/* skip to the next record; returns positive count on success */
1033 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1034 				buffer, &tmp_tail, &thead, &wrapped);
1035 		if (error < 0)
1036 			goto out;
1037 
1038 		*tail_blk = tmp_tail;
1039 		first_bad = 0;
1040 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1041 					      XLOG_RECOVER_CRCPASS, &first_bad);
1042 	}
1043 
1044 	if (!error && *tail_blk != orig_tail)
1045 		xfs_warn(log->l_mp,
1046 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1047 			 orig_tail, *tail_blk);
1048 out:
1049 	kmem_free(buffer);
1050 	return error;
1051 }
1052 
1053 /*
1054  * Detect and trim torn writes from the head of the log.
1055  *
1056  * Storage without sector atomicity guarantees can result in torn writes in the
1057  * log in the event of a crash. Our only means to detect this scenario is via
1058  * CRC verification. While we can't always be certain that CRC verification
1059  * failure is due to a torn write vs. an unrelated corruption, we do know that
1060  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1061  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1062  * the log and treat failures in this range as torn writes as a matter of
1063  * policy. In the event of CRC failure, the head is walked back to the last good
1064  * record in the log and the tail is updated from that record and verified.
1065  */
1066 STATIC int
1067 xlog_verify_head(
1068 	struct xlog		*log,
1069 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1070 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1071 	char			*buffer,
1072 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1073 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1074 	bool			*wrapped)	/* last rec. wraps phys. log */
1075 {
1076 	struct xlog_rec_header	*tmp_rhead;
1077 	char			*tmp_buffer;
1078 	xfs_daddr_t		first_bad;
1079 	xfs_daddr_t		tmp_rhead_blk;
1080 	int			found;
1081 	int			error;
1082 	bool			tmp_wrapped;
1083 
1084 	/*
1085 	 * Check the head of the log for torn writes. Search backwards from the
1086 	 * head until we hit the tail or the maximum number of log record I/Os
1087 	 * that could have been in flight at one time. Use a temporary buffer so
1088 	 * we don't trash the rhead/buffer pointers from the caller.
1089 	 */
1090 	tmp_buffer = xlog_alloc_buffer(log, 1);
1091 	if (!tmp_buffer)
1092 		return -ENOMEM;
1093 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1094 				      XLOG_MAX_ICLOGS, tmp_buffer,
1095 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1096 	kmem_free(tmp_buffer);
1097 	if (error < 0)
1098 		return error;
1099 
1100 	/*
1101 	 * Now run a CRC verification pass over the records starting at the
1102 	 * block found above to the current head. If a CRC failure occurs, the
1103 	 * log block of the first bad record is saved in first_bad.
1104 	 */
1105 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1106 				      XLOG_RECOVER_CRCPASS, &first_bad);
1107 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1108 		/*
1109 		 * We've hit a potential torn write. Reset the error and warn
1110 		 * about it.
1111 		 */
1112 		error = 0;
1113 		xfs_warn(log->l_mp,
1114 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1115 			 first_bad, *head_blk);
1116 
1117 		/*
1118 		 * Get the header block and buffer pointer for the last good
1119 		 * record before the bad record.
1120 		 *
1121 		 * Note that xlog_find_tail() clears the blocks at the new head
1122 		 * (i.e., the records with invalid CRC) if the cycle number
1123 		 * matches the the current cycle.
1124 		 */
1125 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1126 				buffer, rhead_blk, rhead, wrapped);
1127 		if (found < 0)
1128 			return found;
1129 		if (found == 0)		/* XXX: right thing to do here? */
1130 			return -EIO;
1131 
1132 		/*
1133 		 * Reset the head block to the starting block of the first bad
1134 		 * log record and set the tail block based on the last good
1135 		 * record.
1136 		 *
1137 		 * Bail out if the updated head/tail match as this indicates
1138 		 * possible corruption outside of the acceptable
1139 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1140 		 */
1141 		*head_blk = first_bad;
1142 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1143 		if (*head_blk == *tail_blk) {
1144 			ASSERT(0);
1145 			return 0;
1146 		}
1147 	}
1148 	if (error)
1149 		return error;
1150 
1151 	return xlog_verify_tail(log, *head_blk, tail_blk,
1152 				be32_to_cpu((*rhead)->h_size));
1153 }
1154 
1155 /*
1156  * We need to make sure we handle log wrapping properly, so we can't use the
1157  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1158  * log.
1159  *
1160  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1161  * operation here and cast it back to a 64 bit daddr on return.
1162  */
1163 static inline xfs_daddr_t
1164 xlog_wrap_logbno(
1165 	struct xlog		*log,
1166 	xfs_daddr_t		bno)
1167 {
1168 	int			mod;
1169 
1170 	div_s64_rem(bno, log->l_logBBsize, &mod);
1171 	return mod;
1172 }
1173 
1174 /*
1175  * Check whether the head of the log points to an unmount record. In other
1176  * words, determine whether the log is clean. If so, update the in-core state
1177  * appropriately.
1178  */
1179 static int
1180 xlog_check_unmount_rec(
1181 	struct xlog		*log,
1182 	xfs_daddr_t		*head_blk,
1183 	xfs_daddr_t		*tail_blk,
1184 	struct xlog_rec_header	*rhead,
1185 	xfs_daddr_t		rhead_blk,
1186 	char			*buffer,
1187 	bool			*clean)
1188 {
1189 	struct xlog_op_header	*op_head;
1190 	xfs_daddr_t		umount_data_blk;
1191 	xfs_daddr_t		after_umount_blk;
1192 	int			hblks;
1193 	int			error;
1194 	char			*offset;
1195 
1196 	*clean = false;
1197 
1198 	/*
1199 	 * Look for unmount record. If we find it, then we know there was a
1200 	 * clean unmount. Since 'i' could be the last block in the physical
1201 	 * log, we convert to a log block before comparing to the head_blk.
1202 	 *
1203 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1204 	 * below. We won't want to clear the unmount record if there is one, so
1205 	 * we pass the lsn of the unmount record rather than the block after it.
1206 	 */
1207 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1208 		int	h_size = be32_to_cpu(rhead->h_size);
1209 		int	h_version = be32_to_cpu(rhead->h_version);
1210 
1211 		if ((h_version & XLOG_VERSION_2) &&
1212 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1213 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1214 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1215 				hblks++;
1216 		} else {
1217 			hblks = 1;
1218 		}
1219 	} else {
1220 		hblks = 1;
1221 	}
1222 
1223 	after_umount_blk = xlog_wrap_logbno(log,
1224 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1225 
1226 	if (*head_blk == after_umount_blk &&
1227 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1228 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1229 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1230 		if (error)
1231 			return error;
1232 
1233 		op_head = (struct xlog_op_header *)offset;
1234 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1235 			/*
1236 			 * Set tail and last sync so that newly written log
1237 			 * records will point recovery to after the current
1238 			 * unmount record.
1239 			 */
1240 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1241 					log->l_curr_cycle, after_umount_blk);
1242 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1243 					log->l_curr_cycle, after_umount_blk);
1244 			*tail_blk = after_umount_blk;
1245 
1246 			*clean = true;
1247 		}
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static void
1254 xlog_set_state(
1255 	struct xlog		*log,
1256 	xfs_daddr_t		head_blk,
1257 	struct xlog_rec_header	*rhead,
1258 	xfs_daddr_t		rhead_blk,
1259 	bool			bump_cycle)
1260 {
1261 	/*
1262 	 * Reset log values according to the state of the log when we
1263 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1264 	 * one because the next write starts a new cycle rather than
1265 	 * continuing the cycle of the last good log record.  At this
1266 	 * point we have guaranteed that all partial log records have been
1267 	 * accounted for.  Therefore, we know that the last good log record
1268 	 * written was complete and ended exactly on the end boundary
1269 	 * of the physical log.
1270 	 */
1271 	log->l_prev_block = rhead_blk;
1272 	log->l_curr_block = (int)head_blk;
1273 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1274 	if (bump_cycle)
1275 		log->l_curr_cycle++;
1276 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1277 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1278 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1279 					BBTOB(log->l_curr_block));
1280 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1281 					BBTOB(log->l_curr_block));
1282 }
1283 
1284 /*
1285  * Find the sync block number or the tail of the log.
1286  *
1287  * This will be the block number of the last record to have its
1288  * associated buffers synced to disk.  Every log record header has
1289  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1290  * to get a sync block number.  The only concern is to figure out which
1291  * log record header to believe.
1292  *
1293  * The following algorithm uses the log record header with the largest
1294  * lsn.  The entire log record does not need to be valid.  We only care
1295  * that the header is valid.
1296  *
1297  * We could speed up search by using current head_blk buffer, but it is not
1298  * available.
1299  */
1300 STATIC int
1301 xlog_find_tail(
1302 	struct xlog		*log,
1303 	xfs_daddr_t		*head_blk,
1304 	xfs_daddr_t		*tail_blk)
1305 {
1306 	xlog_rec_header_t	*rhead;
1307 	char			*offset = NULL;
1308 	char			*buffer;
1309 	int			error;
1310 	xfs_daddr_t		rhead_blk;
1311 	xfs_lsn_t		tail_lsn;
1312 	bool			wrapped = false;
1313 	bool			clean = false;
1314 
1315 	/*
1316 	 * Find previous log record
1317 	 */
1318 	if ((error = xlog_find_head(log, head_blk)))
1319 		return error;
1320 	ASSERT(*head_blk < INT_MAX);
1321 
1322 	buffer = xlog_alloc_buffer(log, 1);
1323 	if (!buffer)
1324 		return -ENOMEM;
1325 	if (*head_blk == 0) {				/* special case */
1326 		error = xlog_bread(log, 0, 1, buffer, &offset);
1327 		if (error)
1328 			goto done;
1329 
1330 		if (xlog_get_cycle(offset) == 0) {
1331 			*tail_blk = 0;
1332 			/* leave all other log inited values alone */
1333 			goto done;
1334 		}
1335 	}
1336 
1337 	/*
1338 	 * Search backwards through the log looking for the log record header
1339 	 * block. This wraps all the way back around to the head so something is
1340 	 * seriously wrong if we can't find it.
1341 	 */
1342 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1343 				      &rhead_blk, &rhead, &wrapped);
1344 	if (error < 0)
1345 		goto done;
1346 	if (!error) {
1347 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1348 		error = -EFSCORRUPTED;
1349 		goto done;
1350 	}
1351 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1352 
1353 	/*
1354 	 * Set the log state based on the current head record.
1355 	 */
1356 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1357 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1358 
1359 	/*
1360 	 * Look for an unmount record at the head of the log. This sets the log
1361 	 * state to determine whether recovery is necessary.
1362 	 */
1363 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1364 				       rhead_blk, buffer, &clean);
1365 	if (error)
1366 		goto done;
1367 
1368 	/*
1369 	 * Verify the log head if the log is not clean (e.g., we have anything
1370 	 * but an unmount record at the head). This uses CRC verification to
1371 	 * detect and trim torn writes. If discovered, CRC failures are
1372 	 * considered torn writes and the log head is trimmed accordingly.
1373 	 *
1374 	 * Note that we can only run CRC verification when the log is dirty
1375 	 * because there's no guarantee that the log data behind an unmount
1376 	 * record is compatible with the current architecture.
1377 	 */
1378 	if (!clean) {
1379 		xfs_daddr_t	orig_head = *head_blk;
1380 
1381 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1382 					 &rhead_blk, &rhead, &wrapped);
1383 		if (error)
1384 			goto done;
1385 
1386 		/* update in-core state again if the head changed */
1387 		if (*head_blk != orig_head) {
1388 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1389 				       wrapped);
1390 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1391 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1392 						       rhead, rhead_blk, buffer,
1393 						       &clean);
1394 			if (error)
1395 				goto done;
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * Note that the unmount was clean. If the unmount was not clean, we
1401 	 * need to know this to rebuild the superblock counters from the perag
1402 	 * headers if we have a filesystem using non-persistent counters.
1403 	 */
1404 	if (clean)
1405 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1406 
1407 	/*
1408 	 * Make sure that there are no blocks in front of the head
1409 	 * with the same cycle number as the head.  This can happen
1410 	 * because we allow multiple outstanding log writes concurrently,
1411 	 * and the later writes might make it out before earlier ones.
1412 	 *
1413 	 * We use the lsn from before modifying it so that we'll never
1414 	 * overwrite the unmount record after a clean unmount.
1415 	 *
1416 	 * Do this only if we are going to recover the filesystem
1417 	 *
1418 	 * NOTE: This used to say "if (!readonly)"
1419 	 * However on Linux, we can & do recover a read-only filesystem.
1420 	 * We only skip recovery if NORECOVERY is specified on mount,
1421 	 * in which case we would not be here.
1422 	 *
1423 	 * But... if the -device- itself is readonly, just skip this.
1424 	 * We can't recover this device anyway, so it won't matter.
1425 	 */
1426 	if (!xfs_readonly_buftarg(log->l_targ))
1427 		error = xlog_clear_stale_blocks(log, tail_lsn);
1428 
1429 done:
1430 	kmem_free(buffer);
1431 
1432 	if (error)
1433 		xfs_warn(log->l_mp, "failed to locate log tail");
1434 	return error;
1435 }
1436 
1437 /*
1438  * Is the log zeroed at all?
1439  *
1440  * The last binary search should be changed to perform an X block read
1441  * once X becomes small enough.  You can then search linearly through
1442  * the X blocks.  This will cut down on the number of reads we need to do.
1443  *
1444  * If the log is partially zeroed, this routine will pass back the blkno
1445  * of the first block with cycle number 0.  It won't have a complete LR
1446  * preceding it.
1447  *
1448  * Return:
1449  *	0  => the log is completely written to
1450  *	1 => use *blk_no as the first block of the log
1451  *	<0 => error has occurred
1452  */
1453 STATIC int
1454 xlog_find_zeroed(
1455 	struct xlog	*log,
1456 	xfs_daddr_t	*blk_no)
1457 {
1458 	char		*buffer;
1459 	char		*offset;
1460 	uint	        first_cycle, last_cycle;
1461 	xfs_daddr_t	new_blk, last_blk, start_blk;
1462 	xfs_daddr_t     num_scan_bblks;
1463 	int	        error, log_bbnum = log->l_logBBsize;
1464 
1465 	*blk_no = 0;
1466 
1467 	/* check totally zeroed log */
1468 	buffer = xlog_alloc_buffer(log, 1);
1469 	if (!buffer)
1470 		return -ENOMEM;
1471 	error = xlog_bread(log, 0, 1, buffer, &offset);
1472 	if (error)
1473 		goto out_free_buffer;
1474 
1475 	first_cycle = xlog_get_cycle(offset);
1476 	if (first_cycle == 0) {		/* completely zeroed log */
1477 		*blk_no = 0;
1478 		kmem_free(buffer);
1479 		return 1;
1480 	}
1481 
1482 	/* check partially zeroed log */
1483 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1484 	if (error)
1485 		goto out_free_buffer;
1486 
1487 	last_cycle = xlog_get_cycle(offset);
1488 	if (last_cycle != 0) {		/* log completely written to */
1489 		kmem_free(buffer);
1490 		return 0;
1491 	}
1492 
1493 	/* we have a partially zeroed log */
1494 	last_blk = log_bbnum-1;
1495 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1496 	if (error)
1497 		goto out_free_buffer;
1498 
1499 	/*
1500 	 * Validate the answer.  Because there is no way to guarantee that
1501 	 * the entire log is made up of log records which are the same size,
1502 	 * we scan over the defined maximum blocks.  At this point, the maximum
1503 	 * is not chosen to mean anything special.   XXXmiken
1504 	 */
1505 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1506 	ASSERT(num_scan_bblks <= INT_MAX);
1507 
1508 	if (last_blk < num_scan_bblks)
1509 		num_scan_bblks = last_blk;
1510 	start_blk = last_blk - num_scan_bblks;
1511 
1512 	/*
1513 	 * We search for any instances of cycle number 0 that occur before
1514 	 * our current estimate of the head.  What we're trying to detect is
1515 	 *        1 ... | 0 | 1 | 0...
1516 	 *                       ^ binary search ends here
1517 	 */
1518 	if ((error = xlog_find_verify_cycle(log, start_blk,
1519 					 (int)num_scan_bblks, 0, &new_blk)))
1520 		goto out_free_buffer;
1521 	if (new_blk != -1)
1522 		last_blk = new_blk;
1523 
1524 	/*
1525 	 * Potentially backup over partial log record write.  We don't need
1526 	 * to search the end of the log because we know it is zero.
1527 	 */
1528 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1529 	if (error == 1)
1530 		error = -EIO;
1531 	if (error)
1532 		goto out_free_buffer;
1533 
1534 	*blk_no = last_blk;
1535 out_free_buffer:
1536 	kmem_free(buffer);
1537 	if (error)
1538 		return error;
1539 	return 1;
1540 }
1541 
1542 /*
1543  * These are simple subroutines used by xlog_clear_stale_blocks() below
1544  * to initialize a buffer full of empty log record headers and write
1545  * them into the log.
1546  */
1547 STATIC void
1548 xlog_add_record(
1549 	struct xlog		*log,
1550 	char			*buf,
1551 	int			cycle,
1552 	int			block,
1553 	int			tail_cycle,
1554 	int			tail_block)
1555 {
1556 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1557 
1558 	memset(buf, 0, BBSIZE);
1559 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1560 	recp->h_cycle = cpu_to_be32(cycle);
1561 	recp->h_version = cpu_to_be32(
1562 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1563 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1564 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1565 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1566 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1567 }
1568 
1569 STATIC int
1570 xlog_write_log_records(
1571 	struct xlog	*log,
1572 	int		cycle,
1573 	int		start_block,
1574 	int		blocks,
1575 	int		tail_cycle,
1576 	int		tail_block)
1577 {
1578 	char		*offset;
1579 	char		*buffer;
1580 	int		balign, ealign;
1581 	int		sectbb = log->l_sectBBsize;
1582 	int		end_block = start_block + blocks;
1583 	int		bufblks;
1584 	int		error = 0;
1585 	int		i, j = 0;
1586 
1587 	/*
1588 	 * Greedily allocate a buffer big enough to handle the full
1589 	 * range of basic blocks to be written.  If that fails, try
1590 	 * a smaller size.  We need to be able to write at least a
1591 	 * log sector, or we're out of luck.
1592 	 */
1593 	bufblks = 1 << ffs(blocks);
1594 	while (bufblks > log->l_logBBsize)
1595 		bufblks >>= 1;
1596 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1597 		bufblks >>= 1;
1598 		if (bufblks < sectbb)
1599 			return -ENOMEM;
1600 	}
1601 
1602 	/* We may need to do a read at the start to fill in part of
1603 	 * the buffer in the starting sector not covered by the first
1604 	 * write below.
1605 	 */
1606 	balign = round_down(start_block, sectbb);
1607 	if (balign != start_block) {
1608 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1609 		if (error)
1610 			goto out_free_buffer;
1611 
1612 		j = start_block - balign;
1613 	}
1614 
1615 	for (i = start_block; i < end_block; i += bufblks) {
1616 		int		bcount, endcount;
1617 
1618 		bcount = min(bufblks, end_block - start_block);
1619 		endcount = bcount - j;
1620 
1621 		/* We may need to do a read at the end to fill in part of
1622 		 * the buffer in the final sector not covered by the write.
1623 		 * If this is the same sector as the above read, skip it.
1624 		 */
1625 		ealign = round_down(end_block, sectbb);
1626 		if (j == 0 && (start_block + endcount > ealign)) {
1627 			error = xlog_bread_noalign(log, ealign, sectbb,
1628 					buffer + BBTOB(ealign - start_block));
1629 			if (error)
1630 				break;
1631 
1632 		}
1633 
1634 		offset = buffer + xlog_align(log, start_block);
1635 		for (; j < endcount; j++) {
1636 			xlog_add_record(log, offset, cycle, i+j,
1637 					tail_cycle, tail_block);
1638 			offset += BBSIZE;
1639 		}
1640 		error = xlog_bwrite(log, start_block, endcount, buffer);
1641 		if (error)
1642 			break;
1643 		start_block += endcount;
1644 		j = 0;
1645 	}
1646 
1647 out_free_buffer:
1648 	kmem_free(buffer);
1649 	return error;
1650 }
1651 
1652 /*
1653  * This routine is called to blow away any incomplete log writes out
1654  * in front of the log head.  We do this so that we won't become confused
1655  * if we come up, write only a little bit more, and then crash again.
1656  * If we leave the partial log records out there, this situation could
1657  * cause us to think those partial writes are valid blocks since they
1658  * have the current cycle number.  We get rid of them by overwriting them
1659  * with empty log records with the old cycle number rather than the
1660  * current one.
1661  *
1662  * The tail lsn is passed in rather than taken from
1663  * the log so that we will not write over the unmount record after a
1664  * clean unmount in a 512 block log.  Doing so would leave the log without
1665  * any valid log records in it until a new one was written.  If we crashed
1666  * during that time we would not be able to recover.
1667  */
1668 STATIC int
1669 xlog_clear_stale_blocks(
1670 	struct xlog	*log,
1671 	xfs_lsn_t	tail_lsn)
1672 {
1673 	int		tail_cycle, head_cycle;
1674 	int		tail_block, head_block;
1675 	int		tail_distance, max_distance;
1676 	int		distance;
1677 	int		error;
1678 
1679 	tail_cycle = CYCLE_LSN(tail_lsn);
1680 	tail_block = BLOCK_LSN(tail_lsn);
1681 	head_cycle = log->l_curr_cycle;
1682 	head_block = log->l_curr_block;
1683 
1684 	/*
1685 	 * Figure out the distance between the new head of the log
1686 	 * and the tail.  We want to write over any blocks beyond the
1687 	 * head that we may have written just before the crash, but
1688 	 * we don't want to overwrite the tail of the log.
1689 	 */
1690 	if (head_cycle == tail_cycle) {
1691 		/*
1692 		 * The tail is behind the head in the physical log,
1693 		 * so the distance from the head to the tail is the
1694 		 * distance from the head to the end of the log plus
1695 		 * the distance from the beginning of the log to the
1696 		 * tail.
1697 		 */
1698 		if (XFS_IS_CORRUPT(log->l_mp,
1699 				   head_block < tail_block ||
1700 				   head_block >= log->l_logBBsize))
1701 			return -EFSCORRUPTED;
1702 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1703 	} else {
1704 		/*
1705 		 * The head is behind the tail in the physical log,
1706 		 * so the distance from the head to the tail is just
1707 		 * the tail block minus the head block.
1708 		 */
1709 		if (XFS_IS_CORRUPT(log->l_mp,
1710 				   head_block >= tail_block ||
1711 				   head_cycle != tail_cycle + 1))
1712 			return -EFSCORRUPTED;
1713 		tail_distance = tail_block - head_block;
1714 	}
1715 
1716 	/*
1717 	 * If the head is right up against the tail, we can't clear
1718 	 * anything.
1719 	 */
1720 	if (tail_distance <= 0) {
1721 		ASSERT(tail_distance == 0);
1722 		return 0;
1723 	}
1724 
1725 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1726 	/*
1727 	 * Take the smaller of the maximum amount of outstanding I/O
1728 	 * we could have and the distance to the tail to clear out.
1729 	 * We take the smaller so that we don't overwrite the tail and
1730 	 * we don't waste all day writing from the head to the tail
1731 	 * for no reason.
1732 	 */
1733 	max_distance = min(max_distance, tail_distance);
1734 
1735 	if ((head_block + max_distance) <= log->l_logBBsize) {
1736 		/*
1737 		 * We can stomp all the blocks we need to without
1738 		 * wrapping around the end of the log.  Just do it
1739 		 * in a single write.  Use the cycle number of the
1740 		 * current cycle minus one so that the log will look like:
1741 		 *     n ... | n - 1 ...
1742 		 */
1743 		error = xlog_write_log_records(log, (head_cycle - 1),
1744 				head_block, max_distance, tail_cycle,
1745 				tail_block);
1746 		if (error)
1747 			return error;
1748 	} else {
1749 		/*
1750 		 * We need to wrap around the end of the physical log in
1751 		 * order to clear all the blocks.  Do it in two separate
1752 		 * I/Os.  The first write should be from the head to the
1753 		 * end of the physical log, and it should use the current
1754 		 * cycle number minus one just like above.
1755 		 */
1756 		distance = log->l_logBBsize - head_block;
1757 		error = xlog_write_log_records(log, (head_cycle - 1),
1758 				head_block, distance, tail_cycle,
1759 				tail_block);
1760 
1761 		if (error)
1762 			return error;
1763 
1764 		/*
1765 		 * Now write the blocks at the start of the physical log.
1766 		 * This writes the remainder of the blocks we want to clear.
1767 		 * It uses the current cycle number since we're now on the
1768 		 * same cycle as the head so that we get:
1769 		 *    n ... n ... | n - 1 ...
1770 		 *    ^^^^^ blocks we're writing
1771 		 */
1772 		distance = max_distance - (log->l_logBBsize - head_block);
1773 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1774 				tail_cycle, tail_block);
1775 		if (error)
1776 			return error;
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 /******************************************************************************
1783  *
1784  *		Log recover routines
1785  *
1786  ******************************************************************************
1787  */
1788 
1789 /*
1790  * Sort the log items in the transaction.
1791  *
1792  * The ordering constraints are defined by the inode allocation and unlink
1793  * behaviour. The rules are:
1794  *
1795  *	1. Every item is only logged once in a given transaction. Hence it
1796  *	   represents the last logged state of the item. Hence ordering is
1797  *	   dependent on the order in which operations need to be performed so
1798  *	   required initial conditions are always met.
1799  *
1800  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1801  *	   there's nothing to replay from them so we can simply cull them
1802  *	   from the transaction. However, we can't do that until after we've
1803  *	   replayed all the other items because they may be dependent on the
1804  *	   cancelled buffer and replaying the cancelled buffer can remove it
1805  *	   form the cancelled buffer table. Hence they have tobe done last.
1806  *
1807  *	3. Inode allocation buffers must be replayed before inode items that
1808  *	   read the buffer and replay changes into it. For filesystems using the
1809  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1810  *	   treated the same as inode allocation buffers as they create and
1811  *	   initialise the buffers directly.
1812  *
1813  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1814  *	   This ensures that inodes are completely flushed to the inode buffer
1815  *	   in a "free" state before we remove the unlinked inode list pointer.
1816  *
1817  * Hence the ordering needs to be inode allocation buffers first, inode items
1818  * second, inode unlink buffers third and cancelled buffers last.
1819  *
1820  * But there's a problem with that - we can't tell an inode allocation buffer
1821  * apart from a regular buffer, so we can't separate them. We can, however,
1822  * tell an inode unlink buffer from the others, and so we can separate them out
1823  * from all the other buffers and move them to last.
1824  *
1825  * Hence, 4 lists, in order from head to tail:
1826  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1827  *	- item_list for all non-buffer items
1828  *	- inode_buffer_list for inode unlink buffers
1829  *	- cancel_list for the cancelled buffers
1830  *
1831  * Note that we add objects to the tail of the lists so that first-to-last
1832  * ordering is preserved within the lists. Adding objects to the head of the
1833  * list means when we traverse from the head we walk them in last-to-first
1834  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1835  * but for all other items there may be specific ordering that we need to
1836  * preserve.
1837  */
1838 STATIC int
1839 xlog_recover_reorder_trans(
1840 	struct xlog		*log,
1841 	struct xlog_recover	*trans,
1842 	int			pass)
1843 {
1844 	xlog_recover_item_t	*item, *n;
1845 	int			error = 0;
1846 	LIST_HEAD(sort_list);
1847 	LIST_HEAD(cancel_list);
1848 	LIST_HEAD(buffer_list);
1849 	LIST_HEAD(inode_buffer_list);
1850 	LIST_HEAD(inode_list);
1851 
1852 	list_splice_init(&trans->r_itemq, &sort_list);
1853 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1854 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1855 
1856 		switch (ITEM_TYPE(item)) {
1857 		case XFS_LI_ICREATE:
1858 			list_move_tail(&item->ri_list, &buffer_list);
1859 			break;
1860 		case XFS_LI_BUF:
1861 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1862 				trace_xfs_log_recover_item_reorder_head(log,
1863 							trans, item, pass);
1864 				list_move(&item->ri_list, &cancel_list);
1865 				break;
1866 			}
1867 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1868 				list_move(&item->ri_list, &inode_buffer_list);
1869 				break;
1870 			}
1871 			list_move_tail(&item->ri_list, &buffer_list);
1872 			break;
1873 		case XFS_LI_INODE:
1874 		case XFS_LI_DQUOT:
1875 		case XFS_LI_QUOTAOFF:
1876 		case XFS_LI_EFD:
1877 		case XFS_LI_EFI:
1878 		case XFS_LI_RUI:
1879 		case XFS_LI_RUD:
1880 		case XFS_LI_CUI:
1881 		case XFS_LI_CUD:
1882 		case XFS_LI_BUI:
1883 		case XFS_LI_BUD:
1884 			trace_xfs_log_recover_item_reorder_tail(log,
1885 							trans, item, pass);
1886 			list_move_tail(&item->ri_list, &inode_list);
1887 			break;
1888 		default:
1889 			xfs_warn(log->l_mp,
1890 				"%s: unrecognized type of log operation",
1891 				__func__);
1892 			ASSERT(0);
1893 			/*
1894 			 * return the remaining items back to the transaction
1895 			 * item list so they can be freed in caller.
1896 			 */
1897 			if (!list_empty(&sort_list))
1898 				list_splice_init(&sort_list, &trans->r_itemq);
1899 			error = -EIO;
1900 			goto out;
1901 		}
1902 	}
1903 out:
1904 	ASSERT(list_empty(&sort_list));
1905 	if (!list_empty(&buffer_list))
1906 		list_splice(&buffer_list, &trans->r_itemq);
1907 	if (!list_empty(&inode_list))
1908 		list_splice_tail(&inode_list, &trans->r_itemq);
1909 	if (!list_empty(&inode_buffer_list))
1910 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1911 	if (!list_empty(&cancel_list))
1912 		list_splice_tail(&cancel_list, &trans->r_itemq);
1913 	return error;
1914 }
1915 
1916 /*
1917  * Build up the table of buf cancel records so that we don't replay
1918  * cancelled data in the second pass.  For buffer records that are
1919  * not cancel records, there is nothing to do here so we just return.
1920  *
1921  * If we get a cancel record which is already in the table, this indicates
1922  * that the buffer was cancelled multiple times.  In order to ensure
1923  * that during pass 2 we keep the record in the table until we reach its
1924  * last occurrence in the log, we keep a reference count in the cancel
1925  * record in the table to tell us how many times we expect to see this
1926  * record during the second pass.
1927  */
1928 STATIC int
1929 xlog_recover_buffer_pass1(
1930 	struct xlog			*log,
1931 	struct xlog_recover_item	*item)
1932 {
1933 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1934 	struct list_head	*bucket;
1935 	struct xfs_buf_cancel	*bcp;
1936 
1937 	/*
1938 	 * If this isn't a cancel buffer item, then just return.
1939 	 */
1940 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1941 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1942 		return 0;
1943 	}
1944 
1945 	/*
1946 	 * Insert an xfs_buf_cancel record into the hash table of them.
1947 	 * If there is already an identical record, bump its reference count.
1948 	 */
1949 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1950 	list_for_each_entry(bcp, bucket, bc_list) {
1951 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1952 		    bcp->bc_len == buf_f->blf_len) {
1953 			bcp->bc_refcount++;
1954 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1955 			return 0;
1956 		}
1957 	}
1958 
1959 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1960 	bcp->bc_blkno = buf_f->blf_blkno;
1961 	bcp->bc_len = buf_f->blf_len;
1962 	bcp->bc_refcount = 1;
1963 	list_add_tail(&bcp->bc_list, bucket);
1964 
1965 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1966 	return 0;
1967 }
1968 
1969 /*
1970  * Check to see whether the buffer being recovered has a corresponding
1971  * entry in the buffer cancel record table. If it is, return the cancel
1972  * buffer structure to the caller.
1973  */
1974 STATIC struct xfs_buf_cancel *
1975 xlog_peek_buffer_cancelled(
1976 	struct xlog		*log,
1977 	xfs_daddr_t		blkno,
1978 	uint			len,
1979 	unsigned short			flags)
1980 {
1981 	struct list_head	*bucket;
1982 	struct xfs_buf_cancel	*bcp;
1983 
1984 	if (!log->l_buf_cancel_table) {
1985 		/* empty table means no cancelled buffers in the log */
1986 		ASSERT(!(flags & XFS_BLF_CANCEL));
1987 		return NULL;
1988 	}
1989 
1990 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1991 	list_for_each_entry(bcp, bucket, bc_list) {
1992 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1993 			return bcp;
1994 	}
1995 
1996 	/*
1997 	 * We didn't find a corresponding entry in the table, so return 0 so
1998 	 * that the buffer is NOT cancelled.
1999 	 */
2000 	ASSERT(!(flags & XFS_BLF_CANCEL));
2001 	return NULL;
2002 }
2003 
2004 /*
2005  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2006  * otherwise return 0.  If the buffer is actually a buffer cancel item
2007  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2008  * table and remove it from the table if this is the last reference.
2009  *
2010  * We remove the cancel record from the table when we encounter its last
2011  * occurrence in the log so that if the same buffer is re-used again after its
2012  * last cancellation we actually replay the changes made at that point.
2013  */
2014 STATIC int
2015 xlog_check_buffer_cancelled(
2016 	struct xlog		*log,
2017 	xfs_daddr_t		blkno,
2018 	uint			len,
2019 	unsigned short			flags)
2020 {
2021 	struct xfs_buf_cancel	*bcp;
2022 
2023 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2024 	if (!bcp)
2025 		return 0;
2026 
2027 	/*
2028 	 * We've go a match, so return 1 so that the recovery of this buffer
2029 	 * is cancelled.  If this buffer is actually a buffer cancel log
2030 	 * item, then decrement the refcount on the one in the table and
2031 	 * remove it if this is the last reference.
2032 	 */
2033 	if (flags & XFS_BLF_CANCEL) {
2034 		if (--bcp->bc_refcount == 0) {
2035 			list_del(&bcp->bc_list);
2036 			kmem_free(bcp);
2037 		}
2038 	}
2039 	return 1;
2040 }
2041 
2042 /*
2043  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2044  * data which should be recovered is that which corresponds to the
2045  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2046  * data for the inodes is always logged through the inodes themselves rather
2047  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2048  *
2049  * The only time when buffers full of inodes are fully recovered is when the
2050  * buffer is full of newly allocated inodes.  In this case the buffer will
2051  * not be marked as an inode buffer and so will be sent to
2052  * xlog_recover_do_reg_buffer() below during recovery.
2053  */
2054 STATIC int
2055 xlog_recover_do_inode_buffer(
2056 	struct xfs_mount	*mp,
2057 	xlog_recover_item_t	*item,
2058 	struct xfs_buf		*bp,
2059 	xfs_buf_log_format_t	*buf_f)
2060 {
2061 	int			i;
2062 	int			item_index = 0;
2063 	int			bit = 0;
2064 	int			nbits = 0;
2065 	int			reg_buf_offset = 0;
2066 	int			reg_buf_bytes = 0;
2067 	int			next_unlinked_offset;
2068 	int			inodes_per_buf;
2069 	xfs_agino_t		*logged_nextp;
2070 	xfs_agino_t		*buffer_nextp;
2071 
2072 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2073 
2074 	/*
2075 	 * Post recovery validation only works properly on CRC enabled
2076 	 * filesystems.
2077 	 */
2078 	if (xfs_sb_version_hascrc(&mp->m_sb))
2079 		bp->b_ops = &xfs_inode_buf_ops;
2080 
2081 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2082 	for (i = 0; i < inodes_per_buf; i++) {
2083 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2084 			offsetof(xfs_dinode_t, di_next_unlinked);
2085 
2086 		while (next_unlinked_offset >=
2087 		       (reg_buf_offset + reg_buf_bytes)) {
2088 			/*
2089 			 * The next di_next_unlinked field is beyond
2090 			 * the current logged region.  Find the next
2091 			 * logged region that contains or is beyond
2092 			 * the current di_next_unlinked field.
2093 			 */
2094 			bit += nbits;
2095 			bit = xfs_next_bit(buf_f->blf_data_map,
2096 					   buf_f->blf_map_size, bit);
2097 
2098 			/*
2099 			 * If there are no more logged regions in the
2100 			 * buffer, then we're done.
2101 			 */
2102 			if (bit == -1)
2103 				return 0;
2104 
2105 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2106 						buf_f->blf_map_size, bit);
2107 			ASSERT(nbits > 0);
2108 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2109 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2110 			item_index++;
2111 		}
2112 
2113 		/*
2114 		 * If the current logged region starts after the current
2115 		 * di_next_unlinked field, then move on to the next
2116 		 * di_next_unlinked field.
2117 		 */
2118 		if (next_unlinked_offset < reg_buf_offset)
2119 			continue;
2120 
2121 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2122 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2123 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2124 
2125 		/*
2126 		 * The current logged region contains a copy of the
2127 		 * current di_next_unlinked field.  Extract its value
2128 		 * and copy it to the buffer copy.
2129 		 */
2130 		logged_nextp = item->ri_buf[item_index].i_addr +
2131 				next_unlinked_offset - reg_buf_offset;
2132 		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
2133 			xfs_alert(mp,
2134 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2135 		"Trying to replay bad (0) inode di_next_unlinked field.",
2136 				item, bp);
2137 			return -EFSCORRUPTED;
2138 		}
2139 
2140 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2141 		*buffer_nextp = *logged_nextp;
2142 
2143 		/*
2144 		 * If necessary, recalculate the CRC in the on-disk inode. We
2145 		 * have to leave the inode in a consistent state for whoever
2146 		 * reads it next....
2147 		 */
2148 		xfs_dinode_calc_crc(mp,
2149 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2150 
2151 	}
2152 
2153 	return 0;
2154 }
2155 
2156 /*
2157  * V5 filesystems know the age of the buffer on disk being recovered. We can
2158  * have newer objects on disk than we are replaying, and so for these cases we
2159  * don't want to replay the current change as that will make the buffer contents
2160  * temporarily invalid on disk.
2161  *
2162  * The magic number might not match the buffer type we are going to recover
2163  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2164  * extract the LSN of the existing object in the buffer based on it's current
2165  * magic number.  If we don't recognise the magic number in the buffer, then
2166  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2167  * so can recover the buffer.
2168  *
2169  * Note: we cannot rely solely on magic number matches to determine that the
2170  * buffer has a valid LSN - we also need to verify that it belongs to this
2171  * filesystem, so we need to extract the object's LSN and compare it to that
2172  * which we read from the superblock. If the UUIDs don't match, then we've got a
2173  * stale metadata block from an old filesystem instance that we need to recover
2174  * over the top of.
2175  */
2176 static xfs_lsn_t
2177 xlog_recover_get_buf_lsn(
2178 	struct xfs_mount	*mp,
2179 	struct xfs_buf		*bp)
2180 {
2181 	uint32_t		magic32;
2182 	uint16_t		magic16;
2183 	uint16_t		magicda;
2184 	void			*blk = bp->b_addr;
2185 	uuid_t			*uuid;
2186 	xfs_lsn_t		lsn = -1;
2187 
2188 	/* v4 filesystems always recover immediately */
2189 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2190 		goto recover_immediately;
2191 
2192 	magic32 = be32_to_cpu(*(__be32 *)blk);
2193 	switch (magic32) {
2194 	case XFS_ABTB_CRC_MAGIC:
2195 	case XFS_ABTC_CRC_MAGIC:
2196 	case XFS_ABTB_MAGIC:
2197 	case XFS_ABTC_MAGIC:
2198 	case XFS_RMAP_CRC_MAGIC:
2199 	case XFS_REFC_CRC_MAGIC:
2200 	case XFS_IBT_CRC_MAGIC:
2201 	case XFS_IBT_MAGIC: {
2202 		struct xfs_btree_block *btb = blk;
2203 
2204 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2205 		uuid = &btb->bb_u.s.bb_uuid;
2206 		break;
2207 	}
2208 	case XFS_BMAP_CRC_MAGIC:
2209 	case XFS_BMAP_MAGIC: {
2210 		struct xfs_btree_block *btb = blk;
2211 
2212 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2213 		uuid = &btb->bb_u.l.bb_uuid;
2214 		break;
2215 	}
2216 	case XFS_AGF_MAGIC:
2217 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2218 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2219 		break;
2220 	case XFS_AGFL_MAGIC:
2221 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2222 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2223 		break;
2224 	case XFS_AGI_MAGIC:
2225 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2226 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2227 		break;
2228 	case XFS_SYMLINK_MAGIC:
2229 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2230 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2231 		break;
2232 	case XFS_DIR3_BLOCK_MAGIC:
2233 	case XFS_DIR3_DATA_MAGIC:
2234 	case XFS_DIR3_FREE_MAGIC:
2235 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2236 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2237 		break;
2238 	case XFS_ATTR3_RMT_MAGIC:
2239 		/*
2240 		 * Remote attr blocks are written synchronously, rather than
2241 		 * being logged. That means they do not contain a valid LSN
2242 		 * (i.e. transactionally ordered) in them, and hence any time we
2243 		 * see a buffer to replay over the top of a remote attribute
2244 		 * block we should simply do so.
2245 		 */
2246 		goto recover_immediately;
2247 	case XFS_SB_MAGIC:
2248 		/*
2249 		 * superblock uuids are magic. We may or may not have a
2250 		 * sb_meta_uuid on disk, but it will be set in the in-core
2251 		 * superblock. We set the uuid pointer for verification
2252 		 * according to the superblock feature mask to ensure we check
2253 		 * the relevant UUID in the superblock.
2254 		 */
2255 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2256 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2257 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2258 		else
2259 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2260 		break;
2261 	default:
2262 		break;
2263 	}
2264 
2265 	if (lsn != (xfs_lsn_t)-1) {
2266 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2267 			goto recover_immediately;
2268 		return lsn;
2269 	}
2270 
2271 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2272 	switch (magicda) {
2273 	case XFS_DIR3_LEAF1_MAGIC:
2274 	case XFS_DIR3_LEAFN_MAGIC:
2275 	case XFS_DA3_NODE_MAGIC:
2276 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2277 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2278 		break;
2279 	default:
2280 		break;
2281 	}
2282 
2283 	if (lsn != (xfs_lsn_t)-1) {
2284 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2285 			goto recover_immediately;
2286 		return lsn;
2287 	}
2288 
2289 	/*
2290 	 * We do individual object checks on dquot and inode buffers as they
2291 	 * have their own individual LSN records. Also, we could have a stale
2292 	 * buffer here, so we have to at least recognise these buffer types.
2293 	 *
2294 	 * A notd complexity here is inode unlinked list processing - it logs
2295 	 * the inode directly in the buffer, but we don't know which inodes have
2296 	 * been modified, and there is no global buffer LSN. Hence we need to
2297 	 * recover all inode buffer types immediately. This problem will be
2298 	 * fixed by logical logging of the unlinked list modifications.
2299 	 */
2300 	magic16 = be16_to_cpu(*(__be16 *)blk);
2301 	switch (magic16) {
2302 	case XFS_DQUOT_MAGIC:
2303 	case XFS_DINODE_MAGIC:
2304 		goto recover_immediately;
2305 	default:
2306 		break;
2307 	}
2308 
2309 	/* unknown buffer contents, recover immediately */
2310 
2311 recover_immediately:
2312 	return (xfs_lsn_t)-1;
2313 
2314 }
2315 
2316 /*
2317  * Validate the recovered buffer is of the correct type and attach the
2318  * appropriate buffer operations to them for writeback. Magic numbers are in a
2319  * few places:
2320  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2321  *	the first 32 bits of the buffer (most blocks),
2322  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2323  */
2324 static void
2325 xlog_recover_validate_buf_type(
2326 	struct xfs_mount	*mp,
2327 	struct xfs_buf		*bp,
2328 	xfs_buf_log_format_t	*buf_f,
2329 	xfs_lsn_t		current_lsn)
2330 {
2331 	struct xfs_da_blkinfo	*info = bp->b_addr;
2332 	uint32_t		magic32;
2333 	uint16_t		magic16;
2334 	uint16_t		magicda;
2335 	char			*warnmsg = NULL;
2336 
2337 	/*
2338 	 * We can only do post recovery validation on items on CRC enabled
2339 	 * fielsystems as we need to know when the buffer was written to be able
2340 	 * to determine if we should have replayed the item. If we replay old
2341 	 * metadata over a newer buffer, then it will enter a temporarily
2342 	 * inconsistent state resulting in verification failures. Hence for now
2343 	 * just avoid the verification stage for non-crc filesystems
2344 	 */
2345 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2346 		return;
2347 
2348 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2349 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2350 	magicda = be16_to_cpu(info->magic);
2351 	switch (xfs_blft_from_flags(buf_f)) {
2352 	case XFS_BLFT_BTREE_BUF:
2353 		switch (magic32) {
2354 		case XFS_ABTB_CRC_MAGIC:
2355 		case XFS_ABTB_MAGIC:
2356 			bp->b_ops = &xfs_bnobt_buf_ops;
2357 			break;
2358 		case XFS_ABTC_CRC_MAGIC:
2359 		case XFS_ABTC_MAGIC:
2360 			bp->b_ops = &xfs_cntbt_buf_ops;
2361 			break;
2362 		case XFS_IBT_CRC_MAGIC:
2363 		case XFS_IBT_MAGIC:
2364 			bp->b_ops = &xfs_inobt_buf_ops;
2365 			break;
2366 		case XFS_FIBT_CRC_MAGIC:
2367 		case XFS_FIBT_MAGIC:
2368 			bp->b_ops = &xfs_finobt_buf_ops;
2369 			break;
2370 		case XFS_BMAP_CRC_MAGIC:
2371 		case XFS_BMAP_MAGIC:
2372 			bp->b_ops = &xfs_bmbt_buf_ops;
2373 			break;
2374 		case XFS_RMAP_CRC_MAGIC:
2375 			bp->b_ops = &xfs_rmapbt_buf_ops;
2376 			break;
2377 		case XFS_REFC_CRC_MAGIC:
2378 			bp->b_ops = &xfs_refcountbt_buf_ops;
2379 			break;
2380 		default:
2381 			warnmsg = "Bad btree block magic!";
2382 			break;
2383 		}
2384 		break;
2385 	case XFS_BLFT_AGF_BUF:
2386 		if (magic32 != XFS_AGF_MAGIC) {
2387 			warnmsg = "Bad AGF block magic!";
2388 			break;
2389 		}
2390 		bp->b_ops = &xfs_agf_buf_ops;
2391 		break;
2392 	case XFS_BLFT_AGFL_BUF:
2393 		if (magic32 != XFS_AGFL_MAGIC) {
2394 			warnmsg = "Bad AGFL block magic!";
2395 			break;
2396 		}
2397 		bp->b_ops = &xfs_agfl_buf_ops;
2398 		break;
2399 	case XFS_BLFT_AGI_BUF:
2400 		if (magic32 != XFS_AGI_MAGIC) {
2401 			warnmsg = "Bad AGI block magic!";
2402 			break;
2403 		}
2404 		bp->b_ops = &xfs_agi_buf_ops;
2405 		break;
2406 	case XFS_BLFT_UDQUOT_BUF:
2407 	case XFS_BLFT_PDQUOT_BUF:
2408 	case XFS_BLFT_GDQUOT_BUF:
2409 #ifdef CONFIG_XFS_QUOTA
2410 		if (magic16 != XFS_DQUOT_MAGIC) {
2411 			warnmsg = "Bad DQUOT block magic!";
2412 			break;
2413 		}
2414 		bp->b_ops = &xfs_dquot_buf_ops;
2415 #else
2416 		xfs_alert(mp,
2417 	"Trying to recover dquots without QUOTA support built in!");
2418 		ASSERT(0);
2419 #endif
2420 		break;
2421 	case XFS_BLFT_DINO_BUF:
2422 		if (magic16 != XFS_DINODE_MAGIC) {
2423 			warnmsg = "Bad INODE block magic!";
2424 			break;
2425 		}
2426 		bp->b_ops = &xfs_inode_buf_ops;
2427 		break;
2428 	case XFS_BLFT_SYMLINK_BUF:
2429 		if (magic32 != XFS_SYMLINK_MAGIC) {
2430 			warnmsg = "Bad symlink block magic!";
2431 			break;
2432 		}
2433 		bp->b_ops = &xfs_symlink_buf_ops;
2434 		break;
2435 	case XFS_BLFT_DIR_BLOCK_BUF:
2436 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2437 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2438 			warnmsg = "Bad dir block magic!";
2439 			break;
2440 		}
2441 		bp->b_ops = &xfs_dir3_block_buf_ops;
2442 		break;
2443 	case XFS_BLFT_DIR_DATA_BUF:
2444 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2445 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2446 			warnmsg = "Bad dir data magic!";
2447 			break;
2448 		}
2449 		bp->b_ops = &xfs_dir3_data_buf_ops;
2450 		break;
2451 	case XFS_BLFT_DIR_FREE_BUF:
2452 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2453 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2454 			warnmsg = "Bad dir3 free magic!";
2455 			break;
2456 		}
2457 		bp->b_ops = &xfs_dir3_free_buf_ops;
2458 		break;
2459 	case XFS_BLFT_DIR_LEAF1_BUF:
2460 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2461 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2462 			warnmsg = "Bad dir leaf1 magic!";
2463 			break;
2464 		}
2465 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2466 		break;
2467 	case XFS_BLFT_DIR_LEAFN_BUF:
2468 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2469 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2470 			warnmsg = "Bad dir leafn magic!";
2471 			break;
2472 		}
2473 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2474 		break;
2475 	case XFS_BLFT_DA_NODE_BUF:
2476 		if (magicda != XFS_DA_NODE_MAGIC &&
2477 		    magicda != XFS_DA3_NODE_MAGIC) {
2478 			warnmsg = "Bad da node magic!";
2479 			break;
2480 		}
2481 		bp->b_ops = &xfs_da3_node_buf_ops;
2482 		break;
2483 	case XFS_BLFT_ATTR_LEAF_BUF:
2484 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2485 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2486 			warnmsg = "Bad attr leaf magic!";
2487 			break;
2488 		}
2489 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2490 		break;
2491 	case XFS_BLFT_ATTR_RMT_BUF:
2492 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2493 			warnmsg = "Bad attr remote magic!";
2494 			break;
2495 		}
2496 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2497 		break;
2498 	case XFS_BLFT_SB_BUF:
2499 		if (magic32 != XFS_SB_MAGIC) {
2500 			warnmsg = "Bad SB block magic!";
2501 			break;
2502 		}
2503 		bp->b_ops = &xfs_sb_buf_ops;
2504 		break;
2505 #ifdef CONFIG_XFS_RT
2506 	case XFS_BLFT_RTBITMAP_BUF:
2507 	case XFS_BLFT_RTSUMMARY_BUF:
2508 		/* no magic numbers for verification of RT buffers */
2509 		bp->b_ops = &xfs_rtbuf_ops;
2510 		break;
2511 #endif /* CONFIG_XFS_RT */
2512 	default:
2513 		xfs_warn(mp, "Unknown buffer type %d!",
2514 			 xfs_blft_from_flags(buf_f));
2515 		break;
2516 	}
2517 
2518 	/*
2519 	 * Nothing else to do in the case of a NULL current LSN as this means
2520 	 * the buffer is more recent than the change in the log and will be
2521 	 * skipped.
2522 	 */
2523 	if (current_lsn == NULLCOMMITLSN)
2524 		return;
2525 
2526 	if (warnmsg) {
2527 		xfs_warn(mp, warnmsg);
2528 		ASSERT(0);
2529 	}
2530 
2531 	/*
2532 	 * We must update the metadata LSN of the buffer as it is written out to
2533 	 * ensure that older transactions never replay over this one and corrupt
2534 	 * the buffer. This can occur if log recovery is interrupted at some
2535 	 * point after the current transaction completes, at which point a
2536 	 * subsequent mount starts recovery from the beginning.
2537 	 *
2538 	 * Write verifiers update the metadata LSN from log items attached to
2539 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2540 	 * the verifier. We'll clean it up in our ->iodone() callback.
2541 	 */
2542 	if (bp->b_ops) {
2543 		struct xfs_buf_log_item	*bip;
2544 
2545 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2546 		bp->b_iodone = xlog_recover_iodone;
2547 		xfs_buf_item_init(bp, mp);
2548 		bip = bp->b_log_item;
2549 		bip->bli_item.li_lsn = current_lsn;
2550 	}
2551 }
2552 
2553 /*
2554  * Perform a 'normal' buffer recovery.  Each logged region of the
2555  * buffer should be copied over the corresponding region in the
2556  * given buffer.  The bitmap in the buf log format structure indicates
2557  * where to place the logged data.
2558  */
2559 STATIC void
2560 xlog_recover_do_reg_buffer(
2561 	struct xfs_mount	*mp,
2562 	xlog_recover_item_t	*item,
2563 	struct xfs_buf		*bp,
2564 	xfs_buf_log_format_t	*buf_f,
2565 	xfs_lsn_t		current_lsn)
2566 {
2567 	int			i;
2568 	int			bit;
2569 	int			nbits;
2570 	xfs_failaddr_t		fa;
2571 	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);
2572 
2573 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2574 
2575 	bit = 0;
2576 	i = 1;  /* 0 is the buf format structure */
2577 	while (1) {
2578 		bit = xfs_next_bit(buf_f->blf_data_map,
2579 				   buf_f->blf_map_size, bit);
2580 		if (bit == -1)
2581 			break;
2582 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2583 					buf_f->blf_map_size, bit);
2584 		ASSERT(nbits > 0);
2585 		ASSERT(item->ri_buf[i].i_addr != NULL);
2586 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2587 		ASSERT(BBTOB(bp->b_length) >=
2588 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2589 
2590 		/*
2591 		 * The dirty regions logged in the buffer, even though
2592 		 * contiguous, may span multiple chunks. This is because the
2593 		 * dirty region may span a physical page boundary in a buffer
2594 		 * and hence be split into two separate vectors for writing into
2595 		 * the log. Hence we need to trim nbits back to the length of
2596 		 * the current region being copied out of the log.
2597 		 */
2598 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2599 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2600 
2601 		/*
2602 		 * Do a sanity check if this is a dquot buffer. Just checking
2603 		 * the first dquot in the buffer should do. XXXThis is
2604 		 * probably a good thing to do for other buf types also.
2605 		 */
2606 		fa = NULL;
2607 		if (buf_f->blf_flags &
2608 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2609 			if (item->ri_buf[i].i_addr == NULL) {
2610 				xfs_alert(mp,
2611 					"XFS: NULL dquot in %s.", __func__);
2612 				goto next;
2613 			}
2614 			if (item->ri_buf[i].i_len < size_disk_dquot) {
2615 				xfs_alert(mp,
2616 					"XFS: dquot too small (%d) in %s.",
2617 					item->ri_buf[i].i_len, __func__);
2618 				goto next;
2619 			}
2620 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2621 					       -1, 0);
2622 			if (fa) {
2623 				xfs_alert(mp,
2624 	"dquot corrupt at %pS trying to replay into block 0x%llx",
2625 					fa, bp->b_bn);
2626 				goto next;
2627 			}
2628 		}
2629 
2630 		memcpy(xfs_buf_offset(bp,
2631 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2632 			item->ri_buf[i].i_addr,		/* source */
2633 			nbits<<XFS_BLF_SHIFT);		/* length */
2634  next:
2635 		i++;
2636 		bit += nbits;
2637 	}
2638 
2639 	/* Shouldn't be any more regions */
2640 	ASSERT(i == item->ri_total);
2641 
2642 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2643 }
2644 
2645 /*
2646  * Perform a dquot buffer recovery.
2647  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2648  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2649  * Else, treat it as a regular buffer and do recovery.
2650  *
2651  * Return false if the buffer was tossed and true if we recovered the buffer to
2652  * indicate to the caller if the buffer needs writing.
2653  */
2654 STATIC bool
2655 xlog_recover_do_dquot_buffer(
2656 	struct xfs_mount		*mp,
2657 	struct xlog			*log,
2658 	struct xlog_recover_item	*item,
2659 	struct xfs_buf			*bp,
2660 	struct xfs_buf_log_format	*buf_f)
2661 {
2662 	uint			type;
2663 
2664 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2665 
2666 	/*
2667 	 * Filesystems are required to send in quota flags at mount time.
2668 	 */
2669 	if (!mp->m_qflags)
2670 		return false;
2671 
2672 	type = 0;
2673 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2674 		type |= XFS_DQ_USER;
2675 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2676 		type |= XFS_DQ_PROJ;
2677 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2678 		type |= XFS_DQ_GROUP;
2679 	/*
2680 	 * This type of quotas was turned off, so ignore this buffer
2681 	 */
2682 	if (log->l_quotaoffs_flag & type)
2683 		return false;
2684 
2685 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2686 	return true;
2687 }
2688 
2689 /*
2690  * This routine replays a modification made to a buffer at runtime.
2691  * There are actually two types of buffer, regular and inode, which
2692  * are handled differently.  Inode buffers are handled differently
2693  * in that we only recover a specific set of data from them, namely
2694  * the inode di_next_unlinked fields.  This is because all other inode
2695  * data is actually logged via inode records and any data we replay
2696  * here which overlaps that may be stale.
2697  *
2698  * When meta-data buffers are freed at run time we log a buffer item
2699  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2700  * of the buffer in the log should not be replayed at recovery time.
2701  * This is so that if the blocks covered by the buffer are reused for
2702  * file data before we crash we don't end up replaying old, freed
2703  * meta-data into a user's file.
2704  *
2705  * To handle the cancellation of buffer log items, we make two passes
2706  * over the log during recovery.  During the first we build a table of
2707  * those buffers which have been cancelled, and during the second we
2708  * only replay those buffers which do not have corresponding cancel
2709  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2710  * for more details on the implementation of the table of cancel records.
2711  */
2712 STATIC int
2713 xlog_recover_buffer_pass2(
2714 	struct xlog			*log,
2715 	struct list_head		*buffer_list,
2716 	struct xlog_recover_item	*item,
2717 	xfs_lsn_t			current_lsn)
2718 {
2719 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2720 	xfs_mount_t		*mp = log->l_mp;
2721 	xfs_buf_t		*bp;
2722 	int			error;
2723 	uint			buf_flags;
2724 	xfs_lsn_t		lsn;
2725 
2726 	/*
2727 	 * In this pass we only want to recover all the buffers which have
2728 	 * not been cancelled and are not cancellation buffers themselves.
2729 	 */
2730 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2731 			buf_f->blf_len, buf_f->blf_flags)) {
2732 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2733 		return 0;
2734 	}
2735 
2736 	trace_xfs_log_recover_buf_recover(log, buf_f);
2737 
2738 	buf_flags = 0;
2739 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2740 		buf_flags |= XBF_UNMAPPED;
2741 
2742 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2743 			  buf_flags, NULL);
2744 	if (!bp)
2745 		return -ENOMEM;
2746 	error = bp->b_error;
2747 	if (error) {
2748 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2749 		goto out_release;
2750 	}
2751 
2752 	/*
2753 	 * Recover the buffer only if we get an LSN from it and it's less than
2754 	 * the lsn of the transaction we are replaying.
2755 	 *
2756 	 * Note that we have to be extremely careful of readahead here.
2757 	 * Readahead does not attach verfiers to the buffers so if we don't
2758 	 * actually do any replay after readahead because of the LSN we found
2759 	 * in the buffer if more recent than that current transaction then we
2760 	 * need to attach the verifier directly. Failure to do so can lead to
2761 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2762 	 * operate on the buffers and they won't get the verifier attached. This
2763 	 * can lead to blocks on disk having the correct content but a stale
2764 	 * CRC.
2765 	 *
2766 	 * It is safe to assume these clean buffers are currently up to date.
2767 	 * If the buffer is dirtied by a later transaction being replayed, then
2768 	 * the verifier will be reset to match whatever recover turns that
2769 	 * buffer into.
2770 	 */
2771 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2772 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2773 		trace_xfs_log_recover_buf_skip(log, buf_f);
2774 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2775 		goto out_release;
2776 	}
2777 
2778 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2779 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2780 		if (error)
2781 			goto out_release;
2782 	} else if (buf_f->blf_flags &
2783 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2784 		bool	dirty;
2785 
2786 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2787 		if (!dirty)
2788 			goto out_release;
2789 	} else {
2790 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2791 	}
2792 
2793 	/*
2794 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2795 	 * slower when taking into account all the buffers to be flushed.
2796 	 *
2797 	 * Also make sure that only inode buffers with good sizes stay in
2798 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2799 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
2800 	 * buffers in the log can be a different size if the log was generated
2801 	 * by an older kernel using unclustered inode buffers or a newer kernel
2802 	 * running with a different inode cluster size.  Regardless, if the
2803 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
2804 	 * for *our* value of inode_cluster_size, then we need to keep
2805 	 * the buffer out of the buffer cache so that the buffer won't
2806 	 * overlap with future reads of those inodes.
2807 	 */
2808 	if (XFS_DINODE_MAGIC ==
2809 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2810 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2811 		xfs_buf_stale(bp);
2812 		error = xfs_bwrite(bp);
2813 	} else {
2814 		ASSERT(bp->b_mount == mp);
2815 		bp->b_iodone = xlog_recover_iodone;
2816 		xfs_buf_delwri_queue(bp, buffer_list);
2817 	}
2818 
2819 out_release:
2820 	xfs_buf_relse(bp);
2821 	return error;
2822 }
2823 
2824 /*
2825  * Inode fork owner changes
2826  *
2827  * If we have been told that we have to reparent the inode fork, it's because an
2828  * extent swap operation on a CRC enabled filesystem has been done and we are
2829  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2830  * owners of it.
2831  *
2832  * The complexity here is that we don't have an inode context to work with, so
2833  * after we've replayed the inode we need to instantiate one.  This is where the
2834  * fun begins.
2835  *
2836  * We are in the middle of log recovery, so we can't run transactions. That
2837  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2838  * that will result in the corresponding iput() running the inode through
2839  * xfs_inactive(). If we've just replayed an inode core that changes the link
2840  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2841  * transactions (bad!).
2842  *
2843  * So, to avoid this, we instantiate an inode directly from the inode core we've
2844  * just recovered. We have the buffer still locked, and all we really need to
2845  * instantiate is the inode core and the forks being modified. We can do this
2846  * manually, then run the inode btree owner change, and then tear down the
2847  * xfs_inode without having to run any transactions at all.
2848  *
2849  * Also, because we don't have a transaction context available here but need to
2850  * gather all the buffers we modify for writeback so we pass the buffer_list
2851  * instead for the operation to use.
2852  */
2853 
2854 STATIC int
2855 xfs_recover_inode_owner_change(
2856 	struct xfs_mount	*mp,
2857 	struct xfs_dinode	*dip,
2858 	struct xfs_inode_log_format *in_f,
2859 	struct list_head	*buffer_list)
2860 {
2861 	struct xfs_inode	*ip;
2862 	int			error;
2863 
2864 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2865 
2866 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2867 	if (!ip)
2868 		return -ENOMEM;
2869 
2870 	/* instantiate the inode */
2871 	xfs_inode_from_disk(ip, dip);
2872 	ASSERT(ip->i_d.di_version >= 3);
2873 
2874 	error = xfs_iformat_fork(ip, dip);
2875 	if (error)
2876 		goto out_free_ip;
2877 
2878 	if (!xfs_inode_verify_forks(ip)) {
2879 		error = -EFSCORRUPTED;
2880 		goto out_free_ip;
2881 	}
2882 
2883 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2884 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2885 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2886 					      ip->i_ino, buffer_list);
2887 		if (error)
2888 			goto out_free_ip;
2889 	}
2890 
2891 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2892 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2893 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2894 					      ip->i_ino, buffer_list);
2895 		if (error)
2896 			goto out_free_ip;
2897 	}
2898 
2899 out_free_ip:
2900 	xfs_inode_free(ip);
2901 	return error;
2902 }
2903 
2904 STATIC int
2905 xlog_recover_inode_pass2(
2906 	struct xlog			*log,
2907 	struct list_head		*buffer_list,
2908 	struct xlog_recover_item	*item,
2909 	xfs_lsn_t			current_lsn)
2910 {
2911 	struct xfs_inode_log_format	*in_f;
2912 	xfs_mount_t		*mp = log->l_mp;
2913 	xfs_buf_t		*bp;
2914 	xfs_dinode_t		*dip;
2915 	int			len;
2916 	char			*src;
2917 	char			*dest;
2918 	int			error;
2919 	int			attr_index;
2920 	uint			fields;
2921 	struct xfs_log_dinode	*ldip;
2922 	uint			isize;
2923 	int			need_free = 0;
2924 
2925 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2926 		in_f = item->ri_buf[0].i_addr;
2927 	} else {
2928 		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2929 		need_free = 1;
2930 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2931 		if (error)
2932 			goto error;
2933 	}
2934 
2935 	/*
2936 	 * Inode buffers can be freed, look out for it,
2937 	 * and do not replay the inode.
2938 	 */
2939 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2940 					in_f->ilf_len, 0)) {
2941 		error = 0;
2942 		trace_xfs_log_recover_inode_cancel(log, in_f);
2943 		goto error;
2944 	}
2945 	trace_xfs_log_recover_inode_recover(log, in_f);
2946 
2947 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2948 			  &xfs_inode_buf_ops);
2949 	if (!bp) {
2950 		error = -ENOMEM;
2951 		goto error;
2952 	}
2953 	error = bp->b_error;
2954 	if (error) {
2955 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2956 		goto out_release;
2957 	}
2958 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2959 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2960 
2961 	/*
2962 	 * Make sure the place we're flushing out to really looks
2963 	 * like an inode!
2964 	 */
2965 	if (XFS_IS_CORRUPT(mp, !xfs_verify_magic16(bp, dip->di_magic))) {
2966 		xfs_alert(mp,
2967 	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2968 			__func__, dip, bp, in_f->ilf_ino);
2969 		error = -EFSCORRUPTED;
2970 		goto out_release;
2971 	}
2972 	ldip = item->ri_buf[1].i_addr;
2973 	if (XFS_IS_CORRUPT(mp, ldip->di_magic != XFS_DINODE_MAGIC)) {
2974 		xfs_alert(mp,
2975 			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2976 			__func__, item, in_f->ilf_ino);
2977 		error = -EFSCORRUPTED;
2978 		goto out_release;
2979 	}
2980 
2981 	/*
2982 	 * If the inode has an LSN in it, recover the inode only if it's less
2983 	 * than the lsn of the transaction we are replaying. Note: we still
2984 	 * need to replay an owner change even though the inode is more recent
2985 	 * than the transaction as there is no guarantee that all the btree
2986 	 * blocks are more recent than this transaction, too.
2987 	 */
2988 	if (dip->di_version >= 3) {
2989 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
2990 
2991 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2992 			trace_xfs_log_recover_inode_skip(log, in_f);
2993 			error = 0;
2994 			goto out_owner_change;
2995 		}
2996 	}
2997 
2998 	/*
2999 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3000 	 * are transactional and if ordering is necessary we can determine that
3001 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3002 	 * the inode versions we might be changing them here - use the
3003 	 * superblock flag to determine whether we need to look at di_flushiter
3004 	 * to skip replay when the on disk inode is newer than the log one
3005 	 */
3006 	if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3007 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3008 		/*
3009 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3010 		 * than smaller numbers
3011 		 */
3012 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3013 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3014 			/* do nothing */
3015 		} else {
3016 			trace_xfs_log_recover_inode_skip(log, in_f);
3017 			error = 0;
3018 			goto out_release;
3019 		}
3020 	}
3021 
3022 	/* Take the opportunity to reset the flush iteration count */
3023 	ldip->di_flushiter = 0;
3024 
3025 	if (unlikely(S_ISREG(ldip->di_mode))) {
3026 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3027 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3028 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3029 					 XFS_ERRLEVEL_LOW, mp, ldip,
3030 					 sizeof(*ldip));
3031 			xfs_alert(mp,
3032 		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3033 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3034 				__func__, item, dip, bp, in_f->ilf_ino);
3035 			error = -EFSCORRUPTED;
3036 			goto out_release;
3037 		}
3038 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3039 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3040 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3041 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3042 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3043 					     XFS_ERRLEVEL_LOW, mp, ldip,
3044 					     sizeof(*ldip));
3045 			xfs_alert(mp,
3046 		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3047 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3048 				__func__, item, dip, bp, in_f->ilf_ino);
3049 			error = -EFSCORRUPTED;
3050 			goto out_release;
3051 		}
3052 	}
3053 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3054 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3055 				     XFS_ERRLEVEL_LOW, mp, ldip,
3056 				     sizeof(*ldip));
3057 		xfs_alert(mp,
3058 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3059 	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3060 			__func__, item, dip, bp, in_f->ilf_ino,
3061 			ldip->di_nextents + ldip->di_anextents,
3062 			ldip->di_nblocks);
3063 		error = -EFSCORRUPTED;
3064 		goto out_release;
3065 	}
3066 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3067 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3068 				     XFS_ERRLEVEL_LOW, mp, ldip,
3069 				     sizeof(*ldip));
3070 		xfs_alert(mp,
3071 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3072 	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3073 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3074 		error = -EFSCORRUPTED;
3075 		goto out_release;
3076 	}
3077 	isize = xfs_log_dinode_size(ldip->di_version);
3078 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3079 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3080 				     XFS_ERRLEVEL_LOW, mp, ldip,
3081 				     sizeof(*ldip));
3082 		xfs_alert(mp,
3083 			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3084 			__func__, item->ri_buf[1].i_len, item);
3085 		error = -EFSCORRUPTED;
3086 		goto out_release;
3087 	}
3088 
3089 	/* recover the log dinode inode into the on disk inode */
3090 	xfs_log_dinode_to_disk(ldip, dip);
3091 
3092 	fields = in_f->ilf_fields;
3093 	if (fields & XFS_ILOG_DEV)
3094 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3095 
3096 	if (in_f->ilf_size == 2)
3097 		goto out_owner_change;
3098 	len = item->ri_buf[2].i_len;
3099 	src = item->ri_buf[2].i_addr;
3100 	ASSERT(in_f->ilf_size <= 4);
3101 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3102 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3103 	       (len == in_f->ilf_dsize));
3104 
3105 	switch (fields & XFS_ILOG_DFORK) {
3106 	case XFS_ILOG_DDATA:
3107 	case XFS_ILOG_DEXT:
3108 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3109 		break;
3110 
3111 	case XFS_ILOG_DBROOT:
3112 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3113 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3114 				 XFS_DFORK_DSIZE(dip, mp));
3115 		break;
3116 
3117 	default:
3118 		/*
3119 		 * There are no data fork flags set.
3120 		 */
3121 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3122 		break;
3123 	}
3124 
3125 	/*
3126 	 * If we logged any attribute data, recover it.  There may or
3127 	 * may not have been any other non-core data logged in this
3128 	 * transaction.
3129 	 */
3130 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3131 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3132 			attr_index = 3;
3133 		} else {
3134 			attr_index = 2;
3135 		}
3136 		len = item->ri_buf[attr_index].i_len;
3137 		src = item->ri_buf[attr_index].i_addr;
3138 		ASSERT(len == in_f->ilf_asize);
3139 
3140 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3141 		case XFS_ILOG_ADATA:
3142 		case XFS_ILOG_AEXT:
3143 			dest = XFS_DFORK_APTR(dip);
3144 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3145 			memcpy(dest, src, len);
3146 			break;
3147 
3148 		case XFS_ILOG_ABROOT:
3149 			dest = XFS_DFORK_APTR(dip);
3150 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3151 					 len, (xfs_bmdr_block_t*)dest,
3152 					 XFS_DFORK_ASIZE(dip, mp));
3153 			break;
3154 
3155 		default:
3156 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3157 			ASSERT(0);
3158 			error = -EFSCORRUPTED;
3159 			goto out_release;
3160 		}
3161 	}
3162 
3163 out_owner_change:
3164 	/* Recover the swapext owner change unless inode has been deleted */
3165 	if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3166 	    (dip->di_mode != 0))
3167 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3168 						       buffer_list);
3169 	/* re-generate the checksum. */
3170 	xfs_dinode_calc_crc(log->l_mp, dip);
3171 
3172 	ASSERT(bp->b_mount == mp);
3173 	bp->b_iodone = xlog_recover_iodone;
3174 	xfs_buf_delwri_queue(bp, buffer_list);
3175 
3176 out_release:
3177 	xfs_buf_relse(bp);
3178 error:
3179 	if (need_free)
3180 		kmem_free(in_f);
3181 	return error;
3182 }
3183 
3184 /*
3185  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3186  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3187  * of that type.
3188  */
3189 STATIC int
3190 xlog_recover_quotaoff_pass1(
3191 	struct xlog			*log,
3192 	struct xlog_recover_item	*item)
3193 {
3194 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3195 	ASSERT(qoff_f);
3196 
3197 	/*
3198 	 * The logitem format's flag tells us if this was user quotaoff,
3199 	 * group/project quotaoff or both.
3200 	 */
3201 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3202 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3203 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3204 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3205 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3206 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3207 
3208 	return 0;
3209 }
3210 
3211 /*
3212  * Recover a dquot record
3213  */
3214 STATIC int
3215 xlog_recover_dquot_pass2(
3216 	struct xlog			*log,
3217 	struct list_head		*buffer_list,
3218 	struct xlog_recover_item	*item,
3219 	xfs_lsn_t			current_lsn)
3220 {
3221 	xfs_mount_t		*mp = log->l_mp;
3222 	xfs_buf_t		*bp;
3223 	struct xfs_disk_dquot	*ddq, *recddq;
3224 	xfs_failaddr_t		fa;
3225 	int			error;
3226 	xfs_dq_logformat_t	*dq_f;
3227 	uint			type;
3228 
3229 
3230 	/*
3231 	 * Filesystems are required to send in quota flags at mount time.
3232 	 */
3233 	if (mp->m_qflags == 0)
3234 		return 0;
3235 
3236 	recddq = item->ri_buf[1].i_addr;
3237 	if (recddq == NULL) {
3238 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3239 		return -EFSCORRUPTED;
3240 	}
3241 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) {
3242 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3243 			item->ri_buf[1].i_len, __func__);
3244 		return -EFSCORRUPTED;
3245 	}
3246 
3247 	/*
3248 	 * This type of quotas was turned off, so ignore this record.
3249 	 */
3250 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3251 	ASSERT(type);
3252 	if (log->l_quotaoffs_flag & type)
3253 		return 0;
3254 
3255 	/*
3256 	 * At this point we know that quota was _not_ turned off.
3257 	 * Since the mount flags are not indicating to us otherwise, this
3258 	 * must mean that quota is on, and the dquot needs to be replayed.
3259 	 * Remember that we may not have fully recovered the superblock yet,
3260 	 * so we can't do the usual trick of looking at the SB quota bits.
3261 	 *
3262 	 * The other possibility, of course, is that the quota subsystem was
3263 	 * removed since the last mount - ENOSYS.
3264 	 */
3265 	dq_f = item->ri_buf[0].i_addr;
3266 	ASSERT(dq_f);
3267 	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3268 	if (fa) {
3269 		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3270 				dq_f->qlf_id, fa);
3271 		return -EFSCORRUPTED;
3272 	}
3273 	ASSERT(dq_f->qlf_len == 1);
3274 
3275 	/*
3276 	 * At this point we are assuming that the dquots have been allocated
3277 	 * and hence the buffer has valid dquots stamped in it. It should,
3278 	 * therefore, pass verifier validation. If the dquot is bad, then the
3279 	 * we'll return an error here, so we don't need to specifically check
3280 	 * the dquot in the buffer after the verifier has run.
3281 	 */
3282 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3283 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3284 				   &xfs_dquot_buf_ops);
3285 	if (error)
3286 		return error;
3287 
3288 	ASSERT(bp);
3289 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3290 
3291 	/*
3292 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3293 	 * than the lsn of the transaction we are replaying.
3294 	 */
3295 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3296 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3297 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3298 
3299 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3300 			goto out_release;
3301 		}
3302 	}
3303 
3304 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3305 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3306 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3307 				 XFS_DQUOT_CRC_OFF);
3308 	}
3309 
3310 	ASSERT(dq_f->qlf_size == 2);
3311 	ASSERT(bp->b_mount == mp);
3312 	bp->b_iodone = xlog_recover_iodone;
3313 	xfs_buf_delwri_queue(bp, buffer_list);
3314 
3315 out_release:
3316 	xfs_buf_relse(bp);
3317 	return 0;
3318 }
3319 
3320 /*
3321  * This routine is called to create an in-core extent free intent
3322  * item from the efi format structure which was logged on disk.
3323  * It allocates an in-core efi, copies the extents from the format
3324  * structure into it, and adds the efi to the AIL with the given
3325  * LSN.
3326  */
3327 STATIC int
3328 xlog_recover_efi_pass2(
3329 	struct xlog			*log,
3330 	struct xlog_recover_item	*item,
3331 	xfs_lsn_t			lsn)
3332 {
3333 	int				error;
3334 	struct xfs_mount		*mp = log->l_mp;
3335 	struct xfs_efi_log_item		*efip;
3336 	struct xfs_efi_log_format	*efi_formatp;
3337 
3338 	efi_formatp = item->ri_buf[0].i_addr;
3339 
3340 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3341 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3342 	if (error) {
3343 		xfs_efi_item_free(efip);
3344 		return error;
3345 	}
3346 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3347 
3348 	spin_lock(&log->l_ailp->ail_lock);
3349 	/*
3350 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3351 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3352 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3353 	 * AIL lock.
3354 	 */
3355 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3356 	xfs_efi_release(efip);
3357 	return 0;
3358 }
3359 
3360 
3361 /*
3362  * This routine is called when an EFD format structure is found in a committed
3363  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3364  * was still in the log. To do this it searches the AIL for the EFI with an id
3365  * equal to that in the EFD format structure. If we find it we drop the EFD
3366  * reference, which removes the EFI from the AIL and frees it.
3367  */
3368 STATIC int
3369 xlog_recover_efd_pass2(
3370 	struct xlog			*log,
3371 	struct xlog_recover_item	*item)
3372 {
3373 	xfs_efd_log_format_t	*efd_formatp;
3374 	xfs_efi_log_item_t	*efip = NULL;
3375 	struct xfs_log_item	*lip;
3376 	uint64_t		efi_id;
3377 	struct xfs_ail_cursor	cur;
3378 	struct xfs_ail		*ailp = log->l_ailp;
3379 
3380 	efd_formatp = item->ri_buf[0].i_addr;
3381 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3382 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3383 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3384 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3385 	efi_id = efd_formatp->efd_efi_id;
3386 
3387 	/*
3388 	 * Search for the EFI with the id in the EFD format structure in the
3389 	 * AIL.
3390 	 */
3391 	spin_lock(&ailp->ail_lock);
3392 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3393 	while (lip != NULL) {
3394 		if (lip->li_type == XFS_LI_EFI) {
3395 			efip = (xfs_efi_log_item_t *)lip;
3396 			if (efip->efi_format.efi_id == efi_id) {
3397 				/*
3398 				 * Drop the EFD reference to the EFI. This
3399 				 * removes the EFI from the AIL and frees it.
3400 				 */
3401 				spin_unlock(&ailp->ail_lock);
3402 				xfs_efi_release(efip);
3403 				spin_lock(&ailp->ail_lock);
3404 				break;
3405 			}
3406 		}
3407 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3408 	}
3409 
3410 	xfs_trans_ail_cursor_done(&cur);
3411 	spin_unlock(&ailp->ail_lock);
3412 
3413 	return 0;
3414 }
3415 
3416 /*
3417  * This routine is called to create an in-core extent rmap update
3418  * item from the rui format structure which was logged on disk.
3419  * It allocates an in-core rui, copies the extents from the format
3420  * structure into it, and adds the rui to the AIL with the given
3421  * LSN.
3422  */
3423 STATIC int
3424 xlog_recover_rui_pass2(
3425 	struct xlog			*log,
3426 	struct xlog_recover_item	*item,
3427 	xfs_lsn_t			lsn)
3428 {
3429 	int				error;
3430 	struct xfs_mount		*mp = log->l_mp;
3431 	struct xfs_rui_log_item		*ruip;
3432 	struct xfs_rui_log_format	*rui_formatp;
3433 
3434 	rui_formatp = item->ri_buf[0].i_addr;
3435 
3436 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3437 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3438 	if (error) {
3439 		xfs_rui_item_free(ruip);
3440 		return error;
3441 	}
3442 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3443 
3444 	spin_lock(&log->l_ailp->ail_lock);
3445 	/*
3446 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3447 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3448 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3449 	 * AIL lock.
3450 	 */
3451 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3452 	xfs_rui_release(ruip);
3453 	return 0;
3454 }
3455 
3456 
3457 /*
3458  * This routine is called when an RUD format structure is found in a committed
3459  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3460  * was still in the log. To do this it searches the AIL for the RUI with an id
3461  * equal to that in the RUD format structure. If we find it we drop the RUD
3462  * reference, which removes the RUI from the AIL and frees it.
3463  */
3464 STATIC int
3465 xlog_recover_rud_pass2(
3466 	struct xlog			*log,
3467 	struct xlog_recover_item	*item)
3468 {
3469 	struct xfs_rud_log_format	*rud_formatp;
3470 	struct xfs_rui_log_item		*ruip = NULL;
3471 	struct xfs_log_item		*lip;
3472 	uint64_t			rui_id;
3473 	struct xfs_ail_cursor		cur;
3474 	struct xfs_ail			*ailp = log->l_ailp;
3475 
3476 	rud_formatp = item->ri_buf[0].i_addr;
3477 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3478 	rui_id = rud_formatp->rud_rui_id;
3479 
3480 	/*
3481 	 * Search for the RUI with the id in the RUD format structure in the
3482 	 * AIL.
3483 	 */
3484 	spin_lock(&ailp->ail_lock);
3485 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3486 	while (lip != NULL) {
3487 		if (lip->li_type == XFS_LI_RUI) {
3488 			ruip = (struct xfs_rui_log_item *)lip;
3489 			if (ruip->rui_format.rui_id == rui_id) {
3490 				/*
3491 				 * Drop the RUD reference to the RUI. This
3492 				 * removes the RUI from the AIL and frees it.
3493 				 */
3494 				spin_unlock(&ailp->ail_lock);
3495 				xfs_rui_release(ruip);
3496 				spin_lock(&ailp->ail_lock);
3497 				break;
3498 			}
3499 		}
3500 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3501 	}
3502 
3503 	xfs_trans_ail_cursor_done(&cur);
3504 	spin_unlock(&ailp->ail_lock);
3505 
3506 	return 0;
3507 }
3508 
3509 /*
3510  * Copy an CUI format buffer from the given buf, and into the destination
3511  * CUI format structure.  The CUI/CUD items were designed not to need any
3512  * special alignment handling.
3513  */
3514 static int
3515 xfs_cui_copy_format(
3516 	struct xfs_log_iovec		*buf,
3517 	struct xfs_cui_log_format	*dst_cui_fmt)
3518 {
3519 	struct xfs_cui_log_format	*src_cui_fmt;
3520 	uint				len;
3521 
3522 	src_cui_fmt = buf->i_addr;
3523 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3524 
3525 	if (buf->i_len == len) {
3526 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3527 		return 0;
3528 	}
3529 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3530 	return -EFSCORRUPTED;
3531 }
3532 
3533 /*
3534  * This routine is called to create an in-core extent refcount update
3535  * item from the cui format structure which was logged on disk.
3536  * It allocates an in-core cui, copies the extents from the format
3537  * structure into it, and adds the cui to the AIL with the given
3538  * LSN.
3539  */
3540 STATIC int
3541 xlog_recover_cui_pass2(
3542 	struct xlog			*log,
3543 	struct xlog_recover_item	*item,
3544 	xfs_lsn_t			lsn)
3545 {
3546 	int				error;
3547 	struct xfs_mount		*mp = log->l_mp;
3548 	struct xfs_cui_log_item		*cuip;
3549 	struct xfs_cui_log_format	*cui_formatp;
3550 
3551 	cui_formatp = item->ri_buf[0].i_addr;
3552 
3553 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3554 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3555 	if (error) {
3556 		xfs_cui_item_free(cuip);
3557 		return error;
3558 	}
3559 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3560 
3561 	spin_lock(&log->l_ailp->ail_lock);
3562 	/*
3563 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3564 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3565 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3566 	 * AIL lock.
3567 	 */
3568 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3569 	xfs_cui_release(cuip);
3570 	return 0;
3571 }
3572 
3573 
3574 /*
3575  * This routine is called when an CUD format structure is found in a committed
3576  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3577  * was still in the log. To do this it searches the AIL for the CUI with an id
3578  * equal to that in the CUD format structure. If we find it we drop the CUD
3579  * reference, which removes the CUI from the AIL and frees it.
3580  */
3581 STATIC int
3582 xlog_recover_cud_pass2(
3583 	struct xlog			*log,
3584 	struct xlog_recover_item	*item)
3585 {
3586 	struct xfs_cud_log_format	*cud_formatp;
3587 	struct xfs_cui_log_item		*cuip = NULL;
3588 	struct xfs_log_item		*lip;
3589 	uint64_t			cui_id;
3590 	struct xfs_ail_cursor		cur;
3591 	struct xfs_ail			*ailp = log->l_ailp;
3592 
3593 	cud_formatp = item->ri_buf[0].i_addr;
3594 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
3595 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3596 		return -EFSCORRUPTED;
3597 	}
3598 	cui_id = cud_formatp->cud_cui_id;
3599 
3600 	/*
3601 	 * Search for the CUI with the id in the CUD format structure in the
3602 	 * AIL.
3603 	 */
3604 	spin_lock(&ailp->ail_lock);
3605 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3606 	while (lip != NULL) {
3607 		if (lip->li_type == XFS_LI_CUI) {
3608 			cuip = (struct xfs_cui_log_item *)lip;
3609 			if (cuip->cui_format.cui_id == cui_id) {
3610 				/*
3611 				 * Drop the CUD reference to the CUI. This
3612 				 * removes the CUI from the AIL and frees it.
3613 				 */
3614 				spin_unlock(&ailp->ail_lock);
3615 				xfs_cui_release(cuip);
3616 				spin_lock(&ailp->ail_lock);
3617 				break;
3618 			}
3619 		}
3620 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3621 	}
3622 
3623 	xfs_trans_ail_cursor_done(&cur);
3624 	spin_unlock(&ailp->ail_lock);
3625 
3626 	return 0;
3627 }
3628 
3629 /*
3630  * Copy an BUI format buffer from the given buf, and into the destination
3631  * BUI format structure.  The BUI/BUD items were designed not to need any
3632  * special alignment handling.
3633  */
3634 static int
3635 xfs_bui_copy_format(
3636 	struct xfs_log_iovec		*buf,
3637 	struct xfs_bui_log_format	*dst_bui_fmt)
3638 {
3639 	struct xfs_bui_log_format	*src_bui_fmt;
3640 	uint				len;
3641 
3642 	src_bui_fmt = buf->i_addr;
3643 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3644 
3645 	if (buf->i_len == len) {
3646 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3647 		return 0;
3648 	}
3649 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3650 	return -EFSCORRUPTED;
3651 }
3652 
3653 /*
3654  * This routine is called to create an in-core extent bmap update
3655  * item from the bui format structure which was logged on disk.
3656  * It allocates an in-core bui, copies the extents from the format
3657  * structure into it, and adds the bui to the AIL with the given
3658  * LSN.
3659  */
3660 STATIC int
3661 xlog_recover_bui_pass2(
3662 	struct xlog			*log,
3663 	struct xlog_recover_item	*item,
3664 	xfs_lsn_t			lsn)
3665 {
3666 	int				error;
3667 	struct xfs_mount		*mp = log->l_mp;
3668 	struct xfs_bui_log_item		*buip;
3669 	struct xfs_bui_log_format	*bui_formatp;
3670 
3671 	bui_formatp = item->ri_buf[0].i_addr;
3672 
3673 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
3674 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3675 		return -EFSCORRUPTED;
3676 	}
3677 	buip = xfs_bui_init(mp);
3678 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3679 	if (error) {
3680 		xfs_bui_item_free(buip);
3681 		return error;
3682 	}
3683 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3684 
3685 	spin_lock(&log->l_ailp->ail_lock);
3686 	/*
3687 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3688 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3689 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3690 	 * AIL lock.
3691 	 */
3692 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3693 	xfs_bui_release(buip);
3694 	return 0;
3695 }
3696 
3697 
3698 /*
3699  * This routine is called when an BUD format structure is found in a committed
3700  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3701  * was still in the log. To do this it searches the AIL for the BUI with an id
3702  * equal to that in the BUD format structure. If we find it we drop the BUD
3703  * reference, which removes the BUI from the AIL and frees it.
3704  */
3705 STATIC int
3706 xlog_recover_bud_pass2(
3707 	struct xlog			*log,
3708 	struct xlog_recover_item	*item)
3709 {
3710 	struct xfs_bud_log_format	*bud_formatp;
3711 	struct xfs_bui_log_item		*buip = NULL;
3712 	struct xfs_log_item		*lip;
3713 	uint64_t			bui_id;
3714 	struct xfs_ail_cursor		cur;
3715 	struct xfs_ail			*ailp = log->l_ailp;
3716 
3717 	bud_formatp = item->ri_buf[0].i_addr;
3718 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) {
3719 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3720 		return -EFSCORRUPTED;
3721 	}
3722 	bui_id = bud_formatp->bud_bui_id;
3723 
3724 	/*
3725 	 * Search for the BUI with the id in the BUD format structure in the
3726 	 * AIL.
3727 	 */
3728 	spin_lock(&ailp->ail_lock);
3729 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3730 	while (lip != NULL) {
3731 		if (lip->li_type == XFS_LI_BUI) {
3732 			buip = (struct xfs_bui_log_item *)lip;
3733 			if (buip->bui_format.bui_id == bui_id) {
3734 				/*
3735 				 * Drop the BUD reference to the BUI. This
3736 				 * removes the BUI from the AIL and frees it.
3737 				 */
3738 				spin_unlock(&ailp->ail_lock);
3739 				xfs_bui_release(buip);
3740 				spin_lock(&ailp->ail_lock);
3741 				break;
3742 			}
3743 		}
3744 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3745 	}
3746 
3747 	xfs_trans_ail_cursor_done(&cur);
3748 	spin_unlock(&ailp->ail_lock);
3749 
3750 	return 0;
3751 }
3752 
3753 /*
3754  * This routine is called when an inode create format structure is found in a
3755  * committed transaction in the log.  It's purpose is to initialise the inodes
3756  * being allocated on disk. This requires us to get inode cluster buffers that
3757  * match the range to be initialised, stamped with inode templates and written
3758  * by delayed write so that subsequent modifications will hit the cached buffer
3759  * and only need writing out at the end of recovery.
3760  */
3761 STATIC int
3762 xlog_recover_do_icreate_pass2(
3763 	struct xlog		*log,
3764 	struct list_head	*buffer_list,
3765 	xlog_recover_item_t	*item)
3766 {
3767 	struct xfs_mount	*mp = log->l_mp;
3768 	struct xfs_icreate_log	*icl;
3769 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3770 	xfs_agnumber_t		agno;
3771 	xfs_agblock_t		agbno;
3772 	unsigned int		count;
3773 	unsigned int		isize;
3774 	xfs_agblock_t		length;
3775 	int			bb_per_cluster;
3776 	int			cancel_count;
3777 	int			nbufs;
3778 	int			i;
3779 
3780 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3781 	if (icl->icl_type != XFS_LI_ICREATE) {
3782 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3783 		return -EINVAL;
3784 	}
3785 
3786 	if (icl->icl_size != 1) {
3787 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3788 		return -EINVAL;
3789 	}
3790 
3791 	agno = be32_to_cpu(icl->icl_ag);
3792 	if (agno >= mp->m_sb.sb_agcount) {
3793 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3794 		return -EINVAL;
3795 	}
3796 	agbno = be32_to_cpu(icl->icl_agbno);
3797 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3798 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3799 		return -EINVAL;
3800 	}
3801 	isize = be32_to_cpu(icl->icl_isize);
3802 	if (isize != mp->m_sb.sb_inodesize) {
3803 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3804 		return -EINVAL;
3805 	}
3806 	count = be32_to_cpu(icl->icl_count);
3807 	if (!count) {
3808 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3809 		return -EINVAL;
3810 	}
3811 	length = be32_to_cpu(icl->icl_length);
3812 	if (!length || length >= mp->m_sb.sb_agblocks) {
3813 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3814 		return -EINVAL;
3815 	}
3816 
3817 	/*
3818 	 * The inode chunk is either full or sparse and we only support
3819 	 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3820 	 */
3821 	if (length != igeo->ialloc_blks &&
3822 	    length != igeo->ialloc_min_blks) {
3823 		xfs_warn(log->l_mp,
3824 			 "%s: unsupported chunk length", __FUNCTION__);
3825 		return -EINVAL;
3826 	}
3827 
3828 	/* verify inode count is consistent with extent length */
3829 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3830 		xfs_warn(log->l_mp,
3831 			 "%s: inconsistent inode count and chunk length",
3832 			 __FUNCTION__);
3833 		return -EINVAL;
3834 	}
3835 
3836 	/*
3837 	 * The icreate transaction can cover multiple cluster buffers and these
3838 	 * buffers could have been freed and reused. Check the individual
3839 	 * buffers for cancellation so we don't overwrite anything written after
3840 	 * a cancellation.
3841 	 */
3842 	bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3843 	nbufs = length / igeo->blocks_per_cluster;
3844 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3845 		xfs_daddr_t	daddr;
3846 
3847 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3848 				agbno + i * igeo->blocks_per_cluster);
3849 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3850 			cancel_count++;
3851 	}
3852 
3853 	/*
3854 	 * We currently only use icreate for a single allocation at a time. This
3855 	 * means we should expect either all or none of the buffers to be
3856 	 * cancelled. Be conservative and skip replay if at least one buffer is
3857 	 * cancelled, but warn the user that something is awry if the buffers
3858 	 * are not consistent.
3859 	 *
3860 	 * XXX: This must be refined to only skip cancelled clusters once we use
3861 	 * icreate for multiple chunk allocations.
3862 	 */
3863 	ASSERT(!cancel_count || cancel_count == nbufs);
3864 	if (cancel_count) {
3865 		if (cancel_count != nbufs)
3866 			xfs_warn(mp,
3867 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3868 		trace_xfs_log_recover_icreate_cancel(log, icl);
3869 		return 0;
3870 	}
3871 
3872 	trace_xfs_log_recover_icreate_recover(log, icl);
3873 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3874 				     length, be32_to_cpu(icl->icl_gen));
3875 }
3876 
3877 STATIC void
3878 xlog_recover_buffer_ra_pass2(
3879 	struct xlog                     *log,
3880 	struct xlog_recover_item        *item)
3881 {
3882 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3883 	struct xfs_mount		*mp = log->l_mp;
3884 
3885 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3886 			buf_f->blf_len, buf_f->blf_flags)) {
3887 		return;
3888 	}
3889 
3890 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3891 				buf_f->blf_len, NULL);
3892 }
3893 
3894 STATIC void
3895 xlog_recover_inode_ra_pass2(
3896 	struct xlog                     *log,
3897 	struct xlog_recover_item        *item)
3898 {
3899 	struct xfs_inode_log_format	ilf_buf;
3900 	struct xfs_inode_log_format	*ilfp;
3901 	struct xfs_mount		*mp = log->l_mp;
3902 	int			error;
3903 
3904 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3905 		ilfp = item->ri_buf[0].i_addr;
3906 	} else {
3907 		ilfp = &ilf_buf;
3908 		memset(ilfp, 0, sizeof(*ilfp));
3909 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3910 		if (error)
3911 			return;
3912 	}
3913 
3914 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3915 		return;
3916 
3917 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3918 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3919 }
3920 
3921 STATIC void
3922 xlog_recover_dquot_ra_pass2(
3923 	struct xlog			*log,
3924 	struct xlog_recover_item	*item)
3925 {
3926 	struct xfs_mount	*mp = log->l_mp;
3927 	struct xfs_disk_dquot	*recddq;
3928 	struct xfs_dq_logformat	*dq_f;
3929 	uint			type;
3930 	int			len;
3931 
3932 
3933 	if (mp->m_qflags == 0)
3934 		return;
3935 
3936 	recddq = item->ri_buf[1].i_addr;
3937 	if (recddq == NULL)
3938 		return;
3939 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3940 		return;
3941 
3942 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3943 	ASSERT(type);
3944 	if (log->l_quotaoffs_flag & type)
3945 		return;
3946 
3947 	dq_f = item->ri_buf[0].i_addr;
3948 	ASSERT(dq_f);
3949 	ASSERT(dq_f->qlf_len == 1);
3950 
3951 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3952 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3953 		return;
3954 
3955 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3956 			  &xfs_dquot_buf_ra_ops);
3957 }
3958 
3959 STATIC void
3960 xlog_recover_ra_pass2(
3961 	struct xlog			*log,
3962 	struct xlog_recover_item	*item)
3963 {
3964 	switch (ITEM_TYPE(item)) {
3965 	case XFS_LI_BUF:
3966 		xlog_recover_buffer_ra_pass2(log, item);
3967 		break;
3968 	case XFS_LI_INODE:
3969 		xlog_recover_inode_ra_pass2(log, item);
3970 		break;
3971 	case XFS_LI_DQUOT:
3972 		xlog_recover_dquot_ra_pass2(log, item);
3973 		break;
3974 	case XFS_LI_EFI:
3975 	case XFS_LI_EFD:
3976 	case XFS_LI_QUOTAOFF:
3977 	case XFS_LI_RUI:
3978 	case XFS_LI_RUD:
3979 	case XFS_LI_CUI:
3980 	case XFS_LI_CUD:
3981 	case XFS_LI_BUI:
3982 	case XFS_LI_BUD:
3983 	default:
3984 		break;
3985 	}
3986 }
3987 
3988 STATIC int
3989 xlog_recover_commit_pass1(
3990 	struct xlog			*log,
3991 	struct xlog_recover		*trans,
3992 	struct xlog_recover_item	*item)
3993 {
3994 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3995 
3996 	switch (ITEM_TYPE(item)) {
3997 	case XFS_LI_BUF:
3998 		return xlog_recover_buffer_pass1(log, item);
3999 	case XFS_LI_QUOTAOFF:
4000 		return xlog_recover_quotaoff_pass1(log, item);
4001 	case XFS_LI_INODE:
4002 	case XFS_LI_EFI:
4003 	case XFS_LI_EFD:
4004 	case XFS_LI_DQUOT:
4005 	case XFS_LI_ICREATE:
4006 	case XFS_LI_RUI:
4007 	case XFS_LI_RUD:
4008 	case XFS_LI_CUI:
4009 	case XFS_LI_CUD:
4010 	case XFS_LI_BUI:
4011 	case XFS_LI_BUD:
4012 		/* nothing to do in pass 1 */
4013 		return 0;
4014 	default:
4015 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4016 			__func__, ITEM_TYPE(item));
4017 		ASSERT(0);
4018 		return -EFSCORRUPTED;
4019 	}
4020 }
4021 
4022 STATIC int
4023 xlog_recover_commit_pass2(
4024 	struct xlog			*log,
4025 	struct xlog_recover		*trans,
4026 	struct list_head		*buffer_list,
4027 	struct xlog_recover_item	*item)
4028 {
4029 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4030 
4031 	switch (ITEM_TYPE(item)) {
4032 	case XFS_LI_BUF:
4033 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4034 						 trans->r_lsn);
4035 	case XFS_LI_INODE:
4036 		return xlog_recover_inode_pass2(log, buffer_list, item,
4037 						 trans->r_lsn);
4038 	case XFS_LI_EFI:
4039 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4040 	case XFS_LI_EFD:
4041 		return xlog_recover_efd_pass2(log, item);
4042 	case XFS_LI_RUI:
4043 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4044 	case XFS_LI_RUD:
4045 		return xlog_recover_rud_pass2(log, item);
4046 	case XFS_LI_CUI:
4047 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4048 	case XFS_LI_CUD:
4049 		return xlog_recover_cud_pass2(log, item);
4050 	case XFS_LI_BUI:
4051 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4052 	case XFS_LI_BUD:
4053 		return xlog_recover_bud_pass2(log, item);
4054 	case XFS_LI_DQUOT:
4055 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4056 						trans->r_lsn);
4057 	case XFS_LI_ICREATE:
4058 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4059 	case XFS_LI_QUOTAOFF:
4060 		/* nothing to do in pass2 */
4061 		return 0;
4062 	default:
4063 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4064 			__func__, ITEM_TYPE(item));
4065 		ASSERT(0);
4066 		return -EFSCORRUPTED;
4067 	}
4068 }
4069 
4070 STATIC int
4071 xlog_recover_items_pass2(
4072 	struct xlog                     *log,
4073 	struct xlog_recover             *trans,
4074 	struct list_head                *buffer_list,
4075 	struct list_head                *item_list)
4076 {
4077 	struct xlog_recover_item	*item;
4078 	int				error = 0;
4079 
4080 	list_for_each_entry(item, item_list, ri_list) {
4081 		error = xlog_recover_commit_pass2(log, trans,
4082 					  buffer_list, item);
4083 		if (error)
4084 			return error;
4085 	}
4086 
4087 	return error;
4088 }
4089 
4090 /*
4091  * Perform the transaction.
4092  *
4093  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4094  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4095  */
4096 STATIC int
4097 xlog_recover_commit_trans(
4098 	struct xlog		*log,
4099 	struct xlog_recover	*trans,
4100 	int			pass,
4101 	struct list_head	*buffer_list)
4102 {
4103 	int				error = 0;
4104 	int				items_queued = 0;
4105 	struct xlog_recover_item	*item;
4106 	struct xlog_recover_item	*next;
4107 	LIST_HEAD			(ra_list);
4108 	LIST_HEAD			(done_list);
4109 
4110 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4111 
4112 	hlist_del_init(&trans->r_list);
4113 
4114 	error = xlog_recover_reorder_trans(log, trans, pass);
4115 	if (error)
4116 		return error;
4117 
4118 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4119 		switch (pass) {
4120 		case XLOG_RECOVER_PASS1:
4121 			error = xlog_recover_commit_pass1(log, trans, item);
4122 			break;
4123 		case XLOG_RECOVER_PASS2:
4124 			xlog_recover_ra_pass2(log, item);
4125 			list_move_tail(&item->ri_list, &ra_list);
4126 			items_queued++;
4127 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4128 				error = xlog_recover_items_pass2(log, trans,
4129 						buffer_list, &ra_list);
4130 				list_splice_tail_init(&ra_list, &done_list);
4131 				items_queued = 0;
4132 			}
4133 
4134 			break;
4135 		default:
4136 			ASSERT(0);
4137 		}
4138 
4139 		if (error)
4140 			goto out;
4141 	}
4142 
4143 out:
4144 	if (!list_empty(&ra_list)) {
4145 		if (!error)
4146 			error = xlog_recover_items_pass2(log, trans,
4147 					buffer_list, &ra_list);
4148 		list_splice_tail_init(&ra_list, &done_list);
4149 	}
4150 
4151 	if (!list_empty(&done_list))
4152 		list_splice_init(&done_list, &trans->r_itemq);
4153 
4154 	return error;
4155 }
4156 
4157 STATIC void
4158 xlog_recover_add_item(
4159 	struct list_head	*head)
4160 {
4161 	xlog_recover_item_t	*item;
4162 
4163 	item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4164 	INIT_LIST_HEAD(&item->ri_list);
4165 	list_add_tail(&item->ri_list, head);
4166 }
4167 
4168 STATIC int
4169 xlog_recover_add_to_cont_trans(
4170 	struct xlog		*log,
4171 	struct xlog_recover	*trans,
4172 	char			*dp,
4173 	int			len)
4174 {
4175 	xlog_recover_item_t	*item;
4176 	char			*ptr, *old_ptr;
4177 	int			old_len;
4178 
4179 	/*
4180 	 * If the transaction is empty, the header was split across this and the
4181 	 * previous record. Copy the rest of the header.
4182 	 */
4183 	if (list_empty(&trans->r_itemq)) {
4184 		ASSERT(len <= sizeof(struct xfs_trans_header));
4185 		if (len > sizeof(struct xfs_trans_header)) {
4186 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4187 			return -EFSCORRUPTED;
4188 		}
4189 
4190 		xlog_recover_add_item(&trans->r_itemq);
4191 		ptr = (char *)&trans->r_theader +
4192 				sizeof(struct xfs_trans_header) - len;
4193 		memcpy(ptr, dp, len);
4194 		return 0;
4195 	}
4196 
4197 	/* take the tail entry */
4198 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4199 
4200 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4201 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4202 
4203 	ptr = kmem_realloc(old_ptr, len + old_len, 0);
4204 	memcpy(&ptr[old_len], dp, len);
4205 	item->ri_buf[item->ri_cnt-1].i_len += len;
4206 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4207 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4208 	return 0;
4209 }
4210 
4211 /*
4212  * The next region to add is the start of a new region.  It could be
4213  * a whole region or it could be the first part of a new region.  Because
4214  * of this, the assumption here is that the type and size fields of all
4215  * format structures fit into the first 32 bits of the structure.
4216  *
4217  * This works because all regions must be 32 bit aligned.  Therefore, we
4218  * either have both fields or we have neither field.  In the case we have
4219  * neither field, the data part of the region is zero length.  We only have
4220  * a log_op_header and can throw away the header since a new one will appear
4221  * later.  If we have at least 4 bytes, then we can determine how many regions
4222  * will appear in the current log item.
4223  */
4224 STATIC int
4225 xlog_recover_add_to_trans(
4226 	struct xlog		*log,
4227 	struct xlog_recover	*trans,
4228 	char			*dp,
4229 	int			len)
4230 {
4231 	struct xfs_inode_log_format	*in_f;			/* any will do */
4232 	xlog_recover_item_t	*item;
4233 	char			*ptr;
4234 
4235 	if (!len)
4236 		return 0;
4237 	if (list_empty(&trans->r_itemq)) {
4238 		/* we need to catch log corruptions here */
4239 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4240 			xfs_warn(log->l_mp, "%s: bad header magic number",
4241 				__func__);
4242 			ASSERT(0);
4243 			return -EFSCORRUPTED;
4244 		}
4245 
4246 		if (len > sizeof(struct xfs_trans_header)) {
4247 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4248 			ASSERT(0);
4249 			return -EFSCORRUPTED;
4250 		}
4251 
4252 		/*
4253 		 * The transaction header can be arbitrarily split across op
4254 		 * records. If we don't have the whole thing here, copy what we
4255 		 * do have and handle the rest in the next record.
4256 		 */
4257 		if (len == sizeof(struct xfs_trans_header))
4258 			xlog_recover_add_item(&trans->r_itemq);
4259 		memcpy(&trans->r_theader, dp, len);
4260 		return 0;
4261 	}
4262 
4263 	ptr = kmem_alloc(len, 0);
4264 	memcpy(ptr, dp, len);
4265 	in_f = (struct xfs_inode_log_format *)ptr;
4266 
4267 	/* take the tail entry */
4268 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4269 	if (item->ri_total != 0 &&
4270 	     item->ri_total == item->ri_cnt) {
4271 		/* tail item is in use, get a new one */
4272 		xlog_recover_add_item(&trans->r_itemq);
4273 		item = list_entry(trans->r_itemq.prev,
4274 					xlog_recover_item_t, ri_list);
4275 	}
4276 
4277 	if (item->ri_total == 0) {		/* first region to be added */
4278 		if (in_f->ilf_size == 0 ||
4279 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4280 			xfs_warn(log->l_mp,
4281 		"bad number of regions (%d) in inode log format",
4282 				  in_f->ilf_size);
4283 			ASSERT(0);
4284 			kmem_free(ptr);
4285 			return -EFSCORRUPTED;
4286 		}
4287 
4288 		item->ri_total = in_f->ilf_size;
4289 		item->ri_buf =
4290 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4291 				    0);
4292 	}
4293 
4294 	if (item->ri_total <= item->ri_cnt) {
4295 		xfs_warn(log->l_mp,
4296 	"log item region count (%d) overflowed size (%d)",
4297 				item->ri_cnt, item->ri_total);
4298 		ASSERT(0);
4299 		kmem_free(ptr);
4300 		return -EFSCORRUPTED;
4301 	}
4302 
4303 	/* Description region is ri_buf[0] */
4304 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4305 	item->ri_buf[item->ri_cnt].i_len  = len;
4306 	item->ri_cnt++;
4307 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4308 	return 0;
4309 }
4310 
4311 /*
4312  * Free up any resources allocated by the transaction
4313  *
4314  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4315  */
4316 STATIC void
4317 xlog_recover_free_trans(
4318 	struct xlog_recover	*trans)
4319 {
4320 	xlog_recover_item_t	*item, *n;
4321 	int			i;
4322 
4323 	hlist_del_init(&trans->r_list);
4324 
4325 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4326 		/* Free the regions in the item. */
4327 		list_del(&item->ri_list);
4328 		for (i = 0; i < item->ri_cnt; i++)
4329 			kmem_free(item->ri_buf[i].i_addr);
4330 		/* Free the item itself */
4331 		kmem_free(item->ri_buf);
4332 		kmem_free(item);
4333 	}
4334 	/* Free the transaction recover structure */
4335 	kmem_free(trans);
4336 }
4337 
4338 /*
4339  * On error or completion, trans is freed.
4340  */
4341 STATIC int
4342 xlog_recovery_process_trans(
4343 	struct xlog		*log,
4344 	struct xlog_recover	*trans,
4345 	char			*dp,
4346 	unsigned int		len,
4347 	unsigned int		flags,
4348 	int			pass,
4349 	struct list_head	*buffer_list)
4350 {
4351 	int			error = 0;
4352 	bool			freeit = false;
4353 
4354 	/* mask off ophdr transaction container flags */
4355 	flags &= ~XLOG_END_TRANS;
4356 	if (flags & XLOG_WAS_CONT_TRANS)
4357 		flags &= ~XLOG_CONTINUE_TRANS;
4358 
4359 	/*
4360 	 * Callees must not free the trans structure. We'll decide if we need to
4361 	 * free it or not based on the operation being done and it's result.
4362 	 */
4363 	switch (flags) {
4364 	/* expected flag values */
4365 	case 0:
4366 	case XLOG_CONTINUE_TRANS:
4367 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4368 		break;
4369 	case XLOG_WAS_CONT_TRANS:
4370 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4371 		break;
4372 	case XLOG_COMMIT_TRANS:
4373 		error = xlog_recover_commit_trans(log, trans, pass,
4374 						  buffer_list);
4375 		/* success or fail, we are now done with this transaction. */
4376 		freeit = true;
4377 		break;
4378 
4379 	/* unexpected flag values */
4380 	case XLOG_UNMOUNT_TRANS:
4381 		/* just skip trans */
4382 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4383 		freeit = true;
4384 		break;
4385 	case XLOG_START_TRANS:
4386 	default:
4387 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4388 		ASSERT(0);
4389 		error = -EFSCORRUPTED;
4390 		break;
4391 	}
4392 	if (error || freeit)
4393 		xlog_recover_free_trans(trans);
4394 	return error;
4395 }
4396 
4397 /*
4398  * Lookup the transaction recovery structure associated with the ID in the
4399  * current ophdr. If the transaction doesn't exist and the start flag is set in
4400  * the ophdr, then allocate a new transaction for future ID matches to find.
4401  * Either way, return what we found during the lookup - an existing transaction
4402  * or nothing.
4403  */
4404 STATIC struct xlog_recover *
4405 xlog_recover_ophdr_to_trans(
4406 	struct hlist_head	rhash[],
4407 	struct xlog_rec_header	*rhead,
4408 	struct xlog_op_header	*ohead)
4409 {
4410 	struct xlog_recover	*trans;
4411 	xlog_tid_t		tid;
4412 	struct hlist_head	*rhp;
4413 
4414 	tid = be32_to_cpu(ohead->oh_tid);
4415 	rhp = &rhash[XLOG_RHASH(tid)];
4416 	hlist_for_each_entry(trans, rhp, r_list) {
4417 		if (trans->r_log_tid == tid)
4418 			return trans;
4419 	}
4420 
4421 	/*
4422 	 * skip over non-start transaction headers - we could be
4423 	 * processing slack space before the next transaction starts
4424 	 */
4425 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4426 		return NULL;
4427 
4428 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4429 
4430 	/*
4431 	 * This is a new transaction so allocate a new recovery container to
4432 	 * hold the recovery ops that will follow.
4433 	 */
4434 	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4435 	trans->r_log_tid = tid;
4436 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4437 	INIT_LIST_HEAD(&trans->r_itemq);
4438 	INIT_HLIST_NODE(&trans->r_list);
4439 	hlist_add_head(&trans->r_list, rhp);
4440 
4441 	/*
4442 	 * Nothing more to do for this ophdr. Items to be added to this new
4443 	 * transaction will be in subsequent ophdr containers.
4444 	 */
4445 	return NULL;
4446 }
4447 
4448 STATIC int
4449 xlog_recover_process_ophdr(
4450 	struct xlog		*log,
4451 	struct hlist_head	rhash[],
4452 	struct xlog_rec_header	*rhead,
4453 	struct xlog_op_header	*ohead,
4454 	char			*dp,
4455 	char			*end,
4456 	int			pass,
4457 	struct list_head	*buffer_list)
4458 {
4459 	struct xlog_recover	*trans;
4460 	unsigned int		len;
4461 	int			error;
4462 
4463 	/* Do we understand who wrote this op? */
4464 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4465 	    ohead->oh_clientid != XFS_LOG) {
4466 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4467 			__func__, ohead->oh_clientid);
4468 		ASSERT(0);
4469 		return -EFSCORRUPTED;
4470 	}
4471 
4472 	/*
4473 	 * Check the ophdr contains all the data it is supposed to contain.
4474 	 */
4475 	len = be32_to_cpu(ohead->oh_len);
4476 	if (dp + len > end) {
4477 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4478 		WARN_ON(1);
4479 		return -EFSCORRUPTED;
4480 	}
4481 
4482 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4483 	if (!trans) {
4484 		/* nothing to do, so skip over this ophdr */
4485 		return 0;
4486 	}
4487 
4488 	/*
4489 	 * The recovered buffer queue is drained only once we know that all
4490 	 * recovery items for the current LSN have been processed. This is
4491 	 * required because:
4492 	 *
4493 	 * - Buffer write submission updates the metadata LSN of the buffer.
4494 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4495 	 *   the recovery item.
4496 	 * - Separate recovery items against the same metadata buffer can share
4497 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4498 	 *   defined as the starting LSN of the first record in which its
4499 	 *   transaction appears, that a record can hold multiple transactions,
4500 	 *   and/or that a transaction can span multiple records.
4501 	 *
4502 	 * In other words, we are allowed to submit a buffer from log recovery
4503 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4504 	 * items and cause corruption.
4505 	 *
4506 	 * We don't know up front whether buffers are updated multiple times per
4507 	 * LSN. Therefore, track the current LSN of each commit log record as it
4508 	 * is processed and drain the queue when it changes. Use commit records
4509 	 * because they are ordered correctly by the logging code.
4510 	 */
4511 	if (log->l_recovery_lsn != trans->r_lsn &&
4512 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4513 		error = xfs_buf_delwri_submit(buffer_list);
4514 		if (error)
4515 			return error;
4516 		log->l_recovery_lsn = trans->r_lsn;
4517 	}
4518 
4519 	return xlog_recovery_process_trans(log, trans, dp, len,
4520 					   ohead->oh_flags, pass, buffer_list);
4521 }
4522 
4523 /*
4524  * There are two valid states of the r_state field.  0 indicates that the
4525  * transaction structure is in a normal state.  We have either seen the
4526  * start of the transaction or the last operation we added was not a partial
4527  * operation.  If the last operation we added to the transaction was a
4528  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4529  *
4530  * NOTE: skip LRs with 0 data length.
4531  */
4532 STATIC int
4533 xlog_recover_process_data(
4534 	struct xlog		*log,
4535 	struct hlist_head	rhash[],
4536 	struct xlog_rec_header	*rhead,
4537 	char			*dp,
4538 	int			pass,
4539 	struct list_head	*buffer_list)
4540 {
4541 	struct xlog_op_header	*ohead;
4542 	char			*end;
4543 	int			num_logops;
4544 	int			error;
4545 
4546 	end = dp + be32_to_cpu(rhead->h_len);
4547 	num_logops = be32_to_cpu(rhead->h_num_logops);
4548 
4549 	/* check the log format matches our own - else we can't recover */
4550 	if (xlog_header_check_recover(log->l_mp, rhead))
4551 		return -EIO;
4552 
4553 	trace_xfs_log_recover_record(log, rhead, pass);
4554 	while ((dp < end) && num_logops) {
4555 
4556 		ohead = (struct xlog_op_header *)dp;
4557 		dp += sizeof(*ohead);
4558 		ASSERT(dp <= end);
4559 
4560 		/* errors will abort recovery */
4561 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4562 						   dp, end, pass, buffer_list);
4563 		if (error)
4564 			return error;
4565 
4566 		dp += be32_to_cpu(ohead->oh_len);
4567 		num_logops--;
4568 	}
4569 	return 0;
4570 }
4571 
4572 /* Recover the EFI if necessary. */
4573 STATIC int
4574 xlog_recover_process_efi(
4575 	struct xfs_mount		*mp,
4576 	struct xfs_ail			*ailp,
4577 	struct xfs_log_item		*lip)
4578 {
4579 	struct xfs_efi_log_item		*efip;
4580 	int				error;
4581 
4582 	/*
4583 	 * Skip EFIs that we've already processed.
4584 	 */
4585 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4586 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4587 		return 0;
4588 
4589 	spin_unlock(&ailp->ail_lock);
4590 	error = xfs_efi_recover(mp, efip);
4591 	spin_lock(&ailp->ail_lock);
4592 
4593 	return error;
4594 }
4595 
4596 /* Release the EFI since we're cancelling everything. */
4597 STATIC void
4598 xlog_recover_cancel_efi(
4599 	struct xfs_mount		*mp,
4600 	struct xfs_ail			*ailp,
4601 	struct xfs_log_item		*lip)
4602 {
4603 	struct xfs_efi_log_item		*efip;
4604 
4605 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4606 
4607 	spin_unlock(&ailp->ail_lock);
4608 	xfs_efi_release(efip);
4609 	spin_lock(&ailp->ail_lock);
4610 }
4611 
4612 /* Recover the RUI if necessary. */
4613 STATIC int
4614 xlog_recover_process_rui(
4615 	struct xfs_mount		*mp,
4616 	struct xfs_ail			*ailp,
4617 	struct xfs_log_item		*lip)
4618 {
4619 	struct xfs_rui_log_item		*ruip;
4620 	int				error;
4621 
4622 	/*
4623 	 * Skip RUIs that we've already processed.
4624 	 */
4625 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4626 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4627 		return 0;
4628 
4629 	spin_unlock(&ailp->ail_lock);
4630 	error = xfs_rui_recover(mp, ruip);
4631 	spin_lock(&ailp->ail_lock);
4632 
4633 	return error;
4634 }
4635 
4636 /* Release the RUI since we're cancelling everything. */
4637 STATIC void
4638 xlog_recover_cancel_rui(
4639 	struct xfs_mount		*mp,
4640 	struct xfs_ail			*ailp,
4641 	struct xfs_log_item		*lip)
4642 {
4643 	struct xfs_rui_log_item		*ruip;
4644 
4645 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4646 
4647 	spin_unlock(&ailp->ail_lock);
4648 	xfs_rui_release(ruip);
4649 	spin_lock(&ailp->ail_lock);
4650 }
4651 
4652 /* Recover the CUI if necessary. */
4653 STATIC int
4654 xlog_recover_process_cui(
4655 	struct xfs_trans		*parent_tp,
4656 	struct xfs_ail			*ailp,
4657 	struct xfs_log_item		*lip)
4658 {
4659 	struct xfs_cui_log_item		*cuip;
4660 	int				error;
4661 
4662 	/*
4663 	 * Skip CUIs that we've already processed.
4664 	 */
4665 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4666 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4667 		return 0;
4668 
4669 	spin_unlock(&ailp->ail_lock);
4670 	error = xfs_cui_recover(parent_tp, cuip);
4671 	spin_lock(&ailp->ail_lock);
4672 
4673 	return error;
4674 }
4675 
4676 /* Release the CUI since we're cancelling everything. */
4677 STATIC void
4678 xlog_recover_cancel_cui(
4679 	struct xfs_mount		*mp,
4680 	struct xfs_ail			*ailp,
4681 	struct xfs_log_item		*lip)
4682 {
4683 	struct xfs_cui_log_item		*cuip;
4684 
4685 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4686 
4687 	spin_unlock(&ailp->ail_lock);
4688 	xfs_cui_release(cuip);
4689 	spin_lock(&ailp->ail_lock);
4690 }
4691 
4692 /* Recover the BUI if necessary. */
4693 STATIC int
4694 xlog_recover_process_bui(
4695 	struct xfs_trans		*parent_tp,
4696 	struct xfs_ail			*ailp,
4697 	struct xfs_log_item		*lip)
4698 {
4699 	struct xfs_bui_log_item		*buip;
4700 	int				error;
4701 
4702 	/*
4703 	 * Skip BUIs that we've already processed.
4704 	 */
4705 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4706 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4707 		return 0;
4708 
4709 	spin_unlock(&ailp->ail_lock);
4710 	error = xfs_bui_recover(parent_tp, buip);
4711 	spin_lock(&ailp->ail_lock);
4712 
4713 	return error;
4714 }
4715 
4716 /* Release the BUI since we're cancelling everything. */
4717 STATIC void
4718 xlog_recover_cancel_bui(
4719 	struct xfs_mount		*mp,
4720 	struct xfs_ail			*ailp,
4721 	struct xfs_log_item		*lip)
4722 {
4723 	struct xfs_bui_log_item		*buip;
4724 
4725 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4726 
4727 	spin_unlock(&ailp->ail_lock);
4728 	xfs_bui_release(buip);
4729 	spin_lock(&ailp->ail_lock);
4730 }
4731 
4732 /* Is this log item a deferred action intent? */
4733 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4734 {
4735 	switch (lip->li_type) {
4736 	case XFS_LI_EFI:
4737 	case XFS_LI_RUI:
4738 	case XFS_LI_CUI:
4739 	case XFS_LI_BUI:
4740 		return true;
4741 	default:
4742 		return false;
4743 	}
4744 }
4745 
4746 /* Take all the collected deferred ops and finish them in order. */
4747 static int
4748 xlog_finish_defer_ops(
4749 	struct xfs_trans	*parent_tp)
4750 {
4751 	struct xfs_mount	*mp = parent_tp->t_mountp;
4752 	struct xfs_trans	*tp;
4753 	int64_t			freeblks;
4754 	uint			resblks;
4755 	int			error;
4756 
4757 	/*
4758 	 * We're finishing the defer_ops that accumulated as a result of
4759 	 * recovering unfinished intent items during log recovery.  We
4760 	 * reserve an itruncate transaction because it is the largest
4761 	 * permanent transaction type.  Since we're the only user of the fs
4762 	 * right now, take 93% (15/16) of the available free blocks.  Use
4763 	 * weird math to avoid a 64-bit division.
4764 	 */
4765 	freeblks = percpu_counter_sum(&mp->m_fdblocks);
4766 	if (freeblks <= 0)
4767 		return -ENOSPC;
4768 	resblks = min_t(int64_t, UINT_MAX, freeblks);
4769 	resblks = (resblks * 15) >> 4;
4770 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4771 			0, XFS_TRANS_RESERVE, &tp);
4772 	if (error)
4773 		return error;
4774 	/* transfer all collected dfops to this transaction */
4775 	xfs_defer_move(tp, parent_tp);
4776 
4777 	return xfs_trans_commit(tp);
4778 }
4779 
4780 /*
4781  * When this is called, all of the log intent items which did not have
4782  * corresponding log done items should be in the AIL.  What we do now
4783  * is update the data structures associated with each one.
4784  *
4785  * Since we process the log intent items in normal transactions, they
4786  * will be removed at some point after the commit.  This prevents us
4787  * from just walking down the list processing each one.  We'll use a
4788  * flag in the intent item to skip those that we've already processed
4789  * and use the AIL iteration mechanism's generation count to try to
4790  * speed this up at least a bit.
4791  *
4792  * When we start, we know that the intents are the only things in the
4793  * AIL.  As we process them, however, other items are added to the
4794  * AIL.
4795  */
4796 STATIC int
4797 xlog_recover_process_intents(
4798 	struct xlog		*log)
4799 {
4800 	struct xfs_trans	*parent_tp;
4801 	struct xfs_ail_cursor	cur;
4802 	struct xfs_log_item	*lip;
4803 	struct xfs_ail		*ailp;
4804 	int			error;
4805 #if defined(DEBUG) || defined(XFS_WARN)
4806 	xfs_lsn_t		last_lsn;
4807 #endif
4808 
4809 	/*
4810 	 * The intent recovery handlers commit transactions to complete recovery
4811 	 * for individual intents, but any new deferred operations that are
4812 	 * queued during that process are held off until the very end. The
4813 	 * purpose of this transaction is to serve as a container for deferred
4814 	 * operations. Each intent recovery handler must transfer dfops here
4815 	 * before its local transaction commits, and we'll finish the entire
4816 	 * list below.
4817 	 */
4818 	error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4819 	if (error)
4820 		return error;
4821 
4822 	ailp = log->l_ailp;
4823 	spin_lock(&ailp->ail_lock);
4824 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4825 #if defined(DEBUG) || defined(XFS_WARN)
4826 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4827 #endif
4828 	while (lip != NULL) {
4829 		/*
4830 		 * We're done when we see something other than an intent.
4831 		 * There should be no intents left in the AIL now.
4832 		 */
4833 		if (!xlog_item_is_intent(lip)) {
4834 #ifdef DEBUG
4835 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4836 				ASSERT(!xlog_item_is_intent(lip));
4837 #endif
4838 			break;
4839 		}
4840 
4841 		/*
4842 		 * We should never see a redo item with a LSN higher than
4843 		 * the last transaction we found in the log at the start
4844 		 * of recovery.
4845 		 */
4846 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4847 
4848 		/*
4849 		 * NOTE: If your intent processing routine can create more
4850 		 * deferred ops, you /must/ attach them to the dfops in this
4851 		 * routine or else those subsequent intents will get
4852 		 * replayed in the wrong order!
4853 		 */
4854 		switch (lip->li_type) {
4855 		case XFS_LI_EFI:
4856 			error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4857 			break;
4858 		case XFS_LI_RUI:
4859 			error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4860 			break;
4861 		case XFS_LI_CUI:
4862 			error = xlog_recover_process_cui(parent_tp, ailp, lip);
4863 			break;
4864 		case XFS_LI_BUI:
4865 			error = xlog_recover_process_bui(parent_tp, ailp, lip);
4866 			break;
4867 		}
4868 		if (error)
4869 			goto out;
4870 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4871 	}
4872 out:
4873 	xfs_trans_ail_cursor_done(&cur);
4874 	spin_unlock(&ailp->ail_lock);
4875 	if (!error)
4876 		error = xlog_finish_defer_ops(parent_tp);
4877 	xfs_trans_cancel(parent_tp);
4878 
4879 	return error;
4880 }
4881 
4882 /*
4883  * A cancel occurs when the mount has failed and we're bailing out.
4884  * Release all pending log intent items so they don't pin the AIL.
4885  */
4886 STATIC void
4887 xlog_recover_cancel_intents(
4888 	struct xlog		*log)
4889 {
4890 	struct xfs_log_item	*lip;
4891 	struct xfs_ail_cursor	cur;
4892 	struct xfs_ail		*ailp;
4893 
4894 	ailp = log->l_ailp;
4895 	spin_lock(&ailp->ail_lock);
4896 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4897 	while (lip != NULL) {
4898 		/*
4899 		 * We're done when we see something other than an intent.
4900 		 * There should be no intents left in the AIL now.
4901 		 */
4902 		if (!xlog_item_is_intent(lip)) {
4903 #ifdef DEBUG
4904 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4905 				ASSERT(!xlog_item_is_intent(lip));
4906 #endif
4907 			break;
4908 		}
4909 
4910 		switch (lip->li_type) {
4911 		case XFS_LI_EFI:
4912 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4913 			break;
4914 		case XFS_LI_RUI:
4915 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4916 			break;
4917 		case XFS_LI_CUI:
4918 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4919 			break;
4920 		case XFS_LI_BUI:
4921 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4922 			break;
4923 		}
4924 
4925 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4926 	}
4927 
4928 	xfs_trans_ail_cursor_done(&cur);
4929 	spin_unlock(&ailp->ail_lock);
4930 }
4931 
4932 /*
4933  * This routine performs a transaction to null out a bad inode pointer
4934  * in an agi unlinked inode hash bucket.
4935  */
4936 STATIC void
4937 xlog_recover_clear_agi_bucket(
4938 	xfs_mount_t	*mp,
4939 	xfs_agnumber_t	agno,
4940 	int		bucket)
4941 {
4942 	xfs_trans_t	*tp;
4943 	xfs_agi_t	*agi;
4944 	xfs_buf_t	*agibp;
4945 	int		offset;
4946 	int		error;
4947 
4948 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4949 	if (error)
4950 		goto out_error;
4951 
4952 	error = xfs_read_agi(mp, tp, agno, &agibp);
4953 	if (error)
4954 		goto out_abort;
4955 
4956 	agi = XFS_BUF_TO_AGI(agibp);
4957 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4958 	offset = offsetof(xfs_agi_t, agi_unlinked) +
4959 		 (sizeof(xfs_agino_t) * bucket);
4960 	xfs_trans_log_buf(tp, agibp, offset,
4961 			  (offset + sizeof(xfs_agino_t) - 1));
4962 
4963 	error = xfs_trans_commit(tp);
4964 	if (error)
4965 		goto out_error;
4966 	return;
4967 
4968 out_abort:
4969 	xfs_trans_cancel(tp);
4970 out_error:
4971 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4972 	return;
4973 }
4974 
4975 STATIC xfs_agino_t
4976 xlog_recover_process_one_iunlink(
4977 	struct xfs_mount		*mp,
4978 	xfs_agnumber_t			agno,
4979 	xfs_agino_t			agino,
4980 	int				bucket)
4981 {
4982 	struct xfs_buf			*ibp;
4983 	struct xfs_dinode		*dip;
4984 	struct xfs_inode		*ip;
4985 	xfs_ino_t			ino;
4986 	int				error;
4987 
4988 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
4989 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4990 	if (error)
4991 		goto fail;
4992 
4993 	/*
4994 	 * Get the on disk inode to find the next inode in the bucket.
4995 	 */
4996 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4997 	if (error)
4998 		goto fail_iput;
4999 
5000 	xfs_iflags_clear(ip, XFS_IRECOVERY);
5001 	ASSERT(VFS_I(ip)->i_nlink == 0);
5002 	ASSERT(VFS_I(ip)->i_mode != 0);
5003 
5004 	/* setup for the next pass */
5005 	agino = be32_to_cpu(dip->di_next_unlinked);
5006 	xfs_buf_relse(ibp);
5007 
5008 	/*
5009 	 * Prevent any DMAPI event from being sent when the reference on
5010 	 * the inode is dropped.
5011 	 */
5012 	ip->i_d.di_dmevmask = 0;
5013 
5014 	xfs_irele(ip);
5015 	return agino;
5016 
5017  fail_iput:
5018 	xfs_irele(ip);
5019  fail:
5020 	/*
5021 	 * We can't read in the inode this bucket points to, or this inode
5022 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5023 	 * some inodes and space, but at least we won't hang.
5024 	 *
5025 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5026 	 * clear the inode pointer in the bucket.
5027 	 */
5028 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5029 	return NULLAGINO;
5030 }
5031 
5032 /*
5033  * Recover AGI unlinked lists
5034  *
5035  * This is called during recovery to process any inodes which we unlinked but
5036  * not freed when the system crashed.  These inodes will be on the lists in the
5037  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5038  * any inodes found on the lists. Each inode is removed from the lists when it
5039  * has been fully truncated and is freed. The freeing of the inode and its
5040  * removal from the list must be atomic.
5041  *
5042  * If everything we touch in the agi processing loop is already in memory, this
5043  * loop can hold the cpu for a long time. It runs without lock contention,
5044  * memory allocation contention, the need wait for IO, etc, and so will run
5045  * until we either run out of inodes to process, run low on memory or we run out
5046  * of log space.
5047  *
5048  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5049  * and can prevent other filesytem work (such as CIL pushes) from running. This
5050  * can lead to deadlocks if the recovery process runs out of log reservation
5051  * space. Hence we need to yield the CPU when there is other kernel work
5052  * scheduled on this CPU to ensure other scheduled work can run without undue
5053  * latency.
5054  */
5055 STATIC void
5056 xlog_recover_process_iunlinks(
5057 	struct xlog	*log)
5058 {
5059 	xfs_mount_t	*mp;
5060 	xfs_agnumber_t	agno;
5061 	xfs_agi_t	*agi;
5062 	xfs_buf_t	*agibp;
5063 	xfs_agino_t	agino;
5064 	int		bucket;
5065 	int		error;
5066 
5067 	mp = log->l_mp;
5068 
5069 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5070 		/*
5071 		 * Find the agi for this ag.
5072 		 */
5073 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5074 		if (error) {
5075 			/*
5076 			 * AGI is b0rked. Don't process it.
5077 			 *
5078 			 * We should probably mark the filesystem as corrupt
5079 			 * after we've recovered all the ag's we can....
5080 			 */
5081 			continue;
5082 		}
5083 		/*
5084 		 * Unlock the buffer so that it can be acquired in the normal
5085 		 * course of the transaction to truncate and free each inode.
5086 		 * Because we are not racing with anyone else here for the AGI
5087 		 * buffer, we don't even need to hold it locked to read the
5088 		 * initial unlinked bucket entries out of the buffer. We keep
5089 		 * buffer reference though, so that it stays pinned in memory
5090 		 * while we need the buffer.
5091 		 */
5092 		agi = XFS_BUF_TO_AGI(agibp);
5093 		xfs_buf_unlock(agibp);
5094 
5095 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5096 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5097 			while (agino != NULLAGINO) {
5098 				agino = xlog_recover_process_one_iunlink(mp,
5099 							agno, agino, bucket);
5100 				cond_resched();
5101 			}
5102 		}
5103 		xfs_buf_rele(agibp);
5104 	}
5105 }
5106 
5107 STATIC void
5108 xlog_unpack_data(
5109 	struct xlog_rec_header	*rhead,
5110 	char			*dp,
5111 	struct xlog		*log)
5112 {
5113 	int			i, j, k;
5114 
5115 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5116 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5117 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5118 		dp += BBSIZE;
5119 	}
5120 
5121 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5122 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5123 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5124 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5125 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5126 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5127 			dp += BBSIZE;
5128 		}
5129 	}
5130 }
5131 
5132 /*
5133  * CRC check, unpack and process a log record.
5134  */
5135 STATIC int
5136 xlog_recover_process(
5137 	struct xlog		*log,
5138 	struct hlist_head	rhash[],
5139 	struct xlog_rec_header	*rhead,
5140 	char			*dp,
5141 	int			pass,
5142 	struct list_head	*buffer_list)
5143 {
5144 	__le32			old_crc = rhead->h_crc;
5145 	__le32			crc;
5146 
5147 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5148 
5149 	/*
5150 	 * Nothing else to do if this is a CRC verification pass. Just return
5151 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5152 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5153 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5154 	 * know precisely what failed.
5155 	 */
5156 	if (pass == XLOG_RECOVER_CRCPASS) {
5157 		if (old_crc && crc != old_crc)
5158 			return -EFSBADCRC;
5159 		return 0;
5160 	}
5161 
5162 	/*
5163 	 * We're in the normal recovery path. Issue a warning if and only if the
5164 	 * CRC in the header is non-zero. This is an advisory warning and the
5165 	 * zero CRC check prevents warnings from being emitted when upgrading
5166 	 * the kernel from one that does not add CRCs by default.
5167 	 */
5168 	if (crc != old_crc) {
5169 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5170 			xfs_alert(log->l_mp,
5171 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5172 					le32_to_cpu(old_crc),
5173 					le32_to_cpu(crc));
5174 			xfs_hex_dump(dp, 32);
5175 		}
5176 
5177 		/*
5178 		 * If the filesystem is CRC enabled, this mismatch becomes a
5179 		 * fatal log corruption failure.
5180 		 */
5181 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5182 			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
5183 			return -EFSCORRUPTED;
5184 		}
5185 	}
5186 
5187 	xlog_unpack_data(rhead, dp, log);
5188 
5189 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5190 					 buffer_list);
5191 }
5192 
5193 STATIC int
5194 xlog_valid_rec_header(
5195 	struct xlog		*log,
5196 	struct xlog_rec_header	*rhead,
5197 	xfs_daddr_t		blkno)
5198 {
5199 	int			hlen;
5200 
5201 	if (XFS_IS_CORRUPT(log->l_mp,
5202 			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
5203 		return -EFSCORRUPTED;
5204 	if (XFS_IS_CORRUPT(log->l_mp,
5205 			   (!rhead->h_version ||
5206 			   (be32_to_cpu(rhead->h_version) &
5207 			    (~XLOG_VERSION_OKBITS))))) {
5208 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5209 			__func__, be32_to_cpu(rhead->h_version));
5210 		return -EFSCORRUPTED;
5211 	}
5212 
5213 	/* LR body must have data or it wouldn't have been written */
5214 	hlen = be32_to_cpu(rhead->h_len);
5215 	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > INT_MAX))
5216 		return -EFSCORRUPTED;
5217 	if (XFS_IS_CORRUPT(log->l_mp,
5218 			   blkno > log->l_logBBsize || blkno > INT_MAX))
5219 		return -EFSCORRUPTED;
5220 	return 0;
5221 }
5222 
5223 /*
5224  * Read the log from tail to head and process the log records found.
5225  * Handle the two cases where the tail and head are in the same cycle
5226  * and where the active portion of the log wraps around the end of
5227  * the physical log separately.  The pass parameter is passed through
5228  * to the routines called to process the data and is not looked at
5229  * here.
5230  */
5231 STATIC int
5232 xlog_do_recovery_pass(
5233 	struct xlog		*log,
5234 	xfs_daddr_t		head_blk,
5235 	xfs_daddr_t		tail_blk,
5236 	int			pass,
5237 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5238 {
5239 	xlog_rec_header_t	*rhead;
5240 	xfs_daddr_t		blk_no, rblk_no;
5241 	xfs_daddr_t		rhead_blk;
5242 	char			*offset;
5243 	char			*hbp, *dbp;
5244 	int			error = 0, h_size, h_len;
5245 	int			error2 = 0;
5246 	int			bblks, split_bblks;
5247 	int			hblks, split_hblks, wrapped_hblks;
5248 	int			i;
5249 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5250 	LIST_HEAD		(buffer_list);
5251 
5252 	ASSERT(head_blk != tail_blk);
5253 	blk_no = rhead_blk = tail_blk;
5254 
5255 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5256 		INIT_HLIST_HEAD(&rhash[i]);
5257 
5258 	/*
5259 	 * Read the header of the tail block and get the iclog buffer size from
5260 	 * h_size.  Use this to tell how many sectors make up the log header.
5261 	 */
5262 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5263 		/*
5264 		 * When using variable length iclogs, read first sector of
5265 		 * iclog header and extract the header size from it.  Get a
5266 		 * new hbp that is the correct size.
5267 		 */
5268 		hbp = xlog_alloc_buffer(log, 1);
5269 		if (!hbp)
5270 			return -ENOMEM;
5271 
5272 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5273 		if (error)
5274 			goto bread_err1;
5275 
5276 		rhead = (xlog_rec_header_t *)offset;
5277 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5278 		if (error)
5279 			goto bread_err1;
5280 
5281 		/*
5282 		 * xfsprogs has a bug where record length is based on lsunit but
5283 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5284 		 * unconditionally CRC verify the unmount record, this means the
5285 		 * log buffer can be too small for the record and cause an
5286 		 * overrun.
5287 		 *
5288 		 * Detect this condition here. Use lsunit for the buffer size as
5289 		 * long as this looks like the mkfs case. Otherwise, return an
5290 		 * error to avoid a buffer overrun.
5291 		 */
5292 		h_size = be32_to_cpu(rhead->h_size);
5293 		h_len = be32_to_cpu(rhead->h_len);
5294 		if (h_len > h_size) {
5295 			if (h_len <= log->l_mp->m_logbsize &&
5296 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5297 				xfs_warn(log->l_mp,
5298 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5299 					 h_size, log->l_mp->m_logbsize);
5300 				h_size = log->l_mp->m_logbsize;
5301 			} else {
5302 				XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW,
5303 						log->l_mp);
5304 				error = -EFSCORRUPTED;
5305 				goto bread_err1;
5306 			}
5307 		}
5308 
5309 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5310 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5311 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5312 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5313 				hblks++;
5314 			kmem_free(hbp);
5315 			hbp = xlog_alloc_buffer(log, hblks);
5316 		} else {
5317 			hblks = 1;
5318 		}
5319 	} else {
5320 		ASSERT(log->l_sectBBsize == 1);
5321 		hblks = 1;
5322 		hbp = xlog_alloc_buffer(log, 1);
5323 		h_size = XLOG_BIG_RECORD_BSIZE;
5324 	}
5325 
5326 	if (!hbp)
5327 		return -ENOMEM;
5328 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5329 	if (!dbp) {
5330 		kmem_free(hbp);
5331 		return -ENOMEM;
5332 	}
5333 
5334 	memset(rhash, 0, sizeof(rhash));
5335 	if (tail_blk > head_blk) {
5336 		/*
5337 		 * Perform recovery around the end of the physical log.
5338 		 * When the head is not on the same cycle number as the tail,
5339 		 * we can't do a sequential recovery.
5340 		 */
5341 		while (blk_no < log->l_logBBsize) {
5342 			/*
5343 			 * Check for header wrapping around physical end-of-log
5344 			 */
5345 			offset = hbp;
5346 			split_hblks = 0;
5347 			wrapped_hblks = 0;
5348 			if (blk_no + hblks <= log->l_logBBsize) {
5349 				/* Read header in one read */
5350 				error = xlog_bread(log, blk_no, hblks, hbp,
5351 						   &offset);
5352 				if (error)
5353 					goto bread_err2;
5354 			} else {
5355 				/* This LR is split across physical log end */
5356 				if (blk_no != log->l_logBBsize) {
5357 					/* some data before physical log end */
5358 					ASSERT(blk_no <= INT_MAX);
5359 					split_hblks = log->l_logBBsize - (int)blk_no;
5360 					ASSERT(split_hblks > 0);
5361 					error = xlog_bread(log, blk_no,
5362 							   split_hblks, hbp,
5363 							   &offset);
5364 					if (error)
5365 						goto bread_err2;
5366 				}
5367 
5368 				/*
5369 				 * Note: this black magic still works with
5370 				 * large sector sizes (non-512) only because:
5371 				 * - we increased the buffer size originally
5372 				 *   by 1 sector giving us enough extra space
5373 				 *   for the second read;
5374 				 * - the log start is guaranteed to be sector
5375 				 *   aligned;
5376 				 * - we read the log end (LR header start)
5377 				 *   _first_, then the log start (LR header end)
5378 				 *   - order is important.
5379 				 */
5380 				wrapped_hblks = hblks - split_hblks;
5381 				error = xlog_bread_noalign(log, 0,
5382 						wrapped_hblks,
5383 						offset + BBTOB(split_hblks));
5384 				if (error)
5385 					goto bread_err2;
5386 			}
5387 			rhead = (xlog_rec_header_t *)offset;
5388 			error = xlog_valid_rec_header(log, rhead,
5389 						split_hblks ? blk_no : 0);
5390 			if (error)
5391 				goto bread_err2;
5392 
5393 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5394 			blk_no += hblks;
5395 
5396 			/*
5397 			 * Read the log record data in multiple reads if it
5398 			 * wraps around the end of the log. Note that if the
5399 			 * header already wrapped, blk_no could point past the
5400 			 * end of the log. The record data is contiguous in
5401 			 * that case.
5402 			 */
5403 			if (blk_no + bblks <= log->l_logBBsize ||
5404 			    blk_no >= log->l_logBBsize) {
5405 				rblk_no = xlog_wrap_logbno(log, blk_no);
5406 				error = xlog_bread(log, rblk_no, bblks, dbp,
5407 						   &offset);
5408 				if (error)
5409 					goto bread_err2;
5410 			} else {
5411 				/* This log record is split across the
5412 				 * physical end of log */
5413 				offset = dbp;
5414 				split_bblks = 0;
5415 				if (blk_no != log->l_logBBsize) {
5416 					/* some data is before the physical
5417 					 * end of log */
5418 					ASSERT(!wrapped_hblks);
5419 					ASSERT(blk_no <= INT_MAX);
5420 					split_bblks =
5421 						log->l_logBBsize - (int)blk_no;
5422 					ASSERT(split_bblks > 0);
5423 					error = xlog_bread(log, blk_no,
5424 							split_bblks, dbp,
5425 							&offset);
5426 					if (error)
5427 						goto bread_err2;
5428 				}
5429 
5430 				/*
5431 				 * Note: this black magic still works with
5432 				 * large sector sizes (non-512) only because:
5433 				 * - we increased the buffer size originally
5434 				 *   by 1 sector giving us enough extra space
5435 				 *   for the second read;
5436 				 * - the log start is guaranteed to be sector
5437 				 *   aligned;
5438 				 * - we read the log end (LR header start)
5439 				 *   _first_, then the log start (LR header end)
5440 				 *   - order is important.
5441 				 */
5442 				error = xlog_bread_noalign(log, 0,
5443 						bblks - split_bblks,
5444 						offset + BBTOB(split_bblks));
5445 				if (error)
5446 					goto bread_err2;
5447 			}
5448 
5449 			error = xlog_recover_process(log, rhash, rhead, offset,
5450 						     pass, &buffer_list);
5451 			if (error)
5452 				goto bread_err2;
5453 
5454 			blk_no += bblks;
5455 			rhead_blk = blk_no;
5456 		}
5457 
5458 		ASSERT(blk_no >= log->l_logBBsize);
5459 		blk_no -= log->l_logBBsize;
5460 		rhead_blk = blk_no;
5461 	}
5462 
5463 	/* read first part of physical log */
5464 	while (blk_no < head_blk) {
5465 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5466 		if (error)
5467 			goto bread_err2;
5468 
5469 		rhead = (xlog_rec_header_t *)offset;
5470 		error = xlog_valid_rec_header(log, rhead, blk_no);
5471 		if (error)
5472 			goto bread_err2;
5473 
5474 		/* blocks in data section */
5475 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5476 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5477 				   &offset);
5478 		if (error)
5479 			goto bread_err2;
5480 
5481 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5482 					     &buffer_list);
5483 		if (error)
5484 			goto bread_err2;
5485 
5486 		blk_no += bblks + hblks;
5487 		rhead_blk = blk_no;
5488 	}
5489 
5490  bread_err2:
5491 	kmem_free(dbp);
5492  bread_err1:
5493 	kmem_free(hbp);
5494 
5495 	/*
5496 	 * Submit buffers that have been added from the last record processed,
5497 	 * regardless of error status.
5498 	 */
5499 	if (!list_empty(&buffer_list))
5500 		error2 = xfs_buf_delwri_submit(&buffer_list);
5501 
5502 	if (error && first_bad)
5503 		*first_bad = rhead_blk;
5504 
5505 	/*
5506 	 * Transactions are freed at commit time but transactions without commit
5507 	 * records on disk are never committed. Free any that may be left in the
5508 	 * hash table.
5509 	 */
5510 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5511 		struct hlist_node	*tmp;
5512 		struct xlog_recover	*trans;
5513 
5514 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5515 			xlog_recover_free_trans(trans);
5516 	}
5517 
5518 	return error ? error : error2;
5519 }
5520 
5521 /*
5522  * Do the recovery of the log.  We actually do this in two phases.
5523  * The two passes are necessary in order to implement the function
5524  * of cancelling a record written into the log.  The first pass
5525  * determines those things which have been cancelled, and the
5526  * second pass replays log items normally except for those which
5527  * have been cancelled.  The handling of the replay and cancellations
5528  * takes place in the log item type specific routines.
5529  *
5530  * The table of items which have cancel records in the log is allocated
5531  * and freed at this level, since only here do we know when all of
5532  * the log recovery has been completed.
5533  */
5534 STATIC int
5535 xlog_do_log_recovery(
5536 	struct xlog	*log,
5537 	xfs_daddr_t	head_blk,
5538 	xfs_daddr_t	tail_blk)
5539 {
5540 	int		error, i;
5541 
5542 	ASSERT(head_blk != tail_blk);
5543 
5544 	/*
5545 	 * First do a pass to find all of the cancelled buf log items.
5546 	 * Store them in the buf_cancel_table for use in the second pass.
5547 	 */
5548 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5549 						 sizeof(struct list_head),
5550 						 0);
5551 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5552 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5553 
5554 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5555 				      XLOG_RECOVER_PASS1, NULL);
5556 	if (error != 0) {
5557 		kmem_free(log->l_buf_cancel_table);
5558 		log->l_buf_cancel_table = NULL;
5559 		return error;
5560 	}
5561 	/*
5562 	 * Then do a second pass to actually recover the items in the log.
5563 	 * When it is complete free the table of buf cancel items.
5564 	 */
5565 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5566 				      XLOG_RECOVER_PASS2, NULL);
5567 #ifdef DEBUG
5568 	if (!error) {
5569 		int	i;
5570 
5571 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5572 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5573 	}
5574 #endif	/* DEBUG */
5575 
5576 	kmem_free(log->l_buf_cancel_table);
5577 	log->l_buf_cancel_table = NULL;
5578 
5579 	return error;
5580 }
5581 
5582 /*
5583  * Do the actual recovery
5584  */
5585 STATIC int
5586 xlog_do_recover(
5587 	struct xlog	*log,
5588 	xfs_daddr_t	head_blk,
5589 	xfs_daddr_t	tail_blk)
5590 {
5591 	struct xfs_mount *mp = log->l_mp;
5592 	int		error;
5593 	xfs_buf_t	*bp;
5594 	xfs_sb_t	*sbp;
5595 
5596 	trace_xfs_log_recover(log, head_blk, tail_blk);
5597 
5598 	/*
5599 	 * First replay the images in the log.
5600 	 */
5601 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5602 	if (error)
5603 		return error;
5604 
5605 	/*
5606 	 * If IO errors happened during recovery, bail out.
5607 	 */
5608 	if (XFS_FORCED_SHUTDOWN(mp)) {
5609 		return -EIO;
5610 	}
5611 
5612 	/*
5613 	 * We now update the tail_lsn since much of the recovery has completed
5614 	 * and there may be space available to use.  If there were no extent
5615 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5616 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5617 	 * lsn of the last known good LR on disk.  If there are extent frees
5618 	 * or iunlinks they will have some entries in the AIL; so we look at
5619 	 * the AIL to determine how to set the tail_lsn.
5620 	 */
5621 	xlog_assign_tail_lsn(mp);
5622 
5623 	/*
5624 	 * Now that we've finished replaying all buffer and inode
5625 	 * updates, re-read in the superblock and reverify it.
5626 	 */
5627 	bp = xfs_getsb(mp);
5628 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5629 	ASSERT(!(bp->b_flags & XBF_WRITE));
5630 	bp->b_flags |= XBF_READ;
5631 	bp->b_ops = &xfs_sb_buf_ops;
5632 
5633 	error = xfs_buf_submit(bp);
5634 	if (error) {
5635 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5636 			xfs_buf_ioerror_alert(bp, __func__);
5637 			ASSERT(0);
5638 		}
5639 		xfs_buf_relse(bp);
5640 		return error;
5641 	}
5642 
5643 	/* Convert superblock from on-disk format */
5644 	sbp = &mp->m_sb;
5645 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5646 	xfs_buf_relse(bp);
5647 
5648 	/* re-initialise in-core superblock and geometry structures */
5649 	xfs_reinit_percpu_counters(mp);
5650 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5651 	if (error) {
5652 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5653 		return error;
5654 	}
5655 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5656 
5657 	xlog_recover_check_summary(log);
5658 
5659 	/* Normal transactions can now occur */
5660 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5661 	return 0;
5662 }
5663 
5664 /*
5665  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5666  *
5667  * Return error or zero.
5668  */
5669 int
5670 xlog_recover(
5671 	struct xlog	*log)
5672 {
5673 	xfs_daddr_t	head_blk, tail_blk;
5674 	int		error;
5675 
5676 	/* find the tail of the log */
5677 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5678 	if (error)
5679 		return error;
5680 
5681 	/*
5682 	 * The superblock was read before the log was available and thus the LSN
5683 	 * could not be verified. Check the superblock LSN against the current
5684 	 * LSN now that it's known.
5685 	 */
5686 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5687 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5688 		return -EINVAL;
5689 
5690 	if (tail_blk != head_blk) {
5691 		/* There used to be a comment here:
5692 		 *
5693 		 * disallow recovery on read-only mounts.  note -- mount
5694 		 * checks for ENOSPC and turns it into an intelligent
5695 		 * error message.
5696 		 * ...but this is no longer true.  Now, unless you specify
5697 		 * NORECOVERY (in which case this function would never be
5698 		 * called), we just go ahead and recover.  We do this all
5699 		 * under the vfs layer, so we can get away with it unless
5700 		 * the device itself is read-only, in which case we fail.
5701 		 */
5702 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5703 			return error;
5704 		}
5705 
5706 		/*
5707 		 * Version 5 superblock log feature mask validation. We know the
5708 		 * log is dirty so check if there are any unknown log features
5709 		 * in what we need to recover. If there are unknown features
5710 		 * (e.g. unsupported transactions, then simply reject the
5711 		 * attempt at recovery before touching anything.
5712 		 */
5713 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5714 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5715 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5716 			xfs_warn(log->l_mp,
5717 "Superblock has unknown incompatible log features (0x%x) enabled.",
5718 				(log->l_mp->m_sb.sb_features_log_incompat &
5719 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5720 			xfs_warn(log->l_mp,
5721 "The log can not be fully and/or safely recovered by this kernel.");
5722 			xfs_warn(log->l_mp,
5723 "Please recover the log on a kernel that supports the unknown features.");
5724 			return -EINVAL;
5725 		}
5726 
5727 		/*
5728 		 * Delay log recovery if the debug hook is set. This is debug
5729 		 * instrumention to coordinate simulation of I/O failures with
5730 		 * log recovery.
5731 		 */
5732 		if (xfs_globals.log_recovery_delay) {
5733 			xfs_notice(log->l_mp,
5734 				"Delaying log recovery for %d seconds.",
5735 				xfs_globals.log_recovery_delay);
5736 			msleep(xfs_globals.log_recovery_delay * 1000);
5737 		}
5738 
5739 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5740 				log->l_mp->m_logname ? log->l_mp->m_logname
5741 						     : "internal");
5742 
5743 		error = xlog_do_recover(log, head_blk, tail_blk);
5744 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5745 	}
5746 	return error;
5747 }
5748 
5749 /*
5750  * In the first part of recovery we replay inodes and buffers and build
5751  * up the list of extent free items which need to be processed.  Here
5752  * we process the extent free items and clean up the on disk unlinked
5753  * inode lists.  This is separated from the first part of recovery so
5754  * that the root and real-time bitmap inodes can be read in from disk in
5755  * between the two stages.  This is necessary so that we can free space
5756  * in the real-time portion of the file system.
5757  */
5758 int
5759 xlog_recover_finish(
5760 	struct xlog	*log)
5761 {
5762 	/*
5763 	 * Now we're ready to do the transactions needed for the
5764 	 * rest of recovery.  Start with completing all the extent
5765 	 * free intent records and then process the unlinked inode
5766 	 * lists.  At this point, we essentially run in normal mode
5767 	 * except that we're still performing recovery actions
5768 	 * rather than accepting new requests.
5769 	 */
5770 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5771 		int	error;
5772 		error = xlog_recover_process_intents(log);
5773 		if (error) {
5774 			xfs_alert(log->l_mp, "Failed to recover intents");
5775 			return error;
5776 		}
5777 
5778 		/*
5779 		 * Sync the log to get all the intents out of the AIL.
5780 		 * This isn't absolutely necessary, but it helps in
5781 		 * case the unlink transactions would have problems
5782 		 * pushing the intents out of the way.
5783 		 */
5784 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5785 
5786 		xlog_recover_process_iunlinks(log);
5787 
5788 		xlog_recover_check_summary(log);
5789 
5790 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5791 				log->l_mp->m_logname ? log->l_mp->m_logname
5792 						     : "internal");
5793 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5794 	} else {
5795 		xfs_info(log->l_mp, "Ending clean mount");
5796 	}
5797 	return 0;
5798 }
5799 
5800 void
5801 xlog_recover_cancel(
5802 	struct xlog	*log)
5803 {
5804 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5805 		xlog_recover_cancel_intents(log);
5806 }
5807 
5808 #if defined(DEBUG)
5809 /*
5810  * Read all of the agf and agi counters and check that they
5811  * are consistent with the superblock counters.
5812  */
5813 STATIC void
5814 xlog_recover_check_summary(
5815 	struct xlog	*log)
5816 {
5817 	xfs_mount_t	*mp;
5818 	xfs_agf_t	*agfp;
5819 	xfs_buf_t	*agfbp;
5820 	xfs_buf_t	*agibp;
5821 	xfs_agnumber_t	agno;
5822 	uint64_t	freeblks;
5823 	uint64_t	itotal;
5824 	uint64_t	ifree;
5825 	int		error;
5826 
5827 	mp = log->l_mp;
5828 
5829 	freeblks = 0LL;
5830 	itotal = 0LL;
5831 	ifree = 0LL;
5832 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5833 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5834 		if (error) {
5835 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5836 						__func__, agno, error);
5837 		} else {
5838 			agfp = XFS_BUF_TO_AGF(agfbp);
5839 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5840 				    be32_to_cpu(agfp->agf_flcount);
5841 			xfs_buf_relse(agfbp);
5842 		}
5843 
5844 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5845 		if (error) {
5846 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5847 						__func__, agno, error);
5848 		} else {
5849 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5850 
5851 			itotal += be32_to_cpu(agi->agi_count);
5852 			ifree += be32_to_cpu(agi->agi_freecount);
5853 			xfs_buf_relse(agibp);
5854 		}
5855 	}
5856 }
5857 #endif /* DEBUG */
5858