xref: /linux/fs/xfs/xfs_log_recover.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_error.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir_sf.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_imap.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
44 #include "xfs_log_priv.h"
45 #include "xfs_buf_item.h"
46 #include "xfs_log_recover.h"
47 #include "xfs_extfree_item.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_quota.h"
50 #include "xfs_rw.h"
51 
52 STATIC int	xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
53 STATIC int	xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
54 STATIC void	xlog_recover_insert_item_backq(xlog_recover_item_t **q,
55 					       xlog_recover_item_t *item);
56 #if defined(DEBUG)
57 STATIC void	xlog_recover_check_summary(xlog_t *);
58 STATIC void	xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
59 #else
60 #define	xlog_recover_check_summary(log)
61 #define	xlog_recover_check_ail(mp, lip, gen)
62 #endif
63 
64 
65 /*
66  * Sector aligned buffer routines for buffer create/read/write/access
67  */
68 
69 #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs)	\
70 	( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
71 	((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
72 #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno)	((bno) & ~(log)->l_sectbb_mask)
73 
74 xfs_buf_t *
75 xlog_get_bp(
76 	xlog_t		*log,
77 	int		num_bblks)
78 {
79 	ASSERT(num_bblks > 0);
80 
81 	if (log->l_sectbb_log) {
82 		if (num_bblks > 1)
83 			num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84 		num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
85 	}
86 	return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
87 }
88 
89 void
90 xlog_put_bp(
91 	xfs_buf_t	*bp)
92 {
93 	xfs_buf_free(bp);
94 }
95 
96 
97 /*
98  * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
99  */
100 int
101 xlog_bread(
102 	xlog_t		*log,
103 	xfs_daddr_t	blk_no,
104 	int		nbblks,
105 	xfs_buf_t	*bp)
106 {
107 	int		error;
108 
109 	if (log->l_sectbb_log) {
110 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
111 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
112 	}
113 
114 	ASSERT(nbblks > 0);
115 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
116 	ASSERT(bp);
117 
118 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
119 	XFS_BUF_READ(bp);
120 	XFS_BUF_BUSY(bp);
121 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
122 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
123 
124 	xfsbdstrat(log->l_mp, bp);
125 	if ((error = xfs_iowait(bp)))
126 		xfs_ioerror_alert("xlog_bread", log->l_mp,
127 				  bp, XFS_BUF_ADDR(bp));
128 	return error;
129 }
130 
131 /*
132  * Write out the buffer at the given block for the given number of blocks.
133  * The buffer is kept locked across the write and is returned locked.
134  * This can only be used for synchronous log writes.
135  */
136 STATIC int
137 xlog_bwrite(
138 	xlog_t		*log,
139 	xfs_daddr_t	blk_no,
140 	int		nbblks,
141 	xfs_buf_t	*bp)
142 {
143 	int		error;
144 
145 	if (log->l_sectbb_log) {
146 		blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
147 		nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
148 	}
149 
150 	ASSERT(nbblks > 0);
151 	ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152 
153 	XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
154 	XFS_BUF_ZEROFLAGS(bp);
155 	XFS_BUF_BUSY(bp);
156 	XFS_BUF_HOLD(bp);
157 	XFS_BUF_PSEMA(bp, PRIBIO);
158 	XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
159 	XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
160 
161 	if ((error = xfs_bwrite(log->l_mp, bp)))
162 		xfs_ioerror_alert("xlog_bwrite", log->l_mp,
163 				  bp, XFS_BUF_ADDR(bp));
164 	return error;
165 }
166 
167 STATIC xfs_caddr_t
168 xlog_align(
169 	xlog_t		*log,
170 	xfs_daddr_t	blk_no,
171 	int		nbblks,
172 	xfs_buf_t	*bp)
173 {
174 	xfs_caddr_t	ptr;
175 
176 	if (!log->l_sectbb_log)
177 		return XFS_BUF_PTR(bp);
178 
179 	ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
180 	ASSERT(XFS_BUF_SIZE(bp) >=
181 		BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
182 	return ptr;
183 }
184 
185 #ifdef DEBUG
186 /*
187  * dump debug superblock and log record information
188  */
189 STATIC void
190 xlog_header_check_dump(
191 	xfs_mount_t		*mp,
192 	xlog_rec_header_t	*head)
193 {
194 	int			b;
195 
196 	printk("%s:  SB : uuid = ", __FUNCTION__);
197 	for (b = 0; b < 16; b++)
198 		printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]);
199 	printk(", fmt = %d\n", XLOG_FMT);
200 	printk("    log : uuid = ");
201 	for (b = 0; b < 16; b++)
202 		printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]);
203 	printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
204 }
205 #else
206 #define xlog_header_check_dump(mp, head)
207 #endif
208 
209 /*
210  * check log record header for recovery
211  */
212 STATIC int
213 xlog_header_check_recover(
214 	xfs_mount_t		*mp,
215 	xlog_rec_header_t	*head)
216 {
217 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
218 
219 	/*
220 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
221 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
222 	 * a dirty log created in IRIX.
223 	 */
224 	if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
225 		xlog_warn(
226 	"XFS: dirty log written in incompatible format - can't recover");
227 		xlog_header_check_dump(mp, head);
228 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
229 				 XFS_ERRLEVEL_HIGH, mp);
230 		return XFS_ERROR(EFSCORRUPTED);
231 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
232 		xlog_warn(
233 	"XFS: dirty log entry has mismatched uuid - can't recover");
234 		xlog_header_check_dump(mp, head);
235 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
236 				 XFS_ERRLEVEL_HIGH, mp);
237 		return XFS_ERROR(EFSCORRUPTED);
238 	}
239 	return 0;
240 }
241 
242 /*
243  * read the head block of the log and check the header
244  */
245 STATIC int
246 xlog_header_check_mount(
247 	xfs_mount_t		*mp,
248 	xlog_rec_header_t	*head)
249 {
250 	ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
251 
252 	if (uuid_is_nil(&head->h_fs_uuid)) {
253 		/*
254 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255 		 * h_fs_uuid is nil, we assume this log was last mounted
256 		 * by IRIX and continue.
257 		 */
258 		xlog_warn("XFS: nil uuid in log - IRIX style log");
259 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
260 		xlog_warn("XFS: log has mismatched uuid - can't recover");
261 		xlog_header_check_dump(mp, head);
262 		XFS_ERROR_REPORT("xlog_header_check_mount",
263 				 XFS_ERRLEVEL_HIGH, mp);
264 		return XFS_ERROR(EFSCORRUPTED);
265 	}
266 	return 0;
267 }
268 
269 STATIC void
270 xlog_recover_iodone(
271 	struct xfs_buf	*bp)
272 {
273 	xfs_mount_t	*mp;
274 
275 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
276 
277 	if (XFS_BUF_GETERROR(bp)) {
278 		/*
279 		 * We're not going to bother about retrying
280 		 * this during recovery. One strike!
281 		 */
282 		mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
283 		xfs_ioerror_alert("xlog_recover_iodone",
284 				  mp, bp, XFS_BUF_ADDR(bp));
285 		xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR);
286 	}
287 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
288 	XFS_BUF_CLR_IODONE_FUNC(bp);
289 	xfs_biodone(bp);
290 }
291 
292 /*
293  * This routine finds (to an approximation) the first block in the physical
294  * log which contains the given cycle.  It uses a binary search algorithm.
295  * Note that the algorithm can not be perfect because the disk will not
296  * necessarily be perfect.
297  */
298 int
299 xlog_find_cycle_start(
300 	xlog_t		*log,
301 	xfs_buf_t	*bp,
302 	xfs_daddr_t	first_blk,
303 	xfs_daddr_t	*last_blk,
304 	uint		cycle)
305 {
306 	xfs_caddr_t	offset;
307 	xfs_daddr_t	mid_blk;
308 	uint		mid_cycle;
309 	int		error;
310 
311 	mid_blk = BLK_AVG(first_blk, *last_blk);
312 	while (mid_blk != first_blk && mid_blk != *last_blk) {
313 		if ((error = xlog_bread(log, mid_blk, 1, bp)))
314 			return error;
315 		offset = xlog_align(log, mid_blk, 1, bp);
316 		mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
317 		if (mid_cycle == cycle) {
318 			*last_blk = mid_blk;
319 			/* last_half_cycle == mid_cycle */
320 		} else {
321 			first_blk = mid_blk;
322 			/* first_half_cycle == mid_cycle */
323 		}
324 		mid_blk = BLK_AVG(first_blk, *last_blk);
325 	}
326 	ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
327 	       (mid_blk == *last_blk && mid_blk-1 == first_blk));
328 
329 	return 0;
330 }
331 
332 /*
333  * Check that the range of blocks does not contain the cycle number
334  * given.  The scan needs to occur from front to back and the ptr into the
335  * region must be updated since a later routine will need to perform another
336  * test.  If the region is completely good, we end up returning the same
337  * last block number.
338  *
339  * Set blkno to -1 if we encounter no errors.  This is an invalid block number
340  * since we don't ever expect logs to get this large.
341  */
342 STATIC int
343 xlog_find_verify_cycle(
344 	xlog_t		*log,
345 	xfs_daddr_t	start_blk,
346 	int		nbblks,
347 	uint		stop_on_cycle_no,
348 	xfs_daddr_t	*new_blk)
349 {
350 	xfs_daddr_t	i, j;
351 	uint		cycle;
352 	xfs_buf_t	*bp;
353 	xfs_daddr_t	bufblks;
354 	xfs_caddr_t	buf = NULL;
355 	int		error = 0;
356 
357 	bufblks = 1 << ffs(nbblks);
358 
359 	while (!(bp = xlog_get_bp(log, bufblks))) {
360 		/* can't get enough memory to do everything in one big buffer */
361 		bufblks >>= 1;
362 		if (bufblks <= log->l_sectbb_log)
363 			return ENOMEM;
364 	}
365 
366 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
367 		int	bcount;
368 
369 		bcount = min(bufblks, (start_blk + nbblks - i));
370 
371 		if ((error = xlog_bread(log, i, bcount, bp)))
372 			goto out;
373 
374 		buf = xlog_align(log, i, bcount, bp);
375 		for (j = 0; j < bcount; j++) {
376 			cycle = GET_CYCLE(buf, ARCH_CONVERT);
377 			if (cycle == stop_on_cycle_no) {
378 				*new_blk = i+j;
379 				goto out;
380 			}
381 
382 			buf += BBSIZE;
383 		}
384 	}
385 
386 	*new_blk = -1;
387 
388 out:
389 	xlog_put_bp(bp);
390 	return error;
391 }
392 
393 /*
394  * Potentially backup over partial log record write.
395  *
396  * In the typical case, last_blk is the number of the block directly after
397  * a good log record.  Therefore, we subtract one to get the block number
398  * of the last block in the given buffer.  extra_bblks contains the number
399  * of blocks we would have read on a previous read.  This happens when the
400  * last log record is split over the end of the physical log.
401  *
402  * extra_bblks is the number of blocks potentially verified on a previous
403  * call to this routine.
404  */
405 STATIC int
406 xlog_find_verify_log_record(
407 	xlog_t			*log,
408 	xfs_daddr_t		start_blk,
409 	xfs_daddr_t		*last_blk,
410 	int			extra_bblks)
411 {
412 	xfs_daddr_t		i;
413 	xfs_buf_t		*bp;
414 	xfs_caddr_t		offset = NULL;
415 	xlog_rec_header_t	*head = NULL;
416 	int			error = 0;
417 	int			smallmem = 0;
418 	int			num_blks = *last_blk - start_blk;
419 	int			xhdrs;
420 
421 	ASSERT(start_blk != 0 || *last_blk != start_blk);
422 
423 	if (!(bp = xlog_get_bp(log, num_blks))) {
424 		if (!(bp = xlog_get_bp(log, 1)))
425 			return ENOMEM;
426 		smallmem = 1;
427 	} else {
428 		if ((error = xlog_bread(log, start_blk, num_blks, bp)))
429 			goto out;
430 		offset = xlog_align(log, start_blk, num_blks, bp);
431 		offset += ((num_blks - 1) << BBSHIFT);
432 	}
433 
434 	for (i = (*last_blk) - 1; i >= 0; i--) {
435 		if (i < start_blk) {
436 			/* valid log record not found */
437 			xlog_warn(
438 		"XFS: Log inconsistent (didn't find previous header)");
439 			ASSERT(0);
440 			error = XFS_ERROR(EIO);
441 			goto out;
442 		}
443 
444 		if (smallmem) {
445 			if ((error = xlog_bread(log, i, 1, bp)))
446 				goto out;
447 			offset = xlog_align(log, i, 1, bp);
448 		}
449 
450 		head = (xlog_rec_header_t *)offset;
451 
452 		if (XLOG_HEADER_MAGIC_NUM ==
453 		    INT_GET(head->h_magicno, ARCH_CONVERT))
454 			break;
455 
456 		if (!smallmem)
457 			offset -= BBSIZE;
458 	}
459 
460 	/*
461 	 * We hit the beginning of the physical log & still no header.  Return
462 	 * to caller.  If caller can handle a return of -1, then this routine
463 	 * will be called again for the end of the physical log.
464 	 */
465 	if (i == -1) {
466 		error = -1;
467 		goto out;
468 	}
469 
470 	/*
471 	 * We have the final block of the good log (the first block
472 	 * of the log record _before_ the head. So we check the uuid.
473 	 */
474 	if ((error = xlog_header_check_mount(log->l_mp, head)))
475 		goto out;
476 
477 	/*
478 	 * We may have found a log record header before we expected one.
479 	 * last_blk will be the 1st block # with a given cycle #.  We may end
480 	 * up reading an entire log record.  In this case, we don't want to
481 	 * reset last_blk.  Only when last_blk points in the middle of a log
482 	 * record do we update last_blk.
483 	 */
484 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
485 		uint	h_size = INT_GET(head->h_size, ARCH_CONVERT);
486 
487 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
488 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
489 			xhdrs++;
490 	} else {
491 		xhdrs = 1;
492 	}
493 
494 	if (*last_blk - i + extra_bblks
495 			!= BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
496 		*last_blk = i;
497 
498 out:
499 	xlog_put_bp(bp);
500 	return error;
501 }
502 
503 /*
504  * Head is defined to be the point of the log where the next log write
505  * write could go.  This means that incomplete LR writes at the end are
506  * eliminated when calculating the head.  We aren't guaranteed that previous
507  * LR have complete transactions.  We only know that a cycle number of
508  * current cycle number -1 won't be present in the log if we start writing
509  * from our current block number.
510  *
511  * last_blk contains the block number of the first block with a given
512  * cycle number.
513  *
514  * Return: zero if normal, non-zero if error.
515  */
516 STATIC int
517 xlog_find_head(
518 	xlog_t 		*log,
519 	xfs_daddr_t	*return_head_blk)
520 {
521 	xfs_buf_t	*bp;
522 	xfs_caddr_t	offset;
523 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
524 	int		num_scan_bblks;
525 	uint		first_half_cycle, last_half_cycle;
526 	uint		stop_on_cycle;
527 	int		error, log_bbnum = log->l_logBBsize;
528 
529 	/* Is the end of the log device zeroed? */
530 	if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
531 		*return_head_blk = first_blk;
532 
533 		/* Is the whole lot zeroed? */
534 		if (!first_blk) {
535 			/* Linux XFS shouldn't generate totally zeroed logs -
536 			 * mkfs etc write a dummy unmount record to a fresh
537 			 * log so we can store the uuid in there
538 			 */
539 			xlog_warn("XFS: totally zeroed log");
540 		}
541 
542 		return 0;
543 	} else if (error) {
544 		xlog_warn("XFS: empty log check failed");
545 		return error;
546 	}
547 
548 	first_blk = 0;			/* get cycle # of 1st block */
549 	bp = xlog_get_bp(log, 1);
550 	if (!bp)
551 		return ENOMEM;
552 	if ((error = xlog_bread(log, 0, 1, bp)))
553 		goto bp_err;
554 	offset = xlog_align(log, 0, 1, bp);
555 	first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
556 
557 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
558 	if ((error = xlog_bread(log, last_blk, 1, bp)))
559 		goto bp_err;
560 	offset = xlog_align(log, last_blk, 1, bp);
561 	last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
562 	ASSERT(last_half_cycle != 0);
563 
564 	/*
565 	 * If the 1st half cycle number is equal to the last half cycle number,
566 	 * then the entire log is stamped with the same cycle number.  In this
567 	 * case, head_blk can't be set to zero (which makes sense).  The below
568 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
569 	 * we set it to log_bbnum which is an invalid block number, but this
570 	 * value makes the math correct.  If head_blk doesn't changed through
571 	 * all the tests below, *head_blk is set to zero at the very end rather
572 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
573 	 * in a circular file.
574 	 */
575 	if (first_half_cycle == last_half_cycle) {
576 		/*
577 		 * In this case we believe that the entire log should have
578 		 * cycle number last_half_cycle.  We need to scan backwards
579 		 * from the end verifying that there are no holes still
580 		 * containing last_half_cycle - 1.  If we find such a hole,
581 		 * then the start of that hole will be the new head.  The
582 		 * simple case looks like
583 		 *        x | x ... | x - 1 | x
584 		 * Another case that fits this picture would be
585 		 *        x | x + 1 | x ... | x
586 		 * In this case the head really is somewhere at the end of the
587 		 * log, as one of the latest writes at the beginning was
588 		 * incomplete.
589 		 * One more case is
590 		 *        x | x + 1 | x ... | x - 1 | x
591 		 * This is really the combination of the above two cases, and
592 		 * the head has to end up at the start of the x-1 hole at the
593 		 * end of the log.
594 		 *
595 		 * In the 256k log case, we will read from the beginning to the
596 		 * end of the log and search for cycle numbers equal to x-1.
597 		 * We don't worry about the x+1 blocks that we encounter,
598 		 * because we know that they cannot be the head since the log
599 		 * started with x.
600 		 */
601 		head_blk = log_bbnum;
602 		stop_on_cycle = last_half_cycle - 1;
603 	} else {
604 		/*
605 		 * In this case we want to find the first block with cycle
606 		 * number matching last_half_cycle.  We expect the log to be
607 		 * some variation on
608 		 *        x + 1 ... | x ...
609 		 * The first block with cycle number x (last_half_cycle) will
610 		 * be where the new head belongs.  First we do a binary search
611 		 * for the first occurrence of last_half_cycle.  The binary
612 		 * search may not be totally accurate, so then we scan back
613 		 * from there looking for occurrences of last_half_cycle before
614 		 * us.  If that backwards scan wraps around the beginning of
615 		 * the log, then we look for occurrences of last_half_cycle - 1
616 		 * at the end of the log.  The cases we're looking for look
617 		 * like
618 		 *        x + 1 ... | x | x + 1 | x ...
619 		 *                               ^ binary search stopped here
620 		 * or
621 		 *        x + 1 ... | x ... | x - 1 | x
622 		 *        <---------> less than scan distance
623 		 */
624 		stop_on_cycle = last_half_cycle;
625 		if ((error = xlog_find_cycle_start(log, bp, first_blk,
626 						&head_blk, last_half_cycle)))
627 			goto bp_err;
628 	}
629 
630 	/*
631 	 * Now validate the answer.  Scan back some number of maximum possible
632 	 * blocks and make sure each one has the expected cycle number.  The
633 	 * maximum is determined by the total possible amount of buffering
634 	 * in the in-core log.  The following number can be made tighter if
635 	 * we actually look at the block size of the filesystem.
636 	 */
637 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
638 	if (head_blk >= num_scan_bblks) {
639 		/*
640 		 * We are guaranteed that the entire check can be performed
641 		 * in one buffer.
642 		 */
643 		start_blk = head_blk - num_scan_bblks;
644 		if ((error = xlog_find_verify_cycle(log,
645 						start_blk, num_scan_bblks,
646 						stop_on_cycle, &new_blk)))
647 			goto bp_err;
648 		if (new_blk != -1)
649 			head_blk = new_blk;
650 	} else {		/* need to read 2 parts of log */
651 		/*
652 		 * We are going to scan backwards in the log in two parts.
653 		 * First we scan the physical end of the log.  In this part
654 		 * of the log, we are looking for blocks with cycle number
655 		 * last_half_cycle - 1.
656 		 * If we find one, then we know that the log starts there, as
657 		 * we've found a hole that didn't get written in going around
658 		 * the end of the physical log.  The simple case for this is
659 		 *        x + 1 ... | x ... | x - 1 | x
660 		 *        <---------> less than scan distance
661 		 * If all of the blocks at the end of the log have cycle number
662 		 * last_half_cycle, then we check the blocks at the start of
663 		 * the log looking for occurrences of last_half_cycle.  If we
664 		 * find one, then our current estimate for the location of the
665 		 * first occurrence of last_half_cycle is wrong and we move
666 		 * back to the hole we've found.  This case looks like
667 		 *        x + 1 ... | x | x + 1 | x ...
668 		 *                               ^ binary search stopped here
669 		 * Another case we need to handle that only occurs in 256k
670 		 * logs is
671 		 *        x + 1 ... | x ... | x+1 | x ...
672 		 *                   ^ binary search stops here
673 		 * In a 256k log, the scan at the end of the log will see the
674 		 * x + 1 blocks.  We need to skip past those since that is
675 		 * certainly not the head of the log.  By searching for
676 		 * last_half_cycle-1 we accomplish that.
677 		 */
678 		start_blk = log_bbnum - num_scan_bblks + head_blk;
679 		ASSERT(head_blk <= INT_MAX &&
680 			(xfs_daddr_t) num_scan_bblks - head_blk >= 0);
681 		if ((error = xlog_find_verify_cycle(log, start_blk,
682 					num_scan_bblks - (int)head_blk,
683 					(stop_on_cycle - 1), &new_blk)))
684 			goto bp_err;
685 		if (new_blk != -1) {
686 			head_blk = new_blk;
687 			goto bad_blk;
688 		}
689 
690 		/*
691 		 * Scan beginning of log now.  The last part of the physical
692 		 * log is good.  This scan needs to verify that it doesn't find
693 		 * the last_half_cycle.
694 		 */
695 		start_blk = 0;
696 		ASSERT(head_blk <= INT_MAX);
697 		if ((error = xlog_find_verify_cycle(log,
698 					start_blk, (int)head_blk,
699 					stop_on_cycle, &new_blk)))
700 			goto bp_err;
701 		if (new_blk != -1)
702 			head_blk = new_blk;
703 	}
704 
705  bad_blk:
706 	/*
707 	 * Now we need to make sure head_blk is not pointing to a block in
708 	 * the middle of a log record.
709 	 */
710 	num_scan_bblks = XLOG_REC_SHIFT(log);
711 	if (head_blk >= num_scan_bblks) {
712 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
713 
714 		/* start ptr at last block ptr before head_blk */
715 		if ((error = xlog_find_verify_log_record(log, start_blk,
716 							&head_blk, 0)) == -1) {
717 			error = XFS_ERROR(EIO);
718 			goto bp_err;
719 		} else if (error)
720 			goto bp_err;
721 	} else {
722 		start_blk = 0;
723 		ASSERT(head_blk <= INT_MAX);
724 		if ((error = xlog_find_verify_log_record(log, start_blk,
725 							&head_blk, 0)) == -1) {
726 			/* We hit the beginning of the log during our search */
727 			start_blk = log_bbnum - num_scan_bblks + head_blk;
728 			new_blk = log_bbnum;
729 			ASSERT(start_blk <= INT_MAX &&
730 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
731 			ASSERT(head_blk <= INT_MAX);
732 			if ((error = xlog_find_verify_log_record(log,
733 							start_blk, &new_blk,
734 							(int)head_blk)) == -1) {
735 				error = XFS_ERROR(EIO);
736 				goto bp_err;
737 			} else if (error)
738 				goto bp_err;
739 			if (new_blk != log_bbnum)
740 				head_blk = new_blk;
741 		} else if (error)
742 			goto bp_err;
743 	}
744 
745 	xlog_put_bp(bp);
746 	if (head_blk == log_bbnum)
747 		*return_head_blk = 0;
748 	else
749 		*return_head_blk = head_blk;
750 	/*
751 	 * When returning here, we have a good block number.  Bad block
752 	 * means that during a previous crash, we didn't have a clean break
753 	 * from cycle number N to cycle number N-1.  In this case, we need
754 	 * to find the first block with cycle number N-1.
755 	 */
756 	return 0;
757 
758  bp_err:
759 	xlog_put_bp(bp);
760 
761 	if (error)
762 	    xlog_warn("XFS: failed to find log head");
763 	return error;
764 }
765 
766 /*
767  * Find the sync block number or the tail of the log.
768  *
769  * This will be the block number of the last record to have its
770  * associated buffers synced to disk.  Every log record header has
771  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
772  * to get a sync block number.  The only concern is to figure out which
773  * log record header to believe.
774  *
775  * The following algorithm uses the log record header with the largest
776  * lsn.  The entire log record does not need to be valid.  We only care
777  * that the header is valid.
778  *
779  * We could speed up search by using current head_blk buffer, but it is not
780  * available.
781  */
782 int
783 xlog_find_tail(
784 	xlog_t			*log,
785 	xfs_daddr_t		*head_blk,
786 	xfs_daddr_t		*tail_blk)
787 {
788 	xlog_rec_header_t	*rhead;
789 	xlog_op_header_t	*op_head;
790 	xfs_caddr_t		offset = NULL;
791 	xfs_buf_t		*bp;
792 	int			error, i, found;
793 	xfs_daddr_t		umount_data_blk;
794 	xfs_daddr_t		after_umount_blk;
795 	xfs_lsn_t		tail_lsn;
796 	int			hblks;
797 
798 	found = 0;
799 
800 	/*
801 	 * Find previous log record
802 	 */
803 	if ((error = xlog_find_head(log, head_blk)))
804 		return error;
805 
806 	bp = xlog_get_bp(log, 1);
807 	if (!bp)
808 		return ENOMEM;
809 	if (*head_blk == 0) {				/* special case */
810 		if ((error = xlog_bread(log, 0, 1, bp)))
811 			goto bread_err;
812 		offset = xlog_align(log, 0, 1, bp);
813 		if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
814 			*tail_blk = 0;
815 			/* leave all other log inited values alone */
816 			goto exit;
817 		}
818 	}
819 
820 	/*
821 	 * Search backwards looking for log record header block
822 	 */
823 	ASSERT(*head_blk < INT_MAX);
824 	for (i = (int)(*head_blk) - 1; i >= 0; i--) {
825 		if ((error = xlog_bread(log, i, 1, bp)))
826 			goto bread_err;
827 		offset = xlog_align(log, i, 1, bp);
828 		if (XLOG_HEADER_MAGIC_NUM ==
829 		    INT_GET(*(uint *)offset, ARCH_CONVERT)) {
830 			found = 1;
831 			break;
832 		}
833 	}
834 	/*
835 	 * If we haven't found the log record header block, start looking
836 	 * again from the end of the physical log.  XXXmiken: There should be
837 	 * a check here to make sure we didn't search more than N blocks in
838 	 * the previous code.
839 	 */
840 	if (!found) {
841 		for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
842 			if ((error = xlog_bread(log, i, 1, bp)))
843 				goto bread_err;
844 			offset = xlog_align(log, i, 1, bp);
845 			if (XLOG_HEADER_MAGIC_NUM ==
846 			    INT_GET(*(uint*)offset, ARCH_CONVERT)) {
847 				found = 2;
848 				break;
849 			}
850 		}
851 	}
852 	if (!found) {
853 		xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
854 		ASSERT(0);
855 		return XFS_ERROR(EIO);
856 	}
857 
858 	/* find blk_no of tail of log */
859 	rhead = (xlog_rec_header_t *)offset;
860 	*tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
861 
862 	/*
863 	 * Reset log values according to the state of the log when we
864 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
865 	 * one because the next write starts a new cycle rather than
866 	 * continuing the cycle of the last good log record.  At this
867 	 * point we have guaranteed that all partial log records have been
868 	 * accounted for.  Therefore, we know that the last good log record
869 	 * written was complete and ended exactly on the end boundary
870 	 * of the physical log.
871 	 */
872 	log->l_prev_block = i;
873 	log->l_curr_block = (int)*head_blk;
874 	log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
875 	if (found == 2)
876 		log->l_curr_cycle++;
877 	log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
878 	log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
879 	log->l_grant_reserve_cycle = log->l_curr_cycle;
880 	log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
881 	log->l_grant_write_cycle = log->l_curr_cycle;
882 	log->l_grant_write_bytes = BBTOB(log->l_curr_block);
883 
884 	/*
885 	 * Look for unmount record.  If we find it, then we know there
886 	 * was a clean unmount.  Since 'i' could be the last block in
887 	 * the physical log, we convert to a log block before comparing
888 	 * to the head_blk.
889 	 *
890 	 * Save the current tail lsn to use to pass to
891 	 * xlog_clear_stale_blocks() below.  We won't want to clear the
892 	 * unmount record if there is one, so we pass the lsn of the
893 	 * unmount record rather than the block after it.
894 	 */
895 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
896 		int	h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
897 		int	h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
898 
899 		if ((h_version & XLOG_VERSION_2) &&
900 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
901 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
902 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
903 				hblks++;
904 		} else {
905 			hblks = 1;
906 		}
907 	} else {
908 		hblks = 1;
909 	}
910 	after_umount_blk = (i + hblks + (int)
911 		BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
912 	tail_lsn = log->l_tail_lsn;
913 	if (*head_blk == after_umount_blk &&
914 	    INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
915 		umount_data_blk = (i + hblks) % log->l_logBBsize;
916 		if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
917 			goto bread_err;
918 		}
919 		offset = xlog_align(log, umount_data_blk, 1, bp);
920 		op_head = (xlog_op_header_t *)offset;
921 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
922 			/*
923 			 * Set tail and last sync so that newly written
924 			 * log records will point recovery to after the
925 			 * current unmount record.
926 			 */
927 			ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
928 					after_umount_blk);
929 			ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
930 					after_umount_blk);
931 			*tail_blk = after_umount_blk;
932 		}
933 	}
934 
935 	/*
936 	 * Make sure that there are no blocks in front of the head
937 	 * with the same cycle number as the head.  This can happen
938 	 * because we allow multiple outstanding log writes concurrently,
939 	 * and the later writes might make it out before earlier ones.
940 	 *
941 	 * We use the lsn from before modifying it so that we'll never
942 	 * overwrite the unmount record after a clean unmount.
943 	 *
944 	 * Do this only if we are going to recover the filesystem
945 	 *
946 	 * NOTE: This used to say "if (!readonly)"
947 	 * However on Linux, we can & do recover a read-only filesystem.
948 	 * We only skip recovery if NORECOVERY is specified on mount,
949 	 * in which case we would not be here.
950 	 *
951 	 * But... if the -device- itself is readonly, just skip this.
952 	 * We can't recover this device anyway, so it won't matter.
953 	 */
954 	if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
955 		error = xlog_clear_stale_blocks(log, tail_lsn);
956 	}
957 
958 bread_err:
959 exit:
960 	xlog_put_bp(bp);
961 
962 	if (error)
963 		xlog_warn("XFS: failed to locate log tail");
964 	return error;
965 }
966 
967 /*
968  * Is the log zeroed at all?
969  *
970  * The last binary search should be changed to perform an X block read
971  * once X becomes small enough.  You can then search linearly through
972  * the X blocks.  This will cut down on the number of reads we need to do.
973  *
974  * If the log is partially zeroed, this routine will pass back the blkno
975  * of the first block with cycle number 0.  It won't have a complete LR
976  * preceding it.
977  *
978  * Return:
979  *	0  => the log is completely written to
980  *	-1 => use *blk_no as the first block of the log
981  *	>0 => error has occurred
982  */
983 int
984 xlog_find_zeroed(
985 	xlog_t		*log,
986 	xfs_daddr_t	*blk_no)
987 {
988 	xfs_buf_t	*bp;
989 	xfs_caddr_t	offset;
990 	uint	        first_cycle, last_cycle;
991 	xfs_daddr_t	new_blk, last_blk, start_blk;
992 	xfs_daddr_t     num_scan_bblks;
993 	int	        error, log_bbnum = log->l_logBBsize;
994 
995 	/* check totally zeroed log */
996 	bp = xlog_get_bp(log, 1);
997 	if (!bp)
998 		return ENOMEM;
999 	if ((error = xlog_bread(log, 0, 1, bp)))
1000 		goto bp_err;
1001 	offset = xlog_align(log, 0, 1, bp);
1002 	first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1003 	if (first_cycle == 0) {		/* completely zeroed log */
1004 		*blk_no = 0;
1005 		xlog_put_bp(bp);
1006 		return -1;
1007 	}
1008 
1009 	/* check partially zeroed log */
1010 	if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1011 		goto bp_err;
1012 	offset = xlog_align(log, log_bbnum-1, 1, bp);
1013 	last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1014 	if (last_cycle != 0) {		/* log completely written to */
1015 		xlog_put_bp(bp);
1016 		return 0;
1017 	} else if (first_cycle != 1) {
1018 		/*
1019 		 * If the cycle of the last block is zero, the cycle of
1020 		 * the first block must be 1. If it's not, maybe we're
1021 		 * not looking at a log... Bail out.
1022 		 */
1023 		xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1024 		return XFS_ERROR(EINVAL);
1025 	}
1026 
1027 	/* we have a partially zeroed log */
1028 	last_blk = log_bbnum-1;
1029 	if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1030 		goto bp_err;
1031 
1032 	/*
1033 	 * Validate the answer.  Because there is no way to guarantee that
1034 	 * the entire log is made up of log records which are the same size,
1035 	 * we scan over the defined maximum blocks.  At this point, the maximum
1036 	 * is not chosen to mean anything special.   XXXmiken
1037 	 */
1038 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1039 	ASSERT(num_scan_bblks <= INT_MAX);
1040 
1041 	if (last_blk < num_scan_bblks)
1042 		num_scan_bblks = last_blk;
1043 	start_blk = last_blk - num_scan_bblks;
1044 
1045 	/*
1046 	 * We search for any instances of cycle number 0 that occur before
1047 	 * our current estimate of the head.  What we're trying to detect is
1048 	 *        1 ... | 0 | 1 | 0...
1049 	 *                       ^ binary search ends here
1050 	 */
1051 	if ((error = xlog_find_verify_cycle(log, start_blk,
1052 					 (int)num_scan_bblks, 0, &new_blk)))
1053 		goto bp_err;
1054 	if (new_blk != -1)
1055 		last_blk = new_blk;
1056 
1057 	/*
1058 	 * Potentially backup over partial log record write.  We don't need
1059 	 * to search the end of the log because we know it is zero.
1060 	 */
1061 	if ((error = xlog_find_verify_log_record(log, start_blk,
1062 				&last_blk, 0)) == -1) {
1063 	    error = XFS_ERROR(EIO);
1064 	    goto bp_err;
1065 	} else if (error)
1066 	    goto bp_err;
1067 
1068 	*blk_no = last_blk;
1069 bp_err:
1070 	xlog_put_bp(bp);
1071 	if (error)
1072 		return error;
1073 	return -1;
1074 }
1075 
1076 /*
1077  * These are simple subroutines used by xlog_clear_stale_blocks() below
1078  * to initialize a buffer full of empty log record headers and write
1079  * them into the log.
1080  */
1081 STATIC void
1082 xlog_add_record(
1083 	xlog_t			*log,
1084 	xfs_caddr_t		buf,
1085 	int			cycle,
1086 	int			block,
1087 	int			tail_cycle,
1088 	int			tail_block)
1089 {
1090 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1091 
1092 	memset(buf, 0, BBSIZE);
1093 	INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1094 	INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1095 	INT_SET(recp->h_version, ARCH_CONVERT,
1096 			XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1097 	ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1098 	ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1099 	INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1100 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1101 }
1102 
1103 STATIC int
1104 xlog_write_log_records(
1105 	xlog_t		*log,
1106 	int		cycle,
1107 	int		start_block,
1108 	int		blocks,
1109 	int		tail_cycle,
1110 	int		tail_block)
1111 {
1112 	xfs_caddr_t	offset;
1113 	xfs_buf_t	*bp;
1114 	int		balign, ealign;
1115 	int		sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1116 	int		end_block = start_block + blocks;
1117 	int		bufblks;
1118 	int		error = 0;
1119 	int		i, j = 0;
1120 
1121 	bufblks = 1 << ffs(blocks);
1122 	while (!(bp = xlog_get_bp(log, bufblks))) {
1123 		bufblks >>= 1;
1124 		if (bufblks <= log->l_sectbb_log)
1125 			return ENOMEM;
1126 	}
1127 
1128 	/* We may need to do a read at the start to fill in part of
1129 	 * the buffer in the starting sector not covered by the first
1130 	 * write below.
1131 	 */
1132 	balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1133 	if (balign != start_block) {
1134 		if ((error = xlog_bread(log, start_block, 1, bp))) {
1135 			xlog_put_bp(bp);
1136 			return error;
1137 		}
1138 		j = start_block - balign;
1139 	}
1140 
1141 	for (i = start_block; i < end_block; i += bufblks) {
1142 		int		bcount, endcount;
1143 
1144 		bcount = min(bufblks, end_block - start_block);
1145 		endcount = bcount - j;
1146 
1147 		/* We may need to do a read at the end to fill in part of
1148 		 * the buffer in the final sector not covered by the write.
1149 		 * If this is the same sector as the above read, skip it.
1150 		 */
1151 		ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1152 		if (j == 0 && (start_block + endcount > ealign)) {
1153 			offset = XFS_BUF_PTR(bp);
1154 			balign = BBTOB(ealign - start_block);
1155 			XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1156 			if ((error = xlog_bread(log, ealign, sectbb, bp)))
1157 				break;
1158 			XFS_BUF_SET_PTR(bp, offset, bufblks);
1159 		}
1160 
1161 		offset = xlog_align(log, start_block, endcount, bp);
1162 		for (; j < endcount; j++) {
1163 			xlog_add_record(log, offset, cycle, i+j,
1164 					tail_cycle, tail_block);
1165 			offset += BBSIZE;
1166 		}
1167 		error = xlog_bwrite(log, start_block, endcount, bp);
1168 		if (error)
1169 			break;
1170 		start_block += endcount;
1171 		j = 0;
1172 	}
1173 	xlog_put_bp(bp);
1174 	return error;
1175 }
1176 
1177 /*
1178  * This routine is called to blow away any incomplete log writes out
1179  * in front of the log head.  We do this so that we won't become confused
1180  * if we come up, write only a little bit more, and then crash again.
1181  * If we leave the partial log records out there, this situation could
1182  * cause us to think those partial writes are valid blocks since they
1183  * have the current cycle number.  We get rid of them by overwriting them
1184  * with empty log records with the old cycle number rather than the
1185  * current one.
1186  *
1187  * The tail lsn is passed in rather than taken from
1188  * the log so that we will not write over the unmount record after a
1189  * clean unmount in a 512 block log.  Doing so would leave the log without
1190  * any valid log records in it until a new one was written.  If we crashed
1191  * during that time we would not be able to recover.
1192  */
1193 STATIC int
1194 xlog_clear_stale_blocks(
1195 	xlog_t		*log,
1196 	xfs_lsn_t	tail_lsn)
1197 {
1198 	int		tail_cycle, head_cycle;
1199 	int		tail_block, head_block;
1200 	int		tail_distance, max_distance;
1201 	int		distance;
1202 	int		error;
1203 
1204 	tail_cycle = CYCLE_LSN(tail_lsn);
1205 	tail_block = BLOCK_LSN(tail_lsn);
1206 	head_cycle = log->l_curr_cycle;
1207 	head_block = log->l_curr_block;
1208 
1209 	/*
1210 	 * Figure out the distance between the new head of the log
1211 	 * and the tail.  We want to write over any blocks beyond the
1212 	 * head that we may have written just before the crash, but
1213 	 * we don't want to overwrite the tail of the log.
1214 	 */
1215 	if (head_cycle == tail_cycle) {
1216 		/*
1217 		 * The tail is behind the head in the physical log,
1218 		 * so the distance from the head to the tail is the
1219 		 * distance from the head to the end of the log plus
1220 		 * the distance from the beginning of the log to the
1221 		 * tail.
1222 		 */
1223 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1224 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1225 					 XFS_ERRLEVEL_LOW, log->l_mp);
1226 			return XFS_ERROR(EFSCORRUPTED);
1227 		}
1228 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1229 	} else {
1230 		/*
1231 		 * The head is behind the tail in the physical log,
1232 		 * so the distance from the head to the tail is just
1233 		 * the tail block minus the head block.
1234 		 */
1235 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1236 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1237 					 XFS_ERRLEVEL_LOW, log->l_mp);
1238 			return XFS_ERROR(EFSCORRUPTED);
1239 		}
1240 		tail_distance = tail_block - head_block;
1241 	}
1242 
1243 	/*
1244 	 * If the head is right up against the tail, we can't clear
1245 	 * anything.
1246 	 */
1247 	if (tail_distance <= 0) {
1248 		ASSERT(tail_distance == 0);
1249 		return 0;
1250 	}
1251 
1252 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1253 	/*
1254 	 * Take the smaller of the maximum amount of outstanding I/O
1255 	 * we could have and the distance to the tail to clear out.
1256 	 * We take the smaller so that we don't overwrite the tail and
1257 	 * we don't waste all day writing from the head to the tail
1258 	 * for no reason.
1259 	 */
1260 	max_distance = MIN(max_distance, tail_distance);
1261 
1262 	if ((head_block + max_distance) <= log->l_logBBsize) {
1263 		/*
1264 		 * We can stomp all the blocks we need to without
1265 		 * wrapping around the end of the log.  Just do it
1266 		 * in a single write.  Use the cycle number of the
1267 		 * current cycle minus one so that the log will look like:
1268 		 *     n ... | n - 1 ...
1269 		 */
1270 		error = xlog_write_log_records(log, (head_cycle - 1),
1271 				head_block, max_distance, tail_cycle,
1272 				tail_block);
1273 		if (error)
1274 			return error;
1275 	} else {
1276 		/*
1277 		 * We need to wrap around the end of the physical log in
1278 		 * order to clear all the blocks.  Do it in two separate
1279 		 * I/Os.  The first write should be from the head to the
1280 		 * end of the physical log, and it should use the current
1281 		 * cycle number minus one just like above.
1282 		 */
1283 		distance = log->l_logBBsize - head_block;
1284 		error = xlog_write_log_records(log, (head_cycle - 1),
1285 				head_block, distance, tail_cycle,
1286 				tail_block);
1287 
1288 		if (error)
1289 			return error;
1290 
1291 		/*
1292 		 * Now write the blocks at the start of the physical log.
1293 		 * This writes the remainder of the blocks we want to clear.
1294 		 * It uses the current cycle number since we're now on the
1295 		 * same cycle as the head so that we get:
1296 		 *    n ... n ... | n - 1 ...
1297 		 *    ^^^^^ blocks we're writing
1298 		 */
1299 		distance = max_distance - (log->l_logBBsize - head_block);
1300 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1301 				tail_cycle, tail_block);
1302 		if (error)
1303 			return error;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /******************************************************************************
1310  *
1311  *		Log recover routines
1312  *
1313  ******************************************************************************
1314  */
1315 
1316 STATIC xlog_recover_t *
1317 xlog_recover_find_tid(
1318 	xlog_recover_t		*q,
1319 	xlog_tid_t		tid)
1320 {
1321 	xlog_recover_t		*p = q;
1322 
1323 	while (p != NULL) {
1324 		if (p->r_log_tid == tid)
1325 		    break;
1326 		p = p->r_next;
1327 	}
1328 	return p;
1329 }
1330 
1331 STATIC void
1332 xlog_recover_put_hashq(
1333 	xlog_recover_t		**q,
1334 	xlog_recover_t		*trans)
1335 {
1336 	trans->r_next = *q;
1337 	*q = trans;
1338 }
1339 
1340 STATIC void
1341 xlog_recover_add_item(
1342 	xlog_recover_item_t	**itemq)
1343 {
1344 	xlog_recover_item_t	*item;
1345 
1346 	item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1347 	xlog_recover_insert_item_backq(itemq, item);
1348 }
1349 
1350 STATIC int
1351 xlog_recover_add_to_cont_trans(
1352 	xlog_recover_t		*trans,
1353 	xfs_caddr_t		dp,
1354 	int			len)
1355 {
1356 	xlog_recover_item_t	*item;
1357 	xfs_caddr_t		ptr, old_ptr;
1358 	int			old_len;
1359 
1360 	item = trans->r_itemq;
1361 	if (item == 0) {
1362 		/* finish copying rest of trans header */
1363 		xlog_recover_add_item(&trans->r_itemq);
1364 		ptr = (xfs_caddr_t) &trans->r_theader +
1365 				sizeof(xfs_trans_header_t) - len;
1366 		memcpy(ptr, dp, len); /* d, s, l */
1367 		return 0;
1368 	}
1369 	item = item->ri_prev;
1370 
1371 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1372 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
1373 
1374 	ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1375 	memcpy(&ptr[old_len], dp, len); /* d, s, l */
1376 	item->ri_buf[item->ri_cnt-1].i_len += len;
1377 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1378 	return 0;
1379 }
1380 
1381 /*
1382  * The next region to add is the start of a new region.  It could be
1383  * a whole region or it could be the first part of a new region.  Because
1384  * of this, the assumption here is that the type and size fields of all
1385  * format structures fit into the first 32 bits of the structure.
1386  *
1387  * This works because all regions must be 32 bit aligned.  Therefore, we
1388  * either have both fields or we have neither field.  In the case we have
1389  * neither field, the data part of the region is zero length.  We only have
1390  * a log_op_header and can throw away the header since a new one will appear
1391  * later.  If we have at least 4 bytes, then we can determine how many regions
1392  * will appear in the current log item.
1393  */
1394 STATIC int
1395 xlog_recover_add_to_trans(
1396 	xlog_recover_t		*trans,
1397 	xfs_caddr_t		dp,
1398 	int			len)
1399 {
1400 	xfs_inode_log_format_t	*in_f;			/* any will do */
1401 	xlog_recover_item_t	*item;
1402 	xfs_caddr_t		ptr;
1403 
1404 	if (!len)
1405 		return 0;
1406 	item = trans->r_itemq;
1407 	if (item == 0) {
1408 		ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1409 		if (len == sizeof(xfs_trans_header_t))
1410 			xlog_recover_add_item(&trans->r_itemq);
1411 		memcpy(&trans->r_theader, dp, len); /* d, s, l */
1412 		return 0;
1413 	}
1414 
1415 	ptr = kmem_alloc(len, KM_SLEEP);
1416 	memcpy(ptr, dp, len);
1417 	in_f = (xfs_inode_log_format_t *)ptr;
1418 
1419 	if (item->ri_prev->ri_total != 0 &&
1420 	     item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1421 		xlog_recover_add_item(&trans->r_itemq);
1422 	}
1423 	item = trans->r_itemq;
1424 	item = item->ri_prev;
1425 
1426 	if (item->ri_total == 0) {		/* first region to be added */
1427 		item->ri_total	= in_f->ilf_size;
1428 		ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1429 		item->ri_buf = kmem_zalloc((item->ri_total *
1430 					    sizeof(xfs_log_iovec_t)), KM_SLEEP);
1431 	}
1432 	ASSERT(item->ri_total > item->ri_cnt);
1433 	/* Description region is ri_buf[0] */
1434 	item->ri_buf[item->ri_cnt].i_addr = ptr;
1435 	item->ri_buf[item->ri_cnt].i_len  = len;
1436 	item->ri_cnt++;
1437 	return 0;
1438 }
1439 
1440 STATIC void
1441 xlog_recover_new_tid(
1442 	xlog_recover_t		**q,
1443 	xlog_tid_t		tid,
1444 	xfs_lsn_t		lsn)
1445 {
1446 	xlog_recover_t		*trans;
1447 
1448 	trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1449 	trans->r_log_tid   = tid;
1450 	trans->r_lsn	   = lsn;
1451 	xlog_recover_put_hashq(q, trans);
1452 }
1453 
1454 STATIC int
1455 xlog_recover_unlink_tid(
1456 	xlog_recover_t		**q,
1457 	xlog_recover_t		*trans)
1458 {
1459 	xlog_recover_t		*tp;
1460 	int			found = 0;
1461 
1462 	ASSERT(trans != 0);
1463 	if (trans == *q) {
1464 		*q = (*q)->r_next;
1465 	} else {
1466 		tp = *q;
1467 		while (tp != 0) {
1468 			if (tp->r_next == trans) {
1469 				found = 1;
1470 				break;
1471 			}
1472 			tp = tp->r_next;
1473 		}
1474 		if (!found) {
1475 			xlog_warn(
1476 			     "XFS: xlog_recover_unlink_tid: trans not found");
1477 			ASSERT(0);
1478 			return XFS_ERROR(EIO);
1479 		}
1480 		tp->r_next = tp->r_next->r_next;
1481 	}
1482 	return 0;
1483 }
1484 
1485 STATIC void
1486 xlog_recover_insert_item_backq(
1487 	xlog_recover_item_t	**q,
1488 	xlog_recover_item_t	*item)
1489 {
1490 	if (*q == 0) {
1491 		item->ri_prev = item->ri_next = item;
1492 		*q = item;
1493 	} else {
1494 		item->ri_next		= *q;
1495 		item->ri_prev		= (*q)->ri_prev;
1496 		(*q)->ri_prev		= item;
1497 		item->ri_prev->ri_next	= item;
1498 	}
1499 }
1500 
1501 STATIC void
1502 xlog_recover_insert_item_frontq(
1503 	xlog_recover_item_t	**q,
1504 	xlog_recover_item_t	*item)
1505 {
1506 	xlog_recover_insert_item_backq(q, item);
1507 	*q = item;
1508 }
1509 
1510 STATIC int
1511 xlog_recover_reorder_trans(
1512 	xlog_t			*log,
1513 	xlog_recover_t		*trans)
1514 {
1515 	xlog_recover_item_t	*first_item, *itemq, *itemq_next;
1516 	xfs_buf_log_format_t	*buf_f;
1517 	xfs_buf_log_format_v1_t	*obuf_f;
1518 	ushort			flags = 0;
1519 
1520 	first_item = itemq = trans->r_itemq;
1521 	trans->r_itemq = NULL;
1522 	do {
1523 		itemq_next = itemq->ri_next;
1524 		buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1525 		switch (ITEM_TYPE(itemq)) {
1526 		case XFS_LI_BUF:
1527 			flags = buf_f->blf_flags;
1528 			break;
1529 		case XFS_LI_6_1_BUF:
1530 		case XFS_LI_5_3_BUF:
1531 			obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1532 			flags = obuf_f->blf_flags;
1533 			break;
1534 		}
1535 
1536 		switch (ITEM_TYPE(itemq)) {
1537 		case XFS_LI_BUF:
1538 		case XFS_LI_6_1_BUF:
1539 		case XFS_LI_5_3_BUF:
1540 			if (!(flags & XFS_BLI_CANCEL)) {
1541 				xlog_recover_insert_item_frontq(&trans->r_itemq,
1542 								itemq);
1543 				break;
1544 			}
1545 		case XFS_LI_INODE:
1546 		case XFS_LI_6_1_INODE:
1547 		case XFS_LI_5_3_INODE:
1548 		case XFS_LI_DQUOT:
1549 		case XFS_LI_QUOTAOFF:
1550 		case XFS_LI_EFD:
1551 		case XFS_LI_EFI:
1552 			xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1553 			break;
1554 		default:
1555 			xlog_warn(
1556 	"XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1557 			ASSERT(0);
1558 			return XFS_ERROR(EIO);
1559 		}
1560 		itemq = itemq_next;
1561 	} while (first_item != itemq);
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Build up the table of buf cancel records so that we don't replay
1567  * cancelled data in the second pass.  For buffer records that are
1568  * not cancel records, there is nothing to do here so we just return.
1569  *
1570  * If we get a cancel record which is already in the table, this indicates
1571  * that the buffer was cancelled multiple times.  In order to ensure
1572  * that during pass 2 we keep the record in the table until we reach its
1573  * last occurrence in the log, we keep a reference count in the cancel
1574  * record in the table to tell us how many times we expect to see this
1575  * record during the second pass.
1576  */
1577 STATIC void
1578 xlog_recover_do_buffer_pass1(
1579 	xlog_t			*log,
1580 	xfs_buf_log_format_t	*buf_f)
1581 {
1582 	xfs_buf_cancel_t	*bcp;
1583 	xfs_buf_cancel_t	*nextp;
1584 	xfs_buf_cancel_t	*prevp;
1585 	xfs_buf_cancel_t	**bucket;
1586 	xfs_buf_log_format_v1_t	*obuf_f;
1587 	xfs_daddr_t		blkno = 0;
1588 	uint			len = 0;
1589 	ushort			flags = 0;
1590 
1591 	switch (buf_f->blf_type) {
1592 	case XFS_LI_BUF:
1593 		blkno = buf_f->blf_blkno;
1594 		len = buf_f->blf_len;
1595 		flags = buf_f->blf_flags;
1596 		break;
1597 	case XFS_LI_6_1_BUF:
1598 	case XFS_LI_5_3_BUF:
1599 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1600 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1601 		len = obuf_f->blf_len;
1602 		flags = obuf_f->blf_flags;
1603 		break;
1604 	}
1605 
1606 	/*
1607 	 * If this isn't a cancel buffer item, then just return.
1608 	 */
1609 	if (!(flags & XFS_BLI_CANCEL))
1610 		return;
1611 
1612 	/*
1613 	 * Insert an xfs_buf_cancel record into the hash table of
1614 	 * them.  If there is already an identical record, bump
1615 	 * its reference count.
1616 	 */
1617 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1618 					  XLOG_BC_TABLE_SIZE];
1619 	/*
1620 	 * If the hash bucket is empty then just insert a new record into
1621 	 * the bucket.
1622 	 */
1623 	if (*bucket == NULL) {
1624 		bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1625 						     KM_SLEEP);
1626 		bcp->bc_blkno = blkno;
1627 		bcp->bc_len = len;
1628 		bcp->bc_refcount = 1;
1629 		bcp->bc_next = NULL;
1630 		*bucket = bcp;
1631 		return;
1632 	}
1633 
1634 	/*
1635 	 * The hash bucket is not empty, so search for duplicates of our
1636 	 * record.  If we find one them just bump its refcount.  If not
1637 	 * then add us at the end of the list.
1638 	 */
1639 	prevp = NULL;
1640 	nextp = *bucket;
1641 	while (nextp != NULL) {
1642 		if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1643 			nextp->bc_refcount++;
1644 			return;
1645 		}
1646 		prevp = nextp;
1647 		nextp = nextp->bc_next;
1648 	}
1649 	ASSERT(prevp != NULL);
1650 	bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1651 					     KM_SLEEP);
1652 	bcp->bc_blkno = blkno;
1653 	bcp->bc_len = len;
1654 	bcp->bc_refcount = 1;
1655 	bcp->bc_next = NULL;
1656 	prevp->bc_next = bcp;
1657 }
1658 
1659 /*
1660  * Check to see whether the buffer being recovered has a corresponding
1661  * entry in the buffer cancel record table.  If it does then return 1
1662  * so that it will be cancelled, otherwise return 0.  If the buffer is
1663  * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1664  * the refcount on the entry in the table and remove it from the table
1665  * if this is the last reference.
1666  *
1667  * We remove the cancel record from the table when we encounter its
1668  * last occurrence in the log so that if the same buffer is re-used
1669  * again after its last cancellation we actually replay the changes
1670  * made at that point.
1671  */
1672 STATIC int
1673 xlog_check_buffer_cancelled(
1674 	xlog_t			*log,
1675 	xfs_daddr_t		blkno,
1676 	uint			len,
1677 	ushort			flags)
1678 {
1679 	xfs_buf_cancel_t	*bcp;
1680 	xfs_buf_cancel_t	*prevp;
1681 	xfs_buf_cancel_t	**bucket;
1682 
1683 	if (log->l_buf_cancel_table == NULL) {
1684 		/*
1685 		 * There is nothing in the table built in pass one,
1686 		 * so this buffer must not be cancelled.
1687 		 */
1688 		ASSERT(!(flags & XFS_BLI_CANCEL));
1689 		return 0;
1690 	}
1691 
1692 	bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1693 					  XLOG_BC_TABLE_SIZE];
1694 	bcp = *bucket;
1695 	if (bcp == NULL) {
1696 		/*
1697 		 * There is no corresponding entry in the table built
1698 		 * in pass one, so this buffer has not been cancelled.
1699 		 */
1700 		ASSERT(!(flags & XFS_BLI_CANCEL));
1701 		return 0;
1702 	}
1703 
1704 	/*
1705 	 * Search for an entry in the buffer cancel table that
1706 	 * matches our buffer.
1707 	 */
1708 	prevp = NULL;
1709 	while (bcp != NULL) {
1710 		if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1711 			/*
1712 			 * We've go a match, so return 1 so that the
1713 			 * recovery of this buffer is cancelled.
1714 			 * If this buffer is actually a buffer cancel
1715 			 * log item, then decrement the refcount on the
1716 			 * one in the table and remove it if this is the
1717 			 * last reference.
1718 			 */
1719 			if (flags & XFS_BLI_CANCEL) {
1720 				bcp->bc_refcount--;
1721 				if (bcp->bc_refcount == 0) {
1722 					if (prevp == NULL) {
1723 						*bucket = bcp->bc_next;
1724 					} else {
1725 						prevp->bc_next = bcp->bc_next;
1726 					}
1727 					kmem_free(bcp,
1728 						  sizeof(xfs_buf_cancel_t));
1729 				}
1730 			}
1731 			return 1;
1732 		}
1733 		prevp = bcp;
1734 		bcp = bcp->bc_next;
1735 	}
1736 	/*
1737 	 * We didn't find a corresponding entry in the table, so
1738 	 * return 0 so that the buffer is NOT cancelled.
1739 	 */
1740 	ASSERT(!(flags & XFS_BLI_CANCEL));
1741 	return 0;
1742 }
1743 
1744 STATIC int
1745 xlog_recover_do_buffer_pass2(
1746 	xlog_t			*log,
1747 	xfs_buf_log_format_t	*buf_f)
1748 {
1749 	xfs_buf_log_format_v1_t	*obuf_f;
1750 	xfs_daddr_t		blkno = 0;
1751 	ushort			flags = 0;
1752 	uint			len = 0;
1753 
1754 	switch (buf_f->blf_type) {
1755 	case XFS_LI_BUF:
1756 		blkno = buf_f->blf_blkno;
1757 		flags = buf_f->blf_flags;
1758 		len = buf_f->blf_len;
1759 		break;
1760 	case XFS_LI_6_1_BUF:
1761 	case XFS_LI_5_3_BUF:
1762 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1763 		blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1764 		flags = obuf_f->blf_flags;
1765 		len = (xfs_daddr_t) obuf_f->blf_len;
1766 		break;
1767 	}
1768 
1769 	return xlog_check_buffer_cancelled(log, blkno, len, flags);
1770 }
1771 
1772 /*
1773  * Perform recovery for a buffer full of inodes.  In these buffers,
1774  * the only data which should be recovered is that which corresponds
1775  * to the di_next_unlinked pointers in the on disk inode structures.
1776  * The rest of the data for the inodes is always logged through the
1777  * inodes themselves rather than the inode buffer and is recovered
1778  * in xlog_recover_do_inode_trans().
1779  *
1780  * The only time when buffers full of inodes are fully recovered is
1781  * when the buffer is full of newly allocated inodes.  In this case
1782  * the buffer will not be marked as an inode buffer and so will be
1783  * sent to xlog_recover_do_reg_buffer() below during recovery.
1784  */
1785 STATIC int
1786 xlog_recover_do_inode_buffer(
1787 	xfs_mount_t		*mp,
1788 	xlog_recover_item_t	*item,
1789 	xfs_buf_t		*bp,
1790 	xfs_buf_log_format_t	*buf_f)
1791 {
1792 	int			i;
1793 	int			item_index;
1794 	int			bit;
1795 	int			nbits;
1796 	int			reg_buf_offset;
1797 	int			reg_buf_bytes;
1798 	int			next_unlinked_offset;
1799 	int			inodes_per_buf;
1800 	xfs_agino_t		*logged_nextp;
1801 	xfs_agino_t		*buffer_nextp;
1802 	xfs_buf_log_format_v1_t	*obuf_f;
1803 	unsigned int		*data_map = NULL;
1804 	unsigned int		map_size = 0;
1805 
1806 	switch (buf_f->blf_type) {
1807 	case XFS_LI_BUF:
1808 		data_map = buf_f->blf_data_map;
1809 		map_size = buf_f->blf_map_size;
1810 		break;
1811 	case XFS_LI_6_1_BUF:
1812 	case XFS_LI_5_3_BUF:
1813 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1814 		data_map = obuf_f->blf_data_map;
1815 		map_size = obuf_f->blf_map_size;
1816 		break;
1817 	}
1818 	/*
1819 	 * Set the variables corresponding to the current region to
1820 	 * 0 so that we'll initialize them on the first pass through
1821 	 * the loop.
1822 	 */
1823 	reg_buf_offset = 0;
1824 	reg_buf_bytes = 0;
1825 	bit = 0;
1826 	nbits = 0;
1827 	item_index = 0;
1828 	inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1829 	for (i = 0; i < inodes_per_buf; i++) {
1830 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1831 			offsetof(xfs_dinode_t, di_next_unlinked);
1832 
1833 		while (next_unlinked_offset >=
1834 		       (reg_buf_offset + reg_buf_bytes)) {
1835 			/*
1836 			 * The next di_next_unlinked field is beyond
1837 			 * the current logged region.  Find the next
1838 			 * logged region that contains or is beyond
1839 			 * the current di_next_unlinked field.
1840 			 */
1841 			bit += nbits;
1842 			bit = xfs_next_bit(data_map, map_size, bit);
1843 
1844 			/*
1845 			 * If there are no more logged regions in the
1846 			 * buffer, then we're done.
1847 			 */
1848 			if (bit == -1) {
1849 				return 0;
1850 			}
1851 
1852 			nbits = xfs_contig_bits(data_map, map_size,
1853 							 bit);
1854 			ASSERT(nbits > 0);
1855 			reg_buf_offset = bit << XFS_BLI_SHIFT;
1856 			reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1857 			item_index++;
1858 		}
1859 
1860 		/*
1861 		 * If the current logged region starts after the current
1862 		 * di_next_unlinked field, then move on to the next
1863 		 * di_next_unlinked field.
1864 		 */
1865 		if (next_unlinked_offset < reg_buf_offset) {
1866 			continue;
1867 		}
1868 
1869 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
1870 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1871 		ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1872 
1873 		/*
1874 		 * The current logged region contains a copy of the
1875 		 * current di_next_unlinked field.  Extract its value
1876 		 * and copy it to the buffer copy.
1877 		 */
1878 		logged_nextp = (xfs_agino_t *)
1879 			       ((char *)(item->ri_buf[item_index].i_addr) +
1880 				(next_unlinked_offset - reg_buf_offset));
1881 		if (unlikely(*logged_nextp == 0)) {
1882 			xfs_fs_cmn_err(CE_ALERT, mp,
1883 				"bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1884 				item, bp);
1885 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1886 					 XFS_ERRLEVEL_LOW, mp);
1887 			return XFS_ERROR(EFSCORRUPTED);
1888 		}
1889 
1890 		buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1891 					      next_unlinked_offset);
1892 		INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp);
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 /*
1899  * Perform a 'normal' buffer recovery.  Each logged region of the
1900  * buffer should be copied over the corresponding region in the
1901  * given buffer.  The bitmap in the buf log format structure indicates
1902  * where to place the logged data.
1903  */
1904 /*ARGSUSED*/
1905 STATIC void
1906 xlog_recover_do_reg_buffer(
1907 	xfs_mount_t		*mp,
1908 	xlog_recover_item_t	*item,
1909 	xfs_buf_t		*bp,
1910 	xfs_buf_log_format_t	*buf_f)
1911 {
1912 	int			i;
1913 	int			bit;
1914 	int			nbits;
1915 	xfs_buf_log_format_v1_t	*obuf_f;
1916 	unsigned int		*data_map = NULL;
1917 	unsigned int		map_size = 0;
1918 	int                     error;
1919 
1920 	switch (buf_f->blf_type) {
1921 	case XFS_LI_BUF:
1922 		data_map = buf_f->blf_data_map;
1923 		map_size = buf_f->blf_map_size;
1924 		break;
1925 	case XFS_LI_6_1_BUF:
1926 	case XFS_LI_5_3_BUF:
1927 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1928 		data_map = obuf_f->blf_data_map;
1929 		map_size = obuf_f->blf_map_size;
1930 		break;
1931 	}
1932 	bit = 0;
1933 	i = 1;  /* 0 is the buf format structure */
1934 	while (1) {
1935 		bit = xfs_next_bit(data_map, map_size, bit);
1936 		if (bit == -1)
1937 			break;
1938 		nbits = xfs_contig_bits(data_map, map_size, bit);
1939 		ASSERT(nbits > 0);
1940 		ASSERT(item->ri_buf[i].i_addr != 0);
1941 		ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1942 		ASSERT(XFS_BUF_COUNT(bp) >=
1943 		       ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1944 
1945 		/*
1946 		 * Do a sanity check if this is a dquot buffer. Just checking
1947 		 * the first dquot in the buffer should do. XXXThis is
1948 		 * probably a good thing to do for other buf types also.
1949 		 */
1950 		error = 0;
1951 		if (buf_f->blf_flags &
1952 		   (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1953 			error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1954 					       item->ri_buf[i].i_addr,
1955 					       -1, 0, XFS_QMOPT_DOWARN,
1956 					       "dquot_buf_recover");
1957 		}
1958 		if (!error)
1959 			memcpy(xfs_buf_offset(bp,
1960 				(uint)bit << XFS_BLI_SHIFT),	/* dest */
1961 				item->ri_buf[i].i_addr,		/* source */
1962 				nbits<<XFS_BLI_SHIFT);		/* length */
1963 		i++;
1964 		bit += nbits;
1965 	}
1966 
1967 	/* Shouldn't be any more regions */
1968 	ASSERT(i == item->ri_total);
1969 }
1970 
1971 /*
1972  * Do some primitive error checking on ondisk dquot data structures.
1973  */
1974 int
1975 xfs_qm_dqcheck(
1976 	xfs_disk_dquot_t *ddq,
1977 	xfs_dqid_t	 id,
1978 	uint		 type,	  /* used only when IO_dorepair is true */
1979 	uint		 flags,
1980 	char		 *str)
1981 {
1982 	xfs_dqblk_t	 *d = (xfs_dqblk_t *)ddq;
1983 	int		errs = 0;
1984 
1985 	/*
1986 	 * We can encounter an uninitialized dquot buffer for 2 reasons:
1987 	 * 1. If we crash while deleting the quotainode(s), and those blks got
1988 	 *    used for user data. This is because we take the path of regular
1989 	 *    file deletion; however, the size field of quotainodes is never
1990 	 *    updated, so all the tricks that we play in itruncate_finish
1991 	 *    don't quite matter.
1992 	 *
1993 	 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1994 	 *    But the allocation will be replayed so we'll end up with an
1995 	 *    uninitialized quota block.
1996 	 *
1997 	 * This is all fine; things are still consistent, and we haven't lost
1998 	 * any quota information. Just don't complain about bad dquot blks.
1999 	 */
2000 	if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
2001 		if (flags & XFS_QMOPT_DOWARN)
2002 			cmn_err(CE_ALERT,
2003 			"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2004 			str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2005 		errs++;
2006 	}
2007 	if (ddq->d_version != XFS_DQUOT_VERSION) {
2008 		if (flags & XFS_QMOPT_DOWARN)
2009 			cmn_err(CE_ALERT,
2010 			"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2011 			str, id, ddq->d_version, XFS_DQUOT_VERSION);
2012 		errs++;
2013 	}
2014 
2015 	if (ddq->d_flags != XFS_DQ_USER &&
2016 	    ddq->d_flags != XFS_DQ_PROJ &&
2017 	    ddq->d_flags != XFS_DQ_GROUP) {
2018 		if (flags & XFS_QMOPT_DOWARN)
2019 			cmn_err(CE_ALERT,
2020 			"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2021 			str, id, ddq->d_flags);
2022 		errs++;
2023 	}
2024 
2025 	if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2026 		if (flags & XFS_QMOPT_DOWARN)
2027 			cmn_err(CE_ALERT,
2028 			"%s : ondisk-dquot 0x%p, ID mismatch: "
2029 			"0x%x expected, found id 0x%x",
2030 			str, ddq, id, be32_to_cpu(ddq->d_id));
2031 		errs++;
2032 	}
2033 
2034 	if (!errs && ddq->d_id) {
2035 		if (ddq->d_blk_softlimit &&
2036 		    be64_to_cpu(ddq->d_bcount) >=
2037 				be64_to_cpu(ddq->d_blk_softlimit)) {
2038 			if (!ddq->d_btimer) {
2039 				if (flags & XFS_QMOPT_DOWARN)
2040 					cmn_err(CE_ALERT,
2041 					"%s : Dquot ID 0x%x (0x%p) "
2042 					"BLK TIMER NOT STARTED",
2043 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2044 				errs++;
2045 			}
2046 		}
2047 		if (ddq->d_ino_softlimit &&
2048 		    be64_to_cpu(ddq->d_icount) >=
2049 				be64_to_cpu(ddq->d_ino_softlimit)) {
2050 			if (!ddq->d_itimer) {
2051 				if (flags & XFS_QMOPT_DOWARN)
2052 					cmn_err(CE_ALERT,
2053 					"%s : Dquot ID 0x%x (0x%p) "
2054 					"INODE TIMER NOT STARTED",
2055 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2056 				errs++;
2057 			}
2058 		}
2059 		if (ddq->d_rtb_softlimit &&
2060 		    be64_to_cpu(ddq->d_rtbcount) >=
2061 				be64_to_cpu(ddq->d_rtb_softlimit)) {
2062 			if (!ddq->d_rtbtimer) {
2063 				if (flags & XFS_QMOPT_DOWARN)
2064 					cmn_err(CE_ALERT,
2065 					"%s : Dquot ID 0x%x (0x%p) "
2066 					"RTBLK TIMER NOT STARTED",
2067 					str, (int)be32_to_cpu(ddq->d_id), ddq);
2068 				errs++;
2069 			}
2070 		}
2071 	}
2072 
2073 	if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2074 		return errs;
2075 
2076 	if (flags & XFS_QMOPT_DOWARN)
2077 		cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2078 
2079 	/*
2080 	 * Typically, a repair is only requested by quotacheck.
2081 	 */
2082 	ASSERT(id != -1);
2083 	ASSERT(flags & XFS_QMOPT_DQREPAIR);
2084 	memset(d, 0, sizeof(xfs_dqblk_t));
2085 
2086 	d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2087 	d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2088 	d->dd_diskdq.d_flags = type;
2089 	d->dd_diskdq.d_id = cpu_to_be32(id);
2090 
2091 	return errs;
2092 }
2093 
2094 /*
2095  * Perform a dquot buffer recovery.
2096  * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2097  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2098  * Else, treat it as a regular buffer and do recovery.
2099  */
2100 STATIC void
2101 xlog_recover_do_dquot_buffer(
2102 	xfs_mount_t		*mp,
2103 	xlog_t			*log,
2104 	xlog_recover_item_t	*item,
2105 	xfs_buf_t		*bp,
2106 	xfs_buf_log_format_t	*buf_f)
2107 {
2108 	uint			type;
2109 
2110 	/*
2111 	 * Filesystems are required to send in quota flags at mount time.
2112 	 */
2113 	if (mp->m_qflags == 0) {
2114 		return;
2115 	}
2116 
2117 	type = 0;
2118 	if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2119 		type |= XFS_DQ_USER;
2120 	if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2121 		type |= XFS_DQ_PROJ;
2122 	if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2123 		type |= XFS_DQ_GROUP;
2124 	/*
2125 	 * This type of quotas was turned off, so ignore this buffer
2126 	 */
2127 	if (log->l_quotaoffs_flag & type)
2128 		return;
2129 
2130 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2131 }
2132 
2133 /*
2134  * This routine replays a modification made to a buffer at runtime.
2135  * There are actually two types of buffer, regular and inode, which
2136  * are handled differently.  Inode buffers are handled differently
2137  * in that we only recover a specific set of data from them, namely
2138  * the inode di_next_unlinked fields.  This is because all other inode
2139  * data is actually logged via inode records and any data we replay
2140  * here which overlaps that may be stale.
2141  *
2142  * When meta-data buffers are freed at run time we log a buffer item
2143  * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2144  * of the buffer in the log should not be replayed at recovery time.
2145  * This is so that if the blocks covered by the buffer are reused for
2146  * file data before we crash we don't end up replaying old, freed
2147  * meta-data into a user's file.
2148  *
2149  * To handle the cancellation of buffer log items, we make two passes
2150  * over the log during recovery.  During the first we build a table of
2151  * those buffers which have been cancelled, and during the second we
2152  * only replay those buffers which do not have corresponding cancel
2153  * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2154  * for more details on the implementation of the table of cancel records.
2155  */
2156 STATIC int
2157 xlog_recover_do_buffer_trans(
2158 	xlog_t			*log,
2159 	xlog_recover_item_t	*item,
2160 	int			pass)
2161 {
2162 	xfs_buf_log_format_t	*buf_f;
2163 	xfs_buf_log_format_v1_t	*obuf_f;
2164 	xfs_mount_t		*mp;
2165 	xfs_buf_t		*bp;
2166 	int			error;
2167 	int			cancel;
2168 	xfs_daddr_t		blkno;
2169 	int			len;
2170 	ushort			flags;
2171 
2172 	buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2173 
2174 	if (pass == XLOG_RECOVER_PASS1) {
2175 		/*
2176 		 * In this pass we're only looking for buf items
2177 		 * with the XFS_BLI_CANCEL bit set.
2178 		 */
2179 		xlog_recover_do_buffer_pass1(log, buf_f);
2180 		return 0;
2181 	} else {
2182 		/*
2183 		 * In this pass we want to recover all the buffers
2184 		 * which have not been cancelled and are not
2185 		 * cancellation buffers themselves.  The routine
2186 		 * we call here will tell us whether or not to
2187 		 * continue with the replay of this buffer.
2188 		 */
2189 		cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2190 		if (cancel) {
2191 			return 0;
2192 		}
2193 	}
2194 	switch (buf_f->blf_type) {
2195 	case XFS_LI_BUF:
2196 		blkno = buf_f->blf_blkno;
2197 		len = buf_f->blf_len;
2198 		flags = buf_f->blf_flags;
2199 		break;
2200 	case XFS_LI_6_1_BUF:
2201 	case XFS_LI_5_3_BUF:
2202 		obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2203 		blkno = obuf_f->blf_blkno;
2204 		len = obuf_f->blf_len;
2205 		flags = obuf_f->blf_flags;
2206 		break;
2207 	default:
2208 		xfs_fs_cmn_err(CE_ALERT, log->l_mp,
2209 			"xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2210 			buf_f->blf_type, log->l_mp->m_logname ?
2211 			log->l_mp->m_logname : "internal");
2212 		XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2213 				 XFS_ERRLEVEL_LOW, log->l_mp);
2214 		return XFS_ERROR(EFSCORRUPTED);
2215 	}
2216 
2217 	mp = log->l_mp;
2218 	if (flags & XFS_BLI_INODE_BUF) {
2219 		bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2220 								XFS_BUF_LOCK);
2221 	} else {
2222 		bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2223 	}
2224 	if (XFS_BUF_ISERROR(bp)) {
2225 		xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2226 				  bp, blkno);
2227 		error = XFS_BUF_GETERROR(bp);
2228 		xfs_buf_relse(bp);
2229 		return error;
2230 	}
2231 
2232 	error = 0;
2233 	if (flags & XFS_BLI_INODE_BUF) {
2234 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2235 	} else if (flags &
2236 		  (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
2237 		xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2238 	} else {
2239 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2240 	}
2241 	if (error)
2242 		return XFS_ERROR(error);
2243 
2244 	/*
2245 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2246 	 * slower when taking into account all the buffers to be flushed.
2247 	 *
2248 	 * Also make sure that only inode buffers with good sizes stay in
2249 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2250 	 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2251 	 * buffers in the log can be a different size if the log was generated
2252 	 * by an older kernel using unclustered inode buffers or a newer kernel
2253 	 * running with a different inode cluster size.  Regardless, if the
2254 	 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2255 	 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2256 	 * the buffer out of the buffer cache so that the buffer won't
2257 	 * overlap with future reads of those inodes.
2258 	 */
2259 	if (XFS_DINODE_MAGIC ==
2260 	    INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2261 	    (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2262 			(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2263 		XFS_BUF_STALE(bp);
2264 		error = xfs_bwrite(mp, bp);
2265 	} else {
2266 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2267 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2268 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2269 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2270 		xfs_bdwrite(mp, bp);
2271 	}
2272 
2273 	return (error);
2274 }
2275 
2276 STATIC int
2277 xlog_recover_do_inode_trans(
2278 	xlog_t			*log,
2279 	xlog_recover_item_t	*item,
2280 	int			pass)
2281 {
2282 	xfs_inode_log_format_t	*in_f;
2283 	xfs_mount_t		*mp;
2284 	xfs_buf_t		*bp;
2285 	xfs_imap_t		imap;
2286 	xfs_dinode_t		*dip;
2287 	xfs_ino_t		ino;
2288 	int			len;
2289 	xfs_caddr_t		src;
2290 	xfs_caddr_t		dest;
2291 	int			error;
2292 	int			attr_index;
2293 	uint			fields;
2294 	xfs_dinode_core_t	*dicp;
2295 
2296 	if (pass == XLOG_RECOVER_PASS1) {
2297 		return 0;
2298 	}
2299 
2300 	in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2301 	ino = in_f->ilf_ino;
2302 	mp = log->l_mp;
2303 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2304 		imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2305 		imap.im_len = in_f->ilf_len;
2306 		imap.im_boffset = in_f->ilf_boffset;
2307 	} else {
2308 		/*
2309 		 * It's an old inode format record.  We don't know where
2310 		 * its cluster is located on disk, and we can't allow
2311 		 * xfs_imap() to figure it out because the inode btrees
2312 		 * are not ready to be used.  Therefore do not pass the
2313 		 * XFS_IMAP_LOOKUP flag to xfs_imap().  This will give
2314 		 * us only the single block in which the inode lives
2315 		 * rather than its cluster, so we must make sure to
2316 		 * invalidate the buffer when we write it out below.
2317 		 */
2318 		imap.im_blkno = 0;
2319 		xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2320 	}
2321 
2322 	/*
2323 	 * Inode buffers can be freed, look out for it,
2324 	 * and do not replay the inode.
2325 	 */
2326 	if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0))
2327 		return 0;
2328 
2329 	bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2330 								XFS_BUF_LOCK);
2331 	if (XFS_BUF_ISERROR(bp)) {
2332 		xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2333 				  bp, imap.im_blkno);
2334 		error = XFS_BUF_GETERROR(bp);
2335 		xfs_buf_relse(bp);
2336 		return error;
2337 	}
2338 	error = 0;
2339 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2340 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2341 
2342 	/*
2343 	 * Make sure the place we're flushing out to really looks
2344 	 * like an inode!
2345 	 */
2346 	if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2347 		xfs_buf_relse(bp);
2348 		xfs_fs_cmn_err(CE_ALERT, mp,
2349 			"xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2350 			dip, bp, ino);
2351 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2352 				 XFS_ERRLEVEL_LOW, mp);
2353 		return XFS_ERROR(EFSCORRUPTED);
2354 	}
2355 	dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2356 	if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2357 		xfs_buf_relse(bp);
2358 		xfs_fs_cmn_err(CE_ALERT, mp,
2359 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2360 			item, ino);
2361 		XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2362 				 XFS_ERRLEVEL_LOW, mp);
2363 		return XFS_ERROR(EFSCORRUPTED);
2364 	}
2365 
2366 	/* Skip replay when the on disk inode is newer than the log one */
2367 	if (dicp->di_flushiter <
2368 	    INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2369 		/*
2370 		 * Deal with the wrap case, DI_MAX_FLUSH is less
2371 		 * than smaller numbers
2372 		 */
2373 		if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2374 							== DI_MAX_FLUSH) &&
2375 		    (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2376 			/* do nothing */
2377 		} else {
2378 			xfs_buf_relse(bp);
2379 			return 0;
2380 		}
2381 	}
2382 	/* Take the opportunity to reset the flush iteration count */
2383 	dicp->di_flushiter = 0;
2384 
2385 	if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2386 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2387 		    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2388 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2389 					 XFS_ERRLEVEL_LOW, mp, dicp);
2390 			xfs_buf_relse(bp);
2391 			xfs_fs_cmn_err(CE_ALERT, mp,
2392 				"xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2393 				item, dip, bp, ino);
2394 			return XFS_ERROR(EFSCORRUPTED);
2395 		}
2396 	} else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2397 		if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2398 		    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2399 		    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2400 			XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2401 					     XFS_ERRLEVEL_LOW, mp, dicp);
2402 			xfs_buf_relse(bp);
2403 			xfs_fs_cmn_err(CE_ALERT, mp,
2404 				"xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2405 				item, dip, bp, ino);
2406 			return XFS_ERROR(EFSCORRUPTED);
2407 		}
2408 	}
2409 	if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2410 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2411 				     XFS_ERRLEVEL_LOW, mp, dicp);
2412 		xfs_buf_relse(bp);
2413 		xfs_fs_cmn_err(CE_ALERT, mp,
2414 			"xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2415 			item, dip, bp, ino,
2416 			dicp->di_nextents + dicp->di_anextents,
2417 			dicp->di_nblocks);
2418 		return XFS_ERROR(EFSCORRUPTED);
2419 	}
2420 	if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2421 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2422 				     XFS_ERRLEVEL_LOW, mp, dicp);
2423 		xfs_buf_relse(bp);
2424 		xfs_fs_cmn_err(CE_ALERT, mp,
2425 			"xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2426 			item, dip, bp, ino, dicp->di_forkoff);
2427 		return XFS_ERROR(EFSCORRUPTED);
2428 	}
2429 	if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2430 		XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2431 				     XFS_ERRLEVEL_LOW, mp, dicp);
2432 		xfs_buf_relse(bp);
2433 		xfs_fs_cmn_err(CE_ALERT, mp,
2434 			"xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2435 			item->ri_buf[1].i_len, item);
2436 		return XFS_ERROR(EFSCORRUPTED);
2437 	}
2438 
2439 	/* The core is in in-core format */
2440 	xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2441 			      (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2442 
2443 	/* the rest is in on-disk format */
2444 	if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2445 		memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2446 			item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2447 			item->ri_buf[1].i_len  - sizeof(xfs_dinode_core_t));
2448 	}
2449 
2450 	fields = in_f->ilf_fields;
2451 	switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2452 	case XFS_ILOG_DEV:
2453 		INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2454 
2455 		break;
2456 	case XFS_ILOG_UUID:
2457 		dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2458 		break;
2459 	}
2460 
2461 	if (in_f->ilf_size == 2)
2462 		goto write_inode_buffer;
2463 	len = item->ri_buf[2].i_len;
2464 	src = item->ri_buf[2].i_addr;
2465 	ASSERT(in_f->ilf_size <= 4);
2466 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2467 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
2468 	       (len == in_f->ilf_dsize));
2469 
2470 	switch (fields & XFS_ILOG_DFORK) {
2471 	case XFS_ILOG_DDATA:
2472 	case XFS_ILOG_DEXT:
2473 		memcpy(&dip->di_u, src, len);
2474 		break;
2475 
2476 	case XFS_ILOG_DBROOT:
2477 		xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2478 				 &(dip->di_u.di_bmbt),
2479 				 XFS_DFORK_DSIZE(dip, mp));
2480 		break;
2481 
2482 	default:
2483 		/*
2484 		 * There are no data fork flags set.
2485 		 */
2486 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
2487 		break;
2488 	}
2489 
2490 	/*
2491 	 * If we logged any attribute data, recover it.  There may or
2492 	 * may not have been any other non-core data logged in this
2493 	 * transaction.
2494 	 */
2495 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2496 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2497 			attr_index = 3;
2498 		} else {
2499 			attr_index = 2;
2500 		}
2501 		len = item->ri_buf[attr_index].i_len;
2502 		src = item->ri_buf[attr_index].i_addr;
2503 		ASSERT(len == in_f->ilf_asize);
2504 
2505 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2506 		case XFS_ILOG_ADATA:
2507 		case XFS_ILOG_AEXT:
2508 			dest = XFS_DFORK_APTR(dip);
2509 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2510 			memcpy(dest, src, len);
2511 			break;
2512 
2513 		case XFS_ILOG_ABROOT:
2514 			dest = XFS_DFORK_APTR(dip);
2515 			xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2516 					 (xfs_bmdr_block_t*)dest,
2517 					 XFS_DFORK_ASIZE(dip, mp));
2518 			break;
2519 
2520 		default:
2521 			xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2522 			ASSERT(0);
2523 			xfs_buf_relse(bp);
2524 			return XFS_ERROR(EIO);
2525 		}
2526 	}
2527 
2528 write_inode_buffer:
2529 	if (ITEM_TYPE(item) == XFS_LI_INODE) {
2530 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2531 		       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2532 		XFS_BUF_SET_FSPRIVATE(bp, mp);
2533 		XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2534 		xfs_bdwrite(mp, bp);
2535 	} else {
2536 		XFS_BUF_STALE(bp);
2537 		error = xfs_bwrite(mp, bp);
2538 	}
2539 
2540 	return (error);
2541 }
2542 
2543 /*
2544  * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2545  * structure, so that we know not to do any dquot item or dquot buffer recovery,
2546  * of that type.
2547  */
2548 STATIC int
2549 xlog_recover_do_quotaoff_trans(
2550 	xlog_t			*log,
2551 	xlog_recover_item_t	*item,
2552 	int			pass)
2553 {
2554 	xfs_qoff_logformat_t	*qoff_f;
2555 
2556 	if (pass == XLOG_RECOVER_PASS2) {
2557 		return (0);
2558 	}
2559 
2560 	qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2561 	ASSERT(qoff_f);
2562 
2563 	/*
2564 	 * The logitem format's flag tells us if this was user quotaoff,
2565 	 * group/project quotaoff or both.
2566 	 */
2567 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2568 		log->l_quotaoffs_flag |= XFS_DQ_USER;
2569 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2570 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2571 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2572 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2573 
2574 	return (0);
2575 }
2576 
2577 /*
2578  * Recover a dquot record
2579  */
2580 STATIC int
2581 xlog_recover_do_dquot_trans(
2582 	xlog_t			*log,
2583 	xlog_recover_item_t	*item,
2584 	int			pass)
2585 {
2586 	xfs_mount_t		*mp;
2587 	xfs_buf_t		*bp;
2588 	struct xfs_disk_dquot	*ddq, *recddq;
2589 	int			error;
2590 	xfs_dq_logformat_t	*dq_f;
2591 	uint			type;
2592 
2593 	if (pass == XLOG_RECOVER_PASS1) {
2594 		return 0;
2595 	}
2596 	mp = log->l_mp;
2597 
2598 	/*
2599 	 * Filesystems are required to send in quota flags at mount time.
2600 	 */
2601 	if (mp->m_qflags == 0)
2602 		return (0);
2603 
2604 	recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2605 	ASSERT(recddq);
2606 	/*
2607 	 * This type of quotas was turned off, so ignore this record.
2608 	 */
2609 	type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
2610 			(XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2611 	ASSERT(type);
2612 	if (log->l_quotaoffs_flag & type)
2613 		return (0);
2614 
2615 	/*
2616 	 * At this point we know that quota was _not_ turned off.
2617 	 * Since the mount flags are not indicating to us otherwise, this
2618 	 * must mean that quota is on, and the dquot needs to be replayed.
2619 	 * Remember that we may not have fully recovered the superblock yet,
2620 	 * so we can't do the usual trick of looking at the SB quota bits.
2621 	 *
2622 	 * The other possibility, of course, is that the quota subsystem was
2623 	 * removed since the last mount - ENOSYS.
2624 	 */
2625 	dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2626 	ASSERT(dq_f);
2627 	if ((error = xfs_qm_dqcheck(recddq,
2628 			   dq_f->qlf_id,
2629 			   0, XFS_QMOPT_DOWARN,
2630 			   "xlog_recover_do_dquot_trans (log copy)"))) {
2631 		return XFS_ERROR(EIO);
2632 	}
2633 	ASSERT(dq_f->qlf_len == 1);
2634 
2635 	error = xfs_read_buf(mp, mp->m_ddev_targp,
2636 			     dq_f->qlf_blkno,
2637 			     XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2638 			     0, &bp);
2639 	if (error) {
2640 		xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2641 				  bp, dq_f->qlf_blkno);
2642 		return error;
2643 	}
2644 	ASSERT(bp);
2645 	ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2646 
2647 	/*
2648 	 * At least the magic num portion should be on disk because this
2649 	 * was among a chunk of dquots created earlier, and we did some
2650 	 * minimal initialization then.
2651 	 */
2652 	if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2653 			   "xlog_recover_do_dquot_trans")) {
2654 		xfs_buf_relse(bp);
2655 		return XFS_ERROR(EIO);
2656 	}
2657 
2658 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
2659 
2660 	ASSERT(dq_f->qlf_size == 2);
2661 	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2662 	       XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2663 	XFS_BUF_SET_FSPRIVATE(bp, mp);
2664 	XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2665 	xfs_bdwrite(mp, bp);
2666 
2667 	return (0);
2668 }
2669 
2670 /*
2671  * This routine is called to create an in-core extent free intent
2672  * item from the efi format structure which was logged on disk.
2673  * It allocates an in-core efi, copies the extents from the format
2674  * structure into it, and adds the efi to the AIL with the given
2675  * LSN.
2676  */
2677 STATIC void
2678 xlog_recover_do_efi_trans(
2679 	xlog_t			*log,
2680 	xlog_recover_item_t	*item,
2681 	xfs_lsn_t		lsn,
2682 	int			pass)
2683 {
2684 	xfs_mount_t		*mp;
2685 	xfs_efi_log_item_t	*efip;
2686 	xfs_efi_log_format_t	*efi_formatp;
2687 	SPLDECL(s);
2688 
2689 	if (pass == XLOG_RECOVER_PASS1) {
2690 		return;
2691 	}
2692 
2693 	efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
2694 	ASSERT(item->ri_buf[0].i_len ==
2695 	       (sizeof(xfs_efi_log_format_t) +
2696 		((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))));
2697 
2698 	mp = log->l_mp;
2699 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2700 	memcpy((char *)&(efip->efi_format), (char *)efi_formatp,
2701 	      sizeof(xfs_efi_log_format_t) +
2702 	      ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)));
2703 	efip->efi_next_extent = efi_formatp->efi_nextents;
2704 	efip->efi_flags |= XFS_EFI_COMMITTED;
2705 
2706 	AIL_LOCK(mp,s);
2707 	/*
2708 	 * xfs_trans_update_ail() drops the AIL lock.
2709 	 */
2710 	xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
2711 }
2712 
2713 
2714 /*
2715  * This routine is called when an efd format structure is found in
2716  * a committed transaction in the log.  It's purpose is to cancel
2717  * the corresponding efi if it was still in the log.  To do this
2718  * it searches the AIL for the efi with an id equal to that in the
2719  * efd format structure.  If we find it, we remove the efi from the
2720  * AIL and free it.
2721  */
2722 STATIC void
2723 xlog_recover_do_efd_trans(
2724 	xlog_t			*log,
2725 	xlog_recover_item_t	*item,
2726 	int			pass)
2727 {
2728 	xfs_mount_t		*mp;
2729 	xfs_efd_log_format_t	*efd_formatp;
2730 	xfs_efi_log_item_t	*efip = NULL;
2731 	xfs_log_item_t		*lip;
2732 	int			gen;
2733 	__uint64_t		efi_id;
2734 	SPLDECL(s);
2735 
2736 	if (pass == XLOG_RECOVER_PASS1) {
2737 		return;
2738 	}
2739 
2740 	efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
2741 	ASSERT(item->ri_buf[0].i_len ==
2742 	       (sizeof(xfs_efd_log_format_t) +
2743 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t))));
2744 	efi_id = efd_formatp->efd_efi_id;
2745 
2746 	/*
2747 	 * Search for the efi with the id in the efd format structure
2748 	 * in the AIL.
2749 	 */
2750 	mp = log->l_mp;
2751 	AIL_LOCK(mp,s);
2752 	lip = xfs_trans_first_ail(mp, &gen);
2753 	while (lip != NULL) {
2754 		if (lip->li_type == XFS_LI_EFI) {
2755 			efip = (xfs_efi_log_item_t *)lip;
2756 			if (efip->efi_format.efi_id == efi_id) {
2757 				/*
2758 				 * xfs_trans_delete_ail() drops the
2759 				 * AIL lock.
2760 				 */
2761 				xfs_trans_delete_ail(mp, lip, s);
2762 				break;
2763 			}
2764 		}
2765 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2766 	}
2767 
2768 	/*
2769 	 * If we found it, then free it up.  If it wasn't there, it
2770 	 * must have been overwritten in the log.  Oh well.
2771 	 */
2772 	if (lip != NULL) {
2773 		xfs_efi_item_free(efip);
2774 	} else {
2775 		AIL_UNLOCK(mp, s);
2776 	}
2777 }
2778 
2779 /*
2780  * Perform the transaction
2781  *
2782  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2783  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2784  */
2785 STATIC int
2786 xlog_recover_do_trans(
2787 	xlog_t			*log,
2788 	xlog_recover_t		*trans,
2789 	int			pass)
2790 {
2791 	int			error = 0;
2792 	xlog_recover_item_t	*item, *first_item;
2793 
2794 	if ((error = xlog_recover_reorder_trans(log, trans)))
2795 		return error;
2796 	first_item = item = trans->r_itemq;
2797 	do {
2798 		/*
2799 		 * we don't need to worry about the block number being
2800 		 * truncated in > 1 TB buffers because in user-land,
2801 		 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
2802 		 * the blknos will get through the user-mode buffer
2803 		 * cache properly.  The only bad case is o32 kernels
2804 		 * where xfs_daddr_t is 32-bits but mount will warn us
2805 		 * off a > 1 TB filesystem before we get here.
2806 		 */
2807 		if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2808 		    (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2809 		    (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2810 			if  ((error = xlog_recover_do_buffer_trans(log, item,
2811 								 pass)))
2812 				break;
2813 		} else if ((ITEM_TYPE(item) == XFS_LI_INODE) ||
2814 			   (ITEM_TYPE(item) == XFS_LI_6_1_INODE) ||
2815 			   (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) {
2816 			if ((error = xlog_recover_do_inode_trans(log, item,
2817 								pass)))
2818 				break;
2819 		} else if (ITEM_TYPE(item) == XFS_LI_EFI) {
2820 			xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2821 						  pass);
2822 		} else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2823 			xlog_recover_do_efd_trans(log, item, pass);
2824 		} else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2825 			if ((error = xlog_recover_do_dquot_trans(log, item,
2826 								   pass)))
2827 					break;
2828 		} else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2829 			if ((error = xlog_recover_do_quotaoff_trans(log, item,
2830 								   pass)))
2831 					break;
2832 		} else {
2833 			xlog_warn("XFS: xlog_recover_do_trans");
2834 			ASSERT(0);
2835 			error = XFS_ERROR(EIO);
2836 			break;
2837 		}
2838 		item = item->ri_next;
2839 	} while (first_item != item);
2840 
2841 	return error;
2842 }
2843 
2844 /*
2845  * Free up any resources allocated by the transaction
2846  *
2847  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2848  */
2849 STATIC void
2850 xlog_recover_free_trans(
2851 	xlog_recover_t		*trans)
2852 {
2853 	xlog_recover_item_t	*first_item, *item, *free_item;
2854 	int			i;
2855 
2856 	item = first_item = trans->r_itemq;
2857 	do {
2858 		free_item = item;
2859 		item = item->ri_next;
2860 		 /* Free the regions in the item. */
2861 		for (i = 0; i < free_item->ri_cnt; i++) {
2862 			kmem_free(free_item->ri_buf[i].i_addr,
2863 				  free_item->ri_buf[i].i_len);
2864 		}
2865 		/* Free the item itself */
2866 		kmem_free(free_item->ri_buf,
2867 			  (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2868 		kmem_free(free_item, sizeof(xlog_recover_item_t));
2869 	} while (first_item != item);
2870 	/* Free the transaction recover structure */
2871 	kmem_free(trans, sizeof(xlog_recover_t));
2872 }
2873 
2874 STATIC int
2875 xlog_recover_commit_trans(
2876 	xlog_t			*log,
2877 	xlog_recover_t		**q,
2878 	xlog_recover_t		*trans,
2879 	int			pass)
2880 {
2881 	int			error;
2882 
2883 	if ((error = xlog_recover_unlink_tid(q, trans)))
2884 		return error;
2885 	if ((error = xlog_recover_do_trans(log, trans, pass)))
2886 		return error;
2887 	xlog_recover_free_trans(trans);			/* no error */
2888 	return 0;
2889 }
2890 
2891 STATIC int
2892 xlog_recover_unmount_trans(
2893 	xlog_recover_t		*trans)
2894 {
2895 	/* Do nothing now */
2896 	xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2897 	return 0;
2898 }
2899 
2900 /*
2901  * There are two valid states of the r_state field.  0 indicates that the
2902  * transaction structure is in a normal state.  We have either seen the
2903  * start of the transaction or the last operation we added was not a partial
2904  * operation.  If the last operation we added to the transaction was a
2905  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2906  *
2907  * NOTE: skip LRs with 0 data length.
2908  */
2909 STATIC int
2910 xlog_recover_process_data(
2911 	xlog_t			*log,
2912 	xlog_recover_t		*rhash[],
2913 	xlog_rec_header_t	*rhead,
2914 	xfs_caddr_t		dp,
2915 	int			pass)
2916 {
2917 	xfs_caddr_t		lp;
2918 	int			num_logops;
2919 	xlog_op_header_t	*ohead;
2920 	xlog_recover_t		*trans;
2921 	xlog_tid_t		tid;
2922 	int			error;
2923 	unsigned long		hash;
2924 	uint			flags;
2925 
2926 	lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2927 	num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2928 
2929 	/* check the log format matches our own - else we can't recover */
2930 	if (xlog_header_check_recover(log->l_mp, rhead))
2931 		return (XFS_ERROR(EIO));
2932 
2933 	while ((dp < lp) && num_logops) {
2934 		ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2935 		ohead = (xlog_op_header_t *)dp;
2936 		dp += sizeof(xlog_op_header_t);
2937 		if (ohead->oh_clientid != XFS_TRANSACTION &&
2938 		    ohead->oh_clientid != XFS_LOG) {
2939 			xlog_warn(
2940 		"XFS: xlog_recover_process_data: bad clientid");
2941 			ASSERT(0);
2942 			return (XFS_ERROR(EIO));
2943 		}
2944 		tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2945 		hash = XLOG_RHASH(tid);
2946 		trans = xlog_recover_find_tid(rhash[hash], tid);
2947 		if (trans == NULL) {		   /* not found; add new tid */
2948 			if (ohead->oh_flags & XLOG_START_TRANS)
2949 				xlog_recover_new_tid(&rhash[hash], tid,
2950 					INT_GET(rhead->h_lsn, ARCH_CONVERT));
2951 		} else {
2952 			ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2953 			flags = ohead->oh_flags & ~XLOG_END_TRANS;
2954 			if (flags & XLOG_WAS_CONT_TRANS)
2955 				flags &= ~XLOG_CONTINUE_TRANS;
2956 			switch (flags) {
2957 			case XLOG_COMMIT_TRANS:
2958 				error = xlog_recover_commit_trans(log,
2959 						&rhash[hash], trans, pass);
2960 				break;
2961 			case XLOG_UNMOUNT_TRANS:
2962 				error = xlog_recover_unmount_trans(trans);
2963 				break;
2964 			case XLOG_WAS_CONT_TRANS:
2965 				error = xlog_recover_add_to_cont_trans(trans,
2966 						dp, INT_GET(ohead->oh_len,
2967 							ARCH_CONVERT));
2968 				break;
2969 			case XLOG_START_TRANS:
2970 				xlog_warn(
2971 			"XFS: xlog_recover_process_data: bad transaction");
2972 				ASSERT(0);
2973 				error = XFS_ERROR(EIO);
2974 				break;
2975 			case 0:
2976 			case XLOG_CONTINUE_TRANS:
2977 				error = xlog_recover_add_to_trans(trans,
2978 						dp, INT_GET(ohead->oh_len,
2979 							ARCH_CONVERT));
2980 				break;
2981 			default:
2982 				xlog_warn(
2983 			"XFS: xlog_recover_process_data: bad flag");
2984 				ASSERT(0);
2985 				error = XFS_ERROR(EIO);
2986 				break;
2987 			}
2988 			if (error)
2989 				return error;
2990 		}
2991 		dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
2992 		num_logops--;
2993 	}
2994 	return 0;
2995 }
2996 
2997 /*
2998  * Process an extent free intent item that was recovered from
2999  * the log.  We need to free the extents that it describes.
3000  */
3001 STATIC void
3002 xlog_recover_process_efi(
3003 	xfs_mount_t		*mp,
3004 	xfs_efi_log_item_t	*efip)
3005 {
3006 	xfs_efd_log_item_t	*efdp;
3007 	xfs_trans_t		*tp;
3008 	int			i;
3009 	xfs_extent_t		*extp;
3010 	xfs_fsblock_t		startblock_fsb;
3011 
3012 	ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3013 
3014 	/*
3015 	 * First check the validity of the extents described by the
3016 	 * EFI.  If any are bad, then assume that all are bad and
3017 	 * just toss the EFI.
3018 	 */
3019 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3020 		extp = &(efip->efi_format.efi_extents[i]);
3021 		startblock_fsb = XFS_BB_TO_FSB(mp,
3022 				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
3023 		if ((startblock_fsb == 0) ||
3024 		    (extp->ext_len == 0) ||
3025 		    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3026 		    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3027 			/*
3028 			 * This will pull the EFI from the AIL and
3029 			 * free the memory associated with it.
3030 			 */
3031 			xfs_efi_release(efip, efip->efi_format.efi_nextents);
3032 			return;
3033 		}
3034 	}
3035 
3036 	tp = xfs_trans_alloc(mp, 0);
3037 	xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3038 	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3039 
3040 	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3041 		extp = &(efip->efi_format.efi_extents[i]);
3042 		xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3043 		xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3044 					 extp->ext_len);
3045 	}
3046 
3047 	efip->efi_flags |= XFS_EFI_RECOVERED;
3048 	xfs_trans_commit(tp, 0, NULL);
3049 }
3050 
3051 /*
3052  * Verify that once we've encountered something other than an EFI
3053  * in the AIL that there are no more EFIs in the AIL.
3054  */
3055 #if defined(DEBUG)
3056 STATIC void
3057 xlog_recover_check_ail(
3058 	xfs_mount_t		*mp,
3059 	xfs_log_item_t		*lip,
3060 	int			gen)
3061 {
3062 	int			orig_gen = gen;
3063 
3064 	do {
3065 		ASSERT(lip->li_type != XFS_LI_EFI);
3066 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3067 		/*
3068 		 * The check will be bogus if we restart from the
3069 		 * beginning of the AIL, so ASSERT that we don't.
3070 		 * We never should since we're holding the AIL lock
3071 		 * the entire time.
3072 		 */
3073 		ASSERT(gen == orig_gen);
3074 	} while (lip != NULL);
3075 }
3076 #endif	/* DEBUG */
3077 
3078 /*
3079  * When this is called, all of the EFIs which did not have
3080  * corresponding EFDs should be in the AIL.  What we do now
3081  * is free the extents associated with each one.
3082  *
3083  * Since we process the EFIs in normal transactions, they
3084  * will be removed at some point after the commit.  This prevents
3085  * us from just walking down the list processing each one.
3086  * We'll use a flag in the EFI to skip those that we've already
3087  * processed and use the AIL iteration mechanism's generation
3088  * count to try to speed this up at least a bit.
3089  *
3090  * When we start, we know that the EFIs are the only things in
3091  * the AIL.  As we process them, however, other items are added
3092  * to the AIL.  Since everything added to the AIL must come after
3093  * everything already in the AIL, we stop processing as soon as
3094  * we see something other than an EFI in the AIL.
3095  */
3096 STATIC void
3097 xlog_recover_process_efis(
3098 	xlog_t			*log)
3099 {
3100 	xfs_log_item_t		*lip;
3101 	xfs_efi_log_item_t	*efip;
3102 	int			gen;
3103 	xfs_mount_t		*mp;
3104 	SPLDECL(s);
3105 
3106 	mp = log->l_mp;
3107 	AIL_LOCK(mp,s);
3108 
3109 	lip = xfs_trans_first_ail(mp, &gen);
3110 	while (lip != NULL) {
3111 		/*
3112 		 * We're done when we see something other than an EFI.
3113 		 */
3114 		if (lip->li_type != XFS_LI_EFI) {
3115 			xlog_recover_check_ail(mp, lip, gen);
3116 			break;
3117 		}
3118 
3119 		/*
3120 		 * Skip EFIs that we've already processed.
3121 		 */
3122 		efip = (xfs_efi_log_item_t *)lip;
3123 		if (efip->efi_flags & XFS_EFI_RECOVERED) {
3124 			lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3125 			continue;
3126 		}
3127 
3128 		AIL_UNLOCK(mp, s);
3129 		xlog_recover_process_efi(mp, efip);
3130 		AIL_LOCK(mp,s);
3131 		lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3132 	}
3133 	AIL_UNLOCK(mp, s);
3134 }
3135 
3136 /*
3137  * This routine performs a transaction to null out a bad inode pointer
3138  * in an agi unlinked inode hash bucket.
3139  */
3140 STATIC void
3141 xlog_recover_clear_agi_bucket(
3142 	xfs_mount_t	*mp,
3143 	xfs_agnumber_t	agno,
3144 	int		bucket)
3145 {
3146 	xfs_trans_t	*tp;
3147 	xfs_agi_t	*agi;
3148 	xfs_buf_t	*agibp;
3149 	int		offset;
3150 	int		error;
3151 
3152 	tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3153 	xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3154 
3155 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3156 				   XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3157 				   XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3158 	if (error) {
3159 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3160 		return;
3161 	}
3162 
3163 	agi = XFS_BUF_TO_AGI(agibp);
3164 	if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
3165 		xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3166 		return;
3167 	}
3168 
3169 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3170 	offset = offsetof(xfs_agi_t, agi_unlinked) +
3171 		 (sizeof(xfs_agino_t) * bucket);
3172 	xfs_trans_log_buf(tp, agibp, offset,
3173 			  (offset + sizeof(xfs_agino_t) - 1));
3174 
3175 	(void) xfs_trans_commit(tp, 0, NULL);
3176 }
3177 
3178 /*
3179  * xlog_iunlink_recover
3180  *
3181  * This is called during recovery to process any inodes which
3182  * we unlinked but not freed when the system crashed.  These
3183  * inodes will be on the lists in the AGI blocks.  What we do
3184  * here is scan all the AGIs and fully truncate and free any
3185  * inodes found on the lists.  Each inode is removed from the
3186  * lists when it has been fully truncated and is freed.  The
3187  * freeing of the inode and its removal from the list must be
3188  * atomic.
3189  */
3190 void
3191 xlog_recover_process_iunlinks(
3192 	xlog_t		*log)
3193 {
3194 	xfs_mount_t	*mp;
3195 	xfs_agnumber_t	agno;
3196 	xfs_agi_t	*agi;
3197 	xfs_buf_t	*agibp;
3198 	xfs_buf_t	*ibp;
3199 	xfs_dinode_t	*dip;
3200 	xfs_inode_t	*ip;
3201 	xfs_agino_t	agino;
3202 	xfs_ino_t	ino;
3203 	int		bucket;
3204 	int		error;
3205 	uint		mp_dmevmask;
3206 
3207 	mp = log->l_mp;
3208 
3209 	/*
3210 	 * Prevent any DMAPI event from being sent while in this function.
3211 	 */
3212 	mp_dmevmask = mp->m_dmevmask;
3213 	mp->m_dmevmask = 0;
3214 
3215 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3216 		/*
3217 		 * Find the agi for this ag.
3218 		 */
3219 		agibp = xfs_buf_read(mp->m_ddev_targp,
3220 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3221 				XFS_FSS_TO_BB(mp, 1), 0);
3222 		if (XFS_BUF_ISERROR(agibp)) {
3223 			xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3224 				log->l_mp, agibp,
3225 				XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3226 		}
3227 		agi = XFS_BUF_TO_AGI(agibp);
3228 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
3229 
3230 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3231 
3232 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3233 			while (agino != NULLAGINO) {
3234 
3235 				/*
3236 				 * Release the agi buffer so that it can
3237 				 * be acquired in the normal course of the
3238 				 * transaction to truncate and free the inode.
3239 				 */
3240 				xfs_buf_relse(agibp);
3241 
3242 				ino = XFS_AGINO_TO_INO(mp, agno, agino);
3243 				error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3244 				ASSERT(error || (ip != NULL));
3245 
3246 				if (!error) {
3247 					/*
3248 					 * Get the on disk inode to find the
3249 					 * next inode in the bucket.
3250 					 */
3251 					error = xfs_itobp(mp, NULL, ip, &dip,
3252 							&ibp, 0, 0);
3253 					ASSERT(error || (dip != NULL));
3254 				}
3255 
3256 				if (!error) {
3257 					ASSERT(ip->i_d.di_nlink == 0);
3258 
3259 					/* setup for the next pass */
3260 					agino = INT_GET(dip->di_next_unlinked,
3261 							ARCH_CONVERT);
3262 					xfs_buf_relse(ibp);
3263 					/*
3264 					 * Prevent any DMAPI event from
3265 					 * being sent when the
3266 					 * reference on the inode is
3267 					 * dropped.
3268 					 */
3269 					ip->i_d.di_dmevmask = 0;
3270 
3271 					/*
3272 					 * If this is a new inode, handle
3273 					 * it specially.  Otherwise,
3274 					 * just drop our reference to the
3275 					 * inode.  If there are no
3276 					 * other references, this will
3277 					 * send the inode to
3278 					 * xfs_inactive() which will
3279 					 * truncate the file and free
3280 					 * the inode.
3281 					 */
3282 					if (ip->i_d.di_mode == 0)
3283 						xfs_iput_new(ip, 0);
3284 					else
3285 						VN_RELE(XFS_ITOV(ip));
3286 				} else {
3287 					/*
3288 					 * We can't read in the inode
3289 					 * this bucket points to, or
3290 					 * this inode is messed up.  Just
3291 					 * ditch this bucket of inodes.  We
3292 					 * will lose some inodes and space,
3293 					 * but at least we won't hang.  Call
3294 					 * xlog_recover_clear_agi_bucket()
3295 					 * to perform a transaction to clear
3296 					 * the inode pointer in the bucket.
3297 					 */
3298 					xlog_recover_clear_agi_bucket(mp, agno,
3299 							bucket);
3300 
3301 					agino = NULLAGINO;
3302 				}
3303 
3304 				/*
3305 				 * Reacquire the agibuffer and continue around
3306 				 * the loop.
3307 				 */
3308 				agibp = xfs_buf_read(mp->m_ddev_targp,
3309 						XFS_AG_DADDR(mp, agno,
3310 							XFS_AGI_DADDR(mp)),
3311 						XFS_FSS_TO_BB(mp, 1), 0);
3312 				if (XFS_BUF_ISERROR(agibp)) {
3313 					xfs_ioerror_alert(
3314 				"xlog_recover_process_iunlinks(#2)",
3315 						log->l_mp, agibp,
3316 						XFS_AG_DADDR(mp, agno,
3317 							XFS_AGI_DADDR(mp)));
3318 				}
3319 				agi = XFS_BUF_TO_AGI(agibp);
3320 				ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3321 					agi->agi_magicnum));
3322 			}
3323 		}
3324 
3325 		/*
3326 		 * Release the buffer for the current agi so we can
3327 		 * go on to the next one.
3328 		 */
3329 		xfs_buf_relse(agibp);
3330 	}
3331 
3332 	mp->m_dmevmask = mp_dmevmask;
3333 }
3334 
3335 
3336 #ifdef DEBUG
3337 STATIC void
3338 xlog_pack_data_checksum(
3339 	xlog_t		*log,
3340 	xlog_in_core_t	*iclog,
3341 	int		size)
3342 {
3343 	int		i;
3344 	uint		*up;
3345 	uint		chksum = 0;
3346 
3347 	up = (uint *)iclog->ic_datap;
3348 	/* divide length by 4 to get # words */
3349 	for (i = 0; i < (size >> 2); i++) {
3350 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3351 		up++;
3352 	}
3353 	INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3354 }
3355 #else
3356 #define xlog_pack_data_checksum(log, iclog, size)
3357 #endif
3358 
3359 /*
3360  * Stamp cycle number in every block
3361  */
3362 void
3363 xlog_pack_data(
3364 	xlog_t			*log,
3365 	xlog_in_core_t		*iclog,
3366 	int			roundoff)
3367 {
3368 	int			i, j, k;
3369 	int			size = iclog->ic_offset + roundoff;
3370 	uint			cycle_lsn;
3371 	xfs_caddr_t		dp;
3372 	xlog_in_core_2_t	*xhdr;
3373 
3374 	xlog_pack_data_checksum(log, iclog, size);
3375 
3376 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3377 
3378 	dp = iclog->ic_datap;
3379 	for (i = 0; i < BTOBB(size) &&
3380 		i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3381 		iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3382 		*(uint *)dp = cycle_lsn;
3383 		dp += BBSIZE;
3384 	}
3385 
3386 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3387 		xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3388 		for ( ; i < BTOBB(size); i++) {
3389 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3390 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3391 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3392 			*(uint *)dp = cycle_lsn;
3393 			dp += BBSIZE;
3394 		}
3395 
3396 		for (i = 1; i < log->l_iclog_heads; i++) {
3397 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3398 		}
3399 	}
3400 }
3401 
3402 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3403 STATIC void
3404 xlog_unpack_data_checksum(
3405 	xlog_rec_header_t	*rhead,
3406 	xfs_caddr_t		dp,
3407 	xlog_t			*log)
3408 {
3409 	uint			*up = (uint *)dp;
3410 	uint			chksum = 0;
3411 	int			i;
3412 
3413 	/* divide length by 4 to get # words */
3414 	for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3415 		chksum ^= INT_GET(*up, ARCH_CONVERT);
3416 		up++;
3417 	}
3418 	if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3419 	    if (rhead->h_chksum ||
3420 		((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3421 		    cmn_err(CE_DEBUG,
3422 			"XFS: LogR chksum mismatch: was (0x%x) is (0x%x)",
3423 			    INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3424 		    cmn_err(CE_DEBUG,
3425 "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3426 		    if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3427 			    cmn_err(CE_DEBUG,
3428 				"XFS: LogR this is a LogV2 filesystem");
3429 		    }
3430 		    log->l_flags |= XLOG_CHKSUM_MISMATCH;
3431 	    }
3432 	}
3433 }
3434 #else
3435 #define xlog_unpack_data_checksum(rhead, dp, log)
3436 #endif
3437 
3438 STATIC void
3439 xlog_unpack_data(
3440 	xlog_rec_header_t	*rhead,
3441 	xfs_caddr_t		dp,
3442 	xlog_t			*log)
3443 {
3444 	int			i, j, k;
3445 	xlog_in_core_2_t	*xhdr;
3446 
3447 	for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3448 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3449 		*(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3450 		dp += BBSIZE;
3451 	}
3452 
3453 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3454 		xhdr = (xlog_in_core_2_t *)rhead;
3455 		for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3456 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3457 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3458 			*(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3459 			dp += BBSIZE;
3460 		}
3461 	}
3462 
3463 	xlog_unpack_data_checksum(rhead, dp, log);
3464 }
3465 
3466 STATIC int
3467 xlog_valid_rec_header(
3468 	xlog_t			*log,
3469 	xlog_rec_header_t	*rhead,
3470 	xfs_daddr_t		blkno)
3471 {
3472 	int			hlen;
3473 
3474 	if (unlikely(
3475 	    (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3476 			XLOG_HEADER_MAGIC_NUM))) {
3477 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3478 				XFS_ERRLEVEL_LOW, log->l_mp);
3479 		return XFS_ERROR(EFSCORRUPTED);
3480 	}
3481 	if (unlikely(
3482 	    (!rhead->h_version ||
3483 	    (INT_GET(rhead->h_version, ARCH_CONVERT) &
3484 			(~XLOG_VERSION_OKBITS)) != 0))) {
3485 		xlog_warn("XFS: %s: unrecognised log version (%d).",
3486 			__FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3487 		return XFS_ERROR(EIO);
3488 	}
3489 
3490 	/* LR body must have data or it wouldn't have been written */
3491 	hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3492 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3493 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3494 				XFS_ERRLEVEL_LOW, log->l_mp);
3495 		return XFS_ERROR(EFSCORRUPTED);
3496 	}
3497 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3498 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3499 				XFS_ERRLEVEL_LOW, log->l_mp);
3500 		return XFS_ERROR(EFSCORRUPTED);
3501 	}
3502 	return 0;
3503 }
3504 
3505 /*
3506  * Read the log from tail to head and process the log records found.
3507  * Handle the two cases where the tail and head are in the same cycle
3508  * and where the active portion of the log wraps around the end of
3509  * the physical log separately.  The pass parameter is passed through
3510  * to the routines called to process the data and is not looked at
3511  * here.
3512  */
3513 STATIC int
3514 xlog_do_recovery_pass(
3515 	xlog_t			*log,
3516 	xfs_daddr_t		head_blk,
3517 	xfs_daddr_t		tail_blk,
3518 	int			pass)
3519 {
3520 	xlog_rec_header_t	*rhead;
3521 	xfs_daddr_t		blk_no;
3522 	xfs_caddr_t		bufaddr, offset;
3523 	xfs_buf_t		*hbp, *dbp;
3524 	int			error = 0, h_size;
3525 	int			bblks, split_bblks;
3526 	int			hblks, split_hblks, wrapped_hblks;
3527 	xlog_recover_t		*rhash[XLOG_RHASH_SIZE];
3528 
3529 	ASSERT(head_blk != tail_blk);
3530 
3531 	/*
3532 	 * Read the header of the tail block and get the iclog buffer size from
3533 	 * h_size.  Use this to tell how many sectors make up the log header.
3534 	 */
3535 	if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3536 		/*
3537 		 * When using variable length iclogs, read first sector of
3538 		 * iclog header and extract the header size from it.  Get a
3539 		 * new hbp that is the correct size.
3540 		 */
3541 		hbp = xlog_get_bp(log, 1);
3542 		if (!hbp)
3543 			return ENOMEM;
3544 		if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3545 			goto bread_err1;
3546 		offset = xlog_align(log, tail_blk, 1, hbp);
3547 		rhead = (xlog_rec_header_t *)offset;
3548 		error = xlog_valid_rec_header(log, rhead, tail_blk);
3549 		if (error)
3550 			goto bread_err1;
3551 		h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3552 		if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3553 				& XLOG_VERSION_2) &&
3554 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3555 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3556 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
3557 				hblks++;
3558 			xlog_put_bp(hbp);
3559 			hbp = xlog_get_bp(log, hblks);
3560 		} else {
3561 			hblks = 1;
3562 		}
3563 	} else {
3564 		ASSERT(log->l_sectbb_log == 0);
3565 		hblks = 1;
3566 		hbp = xlog_get_bp(log, 1);
3567 		h_size = XLOG_BIG_RECORD_BSIZE;
3568 	}
3569 
3570 	if (!hbp)
3571 		return ENOMEM;
3572 	dbp = xlog_get_bp(log, BTOBB(h_size));
3573 	if (!dbp) {
3574 		xlog_put_bp(hbp);
3575 		return ENOMEM;
3576 	}
3577 
3578 	memset(rhash, 0, sizeof(rhash));
3579 	if (tail_blk <= head_blk) {
3580 		for (blk_no = tail_blk; blk_no < head_blk; ) {
3581 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3582 				goto bread_err2;
3583 			offset = xlog_align(log, blk_no, hblks, hbp);
3584 			rhead = (xlog_rec_header_t *)offset;
3585 			error = xlog_valid_rec_header(log, rhead, blk_no);
3586 			if (error)
3587 				goto bread_err2;
3588 
3589 			/* blocks in data section */
3590 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3591 			error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3592 			if (error)
3593 				goto bread_err2;
3594 			offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3595 			xlog_unpack_data(rhead, offset, log);
3596 			if ((error = xlog_recover_process_data(log,
3597 						rhash, rhead, offset, pass)))
3598 				goto bread_err2;
3599 			blk_no += bblks + hblks;
3600 		}
3601 	} else {
3602 		/*
3603 		 * Perform recovery around the end of the physical log.
3604 		 * When the head is not on the same cycle number as the tail,
3605 		 * we can't do a sequential recovery as above.
3606 		 */
3607 		blk_no = tail_blk;
3608 		while (blk_no < log->l_logBBsize) {
3609 			/*
3610 			 * Check for header wrapping around physical end-of-log
3611 			 */
3612 			offset = NULL;
3613 			split_hblks = 0;
3614 			wrapped_hblks = 0;
3615 			if (blk_no + hblks <= log->l_logBBsize) {
3616 				/* Read header in one read */
3617 				error = xlog_bread(log, blk_no, hblks, hbp);
3618 				if (error)
3619 					goto bread_err2;
3620 				offset = xlog_align(log, blk_no, hblks, hbp);
3621 			} else {
3622 				/* This LR is split across physical log end */
3623 				if (blk_no != log->l_logBBsize) {
3624 					/* some data before physical log end */
3625 					ASSERT(blk_no <= INT_MAX);
3626 					split_hblks = log->l_logBBsize - (int)blk_no;
3627 					ASSERT(split_hblks > 0);
3628 					if ((error = xlog_bread(log, blk_no,
3629 							split_hblks, hbp)))
3630 						goto bread_err2;
3631 					offset = xlog_align(log, blk_no,
3632 							split_hblks, hbp);
3633 				}
3634 				/*
3635 				 * Note: this black magic still works with
3636 				 * large sector sizes (non-512) only because:
3637 				 * - we increased the buffer size originally
3638 				 *   by 1 sector giving us enough extra space
3639 				 *   for the second read;
3640 				 * - the log start is guaranteed to be sector
3641 				 *   aligned;
3642 				 * - we read the log end (LR header start)
3643 				 *   _first_, then the log start (LR header end)
3644 				 *   - order is important.
3645 				 */
3646 				bufaddr = XFS_BUF_PTR(hbp);
3647 				XFS_BUF_SET_PTR(hbp,
3648 						bufaddr + BBTOB(split_hblks),
3649 						BBTOB(hblks - split_hblks));
3650 				wrapped_hblks = hblks - split_hblks;
3651 				error = xlog_bread(log, 0, wrapped_hblks, hbp);
3652 				if (error)
3653 					goto bread_err2;
3654 				XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3655 				if (!offset)
3656 					offset = xlog_align(log, 0,
3657 							wrapped_hblks, hbp);
3658 			}
3659 			rhead = (xlog_rec_header_t *)offset;
3660 			error = xlog_valid_rec_header(log, rhead,
3661 						split_hblks ? blk_no : 0);
3662 			if (error)
3663 				goto bread_err2;
3664 
3665 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3666 			blk_no += hblks;
3667 
3668 			/* Read in data for log record */
3669 			if (blk_no + bblks <= log->l_logBBsize) {
3670 				error = xlog_bread(log, blk_no, bblks, dbp);
3671 				if (error)
3672 					goto bread_err2;
3673 				offset = xlog_align(log, blk_no, bblks, dbp);
3674 			} else {
3675 				/* This log record is split across the
3676 				 * physical end of log */
3677 				offset = NULL;
3678 				split_bblks = 0;
3679 				if (blk_no != log->l_logBBsize) {
3680 					/* some data is before the physical
3681 					 * end of log */
3682 					ASSERT(!wrapped_hblks);
3683 					ASSERT(blk_no <= INT_MAX);
3684 					split_bblks =
3685 						log->l_logBBsize - (int)blk_no;
3686 					ASSERT(split_bblks > 0);
3687 					if ((error = xlog_bread(log, blk_no,
3688 							split_bblks, dbp)))
3689 						goto bread_err2;
3690 					offset = xlog_align(log, blk_no,
3691 							split_bblks, dbp);
3692 				}
3693 				/*
3694 				 * Note: this black magic still works with
3695 				 * large sector sizes (non-512) only because:
3696 				 * - we increased the buffer size originally
3697 				 *   by 1 sector giving us enough extra space
3698 				 *   for the second read;
3699 				 * - the log start is guaranteed to be sector
3700 				 *   aligned;
3701 				 * - we read the log end (LR header start)
3702 				 *   _first_, then the log start (LR header end)
3703 				 *   - order is important.
3704 				 */
3705 				bufaddr = XFS_BUF_PTR(dbp);
3706 				XFS_BUF_SET_PTR(dbp,
3707 						bufaddr + BBTOB(split_bblks),
3708 						BBTOB(bblks - split_bblks));
3709 				if ((error = xlog_bread(log, wrapped_hblks,
3710 						bblks - split_bblks, dbp)))
3711 					goto bread_err2;
3712 				XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3713 				if (!offset)
3714 					offset = xlog_align(log, wrapped_hblks,
3715 						bblks - split_bblks, dbp);
3716 			}
3717 			xlog_unpack_data(rhead, offset, log);
3718 			if ((error = xlog_recover_process_data(log, rhash,
3719 							rhead, offset, pass)))
3720 				goto bread_err2;
3721 			blk_no += bblks;
3722 		}
3723 
3724 		ASSERT(blk_no >= log->l_logBBsize);
3725 		blk_no -= log->l_logBBsize;
3726 
3727 		/* read first part of physical log */
3728 		while (blk_no < head_blk) {
3729 			if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3730 				goto bread_err2;
3731 			offset = xlog_align(log, blk_no, hblks, hbp);
3732 			rhead = (xlog_rec_header_t *)offset;
3733 			error = xlog_valid_rec_header(log, rhead, blk_no);
3734 			if (error)
3735 				goto bread_err2;
3736 			bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3737 			if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3738 				goto bread_err2;
3739 			offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3740 			xlog_unpack_data(rhead, offset, log);
3741 			if ((error = xlog_recover_process_data(log, rhash,
3742 							rhead, offset, pass)))
3743 				goto bread_err2;
3744 			blk_no += bblks + hblks;
3745 		}
3746 	}
3747 
3748  bread_err2:
3749 	xlog_put_bp(dbp);
3750  bread_err1:
3751 	xlog_put_bp(hbp);
3752 	return error;
3753 }
3754 
3755 /*
3756  * Do the recovery of the log.  We actually do this in two phases.
3757  * The two passes are necessary in order to implement the function
3758  * of cancelling a record written into the log.  The first pass
3759  * determines those things which have been cancelled, and the
3760  * second pass replays log items normally except for those which
3761  * have been cancelled.  The handling of the replay and cancellations
3762  * takes place in the log item type specific routines.
3763  *
3764  * The table of items which have cancel records in the log is allocated
3765  * and freed at this level, since only here do we know when all of
3766  * the log recovery has been completed.
3767  */
3768 STATIC int
3769 xlog_do_log_recovery(
3770 	xlog_t		*log,
3771 	xfs_daddr_t	head_blk,
3772 	xfs_daddr_t	tail_blk)
3773 {
3774 	int		error;
3775 
3776 	ASSERT(head_blk != tail_blk);
3777 
3778 	/*
3779 	 * First do a pass to find all of the cancelled buf log items.
3780 	 * Store them in the buf_cancel_table for use in the second pass.
3781 	 */
3782 	log->l_buf_cancel_table =
3783 		(xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3784 						 sizeof(xfs_buf_cancel_t*),
3785 						 KM_SLEEP);
3786 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3787 				      XLOG_RECOVER_PASS1);
3788 	if (error != 0) {
3789 		kmem_free(log->l_buf_cancel_table,
3790 			  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3791 		log->l_buf_cancel_table = NULL;
3792 		return error;
3793 	}
3794 	/*
3795 	 * Then do a second pass to actually recover the items in the log.
3796 	 * When it is complete free the table of buf cancel items.
3797 	 */
3798 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3799 				      XLOG_RECOVER_PASS2);
3800 #ifdef DEBUG
3801 	{
3802 		int	i;
3803 
3804 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3805 			ASSERT(log->l_buf_cancel_table[i] == NULL);
3806 	}
3807 #endif	/* DEBUG */
3808 
3809 	kmem_free(log->l_buf_cancel_table,
3810 		  XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3811 	log->l_buf_cancel_table = NULL;
3812 
3813 	return error;
3814 }
3815 
3816 /*
3817  * Do the actual recovery
3818  */
3819 STATIC int
3820 xlog_do_recover(
3821 	xlog_t		*log,
3822 	xfs_daddr_t	head_blk,
3823 	xfs_daddr_t	tail_blk)
3824 {
3825 	int		error;
3826 	xfs_buf_t	*bp;
3827 	xfs_sb_t	*sbp;
3828 
3829 	/*
3830 	 * First replay the images in the log.
3831 	 */
3832 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3833 	if (error) {
3834 		return error;
3835 	}
3836 
3837 	XFS_bflush(log->l_mp->m_ddev_targp);
3838 
3839 	/*
3840 	 * If IO errors happened during recovery, bail out.
3841 	 */
3842 	if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3843 		return (EIO);
3844 	}
3845 
3846 	/*
3847 	 * We now update the tail_lsn since much of the recovery has completed
3848 	 * and there may be space available to use.  If there were no extent
3849 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3850 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3851 	 * lsn of the last known good LR on disk.  If there are extent frees
3852 	 * or iunlinks they will have some entries in the AIL; so we look at
3853 	 * the AIL to determine how to set the tail_lsn.
3854 	 */
3855 	xlog_assign_tail_lsn(log->l_mp);
3856 
3857 	/*
3858 	 * Now that we've finished replaying all buffer and inode
3859 	 * updates, re-read in the superblock.
3860 	 */
3861 	bp = xfs_getsb(log->l_mp, 0);
3862 	XFS_BUF_UNDONE(bp);
3863 	XFS_BUF_READ(bp);
3864 	xfsbdstrat(log->l_mp, bp);
3865 	if ((error = xfs_iowait(bp))) {
3866 		xfs_ioerror_alert("xlog_do_recover",
3867 				  log->l_mp, bp, XFS_BUF_ADDR(bp));
3868 		ASSERT(0);
3869 		xfs_buf_relse(bp);
3870 		return error;
3871 	}
3872 
3873 	/* Convert superblock from on-disk format */
3874 	sbp = &log->l_mp->m_sb;
3875 	xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3876 	ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3877 	ASSERT(XFS_SB_GOOD_VERSION(sbp));
3878 	xfs_buf_relse(bp);
3879 
3880 	xlog_recover_check_summary(log);
3881 
3882 	/* Normal transactions can now occur */
3883 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3884 	return 0;
3885 }
3886 
3887 /*
3888  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3889  *
3890  * Return error or zero.
3891  */
3892 int
3893 xlog_recover(
3894 	xlog_t		*log)
3895 {
3896 	xfs_daddr_t	head_blk, tail_blk;
3897 	int		error;
3898 
3899 	/* find the tail of the log */
3900 	if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3901 		return error;
3902 
3903 	if (tail_blk != head_blk) {
3904 		/* There used to be a comment here:
3905 		 *
3906 		 * disallow recovery on read-only mounts.  note -- mount
3907 		 * checks for ENOSPC and turns it into an intelligent
3908 		 * error message.
3909 		 * ...but this is no longer true.  Now, unless you specify
3910 		 * NORECOVERY (in which case this function would never be
3911 		 * called), we just go ahead and recover.  We do this all
3912 		 * under the vfs layer, so we can get away with it unless
3913 		 * the device itself is read-only, in which case we fail.
3914 		 */
3915 		if ((error = xfs_dev_is_read_only(log->l_mp,
3916 						"recovery required"))) {
3917 			return error;
3918 		}
3919 
3920 		cmn_err(CE_NOTE,
3921 			"Starting XFS recovery on filesystem: %s (logdev: %s)",
3922 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3923 			log->l_mp->m_logname : "internal");
3924 
3925 		error = xlog_do_recover(log, head_blk, tail_blk);
3926 		log->l_flags |= XLOG_RECOVERY_NEEDED;
3927 	}
3928 	return error;
3929 }
3930 
3931 /*
3932  * In the first part of recovery we replay inodes and buffers and build
3933  * up the list of extent free items which need to be processed.  Here
3934  * we process the extent free items and clean up the on disk unlinked
3935  * inode lists.  This is separated from the first part of recovery so
3936  * that the root and real-time bitmap inodes can be read in from disk in
3937  * between the two stages.  This is necessary so that we can free space
3938  * in the real-time portion of the file system.
3939  */
3940 int
3941 xlog_recover_finish(
3942 	xlog_t		*log,
3943 	int		mfsi_flags)
3944 {
3945 	/*
3946 	 * Now we're ready to do the transactions needed for the
3947 	 * rest of recovery.  Start with completing all the extent
3948 	 * free intent records and then process the unlinked inode
3949 	 * lists.  At this point, we essentially run in normal mode
3950 	 * except that we're still performing recovery actions
3951 	 * rather than accepting new requests.
3952 	 */
3953 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3954 		xlog_recover_process_efis(log);
3955 		/*
3956 		 * Sync the log to get all the EFIs out of the AIL.
3957 		 * This isn't absolutely necessary, but it helps in
3958 		 * case the unlink transactions would have problems
3959 		 * pushing the EFIs out of the way.
3960 		 */
3961 		xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3962 			      (XFS_LOG_FORCE | XFS_LOG_SYNC));
3963 
3964 		if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3965 			xlog_recover_process_iunlinks(log);
3966 		}
3967 
3968 		xlog_recover_check_summary(log);
3969 
3970 		cmn_err(CE_NOTE,
3971 			"Ending XFS recovery on filesystem: %s (logdev: %s)",
3972 			log->l_mp->m_fsname, log->l_mp->m_logname ?
3973 			log->l_mp->m_logname : "internal");
3974 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3975 	} else {
3976 		cmn_err(CE_DEBUG,
3977 			"!Ending clean XFS mount for filesystem: %s",
3978 			log->l_mp->m_fsname);
3979 	}
3980 	return 0;
3981 }
3982 
3983 
3984 #if defined(DEBUG)
3985 /*
3986  * Read all of the agf and agi counters and check that they
3987  * are consistent with the superblock counters.
3988  */
3989 void
3990 xlog_recover_check_summary(
3991 	xlog_t		*log)
3992 {
3993 	xfs_mount_t	*mp;
3994 	xfs_agf_t	*agfp;
3995 	xfs_agi_t	*agip;
3996 	xfs_buf_t	*agfbp;
3997 	xfs_buf_t	*agibp;
3998 	xfs_daddr_t	agfdaddr;
3999 	xfs_daddr_t	agidaddr;
4000 	xfs_buf_t	*sbbp;
4001 #ifdef XFS_LOUD_RECOVERY
4002 	xfs_sb_t	*sbp;
4003 #endif
4004 	xfs_agnumber_t	agno;
4005 	__uint64_t	freeblks;
4006 	__uint64_t	itotal;
4007 	__uint64_t	ifree;
4008 
4009 	mp = log->l_mp;
4010 
4011 	freeblks = 0LL;
4012 	itotal = 0LL;
4013 	ifree = 0LL;
4014 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4015 		agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4016 		agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4017 				XFS_FSS_TO_BB(mp, 1), 0);
4018 		if (XFS_BUF_ISERROR(agfbp)) {
4019 			xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4020 						mp, agfbp, agfdaddr);
4021 		}
4022 		agfp = XFS_BUF_TO_AGF(agfbp);
4023 		ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4024 		ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4025 		ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4026 
4027 		freeblks += be32_to_cpu(agfp->agf_freeblks) +
4028 			    be32_to_cpu(agfp->agf_flcount);
4029 		xfs_buf_relse(agfbp);
4030 
4031 		agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4032 		agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4033 				XFS_FSS_TO_BB(mp, 1), 0);
4034 		if (XFS_BUF_ISERROR(agibp)) {
4035 			xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4036 					  mp, agibp, agidaddr);
4037 		}
4038 		agip = XFS_BUF_TO_AGI(agibp);
4039 		ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4040 		ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4041 		ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4042 
4043 		itotal += be32_to_cpu(agip->agi_count);
4044 		ifree += be32_to_cpu(agip->agi_freecount);
4045 		xfs_buf_relse(agibp);
4046 	}
4047 
4048 	sbbp = xfs_getsb(mp, 0);
4049 #ifdef XFS_LOUD_RECOVERY
4050 	sbp = &mp->m_sb;
4051 	xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4052 	cmn_err(CE_NOTE,
4053 		"xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4054 		sbp->sb_icount, itotal);
4055 	cmn_err(CE_NOTE,
4056 		"xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4057 		sbp->sb_ifree, ifree);
4058 	cmn_err(CE_NOTE,
4059 		"xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4060 		sbp->sb_fdblocks, freeblks);
4061 #if 0
4062 	/*
4063 	 * This is turned off until I account for the allocation
4064 	 * btree blocks which live in free space.
4065 	 */
4066 	ASSERT(sbp->sb_icount == itotal);
4067 	ASSERT(sbp->sb_ifree == ifree);
4068 	ASSERT(sbp->sb_fdblocks == freeblks);
4069 #endif
4070 #endif
4071 	xfs_buf_relse(sbbp);
4072 }
4073 #endif /* DEBUG */
4074